WO2013023482A1 - Ito过桥一体式电容触摸屏及制造方法 - Google Patents

Ito过桥一体式电容触摸屏及制造方法 Download PDF

Info

Publication number
WO2013023482A1
WO2013023482A1 PCT/CN2012/077140 CN2012077140W WO2013023482A1 WO 2013023482 A1 WO2013023482 A1 WO 2013023482A1 CN 2012077140 W CN2012077140 W CN 2012077140W WO 2013023482 A1 WO2013023482 A1 WO 2013023482A1
Authority
WO
WIPO (PCT)
Prior art keywords
ito
electrode
thickness
angstroms
layer
Prior art date
Application number
PCT/CN2012/077140
Other languages
English (en)
French (fr)
Inventor
曹晓星
李晗
Original Assignee
深圳市宝明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市宝明科技股份有限公司 filed Critical 深圳市宝明科技股份有限公司
Publication of WO2013023482A1 publication Critical patent/WO2013023482A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to the field of capacitive touch screen technology, and more particularly to an integrated capacitive touch screen designed by bypassing a bridge and a method of fabricating the same. Background technique
  • touch screens With the development of electronic technology, keyboards or mice for mobile phones, digital cameras, handheld game consoles, car DVDs, MP3s, instrumentation, etc. are gradually being replaced by touch screens.
  • the products of touch screens were not very hot a few years ago, and with the increasing contact with touch screen products, they have been recognized by more people in the past two years, and the speed of development has gradually accelerated.
  • the rapid growth of the touch screen has not only stimulated more intense industry competition, but also indirectly promoted the development of technology. Its multi-touch operation method has increased the influence of touch screen products to a new height, and has gradually been adopted by people. Concerned.
  • the touch screen is mainly composed of a touch detecting component and a touch screen controller.
  • the touch detecting component is installed in front of the display screen for detecting the touch position of the user, and is sent to the touch screen controller after receiving; and the main function of the touch screen controller is to receive from the touch point detecting device. Touch the information, convert it to the contact coordinates, and send it to the CPU. It can also receive commands from the CPU and execute them.
  • the touch screen can be divided into four types, namely, resistive type, capacitive sensing type, infrared type and surface acoustic wave type.
  • resistive touch type is widely used, which uses pressure sensing.
  • Conductive control; Resistive touch screen is a multi-layer composite film, the main part of which is a resistive film screen that fits well with the display surface.
  • the resistive film screen is a layer of glass or hard plastic plate as a base layer, and the surface is coated with a transparent oxidized metal (transparent conductive resistor) ITO (Indium Tin Oxide) conductive layer, which is covered with an outer surface hardening treatment and smooth anti-scratch.
  • ITO Indium Tin Oxide
  • the transparent isolation point of the inch separates the two conductive layers from each other.
  • the two conductive layers have contact at the touch point, the resistance changes, and signals are generated in both X and Y directions.
  • Sending the touch screen controller the controller detects this contact and calculates the position of (X, Y), and then operates according to the way of simulating the mouse.
  • the basic principle of the capacitive touch screen is to use the current sensing of the human body.
  • the capacitive touch screen is a two-layer composite glass screen.
  • the inner surface of the glass screen is coated with a bismuth (indium tin oxide) conductive film (coated conductive glass).
  • the outer layer is a thin layer of bauxite glass protective layer, the ITO coating is used as the working surface, and four electrodes are led out at the four corners.
  • the capacitor is a direct conductor, so the finger sucks a small current from the contact point, which flows out from the electrodes on the four corners of the touch screen, and the current flowing through the four electrodes and the fingers to the four corners In proportion to the distance, the controller calculates the position of the touch point by accurately calculating the ratio of the four currents.
  • the projected capacitive touch screen is a widely used one, which has the characteristics of simple structure and high light transmittance.
  • the touch sensing component of the projected capacitive touch screen generally has a plurality of row electrodes and column electrodes staggered to form an inductive matrix.
  • the commonly used design method includes disposing the row electrode and the column electrode on both sides of the same transparent substrate to prevent short circuit at the staggered position; or disposing the row electrode and the column electrode on the same side of the same transparent substrate to form the same conductive film ( Usually, it is ⁇ conductive film), and the row electrode and the column electrode are separated by a conductive layer at the position where the row electrode and the column electrode are staggered, and the row electrode and the column electrode are separated to ensure conduction in respective directions, which can be effective. Prevent it from shorting in the staggered position.
  • a commonly adopted design is: one of the row electrodes or the column electrodes is continuously disposed on the conductive film, and the other electrode is disposed on the conductive film at intervals of electrodes arranged in a plurality of electrode blocks, and the conductive bridge is disposed at the position of the staggered point.
  • the adjacent electrode blocks are electrically connected to form a continuous electrode in the other direction; the conductive bridge is separated from the continuously disposed electrodes by an insulating layer, thereby effectively preventing the row electrode and the column electrode from being short-circuited at the staggered point.
  • the plan is: (1) the laminated structure is a transparent substrate, a first direction electrode, an insulating layer, and a conductive bridge; or (2) the laminated structure is a transparent substrate, a conductive bridge, an insulating layer, and a first direction electrode.
  • the capacitive touch screen adopting the traditional design scheme may have the defects of low light transmittance and poor working stability.
  • the transmittance of the capacitive touch screen of the conventional design scheme is difficult to break through 80%, and the whole force is bent and deformed easily. Separation occurs at the interface, causing the electrode to open the touch to fail and the touch sensing component to be damaged.
  • One of the objectives of the present invention is to provide an ITO bridge-integrated capacitive touch screen.
  • the present invention adopts the following technical solutions:
  • An ITO bridge-integrated capacitive touch screen comprising a transparent substrate, a black resin layer, an ITO bridge electrode, a first insulating layer, an ITO electrode, a metal electrode and a second insulating layer laminated on the transparent substrate in sequence;
  • the utility model comprises a capacitive screen driving (ITO electrode 1) and a sensing electrode (ITO electrode 2) having a regular pattern structure; the ITO electrode 1 and the ITO electrode 2 are on the same level, independent of each other, insulated from each other, and vertically designed;
  • the transparent substrate comprises a window area The non-window area, the black resin layer is distributed in the non-window area of the display screen; the metal electrode line wiring is only in the black resin area, and the window area has no metal electrode.
  • the transparent substrate is a chemically strengthened glass substrate having a thickness of between 0.5 and 2.0 mm;
  • the regular structure of the ITO electrode is a diamond shape, a strip shape, a square shape, a snowflake type, or a cross type. Graphics.
  • the black resin layer can effectively block the layer of the non-visible area, can block light, and block visible objects under the metal wire and the like.
  • the ITO bridge electrode includes a bridge electrode 1 of the display window area and a black resin layer edge bridge electrode 2, both of which have a regular pattern structure;
  • the bridge electrode 1 is connected to a driving line (the left and right ends of the ITO electrode 1) or an induction line (the upper and lower ends of the ITO electrode 2 are not shown); the bridge electrode 2 is connected to the driving line of the conductive metal electrode and the ITO electrode.
  • the [ITO electrode 1) or the induction line ( ⁇ electrode 2) and the drive line ( ⁇ electrode 1) or the induction line ( ⁇ electrode 2) for preventing the ⁇ electrode are broken at the slope of the black resin layer.
  • the first insulating layer makes the ytterbium electrode 1 and the ytterbium electrode 2 in an insulated state and does not conduct each other.
  • the flexible circuit board bonding region where the ⁇ electrode signal is turned on is realized by the metal electrode.
  • the second insulating layer protects the metal electrode from the tantalum wire to insulate it from the air.
