CN110023621B - 确定风力涡轮上的载荷 - Google Patents

确定风力涡轮上的载荷 Download PDF

Info

Publication number
CN110023621B
CN110023621B CN201780073301.9A CN201780073301A CN110023621B CN 110023621 B CN110023621 B CN 110023621B CN 201780073301 A CN201780073301 A CN 201780073301A CN 110023621 B CN110023621 B CN 110023621B
Authority
CN
China
Prior art keywords
turbine
wind
wind farm
load
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780073301.9A
Other languages
English (en)
Other versions
CN110023621A (zh
Inventor
E·戈里舍瓦
A·潘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Romax Technology Ltd
Original Assignee
Romax Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Romax Technology Ltd filed Critical Romax Technology Ltd
Publication of CN110023621A publication Critical patent/CN110023621A/zh
Application granted granted Critical
Publication of CN110023621B publication Critical patent/CN110023621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/84Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

一种计算机相关方法,用于估算包括多个涡轮的风力发电场中的涡轮轮毂载荷,该方法包括以下步骤:提供3D气流数据库;提供涡轮载荷传递函数;测量每个涡轮的涡轮运行数据;以及使用3D气流数据库和涡轮载荷传递函数处理涡轮运行数据。这允许实时间接获得风力涡轮载荷而无需额外的涡轮仪表,从而降低此类系统的成本。

