WO2013023547A1 - 图案化石墨烯薄膜的制备方法 - Google Patents

图案化石墨烯薄膜的制备方法 Download PDF

Info

Publication number
WO2013023547A1
WO2013023547A1 PCT/CN2012/079873 CN2012079873W WO2013023547A1 WO 2013023547 A1 WO2013023547 A1 WO 2013023547A1 CN 2012079873 W CN2012079873 W CN 2012079873W WO 2013023547 A1 WO2013023547 A1 WO 2013023547A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
film
graphene
substrate
electron beam
Prior art date
Application number
PCT/CN2012/079873
Other languages
English (en)
French (fr)
Inventor
张锋
戴天明
姚琪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/805,407 priority Critical patent/US20130149463A1/en
Publication of WO2013023547A1 publication Critical patent/WO2013023547A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/06Coating on selected surface areas, e.g. using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only

Definitions

  • Embodiments of the invention relate to a method of making a patterned graphene film. Background technique
  • Graphene is a two-dimensional crystal composed of carbon atoms arranged in a honeycomb shape. Due to its quantum transport properties, high conductivity, mobility, and transmittance, graphene and related devices have become a research hotspot in the fields of physics, chemistry, biology, and materials science. To date, a variety of devices have been prepared with graphene as a basic functional unit, including field effect transistors, solar cells, nanogenerators, sensors, and the like.
  • graphene can be obtained by various methods such as mechanical stripping, chemical vapor deposition, thermal decomposition of SiC substrates, and chemical methods.
  • the mechanical peeling method is a method of repeatedly depositing and peeling an adhesive tape on graphite to prepare graphene. This method is difficult to control the size and number of layers of the graphene sheets obtained, and only a few millimeters of graphene sheets can be obtained.
  • the chemical vapor deposition method is a technique in which a carbon source such as decane is heated to about 1000 ° C in a vacuum vessel to be decomposed, and then a graphene film is formed on a metal foil such as Ni or Cu.
  • the thermal decomposition method of the SiC substrate is a process in which the SiC substrate is heated to about 1300 ° C to remove Si on the surface, and the remaining C spontaneously recombines to form a graphene sheet.
  • the above preparation method is difficult to obtain a large-area graphene film, or the preparation temperature is high and the cost is high, which is disadvantageous for large-scale industrial production of graphene film.
  • the chemical method first oxidizes the graphite powder, then dissolves the oxidized graphite powder into the solution, and then coats the substrate with a thin layer of solution and then reduces it.
  • the method has the advantages of simple process, low temperature and low cost, and can produce a large-area graphene film, which can realize large-scale industrial production of graphene film.
  • Graphene-based electronic devices usually require patterned graphene films.
  • graphene film patterning techniques are as follows: 1) Firstly, a patterned catalyst is obtained, thereby growing patterned graphene. Transfer again. This method does not accurately position the patterned graphene onto the device substrate. 2) Transfer a large area of graphene to the device substrate, and then etch the desired patterned graphene by photolithography and etching. This method uses an oxygen plasma etch that inevitably causes radiation damage to graphene and other parts of the device. 3) Using a template, embossing graphene where graphene is needed. This method requires different templates for different graphenes, and the template manufacturing process is complicated and the cost is too high.
  • Embodiments of the present invention provide a method for preparing a patterned graphene film by a solution method which is simple in operation, low in cost, and can be used on a large scale.
  • One embodiment of the present invention provides a method of preparing a patterned graphene film, comprising the steps of:
  • the substrate obtained in the step 2) is subjected to a reduction treatment in a helium vapor, and the graphene oxide in the step 2) is processed into graphene to obtain a graphene film;