  • Another object of the present invention is to provide a method for manufacturing a ⁇ bridge-integrated capacitive touch screen, which adopts the following technical solutions:
  • the black resin layer is uniformly coated on the transparent substrate by a spin coating method or a doctor coating method, and the coating thickness is 0.3 um to 5 um, and is pre-baked, exposed, and developed by a heater to form a black resin.
  • the desired black resin area the black resin area has a trapezoidal structure with an intermediate thickness of 0.3um ⁇ 5um, the edge bevel angle is between 6 ⁇ 60 degrees, and the angle is gentle.
  • the purpose is ITO electrode (drive line ITO electrode 1 and induction line)
  • the ruthenium electrode 2 does not break due to a large difference in thickness when passing through the slope.
  • the black resin area is a non-window area of the display screen, and the purpose is to block the metal electrode;
  • ITO bridge electrode a transparent substrate on which a black resin layer is formed, and then ITO coating, to form a transparent and uniform thickness ITO film layer on the glass substrate, the thickness of which is 50 angstroms to 2000 angstroms (face) The resistance is 10 ⁇ 430 ohms);
  • the ITO coated transparent substrate is coated with a uniform thickness of a positive photoresist material on the surface of the ITO, and the photoresist coating thickness is lum ⁇ 5um;
  • the ITO bridge electrode comprises a bridge electrode of the viewing area of the display screen and an edge overlapping electrode of the black resin layer, and has a regular pattern structure, and the two layers are independent of each other and insulated from each other.
  • a thin layer of negative photoresist material is coated on the surface of the ITO film, and the photoresist coating thickness is 0.5 um ⁇ 3 um;
  • the photoresist is pre-baked, exposed, developed, and finally formed into a thickness of 0.5 ⁇ 3um and a regular insulating layer pattern (such as a rectangle, a square, a diamond, an ellipse, etc.).
  • a regular insulating layer pattern such as a rectangle, a square, a diamond, an ellipse, etc.
  • the transparent substrate forming the first insulating layer is again subjected to ITO coating to form a transparent and uniform thickness ITO film layer on the glass substrate, and the thickness thereof is 50 angstroms to 2000 angstroms (the surface resistance is 10 430 ohms) ;
  • the ITO coated transparent substrate is coated with a uniform thickness of a positive photoresist material on the surface of the ITO, and the photoresist coating thickness is lum ⁇ 5um;
  • the final thickness is 50-2000 angstroms (face resistance is 10 ⁇ 430 ohms) and regular ITO pattern or electrode;
  • the ITO electrode comprises a capacitive screen drive (ITO electrode 1) and a sensing electrode (ITO electrode 2) having a regular pattern structure; the ITO electrode 1 and the ITO electrode 2 are on the same level, independent of each other, insulated from each other, and vertically designed.
  • the ITO electrode 1 is electrically connected by the ITO bridge electrode 1 to make the ITO electrode 1 form a driving path; the conduction of the ITO electrode 2 is the climbing of the ITO through the bottom of the first insulating layer to the top, and then from the first insulation. The top to bottom of the layer drops, causing the ITO electrode 2 to form an inductive path.
  • the transparent substrate forming the ITO electrode layer is subjected to a metal plating film to form a metal film layer having a thickness of a hook on the transparent substrate, and has a thickness of 500 angstroms to 4000 angstroms.
  • a metal-coated transparent substrate is coated with a uniform thickness on the metal surface.
  • Photo resistive material, photoresist coating thickness is lum ⁇ 5um;
  • the photoresist is pre-baked, exposed, developed, etched, and the photoresist is removed to form a regular metal pattern or electrode having a thickness of 500-4000 angstroms.
  • a thin layer of negative photoresist material is coated on the surface of the metal film, and the thickness of the photoresist coating is 0.5 um ⁇ 3 um;
  • the photoresist is pre-baked, exposed, developed, and finally formed into a thickness of 0.5 to 3 um and a regular insulating layer pattern.
  • the transparent substrate is a chemically strengthened glass substrate having a thickness of between 0.5 mm and 2.0 mm in thickness; the ITO is composed of In2O3 and SnO2, and the mass ratio thereof is 85 to 95: 5 to 15.
  • the ITO coating method can be vacuum magnetron sputtering, chemical vapor deposition, thermal evaporation, or sol gel.
  • the main component of the positive photoresist material is propylene glycol monomethyl ether acetate, epoxy resin and positive photosensitive agent (trade name is TR400 produced by Taiwan New Materials Co., Ltd.);
  • the main component of negative photoresist material is acetic acid Propylene glycol monomethyl ether ester, acrylic resin, epoxy resin and negative photosensitive agent (trade name: Taiwan Daxing Co., Ltd. POC A46) coated photoresist materials are roller coating, spin coating, scraping and other methods.
  • the metallized metal film layer is a sandwich structure of MoNb, AlNd, MoNb, and the thickness is 50 angstroms to 500 angstroms: 500 angstroms to 3,000 angstroms: 50 angstroms to 500 angstroms, of which MoNb alloy
  • the mass ratio of Mo and Nb in the material is 85 ⁇ 95: 5 ⁇ 15, and the mass ratio of A1 and Nd in AlNd alloy material is 95 ⁇ 98: 2 ⁇ 5.
  • the selection of the metal material can also be composed of a silver alloy or a copper alloy, and the components are combined in a certain ratio.
  • the metal film coating is vacuum magnetron sputtering.
  • the present invention has the following advantages and beneficial effects:
  • the invention realizes the reasonable arrangement of the laminated structure, completes the touch function signal electrode and the black resin covering layer on a transparent substrate, optimizes the manner of stacking the order and pattern of the bridge layer, and greatly improves the yield of the product. Reduce costs and improve products Rely on sex.
  • the thickness of the substrate is between 0.5mm and 2.0mm, and has the advantages of thin thickness and light weight; and the reasonable design of each layer enables the transmittance to reach more than 90%.
  • the invention adopts the design structure of the ITO bridge, so that the touch screen does not see the metal bridge point in the window area of the display area, which greatly improves the product transmittance.
  • FIG. 1 is a schematic structural view of an ITO bridge capacitive touch screen according to the present invention
  • FIG. 2 is a schematic structural view of a glass substrate according to an embodiment of the present invention
  • Figure 3 is a partial enlarged schematic view of the ITO bridge
  • Figure 4 is a schematic view showing the structure of the ITO bridge
  • Fig. 5 is a schematic cross-sectional view showing the structure of the ITO bridge and the metal electrode of the black resin;
  • Fig. 6 is a cross-sectional view showing the structure of the ITO bridge-capacity integrated touch panel of the present invention. detailed description
  • the ITO bridge capacitive touch screen includes a chemically strengthened glass substrate 11 having a thickness of between 0.5 mm and 2.0 mm, and is sequentially laminated on the black resin layer 12 of the glass substrate and the ITO bridge electrode. 13.
  • the graphic structure can be a diamond, or a strip, or a square, or a snowflake, or a cross.
  • the glass substrate includes a window area 21 and a non-window area 22, and the black resin layer 12 is distributed in the non-window area 22 of the display screen.
  • FIG. 3 to FIG. 6 are schematic diagrams showing a partial structure enlarged view or a cross-sectional structure of the ITO bridge capacitance touch screen according to the embodiment:
  • the bridge electrode 43 includes the bridge electrode 1 and the black resin layer 51 edge of the display window area.
  • the bridge electrode 2 which has a regular pattern structure, may be a diamond shape, a strip shape, or a square shape, or a snowflake type, or a cross type; the bridge electrode 1 is connected to a driving line that turns on the ⁇ electrode 15 ( ⁇ electrode 1)
  • the drive line ( ⁇ electrode 1) 42 or the induction line ( ⁇ electrode 2) 46 of the anti- ⁇ electrode is broken at the slope of the black resin layer 51.
  • the first insulating layer 45 makes the driving line (the ytterbium electrode 1) 42 of the ytterbium electrode and the sensing line (the ytterbium electrode 2) 46 in an insulating state, and does not conduct each other. ⁇
  • the flexible circuit board bonding area where the electrode signal is turned on is realized by the metal electrode.
  • the second insulating layer 44 protects the metal electrode 52 from the tantalum wire to insulate it from the air.
  • the preparation process is as follows:
  • the black resin is uniformly coated on the transparent substrate 41 ( 11 ) by a spin coating method or a doctor coating method, and the coating thickness is 0.3 um to 5 um, and is pre-baked, exposed, and developed by a heater to form a desired Black resin area; black resin area has a trapezoidal structure, the intermediate thickness is 0.3um ⁇ 5um, the edge angle is between 6 ⁇ 60 degrees, and the angle is gentle.