Description

确定风力涡轮上的载荷
技术领域
本发明涉及风力发电场布局的设计方法。
背景技术
具有更紧凑且更精密的动力系统和更大转子的风力涡轮正被安装在风况更具挑战性的位置,这增加了因不当设计、过度载荷或非优化操作而导致涡轮部件过早失效的风险。精确估算涡轮载荷变得更加重要。可以对涡轮进行检测以测量这种载荷,但硬件成本以及随后的集成和数据分析通常非常昂贵。替代方法可以是测量一个或两个涡轮并将数据外推至风力发电场的其余部分。然而,虽然这种方法对于相对稳定的风况仍然有用,但无法捕获许多重要的瞬态风况,例如紊流、尾流效应或风切变。风力发电场CFD建模可以提供这些信息,但因计算量太大而不实用。
发明内容
所提出的方法允许使用利用风力发电场级建模和风力发电场SCADA数据开发的风荷载模型,实现更具代表性、成本效益更高且更快的涡轮载荷估算。然后,这种模型的结果可以用作涡轮级气动弹性载荷模型的输入,将涡轮经历的风况转换为动力系统载荷。得到的涡轮载荷模型可以用于在线或离线涡轮载荷计算,并且不需要永久性涡轮仪表。
本发明易于实施并且计算效率高,因为密集的CFD和气动弹性建模被3D气流数据库和离线开发的涡轮载荷传递函数所取代。
附图说明
现在将参考附图描述本发明,在附图中:
图1示出用于风力涡轮载荷估算的信息流的概要框图;
图2示出如何构建3D气流数据库150的实例;以及
图2示出涡轮载荷传递函数。
具体实施方式
在下文中,术语“风力发电场”可以指风力涡轮所在的区域,或者其中建议设置风力涡轮的区域。
现在参见图1,图中示出用于风力涡轮载荷估算的信息流的概要框图,利用涡轮载荷传递函数140从来自一个或多个涡轮的涡轮运行参数120和涡轮级风流130来确定涡轮轮毂载荷110,包括诸如叶片弯曲、扭矩、转子和弯曲力矩等载荷。
涡轮级风流130从3D风流数据库150和风力发电场级风流参数160获得。风力发电场级风流参数160包括风速、风向、紊流、环境温度和空气密度,并且从风力发电场级大气条件170获得。对于既有风力发电场,这些参数可以从例如SCADA、气象桅杆或LIDAR数据获得。例如,可以使用来自安装在风力涡轮上的风速计或其它风感测传感器的数据。对于正在开发的风力发电场,这些参数可以来自位于风力涡轮建议位置处的气象桅杆。重要的是,要注意3D风流数据库150由与风力发电场大气条件范围内风力发电场中不同位置处的一个或多个涡轮处的涡轮级风流量130相关的数据构建而成。这通常是先前获得的风力发电场大气条件。通常,3D风流数据库150是查找表。
涡轮运行参数120从涡轮运行状态180获得,典型地从SCADA数据导出。
应当理解的是,涡轮载荷传递函数140对于涡轮和风流等是特定的。
现在参见图2,图中示出如何构建3D气流数据库150的实例,在第一步骤210,收集风力发电场场地上单个点处的风力发电场级大气条件矩阵A1至An。这些方法是众所周知的,并且可以使用其它类似方法。风力发电场级风流入矩阵和大气条件矩阵可以包括但不限于空气密度、气温、风向、平均风速、风紊流等。单个点可以是气象桅杆、涡轮或LIDAR装置。在第二步骤210中,使用例如CFD模型(如连续性模型或其它建模方法)分析矩阵。在第三步骤240中,针对输入参数的每个组合执行风力发电场风流分析,以针对每组输入参数B1至Bn、C1至Cn,D1至Dn等产生涡轮级大气条件。由此,在步骤250中,构建3D气流数据库。因此,利用模拟结果形成了3D风载荷数据库,将风力发电场中每个单独涡轮的涡轮级风况映射至多个发电场级大气条件。该模型的输出可以是查找表、数据库、统计模型或使用CFD模拟结果形成的元模型。
一旦构建完成,3D气流数据库就可以“离线”使用,例如,作为查找表,其具有实时涡轮运行数据,以提供实时轮毂载荷数据。这消除了对进入风气流数据进行实时密集CFD建模的需求。
图3示出涡轮载荷传递函数。这使用涡轮级风况来计算每个风力条件下每个工况的涡轮(例如,以额定功率运行、空转、关闭)的涡轮轮毂载荷。这可以使用涡轮气动弹性模型(内部开发或使用市售包装之一,如FAST、Bladed等)或其它一些计算方法来完成。
如有必要,可以利用仪表化活动进一步调整模型,其中,用载荷测量硬件对选定位置处的一个或多个涡轮进行限定时间段的仪表化。
得到的模型允许使用现有可用的风力发电场级风况和涡轮SCADA数据,更快(因为用离线开发的数据库取代了计算密集型风力发电场CFD建模和涡轮轮毂载荷计算)、更准确(因为通过CFD建模捕捉瞬态大气条件)且更具成本效益(不需要额外的载荷测量设备)地估算风力涡轮轮毂载荷。风力发电场级风况可以用气象桅杆测量,或者从最合适涡轮的SCADA数据估算(取决于风向和涡轮运行状况)。
这种方法的优点包括以下成果:
使用现成可用的SCADA数据,而无需额外仪器,估算的涡轮载荷包括由风紊流和风切变引起的载荷。
得到的模型可以用作查找表或与涡轮控制器数据结合使用的函数,用于在线载荷计算。
该方法可以在风力发电场规划和设计阶段使用,以优化涡轮位置,产生最大功率,同时使运行载荷造成的损坏最小化。
这意味着该方法可以用于使用上述方法以包括以下步骤的方法设计风力发电场布局:
提供3D气流数据库;
提供涡轮载荷传递函数;
测量每个涡轮的涡轮运行数据;以及
使用3D气流数据库和涡轮载荷传递函数处理涡轮运行数据;
其中,风力涡轮载荷是实时间接获得的,无需额外的涡轮仪表,并且产生用于电场中风力涡轮布局的设计。
结合风力发电场的长期风评估和涡轮部件的损坏计算,该方法可以用于涡轮部件的使用寿命评估。
该方法可以用于定义风力发电场的最优风力涡轮控制策略(例如,在优化损坏累积的同时使电力生产最大化、延长涡轮部件的使用寿命等)。

Claims (6)