  • a photoresist (or an electron beam exposure glue) is patterned on a substrate by a micro-machining process such as ultraviolet lithography (or electron beam lithography), wherein a region where a graphene pattern needs to be formed is exposed and developed.
  • a micro-machining process such as ultraviolet lithography (or electron beam lithography)
  • the graphene oxide solution is applied to the surface of the above substrate by spin coating, spray coating or the like to form a film, and then reduced in a crucible vapor to obtain a graphene film.
  • the substrate is immersed in a photoresist stripper or acetone to remove the photoresist on the surface of the substrate and the graphene film on the photoresist to obtain a patterned graphene film.
  • a patterned graphene film is prepared by simply forming a patterned photoresist or an electron beam exposure paste on a substrate.
  • the method is simple in operation, low in cost, and large in size
  • the mold is used, and the substrate is not damaged, and is suitable for various substrates, and the application of the solution method to prepare graphene is expanded.
  • FIG. 1 is a schematic view showing formation of a patterned photoresist on a substrate according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing film formation of a graphene oxide solution on a substrate according to an embodiment of the present invention
  • BRIEF DESCRIPTION OF THE INVENTION A schematic diagram of a patterned graphene film with a substrate prepared in accordance with an embodiment of the invention
  • FIG. 4 is a process flow diagram of a method of preparing a patterned graphene film in accordance with an embodiment of the present invention. detailed description
  • a method of preparing a patterned graphene film according to an embodiment of the present invention includes the following steps.
  • the substrate may be glass, metal, quartz or an organic film, etc.
  • the organic film is, for example, a PET film, a PS film, a PE film, a PAN film or the like.
  • the thickness of the photoresist or electron beam exposure gel is, for example, 1 to 10 ⁇ m.
  • the electron beam exposure gel is, for example, PMMA, COP, GeSe, PBS or the like.
  • aqueous solution of hydrazine is heated, for example, to 60 to 90 ° C, and the obtained substrate is placed in a closed container, and the substrate is fumigated with hydrazine vapor, for example, for 24 to 48 hours (h), and subjected to reduction treatment to obtain a graphene film.
  • coating methods such as spin coating, blade coating, spray coating, etc. described above can be carried out using process equipment and process conditions well known to those skilled in the art.
  • a method of preparing a patterned graphene film includes the following steps:
  • PMMA2 was spin-coated on a glass substrate 1, and the thickness of the PMMA was 5 ⁇ m, and ruthenium was patterned by an electron beam etching process, in which the ruthenium in the region where the graphene pattern was to be formed was removed. As shown in Figure 1.
  • a method of preparing a patterned graphene film includes the following steps:
  • a positive photoresist 2 is spin-coated on a polyethylene terephthalate (PET) film substrate 1, the thickness of the photoresist is ⁇ , and the photoresist is patterned by an ultraviolet lithography process.
  • the photoresist in which the region in which the graphene pattern is to be formed is removed by an exposure process. As shown in Figure 1.
  • the substrate obtained in the step 4) is immersed in the photoresist stripping solution (SYIC9000, Shanghai Xinyang Semiconductor Materials Co., Ltd.) for 10 minutes to remove the photoresist and the graphene film on the photoresist to obtain patterned graphite. Alkene film. As shown in Figure 3.
  • the photoresist stripping solution SYIC9000, Shanghai Xinyang Semiconductor Materials Co., Ltd.
  • a method of preparing a patterned graphene film includes the following steps:
  • a negative photoresist 2 is spin-coated on the aluminum foil substrate 1, the thickness of the negative photoresist is ⁇ , and the photoresist is patterned by an ultraviolet lithography etching process, wherein a graphene pattern needs to be formed. The photoresist of the region is removed by an exposure process. As shown in Figure 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明实施例提供了一种图案化石墨烯薄膜的制备方法,该方法包括如下步骤:1)将光刻胶或电子束曝光胶涂于衬底上,并对其进行图案化处理,其中需要形成石墨烯图案的区域的光刻胶或电子束曝光胶被去除;2)将氧化石墨烯溶液涂覆于步骤1)所得到的衬底上,并成膜;3)将步骤2)所得的衬底置于肼蒸汽中进行还原处理,将步骤2)中的氧化石墨烯处理成石墨烯,得到石墨烯薄膜;4)除去光刻胶或电子束曝光胶以及光刻胶或电子束曝光胶上面的石墨烯薄膜,得到图案化的石墨烯薄膜。

