WO2013024662A1 - 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法 - Google Patents

無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法 Download PDF

Info

Publication number
WO2013024662A1
WO2013024662A1 PCT/JP2012/068459 JP2012068459W WO2013024662A1 WO 2013024662 A1 WO2013024662 A1 WO 2013024662A1 JP 2012068459 W JP2012068459 W JP 2012068459W WO 2013024662 A1 WO2013024662 A1 WO 2013024662A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio base
user terminal
station apparatus
uplink
Prior art date
Application number
PCT/JP2012/068459
Other languages
English (en)
French (fr)
Inventor
大祐 西川
聡 永田
哲士 阿部
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to ES12824133.8T priority Critical patent/ES2642372T3/es
Priority to EP12824133.8A priority patent/EP2744278B1/en
Priority to CN201280044304.7A priority patent/CN103797866B/zh
Priority to US14/238,148 priority patent/US9723569B2/en
Publication of WO2013024662A1 publication Critical patent/WO2013024662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention relates to a radio communication system, a radio base station apparatus, a user terminal, and a radio communication method applicable to a cellular system or the like.
  • LTE Release 10 which is an extended wireless interface of LTE (Long Term Evolution) Release 8 specification (hereinafter referred to as LTE or Rel. 8).
  • LTE-A aims to achieve higher system performance than LTE while maintaining backward compatibility with LTE.
  • a low peak-to-average power ratio (PAPR: Peak-to-Average Power Ratio) is realized, and SC-FDMA (Single-Carrier Division Multiple Access) effective for increasing coverage is adopted.
  • PAPR Peak-to-Average Power Ratio
  • SC-FDMA Single-Carrier Division Multiple Access
  • UE User Equipment
  • eNB evolved NodeB
  • each user terminal is mutually connected within the same cell. Does not interfere.
  • the LTE system is based on one-cell frequency repetition using the same frequency in all cells, the interference level from user terminals existing at the cell edge of the neighboring cells is particularly high. In order to compensate for such interference from neighboring cells and maintain a constant reception quality, it is necessary to take measures against inter-cell interference.
  • Uplink transmission power control plays a major role in measures against inter-cell interference.
  • the radio base station apparatus may control the transmission power of the user terminal so as to satisfy a required reception quality in consideration of a propagation loss between the user terminal and the radio base station apparatus and interference given to neighboring cells. Required.
  • fractional transmission power control is adopted as a transmission power control method considering inter-cell interference.
  • Transmission power of the LTE system uplink (PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), SRS (Sounding Reference Signal)) and control power that is controlled and closed loop control.
  • the open loop control is performed using a parameter notified by the radio base station apparatus in a relatively long cycle and a propagation loss measured by the user terminal.
  • Closed loop control is based on the communication status between the radio base station device and the user terminal (for example, the received SINR (Signal to Interference plus Noise Ratio) at the radio base station device) with a relatively short cycle. This is performed by a TPC command to be notified.
  • the transmission power of PUSCH is controlled by the following formula (1) (Non-Patent Document 1).
  • i is an index indicating a subframe
  • j is an index indicating a scheduling type
  • P CMAX C (i) is the maximum transmittable power of the user terminal
  • M PUSCH C ( i) is a used frequency bandwidth
  • P O_PUSCH C (j) is the basic transmission power of PUSCH
  • PL C is the propagation loss
  • ⁇ C (j) is a coefficient of a propagation loss
  • delta TF C (j) is an offset amount for each used format
  • f C (i) is an offset amount based on the TPC command.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • a micro cell for example, a pico cell, a femto cell, etc.
  • a macro cell for example, a pico cell, a femto cell, etc.
  • the formed HetNet Heterogeneous Network
  • a radio base station apparatus macro base station
  • a radio base station apparatus pico base station
  • the user terminal communicates with one or both radio base station apparatuses suitable for communication among the macro base station and the pico base station.
  • the optimum uplink transmission power differs depending on the communication status between each radio base station apparatus and the user terminal.
  • the conventional transmission power control is not necessarily suitable for operation in the HetNet environment, when conventional transmission power control is applied in an LTE-A system to which HetNet is applied, uplink transmission power is controlled. May not be properly controlled. As a result, inter-cell interference cannot be sufficiently suppressed, and uplink communication quality may be degraded.
  • the present invention has been made in view of the above points, and provides a radio communication system, a radio base station apparatus, a user terminal, and a radio communication method capable of appropriately controlling uplink transmission power even in a HetNet environment. Objective.
  • a radio communication system is a radio communication system including a first radio base station apparatus and a second radio base station apparatus configured to be able to communicate with the first radio base station apparatus.
  • the first radio base station apparatus measures a reception quality of an uplink reference signal transmitted from a user terminal and generates first reception quality information, and the first communication A notification unit that notifies the second radio base station apparatus of quality information, wherein the second radio base station apparatus measures reception quality of the uplink reference signal transmitted from the user terminal and A second communication quality measuring unit that generates the second communication quality information, and a correction value of the transmission power of the user terminal in the uplink based on the first communication quality information and the second communication quality information.
  • a correction value determination unit and the determined correction value A notification unit that notifies the serial user terminal, characterized by comprising a.
  • the radio communication method of the present invention includes a step in which a user terminal transmits an uplink reference signal to a first radio base station apparatus and a second radio base station apparatus, and the first radio base station apparatus performs the uplink reference A step of measuring signal reception quality to generate first communication quality information, and a step of the second radio base station apparatus measuring reception quality of the uplink reference signal to generate second communication quality information
  • the first radio base station apparatus notifying the second radio base station apparatus of the first communication quality information
  • the second radio base station apparatus includes the first communication quality information and Determining a correction value of the transmission power of the user terminal in uplink based on the second communication quality information, notifying the user terminal of the determined correction value, and the user terminal correcting the correction Based on value Characterized by comprising the steps of: setting a transmission power in the uplink Te.
  • a radio base station apparatus of the present invention is a radio base station apparatus configured to be able to communicate with other radio base station apparatuses, and measures reception quality of uplink reference signals transmitted from user terminals to obtain communication quality information.
  • a communication quality measuring unit to generate, a receiving unit for receiving communication quality information generated by measuring the reception quality of an uplink reference signal transmitted from the user terminal by the other radio base station device, and the communication quality information
  • a correction value determining unit that determines a correction value of the transmission power of the user terminal in the uplink based on communication quality information of the other radio base station apparatus, and notifying the user terminal of the determined correction value And a notification unit.
  • a user terminal includes a transmitter that transmits an uplink reference signal to a first radio base station apparatus and a second radio base station apparatus configured to communicate with each other, and the first radio base station apparatus Alternatively, the second radio base station apparatus receives a transmission power correction value in the uplink determined based on reception quality of the uplink reference signal for each radio base station apparatus, and an uplink based on the correction value. And a setting unit for setting transmission power in the link.
  • the present invention it is possible to provide a radio communication system, a radio base station apparatus, a user terminal, and a radio communication method capable of appropriately controlling uplink transmission power even in a HetNet environment.
  • FIG. 10 is a control flow diagram of uplink transmission power control when transmission power is corrected based on PHR (notified by higher layer signaling). It is a control flow figure of uplink transmission power control in the case of correcting transmission power with an offset amount based on a TPC command. It is a control flowchart of uplink transmission power control when correcting transmission power based on PHR (using a TPC command).
  • FIG. 1 is a schematic configuration diagram of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system shown in FIG. 1 includes a radio base station apparatus (macro base station) B1 that forms a macro cell C1, a radio base station apparatus (pico base station) B2 that forms a pico cell C2, and a user terminal UE. It is configured. Note that there may be a plurality of radio base station apparatuses (macro base stations) B1, radio base station apparatuses (pico base stations) B2, and user terminals UE constituting the radio communication system.
  • the macro base station B1 and the pico base station B2 are connected by wire (for example, via an X2 interface).
  • the macro base station B1 and the pico base station B2 are each connected to a core network (not shown).
  • the LTE-A system shown in FIG. 1 has a HetNet configuration that places importance on the local area environment.
  • the HetNet is a hierarchical network in which cells having different downlink transmission powers are overlaid in various forms such as pico cells C2 and femto cells (small cells) in addition to the existing macro cell C1.
  • the macro base station B1 of the macro cell C1 that covers a relatively wide area is set to have a higher downlink transmission power than the pico base station B2 of the pico cell C2 that covers a relatively narrow area.
  • the uplink transmission power of the user terminal is set so that the level of interference with neighboring cells is reduced. That is, the transmission power of the user terminal is controlled so as to satisfy the required reception quality in consideration of the propagation loss (path loss) between the user terminal and the radio base station apparatus to which the user terminal belongs and the interference given to neighboring cells.
  • the propagation loss path loss
  • the transmission power of PUSCH, PUCCH, and SRS in the uplink is controlled by a combination of open loop control and closed loop control.
  • the open loop control is performed using a parameter notified by the radio base station apparatus in a relatively long cycle and a propagation loss measured by the user terminal.
  • Closed loop control is based on the communication status between the radio base station device and the user terminal (for example, the received SINR (Signal to Interference plus Noise Ratio) at the radio base station device) with a relatively short cycle. This is performed by a TPC command to be notified.
  • the transmission power of PUSCH is expressed by the following equation (1).
  • i is an index indicating a subframe
  • j is an index indicating a scheduling type of PUSCH
  • a parameter related to the open loop control is a parameter P O_PUSCH, c indicating a target received power equivalent of PUSCH.
  • J use frequency bandwidth M PUSCH, c (i), propagation loss PL c , fractional transmission power control coefficient ⁇ c (j), and offset value ⁇ TF, c (j) according to the transmission format.
  • the parameter related to the closed loop control is the offset amount f c (i) based on the TPC command.
  • the transmission power of PUSCH the smaller one of the power determined by the above-described open loop control and closed loop control and the maximum transmittable power P CMAX, c (i) of the user terminal is selected.
  • the transmission power of PUCCH is represented by the following formula (2).
  • parameters relating to the open loop control include a parameter P O_PUCCH indicating propagation power equivalent to the target reception power of PUCCH, a propagation loss PL c , an offset h (n CQI , n HARQ , n SR ) according to transmission contents,
  • the offset value ⁇ F_PUCCH (F) corresponding to the transmission format and the offset value ⁇ TxD (F ′) corresponding to the PUCCH transmission diversity.
  • the parameter related to the closed loop control is the offset amount g (i) based on the TPC command.
  • the transmission power of PUCCH the smaller one of the transmission power value determined by the above-described open loop control and closed loop control and the maximum transmittable power P CMAX, c (i) of the user terminal is selected.
  • the transmission power of SRS is represented by the following formula (3).
  • P SRS_OFFSET, c (m) is an offset amount from the PUSCH transmission power for each SRS type m
  • M SRS is the SRS transmission frequency bandwidth
  • other parameters are PUSCH This is the same as equation (1) for transmission power.
  • the transmission power of SRS the smaller one of the transmission power value determined by the above-described open loop control and closed loop control and the maximum transmittable power P CMAX, c (i) of the user terminal is selected.
  • the propagation loss PL c used for the open loop control in the above-described equations (1) to (3) is determined based on the reception level of CRS (Cell Specific Reference Signal) received by the user terminal in the downlink.
  • CRS Cell Specific Reference Signal
  • the CRS is multiplexed in each subframe and used for demodulating a downlink data signal, and also used for Mobility measurement and channel quality information (CQI) measurement.
  • CQI Mobility measurement and channel quality information
  • FIG. 2 is a schematic diagram showing the boundary of the connected cells in the upper and lower links.
  • the optimum connection cell in the downlink is a cell in which the downlink reception power from the radio base station apparatus is maximized. For this reason, the boundary of the connection cell in a downlink becomes B_DL based on the received power of the user terminal UE as shown in FIG.
  • the optimum connection cell in the uplink is the cell with the smallest propagation loss. For this reason, the boundary of the connected cell in the uplink is B_UL based on the propagation loss as shown in FIG.
  • the propagation loss PL c is determined based on the reception level of the CRS, the estimation accuracy may be reduced.
  • the user terminal UE exists in the area A in FIG. 2, the user terminal UE connects to the macro base station B1 in the downlink and connects to the pico base station B2 in the uplink.
  • the CRS is transmitted from the macro base station B1 in the downlink.
  • the propagation loss PL c is determined based on the communication status between the macro base station B1 and the user terminal UE.
  • the user terminal UE connects to the pico base station B2 in the uplink.
  • the present inventors have focused on the problem of the method for determining the propagation loss PL c in the HetNet environment, and have reached the present invention.
  • the present invention seeks to achieve appropriate control of transmission power by estimating propagation loss using different methods.
  • specific embodiments will be described.
  • FIG. 3 is a schematic diagram for explaining a first aspect of uplink transmission power control in a HetNet environment.
  • FIG. 3A shows the case where the cell connected to the user terminal is the same between the uplink and the downlink
  • FIG. 3B shows the case where the cell connected to the user terminal is different between the uplink and the downlink.
  • independent identification codes are assigned to the macro base station B1 and the pico base station B2.
  • the following description shows the case where there is one pico base station configured to be communicable with the macro base station B1, a plurality of pico base stations may be provided.
  • the propagation loss PL c can be accurately determined based on the reception level of the CRS received by the user terminal UE in the downlink.
  • the propagation loss PL c suitable for uplink transmission power control cannot be determined from the CRS reception level. This is because when the connected cell is different between the uplink and the downlink, the radio base station apparatus that transmits the CRS to the user terminal in the downlink and the radio base station apparatus to which the user terminal is connected in the uplink are different.
  • the user terminal UE is connected to the macro base station B1 in the downlink and connected to the pico base station B2 in the uplink.