1.一种由计算机实施的用于估算风力发电场中的涡轮轮毂载荷的方法,所述风力发电场包括多个涡轮,所述方法包括以下步骤:
提供3D气流数据库,所述3D气流数据库由如下数据构建而成,所述数据与风力发电场大气条件范围内所述风力发电场中不同位置处的一个或多个涡轮处的涡轮级风流量相关;
提供离线开发的涡轮载荷传递函数;
从SCADA数据获取针对每个涡轮的涡轮运行数据;以及
使用所述3D气流数据库和所述涡轮载荷传递函数来处理涡轮运行数据;
其中,风力涡轮载荷是实时间接获得的,无需额外的涡轮仪表,从而降低此类系统的成本;
其中,所述3D气流数据库根据下述方法构建:
在风力发电场场地上的单个点处形成风力发电场级大气条件矩阵;以及
针对输入参数的每个组合分析所述矩阵,以在每个涡轮位置处针对所述输入参数中的每组输入参数给出涡轮级大气条件。
2.根据权利要求1所述的用于估算风力发电场中的涡轮轮毂载荷的方法,其中,分析所述矩阵的步骤是计算流体动力学分析。
3.根据前述任意一项权利要求所述的用于估算风力发电场中的涡轮轮毂载荷的方法,其中,所述涡轮载荷传递函数是针对每组发电场级大气条件、针对每个运行状态的每个单独涡轮处的涡轮载荷的场地映射。
4.一种用于设计针对风力发电场的布局的方法,包括以下步骤:
(a)针对风力发电场内的每个涡轮,根据权利要求1-3中任意一项所述的方法估算涡轮轮毂载荷;
(b)改变所述布局以针对所述涡轮中的每个涡轮来平衡电力生产与载荷;
重复步骤(a)和(b),以优化所述风力发电场的电力生产和载荷。
5.一种操作风力涡轮的方法,包括以下步骤:
针对所述涡轮,根据权利要求1-3中任意一项所述的方法估算涡轮轮毂载荷;
基于所述涡轮载荷、在无需额外仪表的情况下平衡电力生产和/或操作以及维修成本。
6.一种用于估算风力发电场中的轮毂载荷的系统,包括:
3D气流数据库,所述3D气流数据库由如下数据构建而成,所述数据与风力发电场大气条件范围内所述风力发电场中不同位置处的一个或多个涡轮处的涡轮级风流量相关;
涡轮载荷传递函数模块,所述涡轮载荷传递函数模块包括离线开发的涡轮载荷传递函数;
输入装置,用于从SCADA数据接收针对每个涡轮的实时涡轮运行数据;
其中,所述涡轮载荷传递函数模块使用所述3D气流数据库和所述涡轮载荷传递函数将所述涡轮运行数据转换为实时载荷数据;
其中,所述3D气流数据库根据下述方法构建:
在风力发电场场地上的单个点处形成风力发电场级大气条件矩阵;以及
针对输入参数的每个组合分析所述矩阵,以在每个涡轮位置处针对所述输入参数中的每组输入参数给出涡轮级大气条件。
CN201780073301.9A 2016-10-17 2017-10-09 确定风力涡轮上的载荷 Active CN110023621B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1617584.6A GB201617584D0 (en) 2016-10-17 2016-10-17 Determining loads on a wind turbine
GB1617584.6 2016-10-17
PCT/IB2017/056230 WO2018073688A1 (en) 2016-10-17 2017-10-09 Determining loads on a wind turbine

Publications (2)

Publication Number Publication Date
CN110023621A CN110023621A (zh) 2019-07-16
CN110023621B true CN110023621B (zh) 2024-01-02

Family

ID=57680846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780073301.9A Active CN110023621B (zh) 2016-10-17 2017-10-09 确定风力涡轮上的载荷

Country Status (7)

Country Link
US (1) US20190242364A1 (zh)
EP (1) EP3526471A1 (zh)
JP (1) JP2019532215A (zh)
KR (1) KR20190096966A (zh)
CN (1) CN110023621B (zh)
GB (2) GB201617584D0 (zh)
WO (1) WO2018073688A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611268B (zh) * 2018-11-01 2020-11-06 协鑫能源科技有限公司 一种双叶轮水平轴风力机设计优化方法
US11629694B2 (en) 2019-10-22 2023-04-18 General Electric Company Wind turbine model based control and estimation with accurate online models
EP3846066A1 (en) * 2020-01-06 2021-07-07 Vestas Wind Systems A/S Estimating design loads for wind turbines

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128441A2 (en) * 2008-05-30 2009-12-02 General Electric Company Optimizing turbine layout in wind turbine farm
CN102708266A (zh) * 2012-06-12 2012-10-03 中国科学院工程热物理研究所 一种水平轴风力机叶片的极限载荷预测计算方法
CN102840096A (zh) * 2011-06-23 2012-12-26 通用电气公司 用于运行风力涡轮机的方法和系统
CN102933841A (zh) * 2010-04-09 2013-02-13 维斯塔斯风力系统有限公司 风力涡轮机
WO2013023702A1 (en) * 2011-08-18 2013-02-21 Siemens Aktiengesellschaft Method to regulate the output power production of a wind turbine
CN103742357A (zh) * 2013-11-18 2014-04-23 沈阳工业大学 一种风力发电机组风轮非对称载荷控制方法
CN103823979A (zh) * 2014-02-26 2014-05-28 国家电网公司 一种风电场噪声预测方法
CN103850876A (zh) * 2014-03-14 2014-06-11 华北电力大学 一种适用于无载荷测量的风电机组独立变桨控制方法
CN104019000A (zh) * 2014-06-23 2014-09-03 宁夏银星能源股份有限公司 风力发电机组的载荷谱测定与前瞻性维护系统
CN104131950A (zh) * 2014-07-24 2014-11-05 重庆大学 一种风电机组温度特征量的阈值分区确定方法
CN105492762A (zh) * 2013-07-22 2016-04-13 纳布拉风力有限公司 根据风力涡轮机或类似设备的位置确定其部件寿命的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792281A (en) * 1986-11-03 1988-12-20 Northern Power Systems, Inc. Wind turbine pitch control hub
JP4241644B2 (ja) * 2005-02-28 2009-03-18 三菱重工業株式会社 風車の運転制御装置及びその方法並びにプログラム
JP4810342B2 (ja) * 2006-07-20 2011-11-09 株式会社東芝 風車翼および風力発電システム
EP1911968A1 (en) * 2006-10-10 2008-04-16 Ecotecnia Energias Renovables S.L. Control system for a wind turbine and method of controlling said wind turbine
DK2108830T3 (da) * 2008-01-10 2019-11-25 Siemens Gamesa Renewable Energy As Fremgangsmåde til bestemmelse af udmattelseslast af en vindmølle og til udmattelseslaststyring og tilsvarende vindmøller
KR101159444B1 (ko) * 2008-06-18 2012-06-25 미츠비시 쥬고교 가부시키가이샤 풍차의 동적 특성 감시 장치 및 그 방법
JP5244502B2 (ja) * 2008-08-25 2013-07-24 三菱重工業株式会社 風車の運転制限調整装置及び方法並びにプログラム
US8035242B2 (en) * 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
CN102622458B (zh) * 2011-01-30 2013-07-31 华锐风电科技(集团)股份有限公司 一种风力发电机组振动与载荷综合评估系统及评估方法
US8249852B2 (en) * 2011-05-19 2012-08-21 General Electric Company Condition monitoring of windturbines
DK2710437T3 (da) * 2011-05-20 2022-04-11 Insight Analytics Solutions Holdings Ltd Bestemmelse af resterende brugbar levetid af rotationsmaskiner inklusiv kraftoverførselssystemer, gearkasser og generatorer
EP2781737B1 (en) * 2011-11-16 2018-07-25 Mitsubishi Heavy Industries, Ltd. Wind power generation system and method for controlling same
US9165092B2 (en) * 2012-07-31 2015-10-20 International Business Machines Corporation Wind farm layout in consideration of three-dimensional wake
US9366230B2 (en) * 2013-03-14 2016-06-14 General Electric Company System and method for reducing loads acting on a wind turbine in response to transient wind conditions
US20140288855A1 (en) * 2013-03-20 2014-09-25 United Technologies Corporation Temporary Uprating of Wind Turbines to Maximize Power Output
US9822762B2 (en) * 2013-12-12 2017-11-21 General Electric Company System and method for operating a wind turbine
JP5984791B2 (ja) * 2013-12-20 2016-09-06 三菱重工業株式会社 風力発電装置のモニタリングシステム及びモニタリング方法
WO2016086360A1 (en) * 2014-12-02 2016-06-09 Abb Technology Ltd Wind farm condition monitoring method and system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128441A2 (en) * 2008-05-30 2009-12-02 General Electric Company Optimizing turbine layout in wind turbine farm
CN101592130A (zh) * 2008-05-30 2009-12-02 通用电气公司 用于风力发电场中的风力涡轮机布置的方法
CN102933841A (zh) * 2010-04-09 2013-02-13 维斯塔斯风力系统有限公司 风力涡轮机
CN102840096A (zh) * 2011-06-23 2012-12-26 通用电气公司 用于运行风力涡轮机的方法和系统
WO2013023702A1 (en) * 2011-08-18 2013-02-21 Siemens Aktiengesellschaft Method to regulate the output power production of a wind turbine
CN102708266A (zh) * 2012-06-12 2012-10-03 中国科学院工程热物理研究所 一种水平轴风力机叶片的极限载荷预测计算方法
CN105492762A (zh) * 2013-07-22 2016-04-13 纳布拉风力有限公司 根据风力涡轮机或类似设备的位置确定其部件寿命的方法
CN103742357A (zh) * 2013-11-18 2014-04-23 沈阳工业大学 一种风力发电机组风轮非对称载荷控制方法
CN103823979A (zh) * 2014-02-26 2014-05-28 国家电网公司 一种风电场噪声预测方法
CN103850876A (zh) * 2014-03-14 2014-06-11 华北电力大学 一种适用于无载荷测量的风电机组独立变桨控制方法
CN104019000A (zh) * 2014-06-23 2014-09-03 宁夏银星能源股份有限公司 风力发电机组的载荷谱测定与前瞻性维护系统
CN104131950A (zh) * 2014-07-24 2014-11-05 重庆大学 一种风电机组温度特征量的阈值分区确定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
可变桨距水平轴风力涡轮混合型流场算法与性能研究;刘思永, 方祥军, 王屏;太阳能学报(03);全文 *
风力发电机传动系统随机风速下的载荷特性研究;杨军;秦大同;陈会涛;周志刚;;中国机械工程(15);全文 *
风力发电机组的载荷特征及计算;高俊云;王首成;;机械工程与自动化(03);全文 *

