WO2013023702A1 - Procédé de régulation de la production électrique d'une turbine éolienne - Google Patents

Procédé de régulation de la production électrique d'une turbine éolienne Download PDF

Info

Publication number
WO2013023702A1
WO2013023702A1 PCT/EP2011/064234 EP2011064234W WO2013023702A1 WO 2013023702 A1 WO2013023702 A1 WO 2013023702A1 EP 2011064234 W EP2011064234 W EP 2011064234W WO 2013023702 A1 WO2013023702 A1 WO 2013023702A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
estimated
wind
output power
load
Prior art date
Application number
PCT/EP2011/064234
Other languages
English (en)
Inventor
Per Egedal
Hans Laurberg
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2011/064234 priority Critical patent/WO2013023702A1/fr
Publication of WO2013023702A1 publication Critical patent/WO2013023702A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0292Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power to reduce fatigue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/332Maximum loads or fatigue criteria
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method to regulate the output power production of a wind turbine with respect to the market price of the electricity and with respect to the life time of components of the wind turbine.
  • TLC Total Cost Control
  • the TLC is prepared to monitor the major wind turbine components in view to their lapsed lifetime. Based on this result the wind turbine may be "down regulated” in view to its output power to extend the lifetime of the components if needed.
  • stress and loads, which are acting on the components of the wind turbine are reduced in their effects.
  • the whole wind turbine withstands the ambient influ- ences longer and thus its lifetime is prolonged.
  • the document US 6 850 821 B2 discloses a deliberatelyCONTROL SYSTEM FOR A WIND POWER PLANT".
  • the system includes a damage module and a contral module.
  • the damage module compares existing stress conditions on one or more component parts of the wind power plant to current energy generating costs.
  • the contral module alters electric power generated by the wind power plant based upon the comparison.
  • the output power production of a wind turbine is regulated.
  • a wind speed is estimated for the wind turbine based on local meteorological data, which are allocated to the wind turbine site.
  • a load which acts on at least one component of the wind turbine, is estimated based on the estimated wind speed.
  • a lifetime consumption of the component is estimated based on the estimated load.
  • the output power of the wind turbine is estimated based on the estimated wind speed.
  • a reference value is calculated, which takes into account the market price of the estimated output power and the estimated lifetime consumption.
  • Settings of the wind turbine are adjusted to increase or to decrease the out ⁇ put power production of the wind turbine based on the refer ⁇ ence value. Summarized: the calculated reference value influences the lifetime consumption of the wind turbine component (s) via the increased or decreased output power. This is done in regard to a beneficial gain in view to the market price of the out ⁇ put power.
  • the method invented provides a new evaluated balance between the lifetime of the wind turbine and the amount of money, be ⁇ ing generated by the market price of the output power of the wind turbine.
  • the owner of the wind turbine receives an optimum oper ⁇ ating time of the wind turbine (even in the "down regulated output power mode") with respect to an optimized benefit from the produced and sold electricity.
  • the method invented predicts load rates of wind turbine com ⁇ ponents in a way that the "Turbine Load Control, TLC" is not in conflict with the efforts of a "smart grid”.
  • the method invented shows a novel way to implement and use the TLC while no further changes needs to be done at the wind turbine .
  • FIG. 1 A first figure.
  • the first block is called "Weather Forecast”. This block is used to estimate the wind speed for a dedicated wind turbine based on local meteorological data. The data are allocated to the site of the dedicated wind turbine.
  • the "Weather Forecast”-block comprises a well known and traditional mean wind speed estimator.
  • the second block is called “Load Forecast” and is used to es ⁇ timate a load, which acts on at least one component of the wind turbine. This estimation is based on the estimated wind speed .
  • the third block is called "Bidding" and is used to calculate a reference value, which takes into account the market price of the estimated output power and the estimated lifetime con- sumption.
  • the fourth block is called “Control” and is used to adjust the settings of the wind turbine, specified by the fifth block named “Wind Turbine”.
  • the settings are adjusted to in ⁇ crease or to decrease the output power production of the wind turbine based on the reference value.
  • the method invented is explained now by help of a physical model, which refers to the FIG 1.
  • a metrological estimator is used to estimate one or several wind parameters (e.g. the mean wind speed, turbulences, wind variances, the wind direction, the air density, the tempera ⁇ ture, etc.
  • the knowledge of other wind turbines is additionally used to estimate local weather phenomena (i.e. wake, inflow angle and wind share) .
  • a physical model of the wind turbine is now set in view to an estimated wind field, which approaches the wind turbine.
  • the loads, acting on all major components, are estimated for all control strategies of the wind turbine.
  • the model is updated time by time - especially for the point of time where the wind turbine settings are set for a start-operation of the wind turbine.
  • the forecast preferably uses these parameters:
  • the load-forecast h() is preferably based on a "Metrological Parkmodel", which uses metrological data directly to estimate load rates of dedicated components of the wind turbine.
  • the load rate is a function of the output- power, the mean wind and of the turbulence. This function is known by the manufacture of the wind turbine.
  • the load-forecast is preferably based on a "Metrological- Turbine Model", using knowledge of the local area of the wind turbine. This model allows a more precise prediction of load rates. Examples of local condition can be hills, trees, tur ⁇ bines in the neighborhood of the dedicated wind turbine, etc . These functions show the dependencies for this model:
  • Windshare g (wind direction)
  • Load Rate f (power, mean wind, turbulence, windshare, con ⁇ trol option)
  • the control option can be different ways of controlling the wind turbine. It could be curtailed, or have some grid ser ⁇ vices enabled
  • the function g can be estimated using so called "siting tools".
  • the function f is known by the wind turbine manufac- turer.
  • the load-forecast is preferably based on a "Metrological- Turbine Data" model.
  • the method gathers all data driven meth ⁇ ods - i.e. all methods where the function h() is estimated using historical data.
  • Load Rate h (power, Mean wind speed, turbulence, air den ⁇ sity, wind direction, control option)
  • h() It is even possible to use a neural network to estimate the function h() .
  • the training of h() may use the model from one of the examples above as starting point.
  • the estimated lifetime consumption depends on the power pro ⁇ duction in a non-linear way.