  • the propagation loss PL c estimated by the CRS reception level depends on the downlink propagation path (propagation path between the macro base station B1 and the user terminal UE), but is the uplink subject to power control. This does not depend on the propagation path (propagation path between the pico base station B1 and the user terminal UE).
  • the user terminal UE is notified of an offset amount (correction value) for correcting the propagation loss PL c so that the uplink transmission power can be accurately controlled even when the uplink and downlink have different connected cells.
  • an offset amount (correction value) ⁇ HetNet (i) is provided in the transmission power calculation formula.
  • the transmission power of the PUSCH can be expressed by the following formula (4)
  • the transmission power of the PUCCH can be expressed by the following formula (5)
  • the transmission power of the SRS can be expressed by the following formula (6).
  • the offset amount ⁇ HetNet (i) is set to the reception level (reception quality) of the reference signal (for example, SRS) received by each radio base station apparatus from the user terminal UE in the uplink. It is a value determined based on this. Specifically, for example, the offset value ⁇ HetNet (i) corresponds to the difference between the SRS reception level received by the macro base station B1 and the SRS reception level received by the pico base station B2. In the case shown in FIG. 3B, both the reception level of SRS received by the macro base station B1 and the reception level of CRS received by the user terminal UE are in the propagation path between the macro base station B1 and the user terminal UE. It depends.
  • the reception level of SRS received by the macro base station B1 and the reception level of CRS received by the user terminal UE are in a correspondence relationship.
  • the reception level of SRS received by the pico base station B2 depends on the propagation path between the pico base station B1 and the user terminal UE. That is, the reception level of the SRS received by the pico base station B2 corresponds to the original propagation loss necessary for uplink transmission power control. Therefore, by determining the offset amount based on the reception level of the SRS received by each radio base station apparatus from the user terminal UE as described above, the propagation loss PL c determined by the reception level of the CRS can be corrected.
  • the determination of the offset amount is not limited to SRS, and may be determined based on the reception level of another reference signal or data signal transmitted from the user terminal in the uplink and received by each radio base station apparatus.
  • the offset amount ⁇ HetNet (i) is calculated based on the power headroom report (PHR: Power Headroom Report) reported by the MAC layer in the uplink and the pico base station B2 It may be determined based on the received power of the data signal or reference signal received from the terminal UE.
  • PHR refers to notification information about power usage reported from the user terminal UE.
  • the Pico base station B2 that receives the PHR periodically reported in the MAC layer by the user terminal UE includes the propagation loss PL c measured and held by the user terminal UE. You can know the transmission power. That is, the pico base station B2 can grasp the transmission power set by the user terminal UE by PHR.
  • the actual propagation loss between the pico base station B2 and the user terminal UE can be calculated from the difference between the transmission power of the user terminal UE and the actual reception level (reception quality). Therefore, the difference between the propagation loss PL c measured by the user terminal UE and the actual propagation loss value calculated by the pico base station B2 is set and determined as an offset amount, and the user terminal UE is downlinked via the macro base station B1. Can be used to correct the transmission power error caused by the propagation loss.
  • the propagation loss PL c determined based on the reception level of the CRS received by the user terminal UE from the macro base station B1 is larger than an appropriate value.
  • the offset amount ⁇ HetNet (i) becomes a negative value, and the influence of the error of the propagation loss PL c in the uplink transmission power is corrected.
  • FIG. 4 is an example of a control flow diagram of uplink transmission power control in the first mode.
  • the macro base station B1 and the pico base station B2 each measure the reception level of a reference signal (for example, SRS) transmitted from the user terminal UE.
  • the pico base station B2 notifies the macro base station B1 of the measurement result of the reception level of SRS by backhaul (step S101).
  • the signal transmitted from the user terminal UE may be a reference signal other than SRS.
  • the macro base station B1 determines a radio base station apparatus to which the user terminal UE connects in the uplink based on the SRS reception level measured in the macro base station B1 and the pico base station B2 (step S102). .
  • the macro base station B1 determines whether or not the radio base station apparatus to which the user terminal UE is connected in the uplink and the radio base station apparatus to be connected in the downlink are different (Step S103).
  • the macro base station B1 is the macro base station B1 and the pico base station B2. Based on the measured reception level of the SRS, an offset amount ⁇ HetNet (i) used for uplink transmission power control of the user terminal UE is determined (step S104).
  • the determined offset amount ⁇ HetNet (i) is notified from the radio base station apparatus connected to the user terminal UE in the downlink to the user terminal UE by higher layer signaling (for example, RRC (Radio Resource Control) signaling).
  • RRC Radio Resource Control
  • the user terminal apparatus UE sets the uplink transmission power based on the notified information such as the offset amount ⁇ HetNet (i) (see, for example, the above equations (4) to (6)), and performs uplink transmission. This is performed (step S106).
  • step S104 ′ may be provided instead of step S104.
  • the uplink connected base station for example, pico base station B2
  • the uplink connected base station is based on the measured value of the received power of the data signal or reference signal transmitted from the user terminal UE and the PHR reported from the UE.
  • step S103 When the radio base station apparatus connected in the uplink and the radio base station apparatus connected in the downlink are the same (step S103: NO), the user terminal apparatus UE does not use the information of the offset amount ⁇ HetNet (i) Link transmission power is set and uplink transmission is performed (step S106).
  • the error of the propagation loss PL c is corrected by adding the offset amount ⁇ HetNet (i) to the open loop control, but may be corrected by another method.
  • the error of the propagation loss PL c can be corrected using the offset amounts f c (i) and g (i) based on the closed loop control TPC command.
  • the transmission power of PUSCH is expressed by equation (1)
  • the transmission power of PUCCH is expressed by equation (2)
  • the transmission power of SRS is expressed by equation (3).
  • the number of bits in the transmission power control command (TPC command) field provided in the downlink control signal is expanded to 3 bits or more, and the specified power value step width is expanded. It is preferable to do.
  • steps such as ⁇ 5 dB, ⁇ 3 dB, ⁇ 1 dB, 0 dB, 1 dB, 3 dB, 5 dB, and 7 dB are performed by extending the number of bits of the TPC command in the downlink control information (DCI: Downlink Control Information) format to 3 bits.
  • DCI Downlink Control Information
  • the offset amounts f c (i) and g (i) are obtained by correcting the error of the propagation loss PL c based on the signal received by each radio base station apparatus in the uplink, for example, the reception level of the SRS.
  • the steps are performed in the case of controlling with the offset amounts f c (i) and g (i) based on the TPC command of the closed loop control by extending the number of bits of the TPC command and expanding the step width of the power value. Compared with the case where the width is not expanded, the period of convergence to the required transmission power can be shortened.
  • the error of the propagation loss PL c may be corrected using existing open loop control parameters.
  • the parameter P O - PUSCH open loop control described above, the signaling UE-specific of c (j) with respect to and P O_PUCCH, notifies including the error of the propagation loss PL c to be corrected (correction value for the propagation loss PL c) May be.
  • the number of bits / range of UE-specific P O_PUSCH, c (j) and P O_PUCCH notified by RRC signaling is changed from the existing 4 bits / [ ⁇ 8, + 7] dB.
  • step S105 of FIG. 4 described above power control information is transmitted to the user terminal UE by RRC signaling using the extended UE-specific open-loop transmission power control parameters P O_PUSCH, c (j) and P O_PUCCH. It can be set as the structure which notifies.
  • FIG. 6 shows uplink transmission power control when the transmission power is corrected using offset amounts f c (i) and g (i) based on the TPC command, or UE-specific P O_PUSCH, c (j) and P O_PUCCH.
  • the macro base station B1 and the pico base station B2 each measure the reception level of the SRS transmitted from the user terminal UE.
  • the pico base station B2 notifies the macro base station B1 of the measurement result of the SRS reception level by backhaul (step S201).
  • the signal transmitted from the user terminal UE may be a reference signal other than SRS.
  • the macro base station B1 determines a radio base station apparatus to which the user terminal UE is connected in the uplink based on the SRS reception level measured in the macro base station B1 and the pico base station B2 (step S202). .
  • the macro base station B1 determines whether or not the radio base station apparatus to which the user terminal UE is connected in the uplink and the radio base station apparatus to be connected in the downlink are different (step S203).
  • the macro base station B1 is the macro base station B1 and the pico base station B2. Based on the measured SRS reception level, an offset amount of the uplink transmission power of the user terminal UE is calculated (step S204).
  • An extended TPC command field of 3 bits or more from the radio base station apparatus (for example, macro base station B1) connected to the user terminal UE in the downlink to the user terminal UE so as to satisfy the determined offset amount Is used to notify power control information on the PDCCH (step S205).
  • the user terminal apparatus UE sets the uplink transmission power based on the notified information such as the offset amount, and performs uplink transmission (step S206).
  • step S204 ′ may be provided instead of step S204.
  • the uplink connection base station for example, the pico base station B2
  • the user terminal apparatus UE increases the uplink transmission power without using the offset amount information. Setting is performed and uplink transmission is performed (step S206).
  • each wireless base station apparatus measures the reception quality (for example, reception level) of the uplink reference signal or data signal from the user terminal, and corrects the propagation loss PL c based on the measurement result (correction) By determining the value and notifying the user terminal, the uplink transmission power can be appropriately controlled even in the HetNet environment.
  • a common identification code (cell ID) is assigned to the macro base station B1 and the pico base station B2.
  • a configuration for realizing CoMP transmission / reception a configuration including a radio base station device and a plurality of remote radio devices (RRE: Remote Radio Equipment) connected to the radio base station device by an optical projecting configuration (optical fiber)
  • RRE Remote Radio Equipment
  • optical projecting configuration optical fiber
  • FIG. 8 is a schematic diagram showing radio communication when downlink cooperative multipoint transmission (DLCoMP transmission) is applied.
  • DLCoMP transmission includes Coordinated scheduling / Coordinated beamforming (CS / CB) and Joint processing (JP).
  • JT joint transmission
  • the CRS transmitted from the macro base station B1 and the pico base station B2 is combined and received at the user terminal UE.
  • the reception level of CRS in the user terminal UE depends on both the propagation path between the macro base station B1 and the user terminal UE and the propagation path between the pico base station B1 and the user terminal UE.
  • the user terminal UE when uplink coordinated multipoint reception (ULCoMP reception) is not applied, the user terminal UE is connected to one optimal cell (pico cell in FIG. 8A) in the uplink.
  • the propagation loss PL c estimated based on the reception level of the CRS received in combination is not estimated based only on the uplink propagation path.
  • the accuracy of uplink transmission power control decreases. That is, the propagation loss PL c suitable for uplink transmission power control cannot be determined from the received CRS reception level.
  • the offset amount (correction value) for correcting the propagation loss PL c is notified to the user terminal UE so that the uplink transmission power can be accurately controlled. Further, an offset amount (correction value) ⁇ HetNet (i) is provided in the transmission power calculation formula.
  • the transmission power of PUSCH can be represented by Expression (4)
  • the transmission power of PUCCH can be represented by Expression (5)
  • the transmission power of SRS can be represented by Expression (6).
  • the offset amount ⁇ HetNet (i) is a value determined based on the reception level of the SRS received by each radio base station apparatus in the uplink. Specifically, for example, in the case shown in FIG. 8A, the offset amount ⁇ HetNet (i) is a combination of the SRS reception level received by the macro base station B1 and the pico base station B2, and the pico base station B2 (in the uplink). This corresponds to the difference from the reception level of the SRS received by the user terminal UE). In the case illustrated in FIG.
  • the composite value of the reception levels of SRS received by the macro base station B1 and the pico base station B2 has a correspondence relationship with the reception level of the CSR that is compositely received by the user terminal UE. Further, the reception level of the SRS received by the pico base station B2 corresponds to the original propagation loss necessary for uplink transmission power control. Therefore, by determining the offset amount ⁇ HetNet (i) based on the reception level of SRS received by each radio base station apparatus as described above, the propagation loss PL c determined by the reception level of CRS can be corrected.
  • the offset amount ⁇ HetNet (i) may be determined based on the reception level of another reference signal or data signal transmitted from the user terminal in the uplink and received by each radio base station apparatus.
  • the offset amount ⁇ HetNet (i) is calculated based on the power headroom report (PHR: Power Headroom Report) reported by the MAC layer in the uplink and the pico base station B2 It may be determined based on the received power of the data signal or reference signal received from the terminal UE.
  • the Pico base station B2 that receives the PHR periodically reported in the MAC layer by the user terminal UE includes the propagation loss PL c measured and held by the user terminal UE. You can know the transmission power. That is, the pico base station B2 can grasp the transmission power set by the user terminal UE.
  • the actual propagation loss between the pico base station B2 and the user terminal UE can be calculated from the difference between the transmission power of the user terminal UE and the actual reception level (reception quality). Therefore, the difference between the propagation loss PL c measured by the user terminal UE and the actual propagation loss value calculated by the pico base station B2 is set and determined as an offset amount, and the user terminal UE is downlinked via the macro base station B1. Can be used to correct the transmission power error caused by the propagation loss.
  • the propagation loss PL c determined based on the reception level of the CRS combined and received by the user terminal UE is smaller than an appropriate value.
  • the offset amount ⁇ HetNet (i) becomes a positive value, and the influence of the error of the propagation loss PL c in the transmission power is corrected.
  • the offset value ⁇ HetNet (i) may be made smaller than in the case where ULCoMP reception is not applied.
  • the macro base station B1 may determine whether to apply ULCoMP reception, and notify the user terminal UE of the offset amount ⁇ HetNet (i) determined based on the determination result.
  • the offset amount ⁇ HetNet (i) is determined according to the reception level of the combined CRS received and whether or not ULCoMP reception is applied, but it varies depending on whether or not ULCoMP reception is applied.
  • An offset amount ⁇ CoMP (i) to be performed may be provided separately.
  • PUSCH transmission power can be expressed by the following formula (7)
  • PUCCH transmission power can be expressed by the following formula (8)
  • SRS transmission power can be expressed by the following formula (9).
  • the error of the propagation loss PL c may be corrected using the offset amounts f c (i) and g (i) based on the TPC command.
  • the parameter P O - PUSCH showing a target received power equivalent UE-specific for PUSCH, c (j), and the transmission power using the parameter P O_PUCCH indicating a target received power equivalent PUCCH may be corrected.
  • uplink transmission power control is performed by a method of correcting the propagation loss PL c determined based on the reception level of the CRS received by the user terminal UE. it may be used to switch to other methods capable of determining the PL c.