Description

图案化石墨烯薄膜的制备方法 技术领域
本发明的实施例涉及一种图案化石墨烯薄膜的制备方法。 背景技术
石墨烯是由碳原子以蜂窝状排列构成的二维晶体。 由于其量子输运性质、 高的电导率、 迁移率、 透过率, 石墨烯及其相关器件已经成为物理、 化学、 生物以及材料科学领域的一个研究热点。 迄今为止, 人们已经制备出多种以 石墨烯为基本功能单元的器件, 包括场效应晶体管、 太阳能电池、 纳米发电 机、 传感器等。
目前, 人们可以通过多种方法得到石墨烯, 如: 机械剥离法, 化学气相 沉积法, SiC基板热分解法和化学法。
机械剥离法是一种反复在石墨上粘贴并揭下粘合胶带来制备石墨烯的方 法。 该方法很难控制所获得的石墨烯片的大小及层数, 而且只能勉强获得数 mm见方的石墨烯片。
化学气相沉积法是在真空容器中将曱烷等碳素源加热至 1000°C左右使其 分解, 然后在 Ni及 Cu等金属箔上形成石墨烯薄膜的技术。
SiC基板的热分解法是将 SiC基板加热至 1300°C左右后除去表面的 Si, 剩 余的 C自发性重新组合形成石墨烯片的工艺。
以上的制备方法要么很难获得大面积的石墨烯薄膜,要么制备温度很高, 成本较高, 不利于石墨烯薄膜的大规模工业化生产。
化学法是首先使石墨粉氧化, 然后将氧化的石墨粉投入溶液内溶化, 之 后在基板上涂上薄薄的一层溶液后再使其还原。 该方法工艺简单、 温度较低、 成本较低、 可以制作大面积石墨烯薄膜, 能够实现石墨烯薄膜的大规模工业 化生产。
基于石墨烯的电子器件, 通常需要图案化石墨烯薄膜, 目前石墨烯薄膜 图案化的技术有: 1 )先得到图案化的催化剂, 由此生长得到图案化的石墨烯 再转移。 这种方法不能将图案化的石墨烯精确定位到器件衬底上。 2 )先转移 大面积的石墨烯到器件衬底上, 再通过光刻、 刻蚀的方法, 最终刻蚀出所需 要的图案化的石墨烯。 这种方法应用了氧等离子体刻蚀, 不可避免的会对石 墨烯以及器件的其他部分造成辐照损伤。 3 )利用模板, 在需要石墨烯的地方 压印上石墨烯。 这种方法对不同图形的石墨烯, 要求制作不同的模板, 且模 板制造工艺复杂, 成本太高。
因此, 开发简单、 有效并具有普适性的石墨烯图案化方法是实现石墨烯 大规模,低成本使用的前提条件之一,具有巨大的科学研究价值和经济价值。 发明内容
本发明的实施例提供了一种溶液法制备图案化石墨烯薄膜的方法, 该方 法操作简单、 成本低廉, 可大规模使用。
本发明的一个实施例提供了一种图案化石墨烯薄膜的制备方法, 其包括 如下步骤:
1 )将光刻胶或电子束曝光胶涂于衬底上, 并对其进行图案化处理, 其中 需要形成石墨烯图案的区域的光刻胶或电子束曝光胶被去除;
2 )将氧化石墨烯溶液涂覆于步骤 1 )所得到的衬底上, 并成膜;
3 )将步骤 2 )所得的衬底置于肼蒸汽中进行还原处理, 将步骤 2 ) 中的氧 化石墨烯处理成石墨烯, 得到石墨烯薄膜;
4 )除去光刻胶或电子束曝光胶以及光刻胶或电子束曝光胶上面的石墨烯 薄膜, 得到图案化的石墨烯薄膜。
本发明实施例通过紫外光刻 (或电子束光刻)等微加工工艺, 在衬底上 图形化光刻胶(或电子束曝光胶), 其中需要形成石墨烯图案的区域经曝光、 显影工艺被去除。 将氧化石墨烯溶液经旋涂、 喷涂等方法涂覆于上述衬底表 面成膜, 然后在肼蒸汽中还原得到石墨烯薄膜。 最后釆用光刻胶剥离液或者 丙酮浸泡衬底, 除去衬底表面的光刻胶及光刻胶上面的石墨烯薄膜, 得到图 案化的石墨烯薄膜。
本发明实施例通过简单的在衬底上形成图案化的光刻胶或电子束曝光 胶, 以实现制备图案化的石墨烯薄膜。 该方法操作简单、 成本低廉、 可大规 模使用, 并且对衬底无损伤, 适用于多种衬底, 拓展了溶液法制备石墨烯的 应用。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为根据本发明实施例在衬底上形成图案化的光刻胶的示意图; 图 2为根据本发明实施例在衬底上涂覆氧化石墨烯溶液成膜的示意图; 图 3为根据本发明实施例制成的带衬底的图案化的石墨烯薄膜的示意图; 图 4 为根据本发明实施例的图案化石墨烯薄膜的制备方法的工艺流程 图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
