CN110165713B - 一种基于电网调峰需求的多能互补园区需求响应方法 - Google Patents

一种基于电网调峰需求的多能互补园区需求响应方法 Download PDF

Info

Publication number
CN110165713B
CN110165713B CN201910359105.9A CN201910359105A CN110165713B CN 110165713 B CN110165713 B CN 110165713B CN 201910359105 A CN201910359105 A CN 201910359105A CN 110165713 B CN110165713 B CN 110165713B
Authority
CN
China
Prior art keywords
power
power grid
park
demand
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910359105.9A
Other languages
English (en)
Other versions
CN110165713A (zh
Inventor
张高锋
邢威峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Gufeng Intelligent Technology Co ltd
Original Assignee
Nanjing Gufeng Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Gufeng Intelligent Technology Co ltd filed Critical Nanjing Gufeng Intelligent Technology Co ltd
Priority to CN201910359105.9A priority Critical patent/CN110165713B/zh
Publication of CN110165713A publication Critical patent/CN110165713A/zh
Application granted granted Critical
Publication of CN110165713B publication Critical patent/CN110165713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/383
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种基于电网调峰需求的多能互补园区需求响应方法,属于用能园区需求响应方法的技术领域。本发明包括如下步骤:接收电网下发的调峰需求值;计算园区分布式电源系统在t时刻可增加的供电功率;如果园区分布式电源系统可增加供电功率大于电网削峰需求,直接执行电网削峰指令;如果是小于时,根据不同设备的响应等级,从上至下依次消减各设备用电量;某一响应等级设备可响应负荷全部响应后,仍然无法满足电网削峰需求,则进一步控制下一响应等级设备,直到完全满足电网削峰需求或所有设备已全部响应。通过本发明的需求响应方法,当电网电力供应紧张,调整园区供能方式,按照优先级依次优化用能设备的运行方式,减少电网输送功率,降低园区用电成本。