  • the propagation loss PL c can be accurately estimated based on the reception level of CSI-RS (Channel State Information-Reference Signal) for channel quality measurement.
  • CSI-RS Channel State Information-Reference Signal
  • DM-RS Demodulation-Reference Signal
  • CSI-RS is a reference signal used for measurement of channel state information (CQI, PMI, RI), and is multiplexed in a shared data channel (PDSCH).
  • CRS is a cell-specific reference signal and is associated with an identification code (cell ID). For this reason, when DLCoMP transmission is applied in a plurality of radio base station apparatuses to which a common identification code (cell ID) is assigned, the transmission source of the CRS received by the user terminal UE cannot be specified. Therefore, the estimation accuracy of the propagation loss PL c estimated from the CRS reception level may be low.
  • CSI-RS is also a cell-specific reference signal. However, since CSI-RS can specify periodity and subframe offset, CSI-RS is multiplexed even when the identification code (cell ID) is common.
  • the transmission source can be specified from the timing of the transmission. Thus, when estimating the propagation loss based on the reception level of the CSI-RS, it is possible to estimate the propagation loss corresponding to the transmission source, and the estimation accuracy can be increased.
  • an offset value ⁇ CoMP (i) corresponding to whether or not ULCoMP reception is applied may be provided in the transmission power calculation formula.
  • the transmission power calculation formula may be, for example, a formula in which ⁇ HetNet (i) in the above formulas (4) to (6) is replaced with ⁇ CoMP (i). It should be noted that only the method of estimating the propagation loss PL c based on the reception level of CSI-RS can be used alone.
  • FIG. 9 is a control flow diagram of uplink transmission power control in the second mode.
  • the macro base station B1 and the pico base station B2 each measure the reception level of the SRS transmitted from the user terminal UE.
  • the pico base station B2 notifies the macro base station B1 of the measurement result of the SRS reception level by backhaul (step S301).
  • a reference signal other than SRS may be used.
  • the macro base station B1 determines a radio base station apparatus to which the user terminal UE is connected in the uplink based on the SRS reception level measured in the macro base station B1 and the pico base station B2 (step S302). .
  • the macro base station B1 uses the macro base station B1 and pico Based on the SRS reception level measured at the base station B2, an offset amount ⁇ HetNet (i) used for uplink transmission power control of the user terminal UE is determined (step S305).
  • the determined offset amount ⁇ HetNet (i) is notified to the user terminal UE by RRC signaling from the radio base station apparatus connected to the user terminal UE in the downlink (step S306).
  • the user terminal apparatus UE sets the uplink transmission power based on the notified information such as the offset amount ⁇ HetNet (i), and performs uplink transmission (step S307).
  • the uplink connection base station (for example, the pico base station B2) is reported from the measurement value of the received power of the data signal or reference signal transmitted from the user terminal UE and from the user terminal UE.
  • a step of calculating an offset amount ⁇ HetNet (i) used for uplink transmission power control of the user terminal UE based on the PHR may be provided.
  • step S303: YES When the user terminal UE measures the propagation loss PL c based on the reception level of the CRS (step S303: YES) and ULCoMP reception is applied (step S304: NO), the macro base station B1 Based on the SRS reception level measured in the pico base station B2, an offset amount ⁇ HetNet (i) used for uplink transmission power control of the user terminal UE is determined.
  • a radio base station apparatus that performs ULCoMP reception is considered (step S308).
  • the determined offset amount ⁇ HetNet (i) is notified to the user terminal UE by RRC signaling from the radio base station apparatus connected to the user terminal UE in the downlink (step S306).
  • the user terminal apparatus UE sets the uplink transmission power based on the notified information such as the offset amount ⁇ HetNet (i), and performs uplink transmission (step S307).
  • the offset value ⁇ CoMP (i) corresponding to whether or not ULCoMP reception is applied may be separately provided.
  • the user terminal UE When the user terminal UE does not measure the propagation loss PL c based on the CRS reception level (step S303: NO), the user terminal UE receives the CSI-RS reception level transmitted from the macro base station B1 and the pico base station B2. The propagation loss PL c is measured based on (Step S309).
  • the macro base station B1 determines the offset amount ⁇ CoMP (i) in consideration of ULCoMP reception (step S311).
  • the determined offset amount ⁇ CoMP (i) is notified to the user terminal UE (step S306), and the user terminal apparatus UE sets the uplink transmission power based on information such as the offset amount ⁇ CoMP (i). Then, uplink transmission is performed (step S307).
  • step S310 when ULCoMP reception is not applied (step S310: NO), the user terminal apparatus UE sets uplink transmission power based on information such as a propagation loss PL c estimated based on the reception level of CSI-RS. Then, uplink transmission is performed (step S307). In this case, the user terminal UE determines the propagation loss based on the reception level of CSI-RS transmitted from the radio base station apparatus connected in the uplink.
  • FIG. 10 is a block diagram showing a schematic configuration of the radio base station apparatus (macro base station and pico base station) according to the embodiment.
  • the radio base station apparatus 100 shown in FIG. 10 mainly includes an antenna 102, an amplifier unit 104, a transmission / reception unit 106, a baseband signal processing unit 108, a call processing unit 110, and a transmission path interface 112. Yes.
  • the radio frequency signal received by the antenna 102 is amplified by the amplifier unit 104. Amplification is performed so that the received power is corrected to a constant power under AGC (Auto Gain Control).
  • the amplified radio frequency signal is frequency-converted into a baseband signal by the transmission / reception unit 106.
  • the baseband signal is subjected to predetermined processing (error correction, decoding, etc.) by the baseband signal processing unit 108, and then transferred to an access gateway device (not shown) via the transmission path interface 112.
  • the access gateway device is connected to the core network and manages each user terminal.
  • the call processing unit 110 transmits / receives a call processing control signal to / from a radio control station of the host device, and manages the state of the radio base station device 100 and allocates resources. Note that processing in a layer 1 processing unit 181 and a MAC processing unit 182 to be described later is performed based on the communication state between the radio base station apparatus 100 and the mobile station apparatus 200 set in the call processing unit 110.
  • Downlink data is input to the baseband signal processing unit 108 from the host device via the transmission path interface 112.
  • the baseband signal processing unit 108 performs retransmission control processing, scheduling, transmission format selection, channel coding, and the like, and transfers the result to the transmission / reception unit 106.
  • the transmission / reception unit 106 frequency-converts the baseband signal output from the baseband signal processing unit 108 into a radio frequency signal. The frequency-converted signal is then amplified by the amplifier unit 104 and transmitted from the antenna 102.
  • FIG. 11 and 12 are block diagrams showing the configuration of the baseband signal processing unit in the radio base station apparatus shown in FIG.
  • FIG. 11 shows the configuration of the baseband signal processing unit in the macro base station
  • FIG. 12 shows the configuration of the baseband signal processing unit in the pico base station.
  • the baseband signal processing unit 108 in the macro base station mainly includes a layer 1 processing unit 181, a MAC (Medium Access Control) processing unit 182, and an RLC (Radio Link Control) processing unit 183. , Uplink reception quality measuring section 184, uplink connected cell determining section 185, uplink transmission power offset amount determining section 186, and TPC command determining section 187. Also, as shown in FIG. 12, the baseband signal processing unit 108 in the pico base station mainly includes a layer 1 processing unit 181, a MAC processing unit 182, an RLC processing unit 183, and an uplink reception quality measurement unit 184. And an uplink reception quality report unit (notification unit) 188.
  • the layer 1 processing unit 181 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 181 performs channel decoding, discrete Fourier transform (DFT: Discrete Fourier Transform), frequency demapping, inverse Fourier transform (IFFT: Inverse Fast Fourier Transform) on a signal received on the uplink, Performs processing such as data demodulation. Further, the layer 1 processing unit 181 performs processing such as channel coding, data modulation, frequency mapping, and inverse Fourier transform (IFFT) on a signal transmitted in the downlink.
  • DFT discrete Fourier transform
  • IFFT Inverse Fast Fourier Transform
  • the MAC processing unit 182 performs retransmission control (HARQ) at the MAC layer for a signal received in the uplink, scheduling for the uplink / downlink, selection of a PUSCH / PDSCH transmission format, selection of a PUSCH / PDSCH resource block, etc. Process.
  • HARQ retransmission control
  • the RLC processing unit 183 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the uplink / packets transmitted on the downlink.
  • the uplink quality measurement unit 184 measures the reception level of the SRS received from the user terminal on the uplink. When correcting the uplink transmission power using another reference signal, the reception level of the target reference signal is also measured. The reception level measured by uplink quality measuring section 184 is sent to uplink connected cell determining section 185 and uplink transmission power offset amount determining section 186.
  • the uplink connection cell determination unit 185 determines the radio base station apparatus to which the user terminal is connected in the uplink based on the reception level of the SRS received at the macro base station and the reception level of the SRS received by the neighboring pico base stations. decide. When ULCoMP reception is applied, a radio base station apparatus that is a target of ULCoMP reception is determined.
  • the uplink transmission power offset amount determination unit 186 determines the uplink transmission power offset amount of the user terminal based on the SRS reception level received by the macro base station and the SRS reception level received by the neighboring pico base stations ( (Correction value) is determined. Alternatively, based on the measured value of the received power of the data signal or the reference signal received by the pico base station to which the user terminal is connected in the uplink, and the PHR reported from the user terminal, reported in backhaul from the pico base station. Thus, the uplink transmission power offset amount ⁇ HetNet (i) of the user terminal is determined. When ULCoMP reception is applied, an offset amount (correction value) is determined in consideration of application of ULCoMP reception.
  • This offset amount is notified to the user terminal by RRC signaling.
  • the offset amount is included in the parameter P O_PUSCH, c (j) indicating the target received power equivalent of the extended UE-specific PUSCH and the parameter P O_PUCCH indicating the target received power equivalent of the PUCCH, and is transmitted by the RRC signaling. Notified to the terminal.
  • the TPC command determination unit 187 sets the value of the TPC command from the offset amount determined by the uplink transmission power offset amount determination unit 186. When an extended TPC command with an extended number of bits is applied, the value of the extended TPC command is set. The set TPC command is notified to the user terminal by PDCCH.
  • the uplink reception quality report section 188 notifies the SRS reception level measured by the uplink quality measurement section 184 in the pico base station to the uplink connection cell determination section 185 and uplink transmission power offset amount determination section 186 of the macro base station.
  • step S104 ′ shown in FIG. 5 based on the measured value of the received power of the data signal or reference signal received at the pico base station and the PHR reported from the user terminal, the user terminal The uplink transmission power offset amount ⁇ HetNet (i) is calculated and notified to the uplink transmission power offset amount determination unit 186 of the macro base station.
  • FIG. 13 is a block diagram illustrating a schematic configuration of the user terminal according to the embodiment.
  • a user terminal 200 shown in FIG. 13 mainly includes an antenna 202, an amplifier unit 204, a transmission / reception unit 206, a baseband signal processing unit 208, a call processing unit 210, and an application unit 212.
  • a radio frequency signal received by the antenna 202 is amplified by the amplifier unit 204.
  • the amplification is performed so that the received power is corrected to a constant power under AGC.
  • the amplified radio frequency signal is frequency converted into a baseband signal in the transmission / reception unit 206.
  • the baseband signal is subjected to predetermined processing (error correction, decoding, etc.) by the baseband signal processing unit 208 and then sent to the call processing unit 210 and the application unit 212.
  • the call processing unit 210 manages communication with the radio base station apparatus 100, and the application unit 212 performs processing related to a layer higher than the physical layer and the MAC layer.
  • Uplink data is input from the application unit 212 to the baseband signal processing unit 208.
  • the baseband signal processing unit 208 performs retransmission control processing, scheduling, transmission format selection, channel coding, and the like, and transfers the result to the transmission / reception unit 206.
  • the transmission / reception unit 206 converts the frequency of the baseband signal output from the baseband signal processing unit 208 into a radio frequency signal.
  • the frequency-converted signal is then amplified by the amplifier unit 204 and transmitted from the antenna 202.
  • FIG. 14 is a block diagram showing a configuration of a baseband signal processing unit in the user terminal shown in FIG.
  • the baseband signal processing unit 208 includes a layer 1 processing unit 281, a MAC processing unit 282, an RLC processing unit 283, a propagation loss measuring unit 284, a transmission power offset amount receiving unit 285, a TPC command receiving unit 286, An uplink transmission power setting unit 287 is configured.
  • the layer 1 processing unit 281 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 281 performs processing such as channel decoding, discrete Fourier transform (DFT), frequency demapping, inverse Fourier transform (IFFT), and data demodulation on a signal received on the downlink. Further, the layer 1 processing unit 281 performs processing such as channel coding, data modulation, frequency mapping, and inverse Fourier transform (IFFT) on a signal transmitted on the uplink.
  • DFT discrete Fourier transform
  • IFFT inverse Fourier transform
  • IFFT inverse Fourier transform
  • the MAC processing unit 282 performs retransmission control (HARQ) at the MAC layer for a signal received on the downlink, analysis of downlink scheduling information (specification of PDSCH transmission format, identification of PDSCH resource block), and the like. Also, the MAC processing unit 282 performs processing such as MAC retransmission control for signals transmitted on the uplink, analysis of uplink scheduling information (specification of PUSCH transmission format, specification of PUSCH resource block), and the like.
  • HARQ retransmission control
  • the RLC processing unit 283 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the downlink / packets transmitted on the uplink.
  • the propagation loss measurement unit 284 measures the propagation loss based on the reception level of the CRS received on the downlink.
  • the propagation loss is measured based on the reception level of CSI-RS.
  • the transmission power offset amount receiving unit 285 receives the transmission power offset amount notified by the RRC signal link in the downlink.
  • a plurality of offset amounts for example, when ⁇ HetNet (i) and ⁇ CoMP (i) are used
  • a plurality of transmission power offset amounts are received.
  • the TPC command receiving unit 286 receives a TPC command notified by PDCCH in the downlink. When an extended TPC command with an extended number of bits is applied, the extended TPC command is received.
  • the uplink transmission power setting unit 287 includes the value of the propagation loss measured by the propagation loss measurement unit 284, the transmission power offset amount received by the transmission power offset amount reception unit 285, the value of the TPC command received by the TPC command reception unit 286, and the like. Is used to set the uplink transmission power based on equations (4) to (6).
  • an offset amount (correction value) for correcting the propagation loss PL c is determined based on the reception level of the uplink reference signal or data signal, and notified to the user terminal.