如图 4所示, 根据本发明实施例的图案化石墨烯薄膜的制备方法, 包括以 下步骤。
1 )先将光刻胶或电子束曝光胶 2通过旋涂或刮涂等方式涂覆于衬底 1上, 并通过紫外光刻或电子束刻蚀工艺图案化光刻胶或电子束曝光胶, 其中需要 形成石墨烯图案的区域内的光刻胶或电子束曝光胶经曝光、显影工艺被去除, 如图 1所示。
所述衬底可以为玻璃、 金属、 石英或者有机物膜等, 所述有机物膜例如 为 PET膜、 PS膜、 PE膜、 PAN膜等。 光刻胶或电子束曝光胶的厚度例如为 1~10μπι。 此外, 电子束曝光胶例如为 PMMA、 COP, GeSe及 PBS等。
2 )制备氧化石墨烯溶液。 例如, 在水水浴条件下, 加入石墨、 硝酸钠和 浓硫酸, 搅拌均匀后緩慢加入高锰酸钾, 然后在 25~40摄氏度( °C )搅拌, 直 到溶液变成浆糊状; 之后加入去离子水, 继续搅拌 10~30分钟(min ), 再加入 去离子水和双氧水, 搅拌 10~30min; 将得到的悬浮液过滤, 并用稀盐酸洗涤, 直至滤液中无 S04 2—; 最后用去离子水洗涤以除去多余的盐酸, 将最终所得悬 浮液超声处理, 再经离心处理, 得到氧化石墨烯; 将产物按不同比例超声分 散在去离子水或有机溶剂中, 得到不同浓度的氧化石墨烯溶液。 所述有机溶 剂例如可以为: 乙醇、 丙酮、 二曱基曱酰胺、 N-曱基吡诺烷酮或四氢呋喃等。
需要说明的是, 氧化石墨烯溶液也可直接市售获得。
3 )将制备好的氧化石墨烯溶液通过例如旋涂、 喷涂等方式涂覆于已覆有 图案化处理的光刻胶或电子束曝光胶的衬底上, 并例如在 20~80°C下烘干成 膜。 如图 2所示。
4 )将肼的水溶液例如加热到 60~90°C , 将所得的衬底放置于密闭容器中, 利用肼蒸汽熏蒸衬底例如 24~48小时(h ), 进行还原处理, 可得到石墨烯薄膜 3。
5 )将步骤 4 )所得的衬底在丙酮或光刻胶剥离液中浸泡例如 2~10分钟; 除去光刻胶或电子束曝光胶以及光刻胶或电子束曝光胶上面的石墨烯薄膜, 得到图案化的石墨烯薄膜。 如图 3所示。
需要说明的是, 上面所描述的旋涂、 刮涂、 喷涂等涂覆方式均可釆用本 领域技术人员熟知工艺设备及工艺条件进行。
示例 1
在该示例 1中, 图案化石墨烯薄膜的制备方法, 包括以下步骤:
1 )先将 PMMA2旋涂于玻璃衬底 1上, PMMA的厚度为 5μπι, 并通过电子 束刻蚀工艺图案化 ΡΜΜΑ, 其中需要形成石墨烯图案的区域内的 ΡΜΜΑ被去 除。 如图 1所示。
2 )制备氧化石墨烯溶液。
水水浴条件下, 在 200ml烧杯中加入 lg石墨, 0.25g硝酸钠, 11.75ml浓硫 酸(98% ), 搅拌均匀后緩慢加入 1.5g高锰酸钾, 然后在 35°C搅拌, 直到溶液 变成浆糊状。 之后迅速加入 46ml去离子水, 继续搅拌 15min, 再加入 140ml去 离子水和 1.5ml 双氧水,搅拌 10min。将得到的悬浮液过滤, 并用稀盐酸洗涤, 直至滤液中无 so4 2—。 最后用去离子水洗涤以除去多余的盐酸, 将最终所得悬 浮液超声后于 12000r/min的速度下离心 3min,得到氧化石墨烯。最后称取 20mg 氧化石墨烯超声分散于 100ml去离子水中得到氧化石墨烯溶液。
3 )然后将制备好的氧化石墨烯溶液通过旋涂方式涂覆于已覆有图案化处 理的 PMMA的衬底 1上, 并在 80°C下烘干成膜。 如图 2所示。
4 ) 随后, 将肼的水溶液加热到 70°C , 将步骤 3 )所得的衬底放置于密闭 容器中, 利用肼蒸汽熏蒸衬底 48h, 得到石墨烯薄膜 3。