Description

一种基于电网调峰需求的多能互补园区需求响应方法
技术领域
本发明属于用能园区需求响应方法的技术领域,尤其涉及基于电网调峰需求的多能互补园区需求的响应方法。
背景技术
需求响应是将需求侧的负荷作为隐形的资源加以开发、整合用户侧电网响应潜力的有效手段,需求侧与电网进行“双向互动”,通过价格和激励的方式引导用户改变用电方式,根据调度指令或市场信号主动进行负荷调整,可以缓解电力供应紧张矛盾、平衡间歇性可再生能源带给电网的波动,从而有效提升电网运行的安全与稳定性。
目前工商业园区作为“智慧城市”建设中的用能主体,一方面园区内用能设备灵活多样,综合能耗逐年上升;另一方面光伏、风电及储能系统等分布式电源在园区应用愈加广泛,实现了多种能源互济。因此研究基于电网调峰需求的多能互补园区需求响应方法,可以提升园区综合能源利用效率、优化园区运行成本,并对挖掘多能互补园区对电网调峰方面的互动潜力具有重要意义。
发明内容
本发明的目的在于,提出一种基于电网调峰需求的多能互补园区需求响应方法。当电网电力供应紧张,下发调峰需求指令时,通过本发明所提的需求响应方法,可以在电网负荷高峰期调整园区供能方式,按照优先级依次优化用能设备的运行方式,从而减少电网输送功率,降低园区用电成本。
本发明的技术方案是,一种基于电网调峰需求的多能互补园区需求响应方法,包括如下步骤:
步骤1:接收电网下发的调峰需求值Ptarget
步骤2:计算园区分布式电源系统在t时刻可增加的供电功率ΔPG(t),计算公式如下:
ΔPG(t)=ΔPPV(t)+ΔPWD(t)+ΔPS(t)
其中:ΔPPV(t)为光伏机组在t时刻可增加的出力功率;ΔPWD(t)为风电机组在t时刻可增加的出力功率;ΔPS(t)为储能系统在t时刻可增加的出力功率;
步骤3:如果园区分布式电源系统可增加供电功率大于电网调峰需求,即ΔPG(t)>Ptarget,则直接执行电网调峰指令,不必消减园区负荷;
步骤4:如果园区分布式电源系统可增加供电功率小于电网调峰需求,即ΔPG(t)<Ptarget,则园区根据不同设备的响应等级i,从上至下依次消减各设备用电量;
步骤5:某一响应等级设备可响应负荷PR i全部响应后,仍然无法满足电网调峰需求,则进一步控制下一响应等级设备PR i+1,直到完全满足电网调峰需求或所有设备已全部响应。
所述设备响应等级,在每个需求响应周期开始时采用加权排队算法实时更新,从而确定各用电设备参与需求响应的动态优先级。加权排队算法兼顾各设备控制次数和用户舒适度,优先选取加权系数K值较小的设备/负荷进行响应,完成整个需求响应过程的控制目标。
本发明提出的基于电网调峰需求的多能互补园区需求响应方法,适用于具有风光储分布式电源系统的园区,园区可通过需求响应管理系统与电网进行信息互动,在电网下发调峰需求时,可以通过本文所提的需求响应方法,有效提高分布式能源的利用率,优化用能设备用能方式,降低园区运行成本。
附图说明
图1是多能互补园区与电网互动的基本框架图。
图2是基于电网调峰需求的多能互补园区需求响应流程图。
具体实施方式
下面结合附图,对需求响应方法作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
如图2所示,基于电网调峰需求的多能互补园区需求响应方法,包括如下步骤:
步骤1:接收电网下发的调峰需求值Ptarget
步骤2:计算园区分布式电源系统在t时刻可增加的供电功率ΔPG(t),计算公式如下:
ΔPG(t)=ΔPPV(t)+ΔPWD(t)+ΔPS(t)
其中:ΔPPV(t)为光伏机组在t时刻可增加的出力功率;ΔPWD(t)为风电机组在t时刻可增加的出力功率;ΔPS(t)为储能系统在t时刻可增加的出力功率。
步骤3:如果园区分布式电源系统可增加供电功率大于电网调峰需求(ΔPG(t)>Ptarget),则直接执行电网调峰指令,不必消减园区负荷;
步骤4:如果园区分布式电源系统可增加供电功率小于电网调峰需求(ΔPG(t)<Ptarget),则园区根据不同设备的响应等级i,从上至下依次消减各设备用电量;
步骤5:某一响应等级设备可响应负荷(PR i)全部响应后,仍然无法满足电网调峰需求,则进一步控制下一响应等级设备PR i+1,直到完全满足电网调峰需求或所有设备已全部响应;
本发明的各响应等级设备在每个需求响应周期开始时采用加权排队算法实时更新,从而确定各用电设备参与需求响应的动态优先级。加权排队算法兼顾各设备控制次数和用户舒适度,优先选取加权系数K值较小的设备/负荷进行响应,完成整个需求响应过程的控制目标:
加权系数计算公式如下:
K=kaUa+(1-ka)C
式中:C为用户设备/负荷的被控次数,ka为权重系数,Ua为设备a的舒适度模型值。对于可转移负荷,设备a的舒适度模型值Ua的计算公式如下:
Figure GDA0002559213460000041
对于可转移负荷,其延迟运行时间越长,对用户舒适度影响越大;其中Ta.d为设备a的实际延迟时间;Ta.dmax为设备的最大可延迟时间;Ta.s、Ta.e为用户预先确定的允许起止运行时段;Ta为设备a的总运行时长;Ta.sfact代表设备a的实际启动时刻;T为将1天划分为T个相等时段;
对于可中断负荷,设备a的舒适度模型值Ua的计算公式如下:
Figure GDA0002559213460000051
其中xa(t)为0/1变量,代表设备a在t时段是否运行,1代表运行;Ta.d为设备a的实际延迟时间;Ta.dmax为设备的最大可延迟时间;Ta.s、Ta.e为用户预先确定的允许起止运行时段;Ta为设备a的总运行时长;T为将1天划分为T个相等时段;
对于可消减负荷,设备a的舒适度模型值Ua的计算公式如下:
Figure GDA0002559213460000052
对于可消减负荷,功率偏离原设定值越大,舒适度越低,其中,Pa,best为原设定功率值,Pa(t)为实际功率值,xa(t)为0/1变量,为用户设定的已知参数,代表用户是否在t时段对功率有要求。
如图1所示,本发明可以适用于多能互补园区参与电网调峰的需求响应方法,响应电网调峰填谷需要,提高园区分布式能源利用效率,包括而不局限于园区设备响应等级划分原则,园区通过需求管理系统平台参与电网信息互动,以及多能互补园区需求响应方法实现算法。
如图1所示,本发明提出的基于电网调峰需求的多能互补园区需求响应方法,适用于具有风光储分布式电源系统的园区,园区可通过需求响应管理系统与电网进行信息互动,在电网下发调峰需求时,可以通过本文所提的需求响应方法,有效提高分布式能源的利用率,优化用能设备用能方式,降低园区运行成本。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (1)