Abstract

 HetNet環境においても上りリンクの送信電力を適切に制御可能な無線通信システムを提供すること。第1の無線基地局装置と、第1の無線基地局装置と通信可能に構成された第2の無線基地局装置と、を備えた無線通信システムであって、第1の無線基地局装置は、ユーザ端末から送信される上り参照信号の受信品質を測定して第1の受信品質情報を生成する第1の通信品質測定部と、第1の通信品質情報を第2の無線基地局装置に通知する通知部と、を備え、第2の無線基地局装置は、ユーザ端末から送信される上り参照信号の受信品質を測定して第2の通信品質情報を生成する第2の通信品質測定部と、第1の通信品質情報及び第2の通信品質情報を基に上りリンクにおけるユーザ端末の送信電力の補正値を決定する補正値決定部と、決定された補正値をユーザ端末に通知する通知部と、を備えたことを特徴とする。

Description

無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法
 本発明は、セルラーシステム等に適用可能な無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法に関する。
 現在、3GPP(Third Generation Partnership Project)では、LTE(Long Term Evolution)Release 8仕様(以下、LTE又はRel.8という)の発展形無線インタフェースであるLTE-Advanced(以下、LTE Release 10仕様以降の仕様を総称して「LTE-A」という)の標準化が進められている。LTE-Aは、LTEとのバックワードコンパチビリティを保ちつつ、LTEよりもさらに高いシステム性能の実現を目指している。
 LTEシステムの上りリンクにおいて、低いピーク対平均電力比(PAPR:Peak-to-Average Power Ratio)を実現し、カバレッジの増大に有効なSC-FDMA(Single-Carrier Frequency Division Multiple Access)が採用されている。この方式では、無線基地局装置(eNB:evolved NodeB)でのスケジューリングにより、ある周波数及び時間の無線リソースを一つのユーザ端末(UE:User Equipment)に割り当てるため、同一セル内において各ユーザ端末は互いに干渉しない。しかしながら、LTEシステムでは全てのセルで同一の周波数を用いる1セル周波数繰り返しをベースとしているため、周辺セルのセル端に存在するユーザ端末からの干渉レベルは特に高い。このような周辺セルからの干渉を補償し一定の受信品質を維持するため、セル間干渉の対策が必要となる。
 セル間干渉対策において、上りリンクの送信電力制御が大きな役割を果たしている。無線基地局装置は、ユーザ端末と無線基地局装置との間の伝搬ロス、及び、周辺セルに与える干渉を考慮して、所要の受信品質を満たすようにユーザ端末の送信電力を制御することが要求される。LTEシステムにおいては、セル間干渉を考慮した送信電力制御法として、Fractional送信電力制御が採用されている。
 LTEシステムの上りリンク(PUSCH(Physical Uplink Shared Channel)、PUCCH(Physical Uplink Control Channel)、SRS(Sounding Reference Signal))の送信電力は、開ループ制御と閉ループ制御との組み合わせで制御される。開ループ制御は、無線基地局装置が比較的長周期で通知するパラメータ、及びユーザ端末が測定する伝搬ロスを用いて行われる。閉ループ制御は、無線基地局装置とユーザ端末との間の通信状況(例えば、無線基地局装置での受信SINR(Signal to Interference plus Noise Ratio))を基に無線基地局装置が比較的短周期で通知するTPCコマンドにより行われる。
 例えば、PUSCHの送信電力は下記式(1)によって制御される(非特許文献1)。下記式(1)において、iはサブフレームを示すインデックスであり、jはスケジューリング種別を示すインデックスであり、PCMAX,C(i)はユーザ端末の最大送信可能電力であり、MPUSCH,C(i)は使用周波数帯域幅であり、PO_PUSCH,C(j)はPUSCHの基本送信電力であり、PLは伝搬ロスであり、α(j)は伝搬ロスの係数であり、ΔTF,C(j)は使用フォーマット毎のオフセット量であり、f(i)はTPCコマンドに基づくオフセット量である。
Figure JPOXMLDOC01-appb-M000001
 ところで、LTE-Aシステムでは、例えば、半径数キロメートル程度の広範囲のカバレッジエリアを有するマクロセル内に、半径数十メートル程度の局所的なカバレッジエリアを有するマイクロセル(例えば、ピコセル、フェムトセルなど)が形成されるHetNet(Heterogeneous Network)が検討されている。このHetNetにおいて、マクロセルを形成する無線基地局装置(マクロ基地局)は、光回線などを介してピコセルを形成する無線基地局装置(ピコ基地局)と接続されることがある。ユーザ端末は、マクロ基地局及びピコ基地局のうち、通信に適した一方、又は双方の無線基地局装置と通信を行う。
 上述の場合、各無線基地局装置とユーザ端末との通信状況に応じて上りリンクの最適送信電力は異なってくる。しかしながら、これまでの送信電力制御は必ずしもHetNet環境での運用に適したものではないため、HetNetが適用されたLTE-Aシステムにおいて従来の送信電力制御を適用する場合には、上りリンクの送信電力を適切に制御できない恐れがある。その結果、セル間干渉を十分に抑制できなくなり、上りリンクの通信品質が低下する恐れがある。
 本発明はかかる点に鑑みてなされたものであり、HetNet環境においても上りリンクの送信電力を適切に制御可能な無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法を提供することを目的とする。
 本発明の無線通信システムは、第1の無線基地局装置と、前記第1の無線基地局装置と通信可能に構成された第2の無線基地局装置と、を備えた無線通信システムであって、前記第1の無線基地局装置は、ユーザ端末から送信される上り参照信号の受信品質を測定して第1の受信品質情報を生成する第1の通信品質測定部と、前記第1の通信品質情報を前記第2の無線基地局装置に通知する通知部と、を備え、前記第2の無線基地局装置は、前記ユーザ端末から送信される前記上り参照信号の受信品質を測定して第2の通信品質情報を生成する第2の通信品質測定部と、前記第1の通信品質情報及び前記第2の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定する補正値決定部と、前記決定された補正値を前記ユーザ端末に通知する通知部と、を備えたことを特徴とする。
 本発明の無線通信方法は、ユーザ端末が第1の無線基地局装置及び第2の無線基地局装置に対して上り参照信号を送信するステップと、前記第1の無線基地局装置が前記上り参照信号の受信品質を測定して第1の通信品質情報を生成するステップと、前記第2の無線基地局装置が前記上り参照信号の受信品質を測定して第2の通信品質情報を生成するステップと、前記第1の無線基地局装置が前記第1の通信品質情報を前記第2の無線基地局装置に通知するステップと、前記第2の無線基地局装置が前記第1の通信品質情報及び前記第2の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定するステップと、前記決定された補正値を前記ユーザ端末に通知するステップと、前記ユーザ端末が前記補正値に基づいて上りリンクにおける送信電力を設定するステップと、を備えたことを特徴とする。
 本発明の無線基地局装置は、他の無線基地局装置と通信可能に構成された無線基地局装置であって、ユーザ端末から送信される上り参照信号の受信品質を測定して通信品質情報を生成する通信品質測定部と、前記他の無線基地局装置が、前記ユーザ端末から送信される上り参照信号の受信品質を測定して生成した通信品質情報を受信する受信部と、前記通信品質情報、及び前記他の無線基地局装置の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定する補正値決定部と、前記決定された補正値を前記ユーザ端末に通知する通知部と、を備えたことを特徴とする。
 本発明のユーザ端末は、互いに通信可能に構成された第1の無線基地局装置及び第2の無線基地局装置に対して上り参照信号を送信する送信部と、前記第1の無線基地局装置又は前記第2の無線基地局装置が、各無線基地局装置に対する上り参照信号の受信品質に基づいて決定した上りリンクにおける送信電力の補正値を受信する受信部と、前記補正値に基づいて上りリンクにおける送信電力を設定する設定部と、を備えたことを特徴とする。
 本発明によれば、HetNet環境においても上りリンクの送信電力を適切に制御可能な無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法を提供できる。
実施の形態に係る無線通信システムの概略構成図である。 上下リンクにおける接続セルの境界を示す模式図である。 上り送信電力制御の第1の態様について説明するための模式図である。 上位レイヤシグナリングで通知する場合の上り送信電力制御の制御フロー図である。 PHRに基づいて送信電力を補正する場合(上位レイヤシグナリングで通知)の上り送信電力制御の制御フロー図である。 TPCコマンドに基づくオフセット量によって送信電力を補正する場合の上り送信電力制御の制御フロー図である。 PHRに基づいて送信電力を補正する場合(TPCコマンドを使用)の上り送信電力制御の制御フロー図である。 同一セルIDによる下りリンクの協調マルチポイント送信が適用される場合の無線通信について示す模式図である。 第2の態様における上り送信電力制御の制御フロー図である。 無線基地局装置の概略構成を示すブロック図である。 無線基地局装置(マクロ基地局)におけるベースバンド信号処理部の構成を示すブロック図である。 無線基地局装置(ピコ基地局)におけるベースバンド信号処理部の構成を示すブロック図である。 ユーザ端末の概略構成を示すブロック図である。 ユーザ端末におけるベースバンド信号処理部の構成を示すブロック図である。
 図1は、本発明の実施の形態に係る無線通信システムの構成概略図である。図1に示す無線通信システムは、マクロセルC1を形成する無線基地局装置(マクロ基地局)B1と、ピコセルC2を形成する無線基地局装置(ピコ基地局)B2と、ユーザ端末UEとを含んで構成されている。なお、無線通信システムを構成する無線基地局装置(マクロ基地局)B1、無線基地局装置(ピコ基地局)B2、ユーザ端末UEは、それぞれ複数存在していても良い。
 図1に示すように、マクロ基地局B1とピコ基地局B2とは、有線で(例えば、X2インタフェースを介して)接続されている。また、マクロ基地局B1とピコ基地局B2とは、それぞれ、不図示のコアネットワークに接続されている。
 図1に示すLTE-Aシステムは、ローカルエリア環境を重視したHetNet構成となっている。HetNetとは、既存のマクロセルC1に加え、ピコセルC2やフェムトセル等(小規模セル)の様々な形態の、特に下り送信電力の異なるセルをオーバレイした階層型ネットワークである。このHetNetにおいては、相対的に広いエリアをカバーするマクロセルC1のマクロ基地局B1は、相対的に狭いエリアをカバーするピコセルC2のピコ基地局B2よりも下り送信電力が大きく設定されている。
 LTE-Aシステムにおいて、ユーザ端末の上り送信電力は、周辺セルへの干渉レベルが低減されるように設定される。すなわち、ユーザ端末と帰属先の無線基地局装置との間の伝搬ロス(パスロス)、及び、周辺セルに与える干渉を考慮して、所要の受信品質を満たすようにユーザ端末の送信電力が制御される。
 上りリンクにおけるPUSCH、PUCCH、SRSの送信電力は、開ループ制御と閉ループ制御との組み合わせで制御される。開ループ制御は、無線基地局装置が比較的長周期で通知するパラメータ、及びユーザ端末が測定する伝搬ロスを用いて行われる。閉ループ制御は、無線基地局装置とユーザ端末との間の通信状況(例えば、無線基地局装置での受信SINR(Signal to Interference plus Noise Ratio))を基に無線基地局装置が比較的短周期で通知するTPCコマンドにより行われる。
 上述したように、PUSCHの送信電力は下記式(1)で表される。下記式(1)において、iはサブフレームを示すインデックスであり、jはPUSCHのスケジューリング種別を示すインデックスであり、開ループ制御に係るパラメータは、PUSCHの目標受信電力相当を示すパラメータPO_PUSCH,c(j)、使用周波数帯域幅MPUSCH,c(i)、伝搬ロスPL、Fractional送信電力制御の係数α(j)、及び送信フォーマットに応じたオフセット値ΔTF,c(j)である。閉ループ制御に係るパラメータはTPCコマンドに基づくオフセット量f(i)である。PUSCHの送信電力は、上述の開ループ制御及び閉ループ制御で決定される電力と、ユーザ端末の最大送信可能電力PCMAX,c(i)とのいずれか小さい方が選択される。
Figure JPOXMLDOC01-appb-M000002
 また、PUCCHの送信電力は下記式(2)で表される。下記式(2)において、開ループ制御に係るパラメータは、PUCCHの目標受信電力相当を示すパラメータPO_PUCCH、伝搬ロスPL、送信内容に応じたオフセットh(nCQI,nHARQ,nSR)、送信フォーマットに応じたオフセット値ΔF_PUCCH(F)、及びPUCCH送信ダイバーシチに応じたオフセット値ΔTxD(F‘)である。閉ループ制御に係るパラメータはTPCコマンドに基づくオフセット量g(i)である。PUCCHの送信電力は、上述の開ループ制御及び閉ループ制御で決定される送信電力値と、ユーザ端末の最大送信可能電力PCMAX,c(i)とのいずれか小さい方が選択される。
Figure JPOXMLDOC01-appb-M000003
 また、SRSの送信電力は下記式(3)で表される。下記式(3)において、PSRS_OFFSET,c(m)はSRSの種別m毎のPUSCH送信電力からのオフセット量であり、MSRS,cはSRSの送信周波数帯域幅であり、その他のパラメータはPUSCH送信電力の式(1)と同じである。SRSの送信電力は、上述の開ループ制御及び閉ループ制御で決定される送信電力値と、ユーザ端末の最大送信可能電力PCMAX,c(i)とのいずれか小さい方が選択される。
Figure JPOXMLDOC01-appb-M000004
 上述した式(1)~(3)において開ループ制御に用いられる伝搬ロスPLは、下りリンクでユーザ端末が受信するCRS(Cell specific Reference Signal)の受信レベルに基づいて決定される。CRSは、各サブフレームに多重され下りリンクデータ信号の復調に用いられると共に、Mobility測定、チャネル品質情報(CQI:Channel Quality Indicator)測定に用いられる。
 ところで、HetNet環境では、マクロ基地局B1の下り送信電力とピコ基地局B2の下り送信電力とに差がある。このため、ユーザ端末の位置等に応じて下りリンクにおける最適な接続セルと上りリンクにおける最適な接続セルとが異なる場合がある。図2は、上下リンクにおける接続セルの境界を示す模式図である。下りリンクにおける最適な接続セルは、無線基地局装置からの下り受信電力が最大となるセルとなる。このため、下りリンクにおける接続セルの境界は、図2に示すようにユーザ端末UEの受信電力に基づくB_DLになる。一方で、上りリンクにおける最適な接続セルは、伝搬ロスが最小のセルとなる。このため、上りリンクにおける接続セルの境界は、図2に示すように伝搬ロスに基づくB_ULになる。
 このように、ユーザ端末UEの接続セルが上りリンクと下りリンクとで一致しないように運用する場合に、CRSの受信レベルに基づいて伝搬ロスPLを決定するとその推定精度が低下する恐れがある。例えば、ユーザ端末UEが図2の領域Aに存在する場合、ユーザ端末UEは、下りリンクにおいてマクロ基地局B1と接続し、上りリンクにおいてピコ基地局B2と接続する。CRSは下りリンクにおいてマクロ基地局B1から送信される。このため、伝搬ロスPLはマクロ基地局B1とユーザ端末UEとの通信状況に基づいて決定される。しかし、ユーザ端末UEが上りリンクにおいて接続するのはピコ基地局B2となる。このため、決定された伝搬ロスPLを用いて上り送信電力を制御する場合には送信電力制御の精度が低下する。このように、伝搬ロスPLが適切に決定されない場合、送信電力の最適化が困難になりセル間干渉を十分に抑制できなくなる。
 そこで、本発明者等は、HetNet環境における伝搬ロスPLの決定方法の問題点に着目し、本発明に至った。本発明は、伝搬ロスを異なる方法で推定することにより送信電力の適切な制御を実現しようとするものである。以下、具体的な態様について説明する。
(第1の態様)
 図3は、HetNet環境における上り送信電力制御の第1の態様について説明するための模式図である。図3Aは上りリンクと下りリンクとでユーザ端末が接続するセルが同じ場合について示しており、図3Bは上りリンクと下りリンクとでユーザ端末が接続するセルが異なる場合について示している。なお、ここでは、マクロ基地局B1とピコ基地局B2とに独立した識別符号(セルID)を付与するものとする。また、以下の説明では、マクロ基地局B1と通信可能に構成されたピコ基地局が1つの場合について示すが、ピコ基地局は複数設けられていてもよい。
 図3Aに示すように、上りリンクと下りリンクとでユーザ端末が接続するセルが同じ場合、伝搬ロスPLは、下りリンクにおいてユーザ端末UEが受信するCRSの受信レベルに基づいて精度よく決定できる。一方、上りリンクと下りリンクとで接続セルが異なる場合、CRSの受信レベルから上りリンクの送信電力制御に適した伝搬ロスPLを決定できない。上りリンクと下りリンクとで接続セルが異なる場合、下りリンクにおいてユーザ端末にCRSを送信する無線基地局装置と、上りリンクにおいてユーザ端末が接続する無線基地局装置とが異なるためである。図3Bでは、ユーザ端末UEは、下りリンクにおいてマクロ基地局B1と接続され、上りリンクにおいてピコ基地局B2と接続されている。この場合、CRSの受信レベルによって推定される伝搬ロスPLは下りリンクの伝搬経路(マクロ基地局B1とユーザ端末UEとの間の伝搬経路)に依存するが、電力制御の対象となる上りリンクの伝搬経路(ピコ基地局B1とユーザ端末UEとの間の伝搬経路)に依存しない。
 そこで、上りリンクと下りリンクとで接続セルが異なる場合にも上り送信電力を精度よく制御できるように、伝搬ロスPLを補正するためのオフセット量(補正値)をユーザ端末UEに対して通知する。また、送信電力の算出式にオフセット量(補正値)ΔHetNet(i)を設ける。この場合、PUSCHの送信電力について下記式(4)で表し、PUCCHの送信電力について下記式(5)で表し、SRSの送信電力について下記式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 上記式(4)~(6)において、オフセット量ΔHetNet(i)は、上りリンクにおいて各無線基地局装置がユーザ端末UEから受信する参照信号(例えば、SRS)の受信レベル(受信品質)に基づいて決定される値である。具体的には、例えば、オフセット値ΔHetNet(i)は、マクロ基地局B1が受信するSRSの受信レベルと、ピコ基地局B2が受信するSRSの受信レベルとの差に相当する。図3Bに示す場合、マクロ基地局B1が受信するSRSの受信レベルと、ユーザ端末UEが受信するCRSの受信レベルとは、いずれも、マクロ基地局B1とユーザ端末UEとの間の伝搬経路に依存している。このため、マクロ基地局B1が受信するSRSの受信レベルと、ユーザ端末UEが受信するCRSの受信レベルとは対応関係にある。一方、ピコ基地局B2が受信するSRSの受信レベルは、ピコ基地局B1とユーザ端末UEとの間の伝搬経路に依存する。つまり、ピコ基地局B2が受信するSRSの受信レベルは、上りリンクの送信電力制御に必要な本来の伝搬ロスに対応する。よって、上述のように各無線基地局装置がユーザ端末UEから受信するSRSの受信レベルに基づいてオフセット量を決定することで、CRSの受信レベルによって決定された伝搬ロスPLを補正できる。なお、オフセット量の決定はSRSに限られず、上りリンクにおいてユーザ端末から送信され、各無線基地局装置が受信する他の参照信号又はデータ信号の受信レベルに基づいて決定されても良い。
 あるいは、上記式(4)~(6)において、オフセット量ΔHetNet(i)は、上りリンクにおいてMACレイヤで報告されるパワーヘッドルームレポート(PHR:Power Headroom Report)と、ピコ基地局B2がユーザ端末UEから受信するデータ信号あるいは参照信号の受信電力に基づいて決定されてもよい。ここで、PHRとは、ユーザ端末UEから報告される電力使用についての通知情報をいう。具体的には、例えば、ユーザ端末UEがMACレイヤで定期的に報告するPHRにより、それを受信するピコ基地局B2は、ユーザ端末UEが測定・保持する伝搬ロスPLを含むユーザ端末UEの送信電力を知ることができる。つまり、ピコ基地局B2は、PHRによってユーザ端末UEの設定する送信電力を把握可能である。従って、ユーザ端末UEの送信電力と実際の受信レベル(受信品質)との差分より、ピコ基地局B2とユーザ端末UEの実際の伝搬ロスを算出することができる。よって、ユーザ端末UEの測定する伝搬ロスPLとピコ基地局B2が算出する実際の伝搬ロス値の差分を、オフセット量として設定・決定し、マクロ基地局B1を介して下りリンクでユーザ端末UEに通知することにより、伝搬ロスに起因する送信電力誤差を補正できる。
 図3Bに示す場合、ユーザ端末UEがマクロ基地局B1から受信するCRSの受信レベルに基づいて決定された伝搬ロスPLは、適正値より大きくなると考えられる。この場合、オフセット量ΔHetNet(i)が負の値になり、上りリンクの送信電力における伝搬ロスPLの誤差の影響が補正される。
 図4は、第1の態様における上り送信電力制御の制御フロー図の一例である。まず、マクロ基地局B1及びピコ基地局B2は、それぞれ、ユーザ端末UEから送信された参照信号(例えば、SRS)の受信レベルを測定する。ピコ基地局B2は、SRSの受信レベルの測定結果をマクロ基地局B1に対してバックホール(backhaul)で通知する(ステップS101)。なお、ユーザ端末UEから送信される信号はSRS以外の参照信号であっても良い。次に、マクロ基地局B1は、マクロ基地局B1及びピコ基地局B2において測定されたSRSの受信レベルに基づいて、ユーザ端末UEが上りリンクにおいて接続する無線基地局装置を決定する(ステップS102)。
 マクロ基地局B1は、ユーザ端末UEが上りリンクにおいて接続する無線基地局装置と、下りリンクにおいて接続する無線基地局装置が異なるか否かを判定する(ステップS103)。ユーザ端末UEが上りリンクにおいて接続する無線基地局装置と、下りリンクにおいて接続する無線基地局装置が異なる場合(ステップS103:YES)、マクロ基地局B1は、マクロ基地局B1及びピコ基地局B2において測定されたSRSの受信レベルに基づいて、ユーザ端末UEの上りリンク送信電力制御に用いられるオフセット量ΔHetNet(i)を決定する(ステップS104)。決定されたオフセット量ΔHetNet(i)は、下りリンクにおいてユーザ端末UEと接続する無線基地局装置から、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング)でユーザ端末UEに対して通知される(ステップS105)。ユーザ端末装置UEは、通知されたオフセット量ΔHetNet(i)等の情報に基づいて上りリンクの送信電力を設定し(例えば、上記式(4)~(6)参照)、上りリンクの送信を行う(ステップS106)。
 なお、オフセット量ΔHetNet(i)を、上りリンクにおいてMACレイヤで報告されるPHRと、ピコ基地局B2がユーザ端末UEから受信するデータ信号又は参照信号の受信電力に基づいて決定する場合には、図5に示すように、上記ステップS104に変えてステップS104’を設ければよい。ステップS104’においては、上りリンク接続基地局(例えば、ピコ基地局B2)が、ユーザ端末UEから送信されたデータ信号あるいは参照信号の受信電力の測定値と、UEから報告されるPHRとに基づいて、ユーザ端末UEの上りリンク送信電力制御に用いられるオフセット量ΔHetNet(i)を計算することができる。
 上りリンクにおいて接続する無線基地局装置と、下りリンクにおいて接続する無線基地局装置が同じ場合(ステップS103:NO)、ユーザ端末装置UEは、オフセット量ΔHetNet(i)の情報を用いずに上りリンクの送信電力を設定し、上りリンクの送信を行う(ステップS106)。
 なお、上記態様では、オフセット量ΔHetNet(i)を開ループ制御に追加することで伝搬ロスPLの誤差を補正しているが、他の方法で補正しても良い。例えば、閉ループ制御のTPCコマンドに基づくオフセット量f(i)及びg(i)を用いて伝搬ロスPLの誤差を補正することができる。この場合、PUSCHの送信電力は式(1)で表され、PUCCHの送信電力は式(2)で表され、SRSの送信電力は式(3)で表される。ただし、所要の送信電力値に収束させる観点から、下りリンク制御信号内に設けられる送信電力制御コマンド(TPCコマンド)フィールドにおけるビット数を3ビット以上に拡張し、規定する電力値のステップ幅を拡張することが好ましい。
 例えば、下り制御情報(DCI:Downlink Control Information)フォーマットにおけるTPCコマンドのビット数を3ビットに拡張して、-5dB、-3dB、-1dB、0dB、1dB、3dB、5dB、7dB、のようなステップとすることが好ましい。なお、この場合、オフセット量f(i)及びg(i)は、上りリンクにおいて各無線基地局装置が受信する信号、例えばSRSの受信レベルに基づいて、伝搬ロスPLの誤差が補正されるように制御される。このように、TPCコマンドのビット数を拡張して、電力値のステップ幅を拡張することにより、閉ループ制御のTPCコマンドに基づくオフセット量f(i)及びg(i)で制御する場合においてステップ幅を拡張しない場合と比較して、所要の送信電力に収束させる期間を短縮することができる。
 あるいは、既存の開ループ制御のパラメータを用いて伝搬ロスPLの誤差を補正しても良い。例えば、前述の開ループ制御のパラメータPO_PUSCH,c(j)およびPO_PUCCHのUE-specificのシグナリングに、補正すべき伝搬ロスPLの誤差(伝搬ロスPLに対する補正値)を含めて通知してもよい。ただし、所要の補正誤差をカバーする観点から、RRCシグナリングで通知されるUE-specificのPO_PUSCH,c(j)およびPO_PUCCHのビット数/レンジを既存の4bit/[-8,+7]dBから、例えば、5bit/[-16, +15]dB又は6bit/[-32, +31]dBのようにいずれも拡張することが好ましい。この場合、上記図4のステップS105において、ユーザ端末UEに対して、拡張されたUE-specificの開ループ送信電力制御パラメータPO_PUSCH,c(j)及びPO_PUCCHを用いてRRCシグナリングで電力制御情報を通知する構成とすることができる。
 図6は、TPCコマンドに基づくオフセット量f(i)及びg(i)、あるいはUE-specificのPO_PUSCH,c(j)及びPO_PUCCHを用いて送信電力を補正する場合の上り送信電力制御の制御フロー図の一例である。まず、マクロ基地局B1及びピコ基地局B2は、それぞれ、ユーザ端末UEから送信されたSRSの受信レベルを測定する。ピコ基地局B2は、SRSの受信レベルの測定結果をマクロ基地局B1に対してバックホールで通知する(ステップS201)。なお、ユーザ端末UEから送信される信号はSRS以外の参照信号であっても良い。次に、マクロ基地局B1は、マクロ基地局B1及びピコ基地局B2において測定されたSRSの受信レベルに基づいて、ユーザ端末UEが上りリンクにおいて接続する無線基地局装置を決定する(ステップS202)。
 マクロ基地局B1は、ユーザ端末UEが上りリンクにおいて接続する無線基地局装置と、下りリンクにおいて接続する無線基地局装置が異なるか否かを判定する(ステップS203)。ユーザ端末UEが上りリンクにおいて接続する無線基地局装置と、下りリンクにおいて接続する無線基地局装置が異なる場合(ステップS203:YES)、マクロ基地局B1は、マクロ基地局B1及びピコ基地局B2において測定されたSRSの受信レベルに基づいて、ユーザ端末UEの上りリンク送信電力のオフセット量を算出する(ステップS204)。決定されたオフセット量を満たすように、下りリンクにおいてユーザ端末UEと接続する無線基地局装置(例えば、マクロ基地局B1)からユーザ端末UEに対して、3ビット以上の拡張されたTPCコマンド用フィールドを用いてPDCCHで電力制御情報が通知される(ステップS205)。ユーザ端末装置UEは、通知されたオフセット量等の情報に基づいて上りリンクの送信電力を設定し、上りリンクの送信を行う(ステップS206)。
 なお、オフセット量ΔHetNet(i)を、上りリンクにおいてMACレイヤで報告されるPHRと、ピコ基地局B2がユーザ端末UEから受信するデータ信号あるいは参照信号の受信電力に基づいて決定する場合には、図7に示すように上記ステップS204に変えてステップS204’を設ければよい。ステップS204’においては、上りリンク接続基地局(例えば、ピコ基地局B2)は、ユーザ端末UEから送信されたデータ信号又は参照信号の受信電力の測定値と、ユーザ端末UEから報告されるPHRとに基づいて、ユーザ端末UEの上りリンク送信電力制御に用いられるオフセット量ΔHetNet(i)を計算することができる。
 上りリンクにおいて接続する無線基地局装置と、下りリンクにおいて接続する無線基地局装置が同じ場合(ステップS203:NO)、ユーザ端末装置UEは、オフセット量の情報を用いずに上りリンクの送信電力を設定し、上りリンクの送信を行う(ステップS206)。
 このように、各無線基地局装置でユーザ端末からの上り参照信号又はデータ信号の受信品質(例えば、受信レベル)を測定し、当該測定結果に基づいて伝搬ロスPLを補正するオフセット量(補正値)を決定して、ユーザ端末に通知することにより、HetNet環境においても上りリンクの送信電力を適切に制御することが可能となる。
(第2の態様)
 協調マルチポイント送受信(CoMP)が適用される場合の上り送信電力制御について説明する。なお、本態様において、マクロ基地局B1とピコ基地局B2とに共通の識別符号(セルID)を付与するものとする。
 なお、CoMP送受信を実現する構成としては、無線基地局装置と、この無線基地局装置と光張り出し構成(光ファイバ)で接続された複数の遠隔無線装置(RRE:Remote Radio Equipment)とを含む構成(遠隔無線装置構成に基づく集中制御)と、無線基地局装置同士の構成(独立基地局構成に基づく自律分散制御)とがある。本態様では、上記いずれの構成であっても適用可能である。
 図8は、下りリンクの協調マルチポイント送信(DLCoMP送信)が適用される場合の無線通信について示す模式図である。DLCoMP送信としては、Coordinated scheduling/Coordinated beamforming(CS/CB)と、Joint processing(JP)とがある。本態様では、複数セル同時送信であるJPにおいて、特に、1つのユーザ端末UEに対して複数のセルから送信するJoint transmission(JT)を適用する場合について説明する。
 図8に示すようにJT-CoMPが適用される場合、マクロ基地局B1及びピコ基地局B2から送信されるCRSは、ユーザ端末UEにおいて合成受信される。この場合、ユーザ端末UEにおけるCRSの受信レベルは、マクロ基地局B1とユーザ端末UEとの間の伝搬経路、及び、ピコ基地局B1とユーザ端末UEとの間の伝搬経路の双方に依存する。
 図8Aに示すように、上りリンクの協調マルチポイント受信(ULCoMP受信)が適用されない場合、ユーザ端末UEは上りリンクにおいて最適な一つのセル(図8Aにおいてはピコセル)に接続される。しかし、合成受信されたCRSの受信レベルに基づいて推定される伝搬ロスPLは、上りリンクの伝搬経路のみに基づいて推定したものではない。この場合、ユーザ端末において、パスロスが実際より小さく決定されるため、上りリンクの送信電力制御の精度が低下する。つまり、合成受信されたCRSの受信レベルから上りリンクの送信電力制御に適した伝搬ロスPLを決定できない。
 そこで、このような場合にも上り送信電力を精度よく制御できるように、伝搬ロスPLを補正するためのオフセット量(補正値)をユーザ端末UEに対して通知する。また、送信電力の算出式にオフセット量(補正値)ΔHetNet(i)を設ける。この場合、PUSCHの送信電力について式(4)で表し、PUCCHの送信電力について式(5)で表し、SRSの送信電力について式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 式(4)~(6)において、オフセット量ΔHetNet(i)は、上りリンクにおいて各無線基地局装置が受信するSRSの受信レベルに基づいて決定される値である。具体的には、例えば図8Aに示す場合、オフセット量ΔHetNet(i)は、マクロ基地局B1及びピコ基地局B2が受信するSRSの受信レベルの合成値と、ピコ基地局B2(上りリンクにおけるユーザ端末UEの接続対象)が受信するSRSの受信レベルとの差に相当する。図8Aに示す場合、マクロ基地局B1及びピコ基地局B2が受信するSRSの受信レベルの合成値は、ユーザ端末UEにおいて合成受信されるCSRの受信レベルと対応関係にある。また、ピコ基地局B2が受信するSRSの受信レベルは、上りリンクの送信電力制御に必要な本来の伝搬ロスに対応する。よって、上述のように各無線基地局装置が受信するSRSの受信レベルに基づいてオフセット量ΔHetNet(i)を決定することで、CRSの受信レベルによって決定された伝搬ロスPLを補正できる。なお、オフセット量ΔHetNet(i)は、上りリンクにおいてユーザ端末から送信され、各無線基地局装置が受信する他の参照信号又はデータ信号の受信レベルに基づいて決定されても良い。
 あるいは、上記式(4)~(6)において、オフセット量ΔHetNet(i)は、上りリンクにおいてMACレイヤで報告されるパワーヘッドルームレポート(PHR:Power Headroom Report)と、ピコ基地局B2がユーザ端末UEから受信するデータ信号あるいは参照信号の受信電力に基づいて決定されてもよい。具体的には、例えば、ユーザ端末UEがMACレイヤで定期的に報告するPHRにより、それを受信するピコ基地局B2は、ユーザ端末UEが測定・保持する伝搬ロスPLを含むユーザ端末UEの送信電力を知ることができる。つまり、ピコ基地局B2は、ユーザ端末UEの設定する送信電力を把握可能である。従って、ユーザ端末UEの送信電力と実際の受信レベル(受信品質)との差分より、ピコ基地局B2とユーザ端末UEの実際の伝搬ロスを算出することができる。よって、ユーザ端末UEの測定する伝搬ロスPLとピコ基地局B2が算出する実際の伝搬ロス値の差分を、オフセット量として設定・決定し、マクロ基地局B1を介して下りリンクでユーザ端末UEに通知することにより、伝搬ロスに起因する送信電力誤差を補正できる。
 図8Aに示す場合、ユーザ端末UEが合成受信するCRSの受信レベルに基づいて決定された伝搬ロスPLは、適正値より小さくなると考えられる。この場合、オフセット量ΔHetNet(i)が正の値になり、送信電力における伝搬ロスPLの誤差の影響が補正される。
 一方で、図8Bに示すように、上りリンクの協調マルチポイント受信(ULCoMP受信)が適用される場合、ユーザ端末UEから送信されるデータはマクロセル及びピコセルで受信される。この場合、ULCoMP受信の適用がない場合と比較して、上りリンクの送信電力を小さくしても適切に通信可能な場合がある。このような場合には、ULCoMP受信が適用されない場合と比較してオフセット値ΔHetNet(i)を小さくしても良い。具体的には、例えば、マクロ基地局B1がULCoMP受信の適用の有無を判定し、その判定結果に基づいて決定されたオフセット量ΔHetNet(i)をユーザ端末UEに通知すればよい。
 なお、上記方法では、合成受信されたCRSの受信レベルと、ULCoMP受信の適用の有無とに応じてオフセット量ΔHetNet(i)を決定しているが、ULCoMP受信の適用の有無に応じて変動するするオフセット量ΔCoMP(i)を別に設けても良い。この場合、PUSCHの送信電力について下記式(7)で表し、PUCCHの送信電力について下記式(8)で表し、SRSの送信電力について下記式(9)で表すことができる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 また、第1の態様において説明したように、TPCコマンドに基づくオフセット量f(i)及びg(i)を用いて伝搬ロスPLの誤差を補正する構成としても良い。また、UE-specificなPUSCHの目標受信電力相当を示すパラメータPO_PUSCH,c(j)、及びPUCCHの目標受信電力相当を示すパラメータPO_PUCCHを用いて送信電力を補正しても良い。