Also Published As

Publication number Publication date
EP3526471A1 (en) 2019-08-21
KR20190096966A (ko) 2019-08-20
GB201617584D0 (en) 2016-11-30
GB2555010A (en) 2018-04-18
JP2019532215A (ja) 2019-11-07
CN110023621A (zh) 2019-07-16
GB201716532D0 (en) 2017-11-22
GB2555010B (en) 2019-09-25
WO2018073688A1 (en) 2018-04-26
US20190242364A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
EP3465359B1 (en) System and method for controlling a dynamic system, in particular a wind turbine
US9644612B2 (en) Systems and methods for validating wind farm performance measurements
EP2169218B1 (en) System and method for estimating wind condition for wind turbines
CN101821689B (zh) 用于为控制和/或监测应用提供至少一种输入传感器信号的方法和设备以及控制设备
CN110088463B (zh) 风力涡轮电场级载荷管理控制
CN108431404B (zh) 用于控制多个风力涡轮机的方法和系统
BR112019017649A2 (pt) Método para determinar uma potência disponível de um parque eólico, parque eólico, e, instalação de energia eólica.
CN110023621B (zh) 确定风力涡轮上的载荷
CN105492762A (zh) 根据风力涡轮机或类似设备的位置确定其部件寿命的方法
Churchfield et al. A comparison of the dynamic wake meandering model, large-eddy simulation, and field data at the egmond aan Zee offshore wind plant
Knudsen et al. Simple model for describing and estimating wind turbine dynamic inflow
Barber et al. Development of a wireless, non-intrusive, MEMS-based pressure and acoustic measurement system for large-scale operating wind turbine blades
Branlard et al. A digital twin based on OpenFAST linearizations for real-time load and fatigue estimation of land-based turbines
Amano et al. Aerodynamics of wind turbines: emerging topics
Gantasala et al. Detection of ice mass based on the natural frequencies of wind turbine blade
Al‐Abadi et al. A torque matched aerodynamic performance analysis method for the horizontal axis wind turbines
CN111396251B (zh) 基于最大推力限制操作风力涡轮机的方法
CN110005579B (zh) 一种叶片根部力矩测量方法
CN108825452B (zh) 确定风力发电机组叶片结冰的方法和装置
CN114076065A (zh) 识别风力发电机组的叶片失速的方法及设备
CN114000989B (zh) 一种风力发电机组叶片气动性能衰减检测方法及测试系统
Guggeri et al. An Actuator Line Model Simulation of two semi-aligned wind turbine models, operating above-rated wind speed
Dai Offshore Wind Turbines in the Natural Environment: Statistical Prediction of Power and Fatigue
Astolfi et al. Computing the real impact of wind turbine power curve upgrades: a scada-based multivariate linear method and a vortex generator test case
Wang et al. Research on Online Monitoring of Wind Turbine Blade Damage Based on Working Mode Analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Cobham, England

Applicant after: Romax Technology Ltd.

Address before: British Nottingham

Applicant before: Romax Technology Ltd.

GR01 Patent grant
GR01 Patent grant