Abstract

La présente invention concerne un procédé de régulation de la production électrique d'une turbine éolienne en fonction du prix de l'électricité sur le marché et de la durée de vie des composants de cette turbine. La production électrique d'une turbine éolienne est régulée selon le procédé de l'invention. La vitesse du vent est estimée pour cette turbine sur la base des données météorologique locales applicables au site de la turbine. Une charge agissant sur au moins l'une des composantes de la turbine éolienne est estimée sur la base de cette estimation de la vitesse du vent, puis la consommation sur la durée de vie du composant est calculée sur la base de cette charge estimée. La puissance de sortie de la turbine éolienne est estimée sur la base de cette estimation de la vitesse du vent. Une valeur de référence est calculée, qui prend en compte le prix sur le marché de la puissance de sortie estimée et la consommation sur la durée de vie estimée. Les paramètres de la turbine sont ajustés pour augmenter ou réduire la production électrique de la turbine éolienne sur la base de cette valeur de référence.
PCT/EP2011/064234 2011-08-18 2011-08-18 Procédé de régulation de la production électrique d'une turbine éolienne WO2013023702A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/064234 WO2013023702A1 (fr) 2011-08-18 2011-08-18 Procédé de régulation de la production électrique d'une turbine éolienne

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/064234 WO2013023702A1 (fr) 2011-08-18 2011-08-18 Procédé de régulation de la production électrique d'une turbine éolienne

Publications (1)

Publication Number Publication Date
WO2013023702A1 true WO2013023702A1 (fr) 2013-02-21

Family

ID=44543230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/064234 WO2013023702A1 (fr) 2011-08-18 2011-08-18 Procédé de régulation de la production électrique d'une turbine éolienne

Country Status (1)

Country Link
WO (1) WO2013023702A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073688A1 (fr) * 2016-10-17 2018-04-26 Romax Technology Limited Détermination de charges sur une éolienne
EP2868918B1 (fr) 2013-10-31 2018-12-12 General Electric Company Système et procédé pour contrôler une éolienne
US10539116B2 (en) 2016-07-13 2020-01-21 General Electric Company Systems and methods to correct induction for LIDAR-assisted wind turbine control
WO2020115229A1 (fr) * 2018-12-06 2020-06-11 Wobben Properties Gmbh Procédé servant à faire fonctionner au moins une éolienne, ainsi que dispositif associé
US10746160B2 (en) 2015-06-30 2020-08-18 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10871146B2 (en) 2015-06-30 2020-12-22 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10928816B2 (en) 2015-06-30 2021-02-23 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10975844B2 (en) 2015-06-30 2021-04-13 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US11428208B2 (en) 2015-06-30 2022-08-30 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
EP4357610A1 (fr) * 2022-10-19 2024-04-24 Wobben Properties GmbH Procédé de fonctionnement d'une éolienne

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850821B2 (en) 2000-03-09 2005-02-01 General Electric Company Control system for a wind power plant
US20100158687A1 (en) * 2008-12-19 2010-06-24 Frontier Wind, Llc Control Modes for Extendable Rotor Blades
EP2267305A2 (fr) * 2009-06-24 2010-12-29 Vestas Wind Systems A/S Procédé et système pour contrôler le fonctionnement d'une éolienne
EP2302208A1 (fr) * 2009-09-23 2011-03-30 Siemens Aktiengesellschaft Adaptation dynamique du point de réglage de la durée de fatigue d'un composant structurel d'une machine de génération d'énergie
WO2011095519A2 (fr) * 2010-02-05 2011-08-11 Vestas Wind Systems A/S Procédé de fonctionnement d'une centrale éolienne