 なお、上記態様では、ユーザ端末UEが受信するCRSの受信レベルに基づいて決定された伝搬ロスPLを補正する方法で上り送信電力制御を行っているが、当該方法は、より精度良く伝搬ロスPLを求めることが可能な他の方法と切り替えて用いるようにしても良い。
 例えば、伝搬ロスPLは、チャネル品質測定用のCSI-RS(Channel State Information-Reference Signal)の受信レベルに基づいて精度良く推定することが可能である。LTE/LTE-Aシステムにおいては、下り参照信号として、CRSの他にDM-RS(Demodulation-Reference Signal)、CSI-RSが規定されている。CSI-RSは、チャネル状態情報(CQI、PMI、RI)の測定に用いられる参照信号であり、共有データチャネル(PDSCH)内に多重される。
 CRSは、セル固有の参照信号であり、識別符号(セルID)に関連づけられている。このため、共通の識別符号(セルID)が付与された複数の無線基地局装置においてDLCoMP送信が適用される場合には、ユーザ端末UEが受信したCRSの送信元を特定できない。よって、CRSの受信レベルから推定される伝搬ロスPLの推定精度が低い場合がある。一方、CSI-RSもセル固有の参照信号であるが、CSI-RSはperiodisityとsubframe offsetとを指定可能になっているため、識別符号(セルID)が共通の場合にもCSI-RSが多重されるタイミングから送信元を特定できる。このように、CSI-RSの受信レベルに基づいて伝搬ロスを推定する場合、送信元に対応する伝搬ロスを推定することが可能であり、推定精度を高くすることができる。
 また、CSI-RSの受信レベルに基づいて伝搬ロスPLを推定する場合、送信電力の算出式にULCoMP受信の適用の有無に対応するオフセット値ΔCoMP(i)を設けてもよい。ULCoMP受信の適用の有無に応じてオフセット量ΔCoMP(i)を決定することで、送信電力をより最適化することができる。この場合、送信電力の算出式は、例えば、上述した式(4)~(6)におけるΔHetNet(i)をΔCoMP(i)に置き換えた式とすることができる。なお、CSI-RSの受信レベルに基づいて伝搬ロスPLを推定する方法は、これのみを単独で用いることもできる。
 図9は、第2の態様における上り送信電力制御の制御フロー図である。マクロ基地局B1及びピコ基地局B2は、それぞれ、ユーザ端末UEから送信されたSRSの受信レベルを測定する。ピコ基地局B2は、SRSの受信レベルの測定結果をマクロ基地局B1に対してバックホールで通知する(ステップS301)。なお、SRS以外の参照信号を用いても良い。次に、マクロ基地局B1は、マクロ基地局B1及びピコ基地局B2において測定されたSRSの受信レベルに基づいて、ユーザ端末UEが上りリンクにおいて接続する無線基地局装置を決定する(ステップS302)。
 ユーザ端末UEがCRSの受信レベルに基づいて伝搬ロスPLを測定し(ステップS303:YES)、ULCoMP受信が適用されない場合(ステップS304:YES)、マクロ基地局B1は、マクロ基地局B1及びピコ基地局B2において測定されたSRSの受信レベルに基づいて、ユーザ端末UEの上りリンク送信電力制御に用いられるオフセット量ΔHetNet(i)を決定する(ステップS305)。決定されたオフセット量ΔHetNet(i)は、下りリンクにおいてユーザ端末UEと接続する無線基地局装置から、RRCシグナリングでユーザ端末UEに対して通知される(ステップS306)。ユーザ端末装置UEは、通知されたオフセット量ΔHetNet(i)等の情報に基づいて上りリンクの送信電力を設定し、上りリンクの送信を行う(ステップS307)。
 なお、オフセット量ΔHetNet(i)を、上りリンクにおいてMACレイヤで報告されるPHRと、ピコ基地局B2がユーザ端末UEから受信するデータ信号あるいは参照信号の受信電力に基づいて決定する場合には、上記ステップS104に変えて、上りリンク接続基地局(例えば、ピコ基地局B2)が、ユーザ端末UEから送信されたデータ信号又は参照信号の受信電力の測定値と、ユーザ端末UEから報告されるPHRとに基づいて、ユーザ端末UEの上りリンク送信電力制御に用いられるオフセット量ΔHetNet(i)を計算するステップを設ければよい。
 ユーザ端末UEがCRSの受信レベルに基づいて伝搬ロスPLを測定し(ステップS303:YES)、ULCoMP受信が適用される場合(ステップS304:NO)、マクロ基地局B1は、マクロ基地局B1及びピコ基地局B2において測定されたSRSの受信レベルに基づいて、ユーザ端末UEの上りリンク送信電力制御に用いられるオフセット量ΔHetNet(i)を決定する。オフセット量ΔHetNet(i)の決定においては、ULCoMP受信が行われる無線基地局装置を考慮する(ステップS308)。決定されたオフセット量ΔHetNet(i)は、下りリンクにおいてユーザ端末UEと接続する無線基地局装置から、RRCシグナリングでユーザ端末UEに対して通知される(ステップS306)。ユーザ端末装置UEは、通知されたオフセット量ΔHetNet(i)等の情報に基づいて上りリンクの送信電力を設定し、上りリンクの送信を行う(ステップS307)。なお、上述したように、ULCoMP受信の適用の有無に対応するオフセット値ΔCoMP(i)を別途設けてもよい。
 ユーザ端末UEがCRSの受信レベルに基づいて伝搬ロスPLを測定しない場合(ステップS303:NO)、ユーザ端末UEは、マクロ基地局B1及びピコ基地局B2から送信されるCSI-RSの受信レベルに基づいて伝搬ロスPLを測定する(ステップS309)。ここで、ULCoMP受信が適用される場合(ステップS310:YES)、マクロ基地局B1は、ULCoMP受信を考慮してオフセット量ΔCoMP(i)を決定する(ステップS311)。決定されたオフセット量ΔCoMP(i)はユーザ端末UEに対して通知され(ステップS306)、ユーザ端末装置UEは、オフセット量ΔCoMP(i)等の情報に基づいて上りリンクの送信電力を設定し、上りリンクの送信を行う(ステップS307)。
 一方、ULCoMP受信が適用されない場合(ステップS310:NO)、ユーザ端末装置UEは、CSI-RSの受信レベルに基づいて推定された伝搬ロスPL等の情報に基づいて上りリンクの送信電力を設定し、上りリンクの送信を行う(ステップS307)。この場合、ユーザ端末UEは、上りリンクにおいて接続する無線基地局装置から送信されるCSI-RSの受信レベルに基づいて伝搬ロスを決定する。
 このように、合成受信されたCRSの受信レベルや、ULCoMP受信の適用の有無に応じて伝搬ロスPLを補正するオフセット量(補正値)を決定して、ユーザ端末に通知することにより、上りリンクの送信電力制御を適切に行うことが可能となる。
 以下、実施の形態に係る無線通信システムに適用される無線基地局装置及びユーザ端末について詳細に説明する。図10は、実施の形態に係る無線基地局装置(マクロ基地局及びピコ基地局)の概略構成を示すブロック図である。図10に示す無線基地局装置100は、アンテナ102と、アンプ部104と、送受信部106と、ベースバンド信号処理部108と、呼処理部110と、伝送路インタフェース112とから主に構成されている。
 このような構成の無線基地局装置100において、上りリンクのデータについては、アンテナ102で受信された無線周波数信号がアンプ部104で増幅される。増幅は、AGC(Auto Gain Control)の下で受信電力が一定電力に補正されるように行われる。増幅された無線周波数信号は、送受信部106においてベースバンド信号へ周波数変換される。このベースバンド信号は、ベースバンド信号処理部108で所定の処理(誤り訂正、復号など)がなされた後、伝送路インタフェース112を介して図示しないアクセスゲートウェイ装置に転送される。アクセスゲートウェイ装置は、コアネットワークに接続されており、各ユーザ端末を管理している。
 呼処理部110は、上位装置の無線制御局との間で呼処理制御信号を送受信し、無線基地局装置100の状態管理やリソース割り当てをする。なお、後述するレイヤ1処理部181とMAC処理部182における処理は、呼処理部110において設定されている無線基地局装置100と移動局装置200との間の通信状態に基づいてなされる。
 下りリンクのデータについては、上位装置から伝送路インタフェース112を介してベースバンド信号処理部108に入力される。ベースバンド信号処理部108では、再送制御の処理、スケジューリング、伝送フォーマット選択、チャネル符号化などがなされて送受信部106に転送される。送受信部106では、ベースバンド信号処理部108から出力されたベースバンド信号を無線周波数信号へ周波数変換する。周波数変換された信号は、その後、アンプ部104で増幅されてアンテナ102から送信される。
 図11及び図12は、図10に示す無線基地局装置におけるベースバンド信号処理部の構成を示すブロック図である。図11はマクロ基地局におけるベースバンド信号処理部の構成を示しており、図12は、ピコ基地局におけるベースバンド信号処理部の構成を示している。
 図11に示すように、マクロ基地局におけるベースバンド信号処理部108は、主に、レイヤ1処理部181と、MAC(Medium Access Control)処理部182と、RLC(Radio Link Control)処理部183と、上り受信品質測定部184と、上り接続セル決定部185と、上り送信電力オフセット量決定部186と、TPCコマンド決定部187とで構成されている。また、図12に示すように、ピコ基地局におけるベースバンド信号処理部108は、主に、レイヤ1処理部181と、MAC処理部182と、RLC処理部183と、上り受信品質測定部184と、上り受信品質報告部(通知部)188とで構成されている。
 レイヤ1処理部181は、主に物理レイヤに関する処理を行う。レイヤ1処理部181は、例えば、上りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT:Discrete Fourier Transform)、周波数デマッピング、逆フーリエ変換(IFFT:Inverse Fast Fourier Transform)、データ復調などの処理を行う。また、レイヤ1処理部181は、下りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆フーリエ変換(IFFT)などの処理を行う。
 MAC処理部182は、上りリンクで受信した信号に対するMACレイヤでの再送制御(HARQ)、上りリンク/下りリンクに対するスケジューリング、PUSCH/PDSCHの伝送フォーマットの選択、PUSCH/PDSCHのリソースブロックの選択などの処理を行う。
 RLC処理部183は、上りリンクで受信したパケット/下りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 上り品質測定部184は、上りリンクでユーザ端末から受信したSRSの受信レベルを測定する。なお、他の参照信号を用いて上り送信電力を補正する場合には、対象となる参照信号の受信レベルも測定する。上り品質測定部184において測定された受信レベルは、上り接続セル決定部185及び上り送信電力オフセット量決定部186に送られる。
 上り接続セル決定部185は、マクロ基地局において受信したSRSの受信レベル、及び、周辺のピコ基地局が受信したSRSの受信レベルに基づいて、上りリンクにおいてユーザ端末が接続する無線基地局装置を決定する。ULCoMP受信が適用される場合には、ULCoMP受信の対象となる無線基地局装置を決定する。
 上り送信電力オフセット量決定部186は、マクロ基地局において受信したSRSの受信レベル、及び、周辺のピコ基地局が受信したSRSの受信レベルに基づいて、ユーザ端末の上りリンク送信電力のオフセット量(補正値)を決定する。あるいは、ピコ基地局からbackhaulで報告される、ユーザ端末が上りリンクで接続されるピコ基地局が受信したデータ信号あるいは参照信号の受信電力の測定値、及び、ユーザ端末から報告されるPHRに基づいて、ユーザ端末の上りリンク送信電力のオフセット量ΔHetNet(i)を決定する。ULCoMP受信が適用される場合には、ULCoMP受信が適用されることを考慮してオフセット量(補正値)を決定する。このオフセット量は、RRCシグナリングによりユーザ端末に通知される。又は、オフセット量は、拡張されたUE-specificなPUSCHの目標受信電力相当を示すパラメータPO_PUSCH,c(j)、及びPUCCHの目標受信電力相当を示すパラメータPO_PUCCHに含めて、RRCシグナリングによりユーザ端末に通知される。
 TPCコマンド決定部187は、上り送信電力オフセット量決定部186において決定されたオフセット量からTPCコマンドの値を設定する。ビット数が拡張された拡張TPCコマンドが適用される場合、拡張TPCコマンドの値を設定する。設定されたTPCコマンドは、PDCCHによりユーザ端末に通知される。
 上り受信品質報告部188は、ピコ基地局において上り品質測定部184で測定したSRSの受信レベルをマクロ基地局の上り接続セル決定部185及び上り送信電力オフセット量決定部186に通知する。また、図5に示すステップS104’などを設ける場合には、ピコ基地局において受信したデータ信号又は参照信号の受信電力の測定値、及び、ユーザ端末から報告されるPHRに基づいて、ユーザ端末の上りリンク送信電力のオフセット量ΔHetNet(i)を計算し、マクロ基地局の上り送信電力オフセット量決定部186に通知する。
 図13は、実施の形態に係るユーザ端末の概略構成を示すブロック図である。図13に示すユーザ端末200は、主に、アンテナ202と、アンプ部204と、送受信部206と、ベースバンド信号処理部208と、呼処理部210と、アプリケーション部212とで構成されている。
 このような構成のユーザ端末200において、下りリンクのデータについては、アンテナ202で受信された無線周波数信号がアンプ部204で増幅される。当該増幅は、AGCの下で受信電力が一定電力に補正されるように行われる。増幅された無線周波数信号は、送受信部206においてベースバンド信号へ周波数変換される。このベースバンド信号は、ベースバンド信号処理部208で所定の処理(誤り訂正、復号など)がなされた後、呼処理部210及びアプリケーション部212に送られる。呼処理部210は、無線基地局装置100との通信の管理などを行い、アプリケーション部212は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。
 上りリンクのデータについては、アプリケーション部212からベースバンド信号処理部208に入力される。ベースバンド信号処理部208では、再送制御の処理、スケジューリング、伝送フォーマット選択、チャネル符号化などがなされて送受信部206に転送される。送受信部206では、ベースバンド信号処理部208から出力されたベースバンド信号を無線周波数信号へ周波数変換する。周波数変換された信号は、その後、アンプ部204で増幅されてアンテナ202から送信される。
 図14は、図13に示すユーザ端末におけるベースバンド信号処理部の構成を示すブロック図である。ベースバンド信号処理部208は、レイヤ1処理部281と、MAC処理部282と、RLC処理部283と、伝搬ロス測定部284と、送信電力オフセット量受信部285と、TPCコマンド受信部286と、上り送信電力設定部287とで構成されている。
 レイヤ1処理部281は、主に物理レイヤに関する処理を行う。レイヤ1処理部281は、例えば、下りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT)、周波数デマッピング、逆フーリエ変換(IFFT)、データ復調などの処理を行う。また、レイヤ1処理部281は、上りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆フーリエ変換(IFFT)などの処理を行う。
 MAC処理部282は、下りリンクで受信した信号に対するMACレイヤでの再送制御(HARQ)、下りスケジューリング情報の解析(PDSCHの伝送フォーマットの特定、PDSCHのリソースブロックの特定)などを行う。また、MAC処理部282は、上りリンクで送信する信号に対するMAC再送制御、上りスケジューリング情報の解析(PUSCHの伝送フォーマットの特定、PUSCHのリソースブロックの特定)などの処理を行う。
 RLC処理部283は、下りリンクで受信したパケット/上りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御などを行う。
 伝搬ロス測定部284は、下りリンクで受信したCRSの受信レベルに基づいて伝搬ロスを測定する。伝搬ロスの測定にCSI-RSを用いる場合は、CSI-RSの受信レベルに基づいて伝搬ロスを測定する。
 送信電力オフセット量受信部285は、下りリンクにおいてRRCシグナリンクで通知される送信電力オフセット量を受信する。オフセット量が複数ある場合(例えば、ΔHetNet(i)及びΔCoMP(i)を用いる場合など)は、複数の送信電力オフセット量を受信する。
 TPCコマンド受信部286は、下りリンクにおいてPDCCHで通知されるTPCコマンドを受信する。ビット数が拡張された拡張TPCコマンドが適用されている場合は、拡張TPCコマンドを受信する。
 上り送信電力設定部287は、伝搬ロス測定部284において測定された伝搬ロスの値、送信電力オフセット量受信部285において受信した送信電力オフセット量、TPCコマンド受信部286において受信したTPCコマンドの値などを用い、式(4)~(6)に基づいて上りリンクの送信電力を設定する。
 以上のように、本発明においては、上下リンクにおける接続セルや、合成受信されたCRSの受信レベルや、ULCoMP受信の適用の有無等を考慮して、各無線基地局装置で測定したユーザ端末からの上り参照信号又はデータ信号の受信レベルに基づいて伝搬ロスPLを補正するオフセット量(補正値)を決定し、ユーザ端末に通知する。これにより、HetNet環境においても上りリンクの送信電力を適切に制御可能な無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法が提供される。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における構成要素の接続関係、機能などは適宜変更して実施することが可能である。また、上記実施の形態に示す構成は、適宜組み合わせて実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。
 本出願は、2011年8月12日出願の特願2011-177267に基づく。この内容は、全てここに含めておく。