5 )将步骤 4 )所得的衬底在丙酮中浸泡 5分钟, 除去 PMMA以及 PMMA上 面的石墨烯薄膜, 得到图案化的石墨烯薄膜。 如图 3所示。
示例 2
在该示例 2中, 图案化石墨烯薄膜的制备方法, 包括以下步骤:
1 )先将正性光刻胶 2旋涂于聚对苯二曱酸乙二酯(PET )薄膜衬底 1上, 光刻胶的厚度为 ΙΟμπι, 并通过紫外光刻工艺图案化光刻胶, 其中需要形成石 墨烯图案的区域的光刻胶经曝光工艺被去除。 如图 1所示。
2 )制备氧化石墨烯溶液。
水水浴条件下, 在 200ml烧杯中加入 1.5g石墨, 0.35g硝酸钠, 11.75ml浓硫 酸(98% ), 搅拌均勾后緩慢加入 2.0g高锰酸钾, 然后在 40°C搅拌, 直到溶液 变成浆糊状。 之后迅速加入 46ml去离子水, 继续搅拌 15min, 再加入 140ml去 离子水和 1.5ml 双氧水,搅拌 10min。将得到的悬浮液过滤, 并用稀盐酸洗涤, 直至滤液中无 S04 2-。 最后用去离子水洗涤以除去多余的盐酸, 将最终所得悬 浮液超声后于 12000r/min的速度下离心 3min,得到氧化石墨烯。最后称取 20mg 氧化石墨烯超声分散于 100ml乙醇中得到氧化石墨烯溶液。
3 )然后将制备好的氧化石墨烯溶液通过喷涂方式涂覆于已覆有图案化处 理的光刻胶的衬底上, 并在 60°C下烘干成膜。 如图 2所示。
4 ) 随后, 将肼的水溶液加热到 80°C , 将步骤 3 )所得的衬底放置于密闭 容器中, 利用肼蒸汽熏蒸衬底 36h, 得到石墨烯薄膜 3。
5 )将步骤 4 )所得的衬底在光刻胶剥离液(上海新阳半导体材料有限公 司 SYIC9000 )中浸泡 10分钟, 除去光刻胶以及光刻胶上面的石墨烯薄膜, 得 到图案化的石墨烯薄膜。 如图 3所示。 示例 3
在该示例 3中, 图案化石墨烯薄膜的制备方法, 包括以下步骤:
1 )先将负性光刻胶 2旋涂于铝箔衬底 1上, 负性光刻胶的厚度为 Ιμπι, 并 通过紫外光刻刻蚀工艺图案化光刻胶, 其中需要形成石墨烯图案的区域的光 刻胶经曝光工艺被去除。 如图 1所示。
2 )制备氧化石墨烯溶液。
水水浴条件下, 在 200ml烧杯中加入 0.5g石墨, 0.20g硝酸钠, 10.75ml浓 硫酸(98% ), 搅拌均勾后緩慢加入 1.2g高锰酸钾, 然后在 25°C搅拌, 直到溶 液变成浆糊状。 之后迅速加入 46ml去离子水, 继续搅拌 30min, 再加入 140ml 去离子水和 1.5ml 双氧水, 搅拌 30min。 将得到的悬浮液过滤, 并用稀盐酸洗 涤, 直至滤液中无 so4 2-。 最后用去离子水洗涤以除去多余的盐酸, 将最终所 得悬浮液超声后于 12000r/min的速度下离心 3min,得到氧化石墨烯。 最后称取 40mg氧化石墨烯超声分散于 100ml去离子水中得到氧化石墨烯溶液。
3 )然后将制备好的氧化石墨烯溶液通过喷涂方式涂覆于已覆有图案化处 理的光刻胶的衬底上, 并在 20°C下烘干成膜。 如图 2所示。
4 ) 随后, 将肼的水溶液加热到 90°C , 将步骤 3 )所得的衬底放置于密闭 容器中, 利用肼蒸汽熏蒸衬底 24h, 得到石墨烯薄膜 3。
5 )将步骤 4 )所得的衬底在丙酮中浸泡 2分钟, 除去光刻胶以及光刻胶上 面的石墨烯薄膜, 得到图案化的石墨烯薄膜。 如图 3所示。
虽然, 上文中已经用一般性说明及具体实施方案对本发明作了详尽的描 述, 但本领域技术人员应当理解, 在不违背本发明的精神及原则下, 可以对 本发明作出不同的修改和润饰, 例如, 选择不同材质的衬底, 像其他金属材 料、石英或有机物膜等; 不同类型的光刻胶, 例如正性光刻胶或负性光刻胶; 不同浓度的氧化石墨烯溶液, 均可操作简单地、 成本低廉地通过溶液法实现 制备图案化的石墨烯薄膜, 并可大规模生产。 这对本领域技术人员而言是显 而易见的。 因此, 这些修改或润饰均应涵盖于本发明权利要求书所界定的专 利保护范畴之内。

Claims

权利要求书
1. 一种图案化石墨烯薄膜的制备方法, 包括如下步骤:
1 )将光刻胶或电子束曝光胶涂于衬底上, 并对其进行图案化处理, 其中 需要形成石墨烯图案的区域的光刻胶或电子束曝光胶被去除;
2 )将氧化石墨烯溶液涂覆于步骤 1 )所得到的衬底上, 并成膜;
3 )将步骤 2 )所得的衬底置于肼蒸汽中进行还原处理, 将步骤 2 ) 中的 氧化石墨烯处理成石墨烯, 得到石墨烯薄膜;
4 )除去光刻胶或电子束曝光胶以及光刻胶或电子束曝光胶上面的石墨烯 薄膜, 得到图案化的石墨烯薄膜。
2. 根据权利要求 1所述的方法, 其中步骤 1 )中所述光刻胶为正性光刻胶 或者负性光刻胶。
3. 根据权利要求 1所述的方法, 其中步骤 1 )中所述光刻胶或电子束曝光 胶的厚度为 1~10μπι。
4. 根据权利要求 1所述的方法, 其中步骤 1 )中所述光刻胶或电子束曝光 胶釆用旋涂或刮涂方式涂覆于衬底上。
5. 根据权利要求 1所述的方法, 其中步骤 1 )中所述光刻胶的图案化处理 通过紫外光刻, 电子束曝光胶的图案化处理通过电子束刻蚀。
6. 根据权利要求 1所述的方法, 其中步骤 2 )中所述氧化石墨烯溶液按 如下方法制备: 在水水浴条件下, 加入石墨、 硝酸钠和浓硫酸, 搅拌均匀后 緩慢加入高锰酸钾, 然后在 25~40°C搅拌, 直到溶液变成浆糊状; 之后加入 去离子水, 继续搅拌 10~30min, 再加入去离子水和双氧水, 搅拌 10~30min; 将得到的悬浮液过滤, 并用稀盐酸洗涤, 直至滤液中无 so4 2-; 最后用去离子 水洗涤以除去多余的盐酸, 将最终所得悬浮液超声处理, 再进行离心处理, 得到氧化石墨烯。
7. 根据权利要求 1所述的方法, 其中将所得到的氧化石墨烯按不同比例 超声分散在去离子水或有机溶剂中, 得到不同浓度的氧化石墨烯溶液。
8. 根据权利要求 7所述的方法, 其中所述有机溶剂为乙醇、 丙酮、 二曱 基曱酰胺、 N-曱基吡诺烷酮或四氢呋喃。
9. 根据权利要求 1所述的方法, 其中步骤 2 )为: 所述氧化石墨烯溶液通 过旋涂或喷涂方式涂覆于衬底上, 然后在 20~80 °C温度下烘干成膜。
10. 根据权利要求 1所述的方法, 其中步骤 3 ) 中肼蒸汽釆用将肼的水溶 液加热到 60~90°C获得。
11. 根据权利要求 1所述的方法, 其中步骤 4 ) 中, 将步骤 3 )所得的衬底 在丙酮或光刻胶剥离液中浸泡, 以除去光刻胶或电子束曝光胶以及光刻胶或 电子束曝光胶上面的石墨烯薄膜。
12. 根据权利要求 11所述的方法, 其中步骤 4 )中衬底在丙酮中浸泡时间 为 2~10分钟。
13. 根据权利要求 1所述的方法, 其中所述衬底为玻璃、 金属、 石英或者 有机物膜。
14. 根据权利要求 13所述的方法, 其中所述有机物膜为聚酯薄膜、聚苯 乙烯膜、 聚乙烯膜或聚丙烯腈膜。
PCT/CN2012/079873 2011-08-12 2012-08-09 图案化石墨烯薄膜的制备方法 WO2013023547A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/805,407 US20130149463A1 (en) 2011-08-12 2012-08-09 Method of manufacturing patterned graphene film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110231196.1 2011-08-12
CN2011102311961A CN102653454A (zh) 2011-08-12 2011-08-12 一种图案化石墨烯薄膜的制备方法

Publications (1)

Publication Number Publication Date
WO2013023547A1 true WO2013023547A1 (zh) 2013-02-21

Family

ID=46729202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079873 WO2013023547A1 (zh) 2011-08-12 2012-08-09 图案化石墨烯薄膜的制备方法

Country Status (3)

Country Link
US (1) US20130149463A1 (zh)
CN (1) CN102653454A (zh)
WO (1) WO2013023547A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217605A (zh) * 2015-07-20 2016-01-06 合肥国轩高科动力能源有限公司 一种图案化石墨烯的制备方法
CN107655856A (zh) * 2017-09-07 2018-02-02 齐鲁工业大学 氧化石墨烯阵列变色薄膜/复合薄膜的制备方法及应用

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878739B1 (ko) * 2011-10-24 2018-07-17 삼성전자주식회사 그래핀 전사부재, 그래핀 전사방법 및 이를 이용한 그래핀 소자 제조방법
CN103086372B (zh) * 2013-01-24 2015-07-01 东南大学 一种制备大面积石墨烯海绵的方法
CN103280404B (zh) * 2013-05-17 2015-09-30 中国科学院上海微系统与信息技术研究所 一种基于竖直石墨烯的场发射电极的图形化制备方法
CN103435036B (zh) * 2013-08-21 2015-02-04 南开大学 一种石墨烯选择性定点转移方法
CN104576515B (zh) * 2013-11-15 2017-10-13 北京京东方光电科技有限公司 图案化石墨烯薄膜及阵列基板的制作方法、阵列基板
CN103710685B (zh) * 2013-12-24 2016-02-17 同济大学 一种直接在柔性基底上制备石墨烯透明导电薄膜的喷涂方法
CN104945014A (zh) * 2014-03-26 2015-09-30 苏州汉纳材料科技有限公司 基于石墨烯的透明导电薄膜的图案化方法
CN104022017B (zh) * 2014-06-10 2017-05-10 京东方科技集团股份有限公司 一种石墨烯图案化的方法及显示基板的制作方法
CN104538396B (zh) * 2015-01-16 2017-06-30 京东方科技集团股份有限公司 半导体层、半导体器件、阵列基板和显示装置的制备方法
CN104655698B (zh) * 2015-02-15 2017-07-25 浙江理工大学 石墨烯/氧化石墨烯微阵列电极及其制备方法与应用
CN105589598B (zh) * 2015-12-24 2019-05-17 无锡格菲电子薄膜科技有限公司 一种图案化石墨烯的制造方法
CN105752967B (zh) * 2016-01-29 2018-10-09 白德旭 一种石墨烯导电薄膜的制备方法
CN105948023B (zh) * 2016-04-27 2018-03-20 中国科学院微电子研究所 图形化石墨烯及其制备方法
CN106313287B (zh) * 2016-11-03 2019-04-30 景德镇全球亮科技有限公司 多功能瓷砖及其制造方法
KR101955671B1 (ko) 2017-03-24 2019-03-07 충남대학교산학협력단 그래핀 또는 그래핀-금속 복합체 박막의 패터닝 방법
CN106842729B (zh) * 2017-04-10 2019-08-20 深圳市华星光电技术有限公司 石墨烯电极制备方法及液晶显示面板
CN107104078A (zh) * 2017-06-06 2017-08-29 深圳市华星光电技术有限公司 石墨烯电极及其图案化制备方法,阵列基板
CN109163653B (zh) * 2018-09-10 2020-06-09 中国工程物理研究院电子工程研究所 一种图案化石墨烯柔性应变传感器的制备方法
CN109741881B (zh) * 2019-01-04 2020-09-04 宁波石墨烯创新中心有限公司 一种石墨烯柔性电极及其制备方法
CN110203881A (zh) * 2019-05-28 2019-09-06 淮阴师范学院 一种由金属辅助的二维材料纳米带的制备方法
CN110165023A (zh) * 2019-06-12 2019-08-23 中国科学院重庆绿色智能技术研究院 一种石墨烯硅复合光电探测器的制备方法
CN110406140B (zh) * 2019-08-07 2021-08-03 电子科技大学 基于液膜破裂自组装的柔性电致变色图形化薄膜的制备方法和薄膜
CN111320164A (zh) * 2020-02-28 2020-06-23 南方科技大学 一种悬空石墨烯结构的制备方法及由其得到的悬空石墨烯结构和应用
CN112038452B (zh) * 2020-09-10 2023-03-03 哈尔滨工业大学 一种基于紫外光刻工艺的pedot:pss电极的快速图案化刻蚀方法
CN112708401B (zh) * 2020-12-24 2021-07-27 广东工业大学 一种具有微型热结构图案的石墨烯薄膜的加工系统及方法
CN112859514B (zh) * 2021-03-23 2022-10-21 北京科技大学 一种图案化转移石墨炔薄膜的方法
CN113185135A (zh) * 2021-05-25 2021-07-30 陕西科技大学 一种石墨烯涂层导电玻璃的制备方法
CN113533449B (zh) * 2021-07-05 2023-08-25 广西师范大学 一种MXene石墨烯复合结构气体传感器的制备方法
CN114214690B (zh) * 2021-12-27 2023-09-26 宁波南大光电材料有限公司 一种在光刻胶表面镀氧化石墨烯的电镀方法及基板材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146111A1 (en) * 2007-12-07 2009-06-11 Samsung Electronics Co., Ltd. Reduced graphene oxide doped with dopant, thin layer and transparent electrode
WO2010074918A1 (en) * 2008-12-23 2010-07-01 The Trustees Of The University Of Pennsylvania High yield preparation of macroscopic graphene oxide membranes
CN101872120A (zh) * 2010-07-01 2010-10-27 北京大学 一种图形化石墨烯的制备方法
CN102070142A (zh) * 2010-12-14 2011-05-25 四川大学 一种利用化学氧化还原制备石墨烯的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077503A1 (en) * 2003-07-23 2005-04-14 Takuya Gotou Dispersion comprising thin particles having a skeleton consisting of carbons, electroconductive coating film, electroconductive composite material, and a process for producing them
US8182917B2 (en) * 2008-03-20 2012-05-22 The United States Of America, As Represented By The Secretary Of The Navy Reduced graphene oxide film
US9118078B2 (en) * 2009-03-20 2015-08-25 Northwestern University Method of forming a film of graphite oxide single layers, and applications of same
JP5544796B2 (ja) * 2009-09-10 2014-07-09 ソニー株式会社 3端子型電子デバイス及び2端子型電子デバイス
US9090805B2 (en) * 2010-03-29 2015-07-28 Sungyunkwan University Foundation For Corporate Collaboration Graphene oxide reducing agent comprising a reducing agent containing a halogen element, method for manufacturing a reduced graphene oxide using same, and use of the reduced graphene oxide manufactured by the method
CN101941694A (zh) * 2010-09-07 2011-01-12 湘潭大学 一种高分散性石墨烯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146111A1 (en) * 2007-12-07 2009-06-11 Samsung Electronics Co., Ltd. Reduced graphene oxide doped with dopant, thin layer and transparent electrode
WO2010074918A1 (en) * 2008-12-23 2010-07-01 The Trustees Of The University Of Pennsylvania High yield preparation of macroscopic graphene oxide membranes
CN101872120A (zh) * 2010-07-01 2010-10-27 北京大学 一种图形化石墨烯的制备方法
CN102070142A (zh) * 2010-12-14 2011-05-25 四川大学 一种利用化学氧化还原制备石墨烯的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217605A (zh) * 2015-07-20 2016-01-06 合肥国轩高科动力能源有限公司 一种图案化石墨烯的制备方法
CN107655856A (zh) * 2017-09-07 2018-02-02 齐鲁工业大学 氧化石墨烯阵列变色薄膜/复合薄膜的制备方法及应用