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850821B2 (en) 2000-03-09 2005-02-01 General Electric Company Control system for a wind power plant
US20100158687A1 (en) * 2008-12-19 2010-06-24 Frontier Wind, Llc Control Modes for Extendable Rotor Blades
EP2267305A2 (fr) * 2009-06-24 2010-12-29 Vestas Wind Systems A/S Procédé et système pour contrôler le fonctionnement d'une éolienne
EP2302208A1 (fr) * 2009-09-23 2011-03-30 Siemens Aktiengesellschaft Adaptation dynamique du point de réglage de la durée de fatigue d'un composant structurel d'une machine de génération d'énergie
WO2011095519A2 (fr) * 2010-02-05 2011-08-11 Vestas Wind Systems A/S Procédé de fonctionnement d'une centrale éolienne

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2868918B1 (fr) 2013-10-31 2018-12-12 General Electric Company Système et procédé pour contrôler une éolienne
US10975844B2 (en) 2015-06-30 2021-04-13 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10746160B2 (en) 2015-06-30 2020-08-18 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10871146B2 (en) 2015-06-30 2020-12-22 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10928816B2 (en) 2015-06-30 2021-02-23 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US11428208B2 (en) 2015-06-30 2022-08-30 Vestas Wind Systems A/S Methods and systems for generating wind turbine control schedules
US10539116B2 (en) 2016-07-13 2020-01-21 General Electric Company Systems and methods to correct induction for LIDAR-assisted wind turbine control
CN110023621A (zh) * 2016-10-17 2019-07-16 诺迈士科技有限公司 确定风力涡轮上的载荷
JP2019532215A (ja) * 2016-10-17 2019-11-07 ロマックス テクノロジー リミテッド 風力タービンの負荷を決定する方法
WO2018073688A1 (fr) * 2016-10-17 2018-04-26 Romax Technology Limited Détermination de charges sur une éolienne
CN110023621B (zh) * 2016-10-17 2024-01-02 诺迈士科技有限公司 确定风力涡轮上的载荷
WO2020115229A1 (fr) * 2018-12-06 2020-06-11 Wobben Properties Gmbh Procédé servant à faire fonctionner au moins une éolienne, ainsi que dispositif associé
US11686287B2 (en) 2018-12-06 2023-06-27 Wobben Properties Gmbh Method of operating at least one wind turbine, and device therefor
EP4357610A1 (fr) * 2022-10-19 2024-04-24 Wobben Properties GmbH Procédé de fonctionnement d'une éolienne

Similar Documents

Publication Publication Date Title
WO2013023702A1 (fr) Procédé de régulation de la production électrique d'une turbine éolienne
US10584680B2 (en) Method for operating a wind turbine generator
CN104285059B (zh) 风力发电厂频率控制
US10612519B2 (en) Optimal wind farm operation
ES2545606T3 (es) Procedimiento y sistema para operar una planta de energía eólica que comprende un número de generadores de turbina eólica
EP2557311A1 (fr) Procédé de commande d'un parc éolien et parc éolien commandé selon ledit procédé
US10928816B2 (en) Methods and systems for generating wind turbine control schedules
CN104321944B (zh) 用于协调传统发电厂与风力发电厂之间的频率控制特性的方法
CN101592130B (zh) 风力发电场
US10415545B2 (en) Active power boost during wake situation
CN103001249B (zh) 基于bp神经网络的风电场短期功率预测方法
CN104271942A (zh) 用于利用调度算法运行风力发电系统的电力系统和方法
US20130204447A1 (en) Wind turbine with price-optimised turbine load control
CN102968674B (zh) 一种基于水位控制的日调节水电站发电优化调度方法
US10578080B2 (en) Initialisation of wind turbine control functions
CN106056256B (zh) 一种平衡电力供需关系的互动化微网调度方法
CN103244354B (zh) 风力发电机组功率曲线自适应优化方法
US9341162B2 (en) Frequency control
CN109768583A (zh) 一种新能源电力系统中火电机组改造容量确定方法
CN106065848A (zh) 控制风力涡轮机的操作的方法
CN110165713B (zh) 一种基于电网调峰需求的多能互补园区需求响应方法
CN103928924A (zh) 计及有功功率变化最大值的风电场有功功率优化控制方法
CN105720596B (zh) 电力储能系统的调频方法和装置
Bertašienė et al. Synergies of Wind Turbine control techniques
CN103094902A (zh) 风力发电场实时发电量的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11751583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11751583

Country of ref document: EP

Kind code of ref document: A1