  • the purpose is ITO electrode (drive line ITO electrode 1 and induction line ITO electrode) 2) The ITO electrode is not broken due to the large difference in thickness when passing through the slope.
  • the black resin area is a non-window area of the display screen, and the purpose is to block the metal electrode;
  • the pre-baking temperature and time range are: 60 degrees to 150 degrees, 50 seconds to 200 seconds, the exposure energy is from 100 m to 500 mj, the developer is Na-based or Ka-based alkaline solution, and the developing temperature is operated at a constant temperature of 20 to 40 degrees.
  • ITO bridge electrode chemically strengthening the transparent glass substrate, and then passing through the ITO film to form a transparent and uniform thickness ITO film layer on the glass substrate, the thickness of which is 50 angstroms to 2000 angstroms (face)
  • the resistance is 10 ⁇ 430 ohms
  • the ITO material is composed of In2O3 and SnO2, and the mass ratio is 85 ⁇ 95: 5 ⁇ 15.
  • the ITO coating methods include vacuum magnetron sputtering, chemical vapor deposition, thermal evaporation, and sol gel.
  • the ITO coated transparent glass substrate is coated with a uniform thickness of positive photoresist material on the surface of the ITO, and the photoresist coating thickness is lum ⁇ 5um; the main component of the positive photoresist material is propylene glycol monomethyl ether acetate. , epoxy resin and photosensitive materials.
  • the photoresist coating thickness is lum ⁇ 5um. Coating photoresist materials are by roller coating, spin coating, and scraping.
  • the product is pre-baked, exposed, developed, etched, and stripped with a photoresist to form a thickness of 50 to 2000 angstroms (face resistance of 10 to 430 ohms) and a regular ITO pattern or electrode.
  • Pre-bake temperature and time range 60 degrees to 150 degrees, 50 seconds to 200 seconds, exposure energy is 100m to 500mj, developer is Na or Ka alkaline solution, and the development temperature is 20 to 40 degrees.
  • the ITO etching solution is a mixture of hydrochloric acid and nitric acid in a certain ratio, so that the pH of the acid falls between 1 and 3, and the etching temperature is between 40 and 50 degrees.
  • the light-removing film solution is prepared by mixing dimethyl sulfoxide and ethanolamine in a certain ratio, the percentage is 70%: 30%, and the film removal temperature is between 40 and 80 degrees.
  • the transparent glass substrate after passing through the ITO bridge electrode is coated with a uniform thickness of negative photoresist material on the surface of the ITO film.
  • the main component of the negative photoresist material is propylene glycol monomethyl ether acetate, acrylic resin, epoxy. Resin and negative photosensitive agent, the thickness of photoresist coating is 0.5um ⁇ 3um ; the method of coating negative photoresist is spin coating, scraping and so on.
  • the product is pre-baked, exposed, and developed through a photoresist to form a pattern of a thickness of 0.5 to 3 um and a regular insulating layer.
  • Pre-bake temperature and time range 60 degrees ⁇ 150 degrees, 50 seconds to 200 seconds, the exposure energy is from lOOmj to 500mj, the developing solution is Na-based or Ka-based alkaline solution, and the developing temperature is operated at a constant temperature of 20 to 40 degrees.
  • the condition is 200 to 300 degrees, and the time is half an hour to 3 hours.
  • the insulating layer 1 having a thickness of 0.5 um to 3 um and having a regular pattern is finally formed.
  • the transparent glass substrate forming the first insulating layer is again subjected to ITO coating to form a transparent and uniform thickness ITO film layer on the glass substrate, and the thickness thereof is 50 angstroms to 2000 angstroms (the surface resistance is 10 430 ohms).
  • the ITO material consists of In2O3 and SnO2 with a mass ratio of 85 ⁇ 95: 5 ⁇ 15. ITO coating methods include vacuum magnetron sputtering, chemical vapor deposition, thermal evaporation, and sol gel.
  • the ITO coated glass substrate is coated with a uniform thickness of positive photoresist material on the surface of the ITO.
  • the main component of the positive photoresist material is propylene glycol monomethyl ether acetate, epoxy resin and photosensitive material;
  • the thickness of the cloth is lum ⁇ 5um. Coating photoresist materials are by roller coating, spin coating, and scraping.
  • the product is pre-baked, exposed, developed, etched, and stripped with a photoresist to form a thickness of 50 to 2000 angstroms (face resistance of 10 to 430 ohms) and a regular ITO pattern or electrode.
  • the pre-baking temperature and time range are: 60 degrees to 150 degrees, 50 seconds to 200 seconds, the exposure energy is from 100 to 100 mj, the developer is Na-based or Ka-based alkaline solution, and the developing temperature is operated at a constant temperature of 20 to 40 degrees.
  • the ITO etching solution is a mixture of hydrochloric acid and nitric acid in a certain ratio, so that the pH of the acid falls between 1 and 3, and the etching temperature is between 40 and 50 degrees.
  • the light-removing film solution is prepared by mixing dimethyl sulfoxide and ethanolamine in a certain ratio, the percentage is 70%: 30%, and the film removal temperature is between 40 and 80 degrees.
  • the ITO electrode comprises a capacitive screen drive (ITO electrode 1) and a sensing electrode (ITO electrode 2) having a regular pattern structure; the ITO electrode 1 and the ITO electrode 2 are on the same level, independent of each other, insulated from each other, and vertically designed.
  • the glass substrate on which the ITO electrode layer is formed is subjected to a metal plating film to form a metal film layer having a uniform thickness on the glass substrate, and has a thickness of 500 angstroms to 4000 angstroms.
  • the metal film layer material is a sandwich structure of MoNb, AlNd, MoNb, and the thickness is 50 angstroms to 500 angstroms: 500 angstroms to 3000 angstroms: 50 angstroms to 500 angstroms, in which MoNb alloy material is used.
  • the mass ratio of Mo to Nb is 85 ⁇ 95: 5-15, and the mass ratio of A1 and Nd in AlNd alloy material is 95 ⁇ 98: 2 ⁇ 5.
  • the selection of the metal material can also be composed of a silver alloy or a copper alloy, and the components are combined in a certain ratio.
  • the metal coating is vacuum magnetron sputtering.
  • the metal-coated glass substrate is coated with a uniform thickness of positive photoresist material on the metal surface.
  • the main component of the positive photoresist material is propylene glycol monomethyl ether acetate, epoxy resin and photosensitive material;
  • the thickness of the cloth is lum ⁇ 5um.
  • Coating photoresist materials are by roll coating, spin coating, and blade coating. After the above process, the product is pre-baked, exposed, developed, etched, and stripped to a thickness of 500-4000 angstroms and a regular metal pattern or electrode.
  • the pre-baking temperature and time range are: 60 degrees to 150 degrees, 50 seconds to 200 seconds, the exposure energy is from lOOmj to 500mj, the developer is made of Na-based or Ka-based alkaline solution, and the developing temperature is operated at a constant temperature of 20 to 40 degrees.
  • the metal etching solution is a mixture of phosphoric acid, acetic acid and nitric acid in a certain ratio, and the etching temperature is between 40 and 50 degrees.
  • the stripping solution is prepared by mixing dimethyl sulfoxide and ethanolamine in a certain ratio, the percentage is 70%: 30%, and the stripping temperature is between 40 and 80 degrees.
  • the metal electrode line wiring is only in the black resin region, and the window region has no metal electrode.
  • the glass substrate after the metal electrode is coated with a uniform thickness of the negative photoresist material on the surface of the metal film.
  • the main component of the negative photoresist material is propylene glycol monomethyl ether acetate, acrylic resin, epoxy resin and negative Sexy light agent (trade name is Taiwan Daxing company produces POC A46); photoresist coating thickness is 0.5um ⁇ 3um.
  • the method of coating the negative photoresist material is spin coating, scraping, and the like.
  • the product is pre-baked, exposed, developed, and finally formed into a thick layer.
  • the degree is 0.5 ⁇ 3um and the regular insulation pattern.
  • the pre-baking temperature and time range are: 60 degrees - 150 degrees, 50 seconds to 200 seconds, the exposure energy is from 100 m to 500 mj, the developer is Na or Ka alkaline solution, and the development temperature is operated at a constant temperature of 20 40 degrees.
  • the condition is 200 to 300 degrees, and the time is 0.5 hours to 3 hours.
  • a second insulating layer having a thickness of 0.5 um to 3 um and a regular pattern is finally formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种ITO过桥一体式电容触摸屏及其制造方法,所述ITO过桥一体式电容触摸屏包括透明基板,依次层叠于透明基板的黑色树脂层、ITO过桥电极、第一绝缘层、ITO电极、金属电极和第二绝缘层;所述的ITO电极包括电容屏驱动和感应电极,具有规则图形结构;电容屏驱动与感应电极在同一层面,相互独立,相互绝缘,垂直设计;所述透明基板包括视窗区和非视窗区,黑色树脂层分布在显示屏非视窗区;所述的金属电极线路布线仅在黑色树脂层区域。本发明通过对电容触摸屏的层叠结构以及ITO架桥方式进行合理的设计,减少了触摸屏总厚度,减轻了触摸屏的重量,有效的提高电容式触摸屏的透光率,工作稳定性,可靠性以及触摸灵敏度。

Description

说明书
ITO过桥一体式电容触摸屏及制造方法
技术领域
本发明涉及电容触摸屏技术领域,尤其是涉及一种通过 ΙΤΟ过桥 设计的一体式电容触摸屏及其制造方法。 背景技术
随着电子科技的发展, 目前手机、 数码相机、 掌上游戏机、 车 载 DVD、 MP3、 仪表仪器等的键盘或鼠标逐渐被触摸屏替代。 触摸 屏的产品在几年前并不是十分火热,而随着人们对于触屏产品的接触 越来越多, 近两年也被更多人所认可, 发展速度逐渐加快。触摸屏迅 速的成长,不仅激起了更加激烈的行业竞争, 也间接推动了技术的发 展,其多点触控的操作方式更是把触摸屏产品的影响力提升到了一个 新的高度, 也逐渐被人们所关注起来。
触摸屏主要由触摸检测部件和触摸屏控制器组成, 触摸检测部 件安装在显示器屏幕前面,用于检测用户触摸位置,接收后送触摸屏 控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸 信息, 并将它转换成触点坐标, 再送给 CPU, 它同时能接收 CPU发 来的命令并加以执行。
按照触摸屏的工作原理和传输信息的介质, 触摸屏可分为四种, 分别为电阻式、 电容感应式、 红外线式以及表面声波式, 当前被广泛 使用的是电阻式触摸屛, 它是利用压力感应进行电阻控制的; 电阻式 触摸屏是一种多层的复合薄膜,它的主要部分是一块与显示器表面非 常配合的电阻薄膜屏。电阻薄膜屏是以一层玻璃或硬塑料平板作为基 层, 表面涂有一层透明氧化金属(透明的导电电阻) ITO (氧化铟锡) 导电层,上面再盖有一层外表面硬化处理光滑防擦的塑料层,它的内 表面也涂有一层 ITO涂层, 在它们之间有许多细小的 (小于 1/1000
替换页 (细则第 26条) 说明书
英寸)的透明隔离点把两层导电层隔开绝缘, 当手指触摸屏幕时, 两 层导电层在触摸点位置就有了接触, 电阻发生变化, 在 X和 Y两个 方向上产生信号, 然后送触摸屏控制器, 控制器侦测到这一接触并计 算出 (X, Y) 的位置, 再根据模拟鼠标的方式运作。
电容式触摸屏的基本原理是利用人体的电流感应进行工作的, 电容式触摸屏是一块二层复合玻璃屏,玻璃屏的内表面夹层涂有 Π (氧化铟锡)导电膜(镀膜导电玻璃) , 最外层是一薄层矽土玻璃保 护层, ITO涂层作为工作面, 四个角上引出四个电极, 当手指触摸在 屏幕上时, 由于人体电场, 用户和触摸屏表面形成一个耦合电容, 对 于高频电流来说, 电容是直接导体, 于是手指从接触点吸走一个很小 的电流, 这个电流分别从触摸屏的四角上的电极中流出, 并且流经这 四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电 流比例的精确计算, 得出触摸点的位置。
在电容式触摸屏中, 投射式电容触摸屏是当前应用较为广泛的 一种, 具有结构简单, 透光率高等特点。 投射式电容触摸屏的触摸感 应部件一般为多个行电极和列电极交错形成感应矩阵。通常采用的设 计方式包括将行电极和列电极分别设置在同一透明基板的两面,防止 在交错位置出现短路;或者将行电极和列电极设置在同一透明基板的 同侧, 形成于同一导电膜(通常为 ιτο导电膜)上, 在行电极和列电 极交错的位置通过设置绝缘层并架导电桥的方式隔开,将行电极和列 电极隔开并保证在各自的方向上导通,可以有效的防止其在交错位置 短路。
通常采用的设计方案为: 行电极或者列电极之一在导电膜上连 续设置,则另一个电极在导电膜上以连续设置的电极为间隔设置成若 干电极块, 在交错点的位置通过导电桥将相邻的电极块电连接, 从而 形成另一方向上的连续电极;导电桥与连续设置的电极之间由绝缘层 分隔, 从而有效的阻止行电极和列电极在交错点短路。通常采用的设 计方案为: (1 ) 层叠结构依次为透明基板、 第一方向电极、 绝缘层、 导电桥; 或者 (2) 层叠结构依次为透明基板、 导电桥、 绝缘层、 第 一方向电极。
但采用传统的设计方案的电容式触摸屏会存在透光率不高以及 工作稳定性差的缺陷,传统的设计方案的电容式触摸屏透光率很难突 破 80%, 且整体受力弯曲变形时, 容易在界面出现分离, 导致电极断 路触摸失效, 触摸感应部件损坏。 发明内容
本发明的目的之一在于提供一种 ITO过桥一体式电容触摸屏, 通过对电容触摸屏的层叠结构以及 ITO架桥方式进行合理的设计,减 少了触摸屏总厚度,减轻了触摸屏的重量, 有效的提高电容式触摸屏 的透光率, 工作稳定性, 可靠性以及触摸灵敏度。
为实现上述目的, 本发明采用如下技术方案:
一种 ITO过桥一体式电容触摸屏,包括透明基板,依次层叠于透 明基板的黑色树脂层、 ITO过桥电极、 第一绝缘层、 ITO电极、 金属 电极和第二绝缘层; 所述的 ITO电极包括电容屏驱动 (ITO电极 1)和 感应电极 (ITO电极 2),具有规则图形结构; ITO电极 1与 ITO电极 2 在同一层面, 相互独立, 相互绝缘, 垂直设计; 所述透明基板包括视 窗区和非视窗区, 黑色树脂层分布在显示屏非视窗区; 所述的金属电 极线路布线仅在黑色树脂区域, 视窗区无金属电极。
优选的是: 所述的透明基板为厚度在厚度 0.5~2.0毫米之间的化 学强化玻璃基板; 所述 ITO电极规则结构为菱形, 或条形, 或方块 形, 或雪花型, 或十字型等图形。
所述的黑色树脂层可有效遮挡非可视区的图层, 可以遮光, 以及 遮挡金属线等产品下方的可见物。 ITO过桥电极包括显示屏视窗区的 过桥电极 1和黑色树脂层边缘过桥电极 2, 两者具有规则图形结构; 过桥电极 1连接导通 ITO电极的驱动线 (ITO电极 1左右端)或感应线 (ITO 电极 2上下端一图中未显示); 过桥电极 2连接导通金属电极与 ITO电极的驱动线〔ITO电极 1)或感应线 (ΙΤΟ电极 2)和防止 ΙΤΟ电极 的驱动线 (ΙΤΟ电极 1)或感应线 (ΙΤΟ电极 2)在黑色树脂层斜坡处断裂。 第一绝缘层使 ΙΤΟ电极 1与 ΙΤΟ电极 2处于绝缘状况, 互不导通。
ΙΤΟ电极信号导通的柔性线路板邦定区域通过金属电极实现。第二绝 缘层保护金属电极与 ΙΤΟ导线, 使之与空气绝缘。
本发明的目的之二在于提供一种 ιτο过桥一体式电容触摸屏的 制造方法, 采用如下技术方案:
黑色树脂层的形成:将黑色树脂经过旋转涂布方式或刮式涂布方 式均匀涂布在透明基板上,涂布厚度为 0.3um~5um,经过加热器预烤, 曝光, 显影, 使之形成所需的黑色树脂区域; 黑色树脂区域呈梯形结 构, 中间厚度为 0.3um~5um, 其边缘斜角为 6~60度之间, 角度平缓, 目的为 ITO电极 (驱动线 ITO电极 1和感应线 ΠΌ电极 2)通过斜坡时 不会由于厚度差异大导致 ITO电极断裂。黑色树脂区域为显示屏非视 窗区,目的为遮挡金属电极;所述黑色树脂是感光性保护层光阻剂(商 品为台湾永光化学所生产 EK410) , 是一种黑色负性光阻材料, 主要 成分为: 亚克力树脂, 环氧树脂, 负性感光剂, 乙酸丙二醇单甲基醚 酯及黑色颜料, 具体比例为树脂类: 乙酸丙二醇单甲基醚酯: 黑色颜 料及负性感光剂 =15~30: 60-80: 10。
ITO过桥电极的形成:对形成黑色树脂层的透明基板,再经过 ITO 镀膜,使在玻璃基板上形成一层透明及厚度均匀的 ITO膜层,其厚度 为 50埃米 ~2000埃米 (面电阻为 10~430欧姆);