Also Published As

Publication number Publication date
US20130149463A1 (en) 2013-06-13
CN102653454A (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2013023547A1 (zh) 图案化石墨烯薄膜的制备方法
EP3157867B1 (en) Method for the fabrication and transfer of graphene
JP5499980B2 (ja) グラフェン薄膜の製造方法
KR101813172B1 (ko) 그래핀 다중층의 제조방법
CN105271103B (zh) 一种纳米结构阵列及其制备方法和用途
US9518309B2 (en) Method of manufacturing porous metal foam
CN105752967A (zh) 一种石墨烯导电薄膜的制备方法
CN102759467B (zh) 一种制作多层石墨烯tem样品的方法
CN109052377B (zh) 一种大面积石墨烯的制备方法
KR20110031863A (ko) 그래핀의 제조 방법, 그 제조 방법으로 얻어지는 그래핀, 그 그래핀을 포함하는 전도성 박막, 투명 전극, 방열 또는 발열 소자
WO2013127220A1 (zh) 阵列基板、阵列基板的制备方法及显示装置
JP2011168449A (ja) グラフェン膜の製造方法
CN102701600B (zh) 一种制备图案化石墨烯薄膜的方法及石墨烯薄膜
JP2011063492A (ja) グラフェン薄膜の製造方法とグラフェン薄膜
CN102867740A (zh) 一种无损、无污染的纳米碳质薄膜的图形化方法
JP2012218967A (ja) グラフェン膜の形成方法
CN103337449A (zh) 硅纳米线阵列的移植及其简单器件制备的方法
CN105006482B (zh) 一种石墨烯场效应晶体管的制备方法
CN106505148B (zh) 一种基于迭片电极的有机薄膜场效应晶体管及其制备方法
CN111916524B (zh) 一种仿视网膜成像的硫化钼光探测器及其制备方法
CN104882378B (zh) 一种基于氧等离子体工艺的纳米介质层制备方法
CN109796009A (zh) 一种图形化石墨烯的制备方法
KR20130035617A (ko) 그래핀상의 금속 박막의 형성 방법
CN114604820A (zh) 一种厚膜材料纳米图形刻蚀方法
Zhang et al. The way towards for ultraflat and superclean graphene

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13805407

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/8/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12823309

Country of ref document: EP

Kind code of ref document: A1