1.一种基于电网调峰需求的多能互补园区需求响应方法,其特征在于所述响应方法包括下列步骤:
步骤1:接收电网下发的调峰需求值Ptarget
步骤2:计算园区分布式电源系统在t时刻可增加的供电功率ΔPG(t),计算公式如下:
ΔPG(t)=ΔPPV(t)+ΔPWD(t)+ΔPS(t)
其中:ΔPPV(t)为光伏机组在t时刻可增加的出力功率;ΔPWD(t)为风电机组在t时刻可增加的出力功率;ΔPS(t)为储能系统在t时刻可增加的出力功率;
步骤3:如果园区分布式电源系统可增加供电功率大于电网调峰需求,即ΔPG(t)>Ptarget,则直接执行电网调峰指令;
步骤4:如果园区分布式电源系统可增加供电功率小于电网调峰需求,即ΔPG(t)<Ptarget,则园区根据不同设备的响应等级i,从上至下依次消减各设备用电量;
步骤5:某一响应等级设备可响应负荷PR i全部响应后,仍然无法满足电网调峰需求,则进一步控制下一响应等级设备PR i+1,直到完全满足电网调峰需求或所有设备已全部响应;
所述各设备的响应等级,在每个需求响应周期开始时采用加权排队算法实时更新,从而确定各用电设备参与需求响应的动态优先级;
所述加权排队算法兼顾各设备控制次数和用户舒适度,优先选取加权系数K值较小的设备/负荷进行响应,完成整个需求响应过程的控制目标:
加权系数计算公式如下:
K=kaUa+(1-ka)C
式中:C为用户设备/负荷的被控次数,ka为权重系数,Ua为设备a的舒适度模型值;
对于可转移负荷,设备a的舒适度模型值Ua的计算公式如下:
Figure FDA0002559213450000021
对于可转移负荷,其延迟运行时间越长,对用户舒适度影响越大;其中Ta.d为设备a的实际延迟时间;Ta.dmax为设备的最大可延迟时间;Ta.s、Ta.e为用户预先确定的允许起止运行时段;Ta为设备a的总运行时长;Ta.sfact代表设备a的实际启动时刻;T为将1天划分为T个相等时段;
对于可中断负荷,设备a的舒适度模型值Ua的计算公式如下:
Figure FDA0002559213450000022
其中xa(t)为0/1变量,代表设备a在t时段是否运行,1代表运行;Ta.d为设备a的实际延迟时间;Ta.dmax为设备的最大可延迟时间;Ta.s、Ta.e为用户预先确定的允许起止运行时段;Ta为设备a的总运行时长;T为将1天划分为T个相等时段;
对于可消减负荷,设备a的舒适度模型值Ua的计算公式如下:
Figure FDA0002559213450000031
对于可消减负荷,功率偏离原设定值越大,舒适度越低,其中,Pa,best为原设定功率值,Pa(t)为实际功率值,xa(t)为0/1变量,为用户设定的已知参数,代表用户是否在t时段对功率有要求。
CN201910359105.9A 2019-04-30 2019-04-30 一种基于电网调峰需求的多能互补园区需求响应方法 Active CN110165713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910359105.9A CN110165713B (zh) 2019-04-30 2019-04-30 一种基于电网调峰需求的多能互补园区需求响应方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910359105.9A CN110165713B (zh) 2019-04-30 2019-04-30 一种基于电网调峰需求的多能互补园区需求响应方法