Claims (18)

  1.  第1の無線基地局装置と、前記第1の無線基地局装置と通信可能に構成された第2の無線基地局装置と、を備えた無線通信システムであって、
     前記第1の無線基地局装置は、ユーザ端末から送信される上り参照信号の受信品質を測定して第1の受信品質情報を生成する第1の通信品質測定部と、前記第1の通信品質情報を前記第2の無線基地局装置に通知する通知部と、を備え、
     前記第2の無線基地局装置は、前記ユーザ端末から送信される前記上り参照信号の受信品質を測定して第2の通信品質情報を生成する第2の通信品質測定部と、前記第1の通信品質情報及び前記第2の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定する補正値決定部と、前記決定された補正値を前記ユーザ端末に通知する通知部と、を備えたことを特徴とする無線通信システム。
  2.  前記第1の無線基地局装置と、前記第2の無線基地局装置とは、異なる識別符号が付与されていることを特徴とする請求項1に記載の無線通信システム。
  3.  前記第1の無線基地局装置と、前記第2の無線基地局装置とは、同一の識別符号が付与されていることを特徴とする請求項1に記載の無線通信システム。
  4.  前記補正値決定部は、前記第1の無線基地局装置及び前記第2の無線基地局装置が前記ユーザ端末からの信号を協調マルチポイント受信するか否かに応じて前記補正値を変化させることを特徴とする請求項3に記載の無線通信システム。
  5.  前記補正値決定部は、前記第1の無線基地局装置及び前記第2の無線基地局装置が前記ユーザ端末からの信号を協調マルチポイント受信するか否かに応じて変動する別の補正値をさらに生成することを特徴とする請求項3記載の無線通信システム。
  6.  前記補正値は、上位レイヤシグナリングにより前記ユーザ端末に通知されることを特徴とする請求項1に記載の無線通信システム。
  7.  前記ユーザ端末に通知された補正値に基づいて、前記ユーザ端末の上りリンクにおけるデータチャネル、上り制御チャネル、及び上り参照信号の送信電力が制御されることを特徴とする請求項1に記載の無線通信システム。
  8.  第1の無線基地局装置と、前記第1の無線基地局装置と通信可能に構成された第2の無線基地局装置と、を備えた無線通信システムであって、
     前記第1の無線基地局装置は、ユーザ端末から送信される上り参照信号の受信品質を測定して第1の受信品質情報を生成する第1の通信品質測定部と、前記第1の通信品質情報を前記第2の無線基地局装置に通知する通知部と、を備え、
     前記第2の無線基地局装置は、前記ユーザ端末から送信される前記上り参照信号の受信品質を測定して第2の通信品質情報を生成する第2の通信品質測定部と、前記第1の通信品質情報及び前記第2の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定する補正値決定部と、前記決定された補正値を前記ユーザ端末に通知する通知部と、を備え、
     前記通知部は、下りリンク制御信号内に設けられた3ビット以上の送信電力制御コマンド用フィールドを用いて、前記補正値を前記ユーザ端末に通知することを特徴とする無線通信システム。
  9.  第1の無線基地局装置と、前記第1の無線基地局装置と通信可能に構成された第2の無線基地局装置と、を備えた無線通信システムであって、
     前記第1の無線基地局装置は、ユーザ端末から送信される上り参照信号の受信品質を測定して第1の受信品質情報を生成する第1の通信品質測定部と、前記第1の通信品質情報を前記第2の無線基地局装置に通知する通知部と、ユーザ端末に対してチャネル品質測定用の第1の参照信号を送信する送信部と、を備え、
     前記第2の無線基地局装置は、前記ユーザ端末から送信される上り参照信号の受信品質を測定して第2の受信品質情報を生成する第2の通信品質測定部と、前記第1の通信品質情報及び前記第2の通信品質情報を基に、前記ユーザ端末が上りリンクにおいて接続する無線基地局装置を決定する決定部と、前記ユーザ端末に対してチャネル品質測定用の第2の参照信号を送信する送信部と、を備え、
     前記ユーザ端末は、上りリンクにおいて接続する無線基地局装置から送信される前記第1の参照信号又は前記第2の参照信号に基づいてパスロスを決定し、当該パスロスに基づいて上りリンクにおける送信電力を設定することを特徴とする無線通信システム。
  10.  第1の無線基地局装置と、前記第1の無線基地局装置と通信可能に構成された第2の無線基地局装置と、を備えた無線通信システムであって、
     前記第1の無線基地局装置は、ユーザ端末から送信される上り参照信号又はデータ信号の受信電力の測定値と、前記ユーザ端末から送信される電力使用についての通知情報とに基づいて、上りリンクにおける前記ユーザ端末の送信電力の補正値を計算し、前記計算された補正値を前記第2の無線基地局装置に通知する通知部を備え、
     前記第2の無線基地局装置は、前記第1の無線基地局装置から通知される前記補正値を前記ユーザ端末に通知する通知部を備えたことを特徴とする無線通信システム。
  11.  ユーザ端末が第1の無線基地局装置及び第2の無線基地局装置に対して上り参照信号を送信するステップと、
     前記第1の無線基地局装置が前記上り参照信号の受信品質を測定して第1の通信品質情報を生成するステップと、
     前記第2の無線基地局装置が前記上り参照信号の受信品質を測定して第2の通信品質情報を生成するステップと、
     前記第1の無線基地局装置が前記第1の通信品質情報を前記第2の無線基地局装置に通知するステップと、
     前記第2の無線基地局装置が前記第1の通信品質情報及び前記第2の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定するステップと、
     前記決定された補正値を前記ユーザ端末に通知するステップと、
     前記ユーザ端末が前記補正値に基づいて上りリンクにおける送信電力を設定するステップと、を備えたことを特徴とする無線通信方法。
  12.  ユーザ端末が第1の無線基地局装置及び第2の無線基地局装置に対して上り参照信号を送信するステップと、
     前記第1の無線基地局装置が前記上り参照信号の受信品質を測定して第1の通信品質情報を生成するステップと、
     前記第2の無線基地局装置が前記上り参照信号の受信品質を測定して第2の通信品質情報を生成するステップと、
     前記第1の無線基地局装置が前記第1の通信品質情報を前記第2の無線基地局装置に通知するステップと、
     前記第2の無線基地局装置が前記第1の通信品質情報及び前記第2の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定するステップと、
     前記決定された補正値を、下りリンク制御信号内に設けられた3ビット以上の送信電力制御コマンド用フィールドを用いて前記ユーザ端末に通知するステップと、
     前記ユーザ端末が前記補正値に基づいて上りリンクにおける送信電力を設定するステップと、を備えたことを特徴とする無線通信方法。
  13.  ユーザ端末が第1の無線基地局装置及び第2の無線基地局装置に対して上り参照信号を送信するステップと、
     前記第1の無線基地局装置が前記上り参照信号の受信品質を測定して第1の通信品質情報を生成するステップと、
     前記第2の無線基地局装置が前記上り参照信号の受信品質を測定して第2の通信品質情報を生成するステップと、
     前記第1の無線基地局装置が前記第1の通信品質情報を前記第2の無線基地局装置に通知するステップと、
     前記第2の無線基地局装置が前記第1の通信品質情報及び前記第2の通信品質情報を基に前記ユーザ端末が上りリンクにおいて接続する無線基地局装置を決定するステップと、
     前記第1の無線基地局装置が前記ユーザ端末に対してチャネル品質測定用の第1の参照信号を送信するステップと、
     前記第2の無線基地局装置が前記ユーザ端末に対してチャネル品質測定用の第2の参照信号を送信するステップと、
     前記ユーザ端末が上りリンクにおいて接続する無線基地局装置から送信される前記第1の参照信号又は前記第2の参照信号に基づいてパスロスを決定するステップと、
     当該パスロスに基づいて上りリンクにおける送信電力を設定するステップと、を備えたことを特徴とする無線通信方法。
  14.  第1の無線基地局装置と、前記第1の無線基地局装置と通信可能に構成された第2の無線基地局装置と、前記第1の無線基地局装置及び前記第2の無線基地局装置と無線通信を行うユーザ端末と、を用いる無線通信方法であって、
     前記第1の無線基地局装置が前記ユーザ端末から、参照信号又はデータ信号と、電力使用についての通知情報とを受信し、これらに基づいて補正値を計算するステップと、
     前記補正値を第2の無線基地局装置に通知するステップと、
     前記第2の無線基地局装置が前記第1の無線基地局装置から通知される前記補正値を前記ユーザ端末に通知するステップと、を備えたことを特徴とする無線通信方法。
  15.  他の無線基地局装置と通信可能に構成された無線基地局装置であって、
     ユーザ端末から送信される上り参照信号の受信品質を測定して通信品質情報を生成する通信品質測定部と、
     前記他の無線基地局装置が、前記ユーザ端末から送信される上り参照信号の受信品質を測定して生成した通信品質情報を受信する受信部と、
     前記通信品質情報、及び前記他の無線基地局装置の通信品質情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を決定する補正値決定部と、
     前記決定された補正値を前記ユーザ端末に通知する通知部と、を備えたことを特徴とする無線基地局装置。
  16.  他の無線基地局装置と通信可能に構成された無線基地局装置であって、
     ユーザ端末から送信される上り参照信号、データ信号、及び電力使用についての通知情報を受信する受信部と、
     前記上り参照信号又は前記データ信号の受信電力を測定する測定部と、
     前記受信電力、及び前記電力使用についての通知情報を基に上りリンクにおける前記ユーザ端末の送信電力の補正値を計算して、前記補正値を前記他の無線基地局装置に通知する通知部と、を備えたことを特徴とする無線基地局装置。
  17.  互いに通信可能に構成された第1の無線基地局装置及び第2の無線基地局装置に対して上り参照信号を送信する送信部と、
     前記第1の無線基地局装置又は前記第2の無線基地局装置が、各無線基地局装置に対する上り参照信号の受信品質に基づいて決定した上りリンクにおける送信電力の補正値を受信する受信部と、
     前記補正値に基づいて上りリンクにおける送信電力を設定する設定部と、を備えたことを特徴とするユーザ端末。
  18.  第1の無線基地局装置に対して上り参照信号、データ信号、及び電力使用についての通知情報を送信する送信部と、
     前記第1の無線基地局装置が上り参照信号又はデータ信号の受信電力、及び前記電力使用についての通知情報を基に計算した上りリンクにおける送信電力の補正値を、前記第1の無線基地局装置と通信可能に構成された第2の無線基地局装置から受信する受信部と、
     前記補正値に基づいて上りリンクにおける送信電力を設定する設定部と、を備えたことを特徴とするユーザ端末。
     
PCT/JP2012/068459 2011-08-12 2012-07-20 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法 WO2013024662A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES12824133.8T ES2642372T3 (es) 2011-08-12 2012-07-20 Sistema de comunicación inalámbrica, aparato de estación base inalámbrico, terminal de usuario y método para comunicación inalámbrica
EP12824133.8A EP2744278B1 (en) 2011-08-12 2012-07-20 Wireless communication system, wireless base station apparatus, user terminal, and method for wireless communication
CN201280044304.7A CN103797866B (zh) 2011-08-12 2012-07-20 无线通信系统、无线基站装置、用户终端和无线通信方法
US14/238,148 US9723569B2 (en) 2011-08-12 2012-07-20 Radio communication system, radio base station apparatus, user terminal and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011177267A JP5814041B2 (ja) 2011-08-12 2011-08-12 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法
JP2011-177267 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013024662A1 true WO2013024662A1 (ja) 2013-02-21

Family

ID=47714987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068459 WO2013024662A1 (ja) 2011-08-12 2012-07-20 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法

Country Status (6)

Country Link
US (1) US9723569B2 (ja)
EP (1) EP2744278B1 (ja)
JP (1) JP5814041B2 (ja)
CN (1) CN103797866B (ja)
ES (1) ES2642372T3 (ja)
WO (1) WO2013024662A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742893B1 (ko) 2012-12-19 2017-06-01 후지쯔 가부시끼가이샤 무선 통신 방법, 무선 통신 시스템, 무선국 및 무선 단말기
JP2016103662A (ja) * 2013-03-06 2016-06-02 シャープ株式会社 端末装置、基地局装置、通信方法、集積回路および通信システム
US9148805B2 (en) * 2013-05-10 2015-09-29 Broadcom Corporation Small cell base station DTX mode
JP6194730B2 (ja) * 2013-10-03 2017-09-13 富士通株式会社 無線局、及び、送信電力制御方法
CN110267306B (zh) * 2013-10-31 2022-11-04 日本电气株式会社 无线电通信系统、基站装置、无线电终端和通信控制方法
US9647776B2 (en) * 2014-07-02 2017-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and network nodes for calibrating uplink measurements
KR102301826B1 (ko) 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
EP3202051B1 (en) * 2014-10-03 2018-06-27 Telefonaktiebolaget LM Ericsson (publ) Methods and network nodes in a wireless communication network for handling of uplink signals sent by a user equipment
CN104363523B (zh) * 2014-12-05 2018-08-31 中国科学院深圳先进技术研究院 一种非对称通信网络及通信方法
JPWO2017126517A1 (ja) * 2016-01-22 2018-11-08 株式会社Nttドコモ 無線基地局及び通信制御方法
US20190014588A1 (en) * 2016-02-29 2019-01-10 Ntt Docomo, Inc. User terminal, radio base station, and radio communication method
CN107171880A (zh) * 2016-03-08 2017-09-15 中兴通讯股份有限公司 一种节省基站基带资源和功率资源的方法及装置
WO2017165668A1 (en) * 2016-03-25 2017-09-28 Intel Corporation Uplink power control for 5g systems
CN107690157A (zh) * 2016-08-04 2018-02-13 北京信威通信技术股份有限公司 一种上报功率余量的方法及装置
US10887148B2 (en) * 2016-08-10 2021-01-05 Ntt Docomo, Inc. User terminal and wireless communication method
US10334533B2 (en) * 2016-11-02 2019-06-25 At&T Intellectual Property I, L.P. Non-orthogonal design for channel state information reference signals for a 5G air interface or other next generation network interfaces
US10237032B2 (en) 2017-01-06 2019-03-19 At&T Intellectual Property I, L.P. Adaptive channel state information reference signal configurations for a 5G wireless communication network or other next generation network
US10320512B2 (en) 2017-01-08 2019-06-11 At&T Intellectual Property I, L.P. Interference cancelation for 5G or other next generation network
US10638431B2 (en) * 2017-01-20 2020-04-28 Qualcomm Incorporated Power control for coordinated multipoint joint transmission
CN110612749B (zh) * 2017-05-10 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
JP6901002B2 (ja) * 2017-09-21 2021-07-14 日本電気株式会社 通信制御方法、通信制御装置および通信制御プログラム
JP2022508021A (ja) 2018-09-19 2022-01-19 日本電気株式会社 方法、及び端末

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108228A1 (ja) * 2007-03-01 2008-09-12 Ntt Docomo, Inc. 基地局装置及び通信制御方法
JP2011009866A (ja) * 2009-06-23 2011-01-13 Ntt Docomo Inc 無線基地局装置、移動端末装置及び送信電力制御方法
JP2011091786A (ja) * 2009-09-25 2011-05-06 Sony Corp 通信システム、中継装置、通信端末および基地局
JP2011151471A (ja) * 2010-01-19 2011-08-04 Sumitomo Electric Ind Ltd 基地局装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080045259A1 (en) 2006-08-15 2008-02-21 Zukang Shen Cellular Uplink Power Control with Inter-NodeB Power Control Information Exchange
CN101527586B (zh) * 2008-03-04 2013-09-18 电信科学技术研究院 一种路径损耗补偿方法、系统及移动终端
CN102089998A (zh) * 2008-07-08 2011-06-08 Lg电子株式会社 基板运送装置
CN102067472B (zh) * 2008-08-15 2015-03-18 上海贝尔股份有限公司 基于固定波束族的波束赋形方法、基站和用户设备
US8938247B2 (en) * 2009-04-23 2015-01-20 Qualcomm Incorporated Sounding reference signal for coordinated multi-point operation
US20100331037A1 (en) * 2009-06-24 2010-12-30 Yu-Chih Jen Method and Related Communication Device for Enhancing Power Control Mechanism
CN102577290A (zh) * 2009-08-12 2012-07-11 捷讯研究有限公司 中继网络中的调制和编码方案适配和功率控制的系统和方法
KR101633495B1 (ko) 2009-09-22 2016-06-24 삼성전자주식회사 무선 통신 시스템에서 지연을 고려한 다중노드 협력 방법
US20120282889A1 (en) 2010-01-12 2012-11-08 Sumitomo Electric Industries, Ltd Base station device
US9426703B2 (en) * 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
WO2012155354A1 (en) * 2011-05-19 2012-11-22 Qualcomm Incorporated Methods and apparatus for special burst transmissions to reduce uplink and downlink interference for td-scdma systems
CN103503523B (zh) * 2011-07-13 2018-01-23 太阳专利信托公司 终端装置和发送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108228A1 (ja) * 2007-03-01 2008-09-12 Ntt Docomo, Inc. 基地局装置及び通信制御方法
JP2011009866A (ja) * 2009-06-23 2011-01-13 Ntt Docomo Inc 無線基地局装置、移動端末装置及び送信電力制御方法
JP2011091786A (ja) * 2009-09-25 2011-05-06 Sony Corp 通信システム、中継装置、通信端末および基地局
JP2011151471A (ja) * 2010-01-19 2011-08-04 Sumitomo Electric Ind Ltd 基地局装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3GPP, TS 36.213, V10.1.0, "Evolved Universal Terrestrial Radio Access (E-UTRA) semikoron Physical layer procedures"", 3GPP

Also Published As

Publication number Publication date
EP2744278B1 (en) 2017-08-30
ES2642372T3 (es) 2017-11-16
JP2013042310A (ja) 2013-02-28
EP2744278A1 (en) 2014-06-18
US9723569B2 (en) 2017-08-01
CN103797866B (zh) 2017-11-21
JP5814041B2 (ja) 2015-11-17
US20140179363A1 (en) 2014-06-26
EP2744278A4 (en) 2015-05-27
CN103797866A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5814041B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法
US11129113B2 (en) Terminal apparatus, base station and communication method
US10313984B2 (en) User terminal and radio communication method
US9621321B2 (en) Base station, user equipment, and methods therein in a communications system
US10009907B2 (en) Method and apparatus for operating uplink AMC in mobile communication system
WO2016106604A1 (zh) 一种传输信号的方法和设备
WO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US20160056909A1 (en) Radio base station, user terminal and radio communication method
WO2014162796A1 (ja) 無線基地局、ユーザ端末および無線通信方法
JP2016518061A (ja) マルチリンク接続のアップリンク送信電力制御のための方法および装置
US9692541B2 (en) Mobile communication system, communication control method, base station, user terminal and processor for canceling interference
KR20120121299A (ko) 기지국의 상향링크 전력 제어 정보 제공 방법 및 단말의 상향링크 전력 제어 방법, 그 기지국, 그 단말
JP2015139101A (ja) ユーザ端末、無線通信システム及び送信電力制御方法
JP6301094B2 (ja) ユーザ端末および無線通信方法
KR20130036383A (ko) 무선 통신 시스템에서 상향링크 전송 전력을 제어하는 장치 및 방법
JP6609357B2 (ja) 無線基地局及びユーザ端末
JP2011259238A (ja) 無線通信システム、無線基地局、無線端末及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14238148

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012824133

Country of ref document: EP