经过 ITO镀膜的透明基板, 在其 ITO表面涂布一层厚度均匀的 正性光阻材料, 光阻涂布厚度为 lum~5um;
经过光阻预烤, 曝光, 显影, 蚀刻, 脱光阻膜, 最终形成厚度为 50-2000埃米 (面电阻为 10~430欧姆)及规则 ITO图案或电极。 所述的 ITO过桥电极包括显示屏视区的过桥电极和黑色树脂层 边缘搭接电极, 具有规则图形结构, 两者在同一层面, 相互独立, 相 互绝缘。
第一绝缘层的形成:
经过 ITO过桥电极后的透明基板, 在其 ITO膜面涂布一层厚度 均匀的负性光阻材料, 光阻涂布厚度为 0.5um~3um;
经过光阻预烤, 曝光, 显影, 最终形成厚度为 0.5~3um和规则的 绝缘层图案 (如长方形, 正方形, 菱形, 椭圆形等图案)。
ITO电极层的形成:
形成第一绝缘层的透明基板,再次经过 ITO镀膜,使在玻璃基板 上形成一层透明及厚度均匀的 ITO膜层, 其厚度为 50埃米 ~2000埃 米 (面电阻为 10~430欧姆);
经过 ITO镀膜的透明基板, 在其 ITO表面涂布一层厚度均匀的 正性光阻材料, 光阻涂布厚度为 lum~5um;
经过光阻预烤, 曝光, 显影, 蚀刻, 脱光阻膜, 最终形成厚度为 50-2000埃米 (面电阻为 10~430欧姆)及规则 ITO图案或电极;
所述的 ITO电极包括电容屏驱动 (ITO电极 1)和感应电极 (ITO电 极 2), 具有规则图形结构; ITO电极 1与 ITO电极 2在同一层面, 相互独立, 相互绝缘, 垂直设计。
ITO电极 1导通是通过 ITO过桥电极 1左右搭接,使 ITO电极 1 形成驱动通路; ITO电极 2的导通是自身 ITO通过第一绝缘层的底部 到顶部的爬升, 再从第一绝缘层的顶部到底部的下降, 使 ITO电极 2 形成感应通路。
金属电极层的形成:
形成 ITO电极层的透明基板,经过金属镀膜,使之在透明基板上 形成一层厚度均勾的金属膜层, 其厚度为 500埃米〜 4000埃米。
经过金属镀膜的透明基板,在其金属表面涂布一层厚度均匀的正 性光阻材料, 光阻涂布厚度为 lum~5um;
经过光阻预烤, 曝光, 显影, 蚀刻, 脱光阻膜, 最终形成厚度为 500-4000埃米及规则金属图案或电极。
第二绝缘层的形成:
经过金属电极后的透明基板,在其金属膜面涂布一层厚度均匀的 负性光阻材料, 光阻涂布厚度为 0.5um~3um;
经过光阻预烤, 曝光, 显影, 最终形成厚度为 0.5~3um和规则的 绝缘层图案。
优选的: 所述的透明基板为厚度在厚度 0.5mm~2.0mm之间毫米 的化学强化玻璃基板; 所述的 ITO由 In2O3和 SnO2组成, 其质量比 为 85~95: 5~15。 ITO镀膜的方式可以采用真空磁控溅镀, 化学气相 沉积法, 热蒸镀, 溶胶凝胶。
所述的正性光阻材料主成分为乙酸丙二醇单甲基醚酯,环氧树脂 及正性感光剂 (商品名为台湾新应材公司生产的 TR400); 负性光阻 材料主成分为乙酸丙二醇单甲基醚酯, 亚克力树脂, 环氧树脂及负性 感光剂(商品名为台湾达兴公司生产 POC A46)涂布光阻材料方式有 滚涂, 旋涂, 刮涂等方式。
金属镀膜的金属膜层为 MoNb, AlNd, MoNb堆积而成的三明治 结构, 厚度按 50埃米 ~500埃米: 500埃米 ~3000埃米: 50埃米 ~500埃 米比例搭配,其中 MoNb合金材料中 Mo和 Nb质量比为 85~95: 5~15, AlNd合金材料中 A1和 Nd质量比为 95~98: 2~5。。 金属材料选型也 可由银合金或铜合金组成, 成分按一定比例组合而成。金属膜层镀膜 为真空磁控溅镀。
本发明与现有技术相比, 具有如下优点和有益效果:
本发明通过对层叠结构进行合理的设置, 在一层透明基板上完 成触摸功能信号电极和黑色树脂覆盖层,优化层叠 ιτο过桥电极层等 顺序和图案的方式, 大幅提升了产品的良率, 降低成本, 提升产品可 靠性。 本发明中基板厚度 0.5mm~2.0mm之间, 具有厚度薄, 质量轻 等优势; 通过对各层的合理设计, 使得透过率可以达到 90%以上。
本发明采用 ITO过桥的设计结构, 使得触摸屏在显示区视窗区 域看不到金属过桥点, 大幅提升了产品透过率。 附图说明
图 1为本发明所述的 ITO过桥电容触摸屏的结构示意图; 图 2为本发明实施例所述的玻璃基板结构示意图;
图 3为 ITO过桥局部放大结构示意图;
图 4为 ITO过桥剖面结构示意图;
图 5为黑色树脂边缘 ITO与金属电极剖面结构示意图; 图 6为本发明所述的 ITO过桥电容一体式触摸屏的剖面结构示 意图。 具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
如图 1及图 2所示, 所述的 ITO过桥电容触摸屏, 包括厚度在 0.5mm~2.0mm之间的化学强化玻璃基板 11, 依次层叠于玻璃基板的 黑色树脂层 12、 ITO过桥电极 13、 第一绝缘层 14、 ITO电极 15、 金 属电极 16和第二绝缘层 17; 所述的 ITO过桥电极 13包括显示屏视 区的过桥电极和黑色树脂层边缘搭接电极, 具有规则图形结构, 可以 是菱形, 或条形, 或方块形, 或雪花型, 或十字型等图形。
玻璃基板包括视窗区 21和非视窗区 22, 黑色树脂层 12分布在 显示屏非视窗区 22。
所述的黑色树脂层可有效遮挡非可视区的图层, 可以遮光, 以及 遮挡金属线等产品下方的可见物。 图 3至图 6所示为本实施例所述 ITO过桥电容触摸屏的局部结构 放大示意图或者剖面结构示意图: ΠΌ过桥电极 43包括显示屏视窗 区的过桥电极 1和黑色树脂层 51边缘过桥电极 2, 两者具有规则图 形结构, 可以是菱形, 或条形, 或方块形, 或雪花型, 或十字型等图 形;过桥电极 1连接导通 ΙΤΟ电极 15的驱动线 (ΙΤΟ电极 1左右端 )42 或感应线 (ΙΤΟ 电极 2上下端一图中未显示 )46; 过桥电极 2连接导通 金属电极 52与 ΙΤΟ电极的驱动线 (ΙΤΟ电极 1)42或感应线 (ΙΤΟ电极 2)46和防止 ΙΤΟ电极的驱动线 (ΙΤΟ电极 1)42或感应线 (ΙΤΟ电极 2)46 在黑色树脂层 51斜坡处断裂。 第一绝缘层 45使 ΙΤΟ电极的驱动线 (ΙΤΟ电极 1)42与感应线 (ΙΤΟ电极 2)46处于绝缘状况,互不导通。 ΙΤΟ 电极信号导通的柔性线路板邦定区域通过金属电极实现。第二绝缘层 44保护金属电极 52与 ΙΤΟ导线, 使之与空气绝缘。
其制备工艺如下:
将黑色树脂经过旋转涂布方式或刮式涂布方式均匀涂布在透明 基板 41 ( 11 ) 上, 涂布厚度为 0.3um~5um, 经过加热器预烤, 曝光, 显影, 使之形成所需的黑色树脂区域; 黑色树脂区域呈梯形结构, 中 间厚度为 0.3um~5um, 其边缘斜角为 6~60度之间, 角度平缓, 目的 为 ITO电极 (驱动线 ITO电极 1和感应线 ITO电极 2)通过斜坡时不会 由于厚度差异大导致 ITO电极断裂。 黑色树脂区域为显示屏非视窗 区, 目的为遮挡金属电极; 所述黑色树脂是感光性保护层光阻剂(商 品为台湾永光化学所生产 EK410) , 是一种黑色负性光阻材料, 主要 成分为:亚克力树脂, 环氧树脂, 负性感光剂, 乙酸丙二醇单甲基醚 酯及黑色颜料, 具体比例为树脂类: 乙酸丙二醇单甲基醚酯: 黑色颜 料及负性感光剂 =15〜30: 60-80: 10。
预烤温度及时间范围为: 60度~150度, 50秒到 200秒, 曝光能量 采用 lOOmj到 500mj, 显影液采用 Na系或 Ka系碱性溶液, 显影之 温度采用 20~40 度恒温作业。 再经过黑色树脂层硬烤, 条件为 200 度到 300度, 时间为半小时到 3小时, 经过上述制程后, 最终形成厚 度为 0.3謹~5誰, 图形规则的黑色树脂层 51 ( 12)。
ITO过桥电极的形成:对透明玻璃基板进行化学强化,再经过 ITO 铍膜,使在玻璃基板上形成一层透明及厚度均匀的 ITO膜层,其厚度 为 50埃米〜 2000埃米 (面电阻为 10~430欧姆); ITO材料由 In2O3和 SnO2组成, 其质量比为 85~95: 5~15。 ITO镀膜的方式有真空磁控 溅镀, 化学气相沉积法, 热蒸镀, 溶胶凝胶。
经过 ITO镀膜的透明玻璃基板, 在其 ITO表面涂布一层厚度均 匀的正性光阻材料, 光阻涂布厚度为 lum~5um; 正性光阻材料主成 分为乙酸丙二醇单甲基醚酯, 环氧树脂及感光材料。光阻涂布厚度为 lum~5um。 涂布光阻材料方式有滚涂, 旋涂, 刮涂等方式。
经过上述制程之后产品经过光阻预烤, 曝光, 显影, 蚀刻, 脱光 阻膜, 最终形成厚度为 50~2000埃米 (面电阻为 10~430欧姆)及规则 ITO图案或电极。 预烤温度及时间范围为 :60度~150度, 50秒到 200 秒, 曝光能量采用 lOOmj到 500mj, 显影液采用 Na系或 Ka系碱性 溶液, 显影之温度采用 20~40度恒温作业。 ITO蚀刻液采用盐酸及硝 酸按一定比例混合而成的药液, 使其酸的 PH值落在 1~3之间, 蚀刻 温度在 40~50度之间作业。脱光阻膜液采用二甲亚砜和乙醇胺按一定 的比例混合而成, 百分比为 70%: 30% , 脱膜温度在 40~80度之间作 业。
第一绝缘层的形成:
经过 ITO过桥电极后的透明玻璃基板, 在其 ITO膜面涂布一层 厚度均匀的负性光阻材料,负性光阻材料主成分为乙酸丙二醇单甲基 醚酯, 亚克力树脂, 环氧树脂及负性感光剂, 光阻涂布厚度为 0.5um~3um; 涂布负性光阻材料方式有旋涂, 刮涂等方式。
经过上述制程之后产品经过光阻预烤, 曝光, 显影, 最终形成厚 度为 0.5~3um和规则的绝缘层图案。 预烤温度及时间范围为: 60度 ~150度, 50秒到 200秒, 曝光能量采用 lOOmj到 500mj, 显影液采 用 Na系或 Ka系碱性溶液, 显影之温度采用 20~40度恒温作业。 再 经过绝缘层硬烤, 条件为 200度到 300度, 时间为半小时到 3小时, 经过上述制程后,最终形成厚度为 0.5um~3um,图形规则的绝缘层 1。
ITO电极层的形成:
形成第一绝缘层的透明玻璃基板,再次经过 ITO镀膜,使在玻璃 基板上形成一层透明及厚度均匀的 ITO膜层,其厚度为 50埃米 ~2000 埃米 (面电阻为 10~430欧姆); ITO材料由 In2O3和 SnO2组成, 其质 量比为 85~95: 5~15。 ITO镀膜的方式有真空磁控溅镀, 化学气相沉 积法, 热蒸镀, 溶胶凝胶。
经过 ITO镀膜的玻璃基板, 在其 ITO表面涂布一层厚度均匀的 正性光阻材料, 正性光阻材料主成分为乙酸丙二醇单甲基醚酯, 环氧 树脂及感光材料; 光阻涂布厚度为 lum~5um。 涂布光阻材料方式有 滚涂, 旋涂, 刮涂等方式。
经过上述制程之后产品经过光阻预烤, 曝光, 显影, 蚀刻, 脱光 阻膜, 最终形成厚度为 50~2000埃米 (面电阻为 10~430欧姆)及规则 ITO图案或电极。 预烤温度及时间范围为: 60度〜 150度, 50秒到 200 秒, 曝光能量采用 lOOmj到 500mj, 显影液采用 Na系或 Ka系碱性 溶液, 显影之温度采用 20~40度恒温作业。 ITO蚀刻液采用盐酸及硝 酸按一定比例混合而成的药液, 使其酸的 PH值落在 1~3之间, 蚀刻 温度在 40~50度之间作业。脱光阻膜液采用二甲亚砜和乙醇胺按一定 的比例混合而成, 百分比为 70%: 30% , 脱膜温度在 40~80度之间作 业。
所述的 ITO电极包括电容屏驱动 (ITO电极 1)和感应电极 (ITO电 极 2), 具有规则图形结构; ITO电极 1与 ITO电极 2在同一层面, 相互独立, 相互绝缘, 垂直设计。
金属电极层的形成: 形成 ITO电极层的玻璃基板,再经过金属镀膜,使在玻璃基板上 形成一层厚度均匀的金属膜层, 其厚度为 500埃米 ~4000埃米。 金属 膜层材料为 MoNb, AlNd, MoNb 堆积而成的三明治结构, 厚度按 50埃米〜 500埃米: 500埃米〜 3000埃米: 50埃米〜 500埃米比例搭配, 其中 MoNb合金材料中 Mo和 Nb质量比为 85~95: 5-15 , AlNd合金 材料中 A1和 Nd质量比为 95~98: 2~5。 金属材料选型也可由银合金 或铜合金组成,成分按一定比例组合而成。金属镀膜为真空磁控溅镀。
经过金属镀膜的玻璃基板,在其金属表面涂布一层厚度均匀的正 性光阻材料, 正性光阻材料主成分为乙酸丙二醇单甲基醚酯, 环氧树 脂及感光材料; 光阻涂布厚度为 lum~5um。 涂布光阻材料方式有滚 涂,旋涂,刮涂等方式。经过上述制程之后产品经过光阻预烤, 曝光, 显影, 蚀刻, 脱光阻膜, 最终形成厚度为 500~4000埃米及规则金属 图案或电极。 预烤温度及时间范围为: 60度~150度, 50秒到 200秒, 曝光能量采用 lOOmj到 500mj , 显影液采用 Na系或 Ka系碱性溶液, 显影之温度采用 20~40度恒温作业。金属蚀刻液采用磷酸、醋酸及硝 酸按一定比例混合而成的药液,蚀刻温度在 40~50度之间作业。脱光 阻膜液采用二甲亚砜和乙醇胺按一定的比例混合而成, 百分比为 70%: 30%, 脱膜温度在 40~80度之间作业。
所述的金属电极线路布线仅在黑色树脂区域, 视窗区无金属电 极。
第二绝缘层的形成:
经过金属电极后的玻璃基板,在其金属膜面涂布一层厚度均匀的 负性光阻材料, 负性光阻材料主成分为乙酸丙二醇单甲基醚酯, 亚克 力树脂, 环氧树脂及负性感光剂 (商品名为台湾达兴公司生产 POC A46); 光阻涂布厚度为 0.5um~3um。 涂布负性光阻材料方式有旋涂, 刮涂等方式。
经过上述制程之后产品经过光阻预烤, 曝光, 显影, 最终形成厚 度为 0.5~3um和规则的绝缘层图案。 预烤温度及时间范围为 :60度 -150度, 50秒到 200秒, 曝光能量采用 lOOmj到 500mj, 显影液采 用 Na系或 Ka系碱性溶液, 显影之温度采用 20 40度恒温作业。 再 经过绝缘层硬烤,条件为 200度到 300度,时间为 0.5小时到 3小时, 经过上述制程后,最终形成厚度为 0.5um~3um, 图形规则的第二绝缘 层。
以上内容是结合具体的优选实施方式对本发明所作的进一步详 细说明, 不能认定本发明的具体实施只局限于这些说明。对于本发明 所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范 围。

Claims

权利要求书
1、 一禾中 ITO过桥一体式电容触摸屏, 包括透明基板, 依次层 叠于透明基板的黑色树脂层、 ΙΤΟ过桥电极、第一绝缘层、 ΙΤ0电极、 金属电极和第二绝缘层; 所述的 ΙΤΟ 电极包括电容屏驱动和感应电 极, 具有规则图形结构; 电容屏驱动与感应电极在同一层面, 相互独 立, 相互绝缘, 垂直设计; 所述透明基板包括视窗区和非视窗区, 黑 色树脂层分布在显示屏非视窗区;所述的金属电极线路布线仅在黑色 树脂层区域。
2、如权利要求 1所述的 ΙΤΟ过桥一体式电容触摸屏,其特征是: 所述的透明基板为厚度在 0.5mm~2.0mm的化学强化玻璃基板; 所述 ITO电极规则结构为菱形, 或条形,或方块形, 或雪花型, 或十字型。
3、如权利要求 2所述的 ITO过桥一体式电容触摸屏,其特征是: 所述的黑色树脂层厚度为 0.3um~5um; ITO过桥电极厚度为 50埃米 ~2000埃米; 第一绝缘层的厚度为 0.5~3um; ITO电极层厚度为 50~2000埃米; 金属电极层的厚度为 500~4000 ±矣米; 第二绝缘层厚 度为 0.5~3um。
4、如权利要求 3所述的 ITO过桥一体式电容触摸屏,其特征是: 所述的金属镀膜的金属膜层为 MoNb, AlNd, MoNb堆积而成的三明 治结构, 三者厚度按 50埃米 ~500埃米 :500埃米 ~3000埃米 :50埃米 -500埃米比例搭配, 其中 MoNb合金材料中 Mo和 Nb质量比为 85-95: 5-15, AlNd合金材料中 A1和 Nd质量比为 95~98: 2-5
5、如权利要求 4所述的 ITO过桥一体式电容触摸屏,其特征是: 所述的 ITO包括 In203和 Sn02, 其质量比为 85~95: 5~15。
6、 一种制备 ITO过桥一体式电容触摸屏的方法, 包括步骤: 黑色树脂层的形成:
将黑色树脂经过旋转涂布方式或刮式涂布方式均匀涂布在透明 基板的非视窗区, 涂布厚度为 0.3um~5um, 经过加热器预烤, 曝光, 显影, 使之形成所需的黑色树脂区域; 所述黑色树脂是感光性保护层 光阻剂, 所述光阻剂包括亚克力树脂, 环氧树脂, 负性感光剂, 乙酸 丙二醇单甲基醚酯及黑色颜料; 其比例为树脂类: 乙酸丙二醇单甲基 醚酯: 黑色颜料及负性感光剂 =15~30: 60-80: 1-10;
ITO过桥电极的形成:
对形成黑色树脂层的透明基板,再经过 ITO镀膜,使在透明基板 上形成一层透明及厚度均匀的 ITO膜层, 其厚度为 50埃米〜 2000埃 米;
经过 ITO镀膜的透明基板, 在其 ITO表面涂布一层厚度均匀的 正性光阻材料, 光阻涂布厚度为 lum~5um;
经过光阻预烤, 曝光, 显影, 蚀刻, 脱光阻膜, 最终形成厚度为 50-2000埃米及规则 ITO图案或电极;
所述的 ITO过桥电极包括视窗区的过桥电极 1和黑色树脂层边 缘搭接电极 2, 两者具有规则图形结构; 过桥电极 1连接导通 ITO电 极的驱动线或感应线; 过桥电极 2连接导通金属电极与 ITO电极的 驱动线或感应线;
第一绝缘层的形成:
经过 ITO过桥电极后的透明基板, 在其 ITO膜面涂布一层厚度 均匀的负性光阻材料, 光阻涂布厚度为 0.5um~3Um;
经过光阻预烤, 曝光, 显影, 最终形成厚度为 0.5~3um和规则的 绝缘层图案;
ITO电极层的形成:
形成第一绝缘层的透明基板,再次经过 ITO镀膜,使在玻璃基板 上形成一层透明及厚度均匀的 ITO膜层, 其厚度为 50埃米 ~2000埃 米;
经过 ITO镀膜的透明基板, 在其 ITO表面涂布一层厚度均勾的 正性光阻材料, 光阻涂布厚度为 lum~5um;
经过光阻预烤, 曝光, 显影, 蚀刻, 脱光阻膜, 最终形成厚度为 50-2000埃米及规则 ITO图案或电极;
所述的 ΠΌ电极包括 ΙΤΟ电极 1和 ΙΤΟ电极 2, 具有规则图形 结构; ΙΤΟ电极 1与 ΙΤΟ电极 2在同一层面, 相互独立, 相互绝缘, 垂直设计;
金属电极层的形成:
形成 ΙΤΟ电极层的透明基板,经过金属镀膜,使之在透明基板上 形成一层厚度均匀的金属膜层, 其厚度为 500埃米 ~4000埃米;
经过金属镀膜的透明基板,在其金属表面涂布一层厚度均匀的正 性光阻材料, 光阻涂布厚度为 lum~5um;
经过光阻预烤, 曝光, 显影, 蚀刻, 脱光阻膜, 最终形成厚度为 500-4000埃米及规则金属图案或电极;
第二绝缘层的形成:
经过金属电极后的透明基板,在其金属膜面涂布一层厚度均匀的 负性光阻材料, 光阻涂布厚度为 0.5um~3um;
经过光阻预烤, 曝光, 显影, 最终形成厚度为 0.5~3um和规则的 绝缘层图案。
7、如权利要求 6所述的制备 ITO过桥一体式电容触摸屏的方法, 其特征是: 所述的透明基板为厚度在 0.5~2.0毫米的化学强化玻璃基 板; 所述的 ITO包括 In203和 SnO2, 其质量比为 85~95: 5~15。
8、 如权利要求 7所述的制备 ITO过桥一体式电容触摸屏的 方法, 其特征是: 所述的正性光阻材料主成分为乙酸丙二醇单甲基醚 酯, 环氧树脂及正性感光剂; 负性光阻材料主成分为乙酸丙二醇单甲 基醚酯, 亚克力树脂, 环氧树脂及负性感光剂。
9、如权利要求 8所述的制备 ITO过桥一体式电容触摸屏的方 法, 其特征是:
所述的金属镀膜的金属膜层为 MoNb, AlNd, MoNb堆积而成的 三明治结构,其厚度按 50埃米 ~500埃米: 500埃米〜 3000埃米: 50埃米 -500埃米比例搭配, 其中 MoNb合金材料中 Mo和 Nb质量比为 85-95: 5-15, AlNd合金材料中 A1和 Nd质量比为 95~98: 2-5
10、如权利要求 9所述的制备 ITO过桥一体式电容触摸屏的 方法, 其特征是: 所述的 ITO镀膜的方式为真空磁控溅镀, 或者为化 学气相沉积法, 或者为热蒸镀, 或者为溶胶凝胶。
PCT/CN2012/077140 2011-08-16 2012-06-19 Ito过桥一体式电容触摸屏及制造方法 WO2013023482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110234553.X 2011-08-16
CN201110234553XA CN102253782B (zh) 2011-08-16 2011-08-16 Ito过桥一体式电容触摸屏及制造方法

Publications (1)

Publication Number Publication Date
WO2013023482A1 true WO2013023482A1 (zh) 2013-02-21

Family

ID=44981075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077140 WO2013023482A1 (zh) 2011-08-16 2012-06-19 Ito过桥一体式电容触摸屏及制造方法

Country Status (2)

Country Link
CN (1) CN102253782B (zh)
WO (1) WO2013023482A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114816A1 (en) * 2013-10-24 2015-04-30 Lg Innotek Co., Ltd. Touch panel
US20150130760A1 (en) * 2013-11-13 2015-05-14 Lg Innotek Co., Ltd. Touch panel

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298475B (zh) * 2011-08-16 2012-08-29 深圳市宝明科技股份有限公司 Ito通孔一体式电容触摸屏及制造方法
CN102253782B (zh) * 2011-08-16 2013-05-08 深圳市宝明科技股份有限公司 Ito过桥一体式电容触摸屏及制造方法
CN102541383B (zh) * 2012-02-09 2014-11-26 深圳市宝明科技股份有限公司 无金属电极层非搭接一体式电容触摸屏及其制造方法
CN102662543B (zh) * 2012-03-27 2013-10-30 深圳市宝明科技股份有限公司 新型ito过桥一体式电容触摸屏及其制造方法
CN102662542A (zh) * 2012-03-27 2012-09-12 深圳市宝明科技股份有限公司 新型无金属电极层非搭接一体式电容触摸屏及其制造方法
CN103294293B (zh) 2012-07-27 2016-04-06 上海天马微电子有限公司 内嵌式电容触控屏的触控图形结构
CN102830880A (zh) * 2012-08-21 2012-12-19 深圳市宝明科技股份有限公司 新型ito层非搭接一体式电容触摸屏及其制造方法
CN102955615B (zh) * 2012-11-09 2016-04-06 北京京东方光电科技有限公司 一种触摸屏、触控显示装置及一种触摸屏的制造方法
CN103186309A (zh) * 2013-04-15 2013-07-03 芜湖长信科技股份有限公司 一种电容触控屏及其生产工艺
CN103970391A (zh) * 2014-04-10 2014-08-06 湖北仁齐科技有限公司 Ito架桥的ogs电容触摸屏及其加工工艺
CN104035644A (zh) * 2014-06-19 2014-09-10 深圳市宝明科技股份有限公司 一种彩色电容触摸屏及其制造方法
CN108803924B (zh) * 2018-05-23 2021-06-22 业成科技(成都)有限公司 单层式感应电极及其制造方法
CN113050825B (zh) * 2021-03-09 2024-03-12 昆山龙腾光电股份有限公司 触摸屏的制备方法及触摸屏
CN113296361B (zh) * 2021-05-31 2024-04-12 汕头超声显示器技术有限公司 图形化光敏树脂涂层及其制作方法、电路结构和电容触摸屏

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324827A (zh) * 2007-06-14 2008-12-17 爱普生映像元器件有限公司 静电电容型输入装置
CN201812112U (zh) * 2010-06-25 2011-04-27 姜苓秀 电容触摸屏
CN102253781A (zh) * 2011-08-16 2011-11-23 深圳市宝明科技股份有限公司 金属过桥一体式电容触摸屏及制造方法
CN102253782A (zh) * 2011-08-16 2011-11-23 深圳市宝明科技股份有限公司 Ito过桥一体式电容触摸屏及制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156846A1 (en) * 2008-12-23 2010-06-24 Flextronics Ap, Llc Single substrate capacitive touch panel
CN101853115A (zh) * 2010-05-18 2010-10-06 程抒一 一体化投射式电容触摸屏及其制造方法
CN102081477A (zh) * 2010-12-29 2011-06-01 广东中显科技有限公司 多点触摸面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324827A (zh) * 2007-06-14 2008-12-17 爱普生映像元器件有限公司 静电电容型输入装置
CN201812112U (zh) * 2010-06-25 2011-04-27 姜苓秀 电容触摸屏
CN102253781A (zh) * 2011-08-16 2011-11-23 深圳市宝明科技股份有限公司 金属过桥一体式电容触摸屏及制造方法
CN102253782A (zh) * 2011-08-16 2011-11-23 深圳市宝明科技股份有限公司 Ito过桥一体式电容触摸屏及制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114816A1 (en) * 2013-10-24 2015-04-30 Lg Innotek Co., Ltd. Touch panel
US9811217B2 (en) * 2013-10-24 2017-11-07 Lg Innotek Co., Ltd. Touch panel
US20150130760A1 (en) * 2013-11-13 2015-05-14 Lg Innotek Co., Ltd. Touch panel
US9772727B2 (en) * 2013-11-13 2017-09-26 Lg Innotek Co., Ltd. Touch panel

Also Published As

Publication number Publication date
CN102253782B (zh) 2013-05-08
CN102253782A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2013023482A1 (zh) Ito过桥一体式电容触摸屏及制造方法
WO2013023489A1 (zh) 金属过桥一体式电容触摸屏及制造方法
WO2013023492A1 (zh) 一种ito过桥电容触摸屏及制造方法
WO2013143397A1 (zh) 新型ito过桥一体式电容触摸屏及其制备方法
WO2014029200A1 (zh) 新型ito层非搭接一体式电容触摸屏及其制造方法
WO2013023491A1 (zh) Ito通孔一体式电容触摸屏及制造方法
WO2013023493A1 (zh) 一种ito通孔电容触摸屏及其制造方法
WO2013117130A1 (zh) 无金属电极层非搭接一体式电容触摸屏及其制造方法
CN104407734B (zh) 触控屏的制造方法及触控屏
CN104035644A (zh) 一种彩色电容触摸屏及其制造方法
CN102629176A (zh) 新型金属过桥一体式电容触摸屏及其制造方法
CN102637102A (zh) 新型非搭接一体式电容触摸屏及其制造方法
CN102637101B (zh) 新型ito通孔一体式电容触摸屏及其制造方法
CN202711212U (zh) 新型无金属电极层非搭接一体式电容触摸屏
CN202183091U (zh) 一种ito过桥电容式触摸屏
CN202171796U (zh) 一种ito通孔电容式触摸屏
CN203882300U (zh) 一种彩色电容触摸屏
CN102662542A (zh) 新型无金属电极层非搭接一体式电容触摸屏及其制造方法
CN202177885U (zh) Ito过桥一体式电容触摸屏
CN202230465U (zh) Ito通孔一体式电容触摸屏
CN202486761U (zh) 非搭接一体式电容触摸屏
CN202995687U (zh) 新型ito层非搭接一体式电容触摸屏
CN202331415U (zh) 金属过桥一体式电容触摸屏
CN202486760U (zh) 无金属电极层非搭接一体式电容触摸屏
CN203117948U (zh) 新型ito过桥一体式电容触摸屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823835

Country of ref document: EP

Kind code of ref document: A1