Publications (2)

Publication Number Publication Date
CN110165713A CN110165713A (zh) 2019-08-23
CN110165713B true CN110165713B (zh) 2020-09-15

Family

ID=67633053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910359105.9A Active CN110165713B (zh) 2019-04-30 2019-04-30 一种基于电网调峰需求的多能互补园区需求响应方法

Country Status (1)

Country Link
CN (1) CN110165713B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049134B (zh) * 2019-12-26 2021-02-02 清华大学 一种多能互补园区响应电力系统削峰需求的计算方法
CN111327049B (zh) * 2020-02-28 2021-11-26 贵州电网有限责任公司 一种分层分级的需求侧响应方法
CN111697594A (zh) * 2020-06-22 2020-09-22 南方电网科学研究院有限责任公司 限制电网降负荷速率的需求响应控制方法、系统及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9250618B2 (en) * 2013-01-29 2016-02-02 General Electric Company PWM based energy management with local distributed transformer constraints
CN205595796U (zh) * 2016-04-22 2016-09-21 国网江苏省电力公司连云港供电公司 电网需求响应控制系统
CN105846426A (zh) * 2016-05-13 2016-08-10 国网天津市电力公司 一种基于需求侧响应的微网运行优化方法
CN106950840B (zh) * 2017-05-11 2020-05-19 山东理工大学 面向电网削峰的综合能源系统分层分布式协调控制方法

Also Published As

Publication number Publication date
CN110165713A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Hossain et al. Modified PSO algorithm for real-time energy management in grid-connected microgrids
Zhao et al. An MAS based energy management system for a stand-alone microgrid at high altitude
CN110689189B (zh) 考虑供能侧和需求侧的冷热电联合供需平衡优化调度方法
Gelazanskas et al. Demand side management in smart grid: A review and proposals for future direction
Soliman et al. Supervisory energy management of a hybrid battery/PV/tidal/wind sources integrated in DC-microgrid energy storage system
Mehrjerdi et al. Energy and uncertainty management through domestic demand response in the residential building
CN102694391B (zh) 风光储联合发电系统日前优化调度方法
CN102289566B (zh) 独立运行模式下的微电网多时间尺度能量优化调度方法
CA3128943A1 (en) Coordinated control of renewable electric generation resource and charge storage device
CN110165713B (zh) 一种基于电网调峰需求的多能互补园区需求响应方法
CN103219751B (zh) 一种集群风电场有功功率控制方法
CN104716693B (zh) 一种分布式储能电池的能量管理方法及控制器、系统
CN113452020A (zh) 一种考虑柔性氢需求的电氢能源系统调度方法
CN104037805B (zh) 一种计及电网安全约束的光伏电站可发电裕度分配方法
CN106712087B (zh) 一种微能源网切换模式
CN112800658A (zh) 一种考虑源储荷互动的主动配电网调度方法
Masuta et al. System frequency control by heat pump water heaters (HPWHs) on customer side based on statistical HPWH model in power system with a large penetration of renewable energy sources
CN111697578A (zh) 多目标含储能区域电网运行控制方法
CN110350512A (zh) 一种智能园区新能源发电站调度优化方法及系统
Fan et al. Scheduling framework using dynamic optimal power flow for battery energy storage systems
CN104239966A (zh) 一种主动配电网基于用电成本差异化的运营方法
CN104484757A (zh) 一种应用于智能微电网的异质载荷调度和能量管理方法
CN110165715A (zh) 一种将电动汽车储能式充电站接入虚拟电厂的方法
CN117856261A (zh) 基于时序模拟仿真计算电网调节能力缺口的方法和装置
CN107196331B (zh) 一种基于电网峰谷幅频特性的新能源消纳方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant