CN102253782B - Ito过桥一体式电容触摸屏及制造方法 - Google Patents

Ito过桥一体式电容触摸屏及制造方法 Download PDF

Info

Publication number
CN102253782B
CN102253782B CN201110234553XA CN201110234553A CN102253782B CN 102253782 B CN102253782 B CN 102253782B CN 201110234553X A CN201110234553X A CN 201110234553XA CN 201110234553 A CN201110234553 A CN 201110234553A CN 102253782 B CN102253782 B CN 102253782B
Authority
CN
China
Prior art keywords
ito
electrode
thickness
ethylmercurichlorendimides
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110234553XA
Other languages
English (en)
Other versions
CN102253782A (zh
Inventor
曹晓星
李晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN BAOMING TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN BAOMING TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN BAOMING TECHNOLOGY Co Ltd filed Critical SHENZHEN BAOMING TECHNOLOGY Co Ltd
Priority to CN201110234553XA priority Critical patent/CN102253782B/zh
Publication of CN102253782A publication Critical patent/CN102253782A/zh
Priority to PCT/CN2012/077140 priority patent/WO2013023482A1/zh
Application granted granted Critical
Publication of CN102253782B publication Critical patent/CN102253782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Abstract

本发明公开了一种ITO过桥一体式电容触摸屏及其制造方法,所述ITO过桥一体式电容触摸屏包括透明基板,依次层叠于透明基板的黑色树脂层、ITO过桥电极、第一绝缘层、ITO电极、金属电极和第二绝缘层;所述的ITO电极包括电容屏驱动和感应电极,具有规则图形结构;电容屏驱动与感应电极在同一层面,相互独立,相互绝缘,垂直设计;所述透明基板包括视窗区和非视窗区,黑色树脂层分布在显示屏非视窗区;所述的金属电极线路布线仅在黑色树脂层区域。本发明通过对电容触摸屏的层叠结构以及ITO架桥方式进行合理的设计,减少了触摸屏总厚度,减轻了触摸屏的重量,有效的提高电容式触摸屏的透光率,工作稳定性,可靠性以及触摸灵敏度。

Description

ITO过桥一体式电容触摸屏及制造方法
技术领域
本发明涉及电容触摸屏技术领域,尤其是涉及一种通过ITO过桥设计的一体式电容触摸屏及其制造方法。
背景技术
随着电子科技的发展,目前手机、数码相机、掌上游戏机、车载DVD、MP3、仪表仪器等的键盘或鼠标逐渐被触摸屏替代。触摸屏的产品在几年前并不是十分火热,而随着人们对于触屏产品的接触越来越多,近两年也被更多人所认可,发展速度逐渐加快。触摸屏迅速的成长,不仅激起了更加激烈的行业竞争,也间接推动了技术的发展,其多点触控的操作方式更是把触摸屏产品的影响力提升到了一个新的高度,也逐渐被人们所关注起来。
触摸屏主要由触摸检测部件和触摸屏控制器组成,触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接收后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。
按照触摸屏的工作原理和传输信息的介质,触摸屏可分为四种,分别为电阻式、电容感应式、红外线式以及表面声波式,当前被广泛使用的是电阻式触摸屏,它是利用压力感应进行电阻控制的;电阻式触摸屏是一种多层的复合薄膜,它的主要部分是一块与显示器表面非常配合的电阻薄膜屏。电阻薄膜屏是以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)ITO(氧化铟锡)导电层,上面再盖有一层外表面硬化处理光滑防擦的塑料层,它的内表面也涂有一层ITO涂层,在它们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘,当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器,控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。
电容式触摸屏的基本原理是利用人体的电流感应进行工作的,电容式触摸屏是一块二层复合玻璃屏,玻璃屏的内表面夹层涂有ITO(氧化铟锡)导电膜(镀膜导电玻璃),最外层是一薄层矽土玻璃保护层,ITO涂层作为工作面,四个角上引出四个电极,当手指触摸在屏幕上时,由于人体电场,用户和触摸屏表面形成一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流,这个电流分别从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。
在电容式触摸屏中,投射式电容触摸屏是当前应用较为广泛的一种,具有结构简单,透光率高等特点。投射式电容触摸屏的触摸感应部件一般为多个行电极和列电极交错形成感应矩阵。通常采用的设计方式包括将行电极和列电极分别设置在同一透明基板的两面,防止在交错位置出现短路;或者将行电极和列电极设置在同一透明基板的同侧,形成于同一导电膜(通常为ITO导电膜)上,在行电极和列电极交错的位置通过设置绝缘层并架导电桥的方式隔开,将行电极和列电极隔开并保证在各自的方向上导通,可以有效的防止其在交错位置短路。
通常采用的设计方案为:行电极或者列电极之一在导电膜上连续设置,则另一个电极在导电膜上以连续设置的电极为间隔设置成若干电极块,在交错点的位置通过导电桥将相邻的电极块电连接,从而形成另一方向上的连续电极;导电桥与连续设置的电极之间由绝缘层分隔,从而有效的阻止行电极和列电极在交错点短路。通常采用的设计方案为:(1)层叠结构依次为透明基板、第一方向电极、绝缘层、导电桥;或者(2)层叠结构依次为透明基板、导电桥、绝缘层、第一方向电极。
但采用传统的设计方案的电容式触摸屏会存在透光率不高以及工作稳定性差的缺陷,传统的设计方案的电容式触摸屏透光率很难突破80%,且整体受力弯曲变形时,容易在界面出现分离,导致电极断路触摸失效,触摸感应部件损坏。
发明内容
本发明的目的之一在于提供一种ITO过桥一体式电容触摸屏,通过对电容触摸屏的层叠结构以及ITO架桥方式进行合理的设计,减少了触摸屏总厚度,减轻了触摸屏的重量,有效的提高电容式触摸屏的透光率,工作稳定性,可靠性以及触摸灵敏度。
为实现上述目的,本发明采用如下技术方案:
一种ITO过桥一体式电容触摸屏,包括透明基板,依次层叠于透明基板的黑色树脂层、ITO过桥电极、第一绝缘层、ITO电极、金属电极和第二绝缘层;所述的ITO电极包括电容屏驱动(ITO电极1)和感应电极(ITO电极2),具有规则图形结构;ITO电极1与ITO电极2在同一层面,相互独立,相互绝缘,垂直设计;所述透明基板包括视窗区和非视窗区,黑色树脂层分布在显示屏非视窗区;所述的金属电极线路布线仅在黑色树脂区域,视窗区无金属电极。
优选的是:所述的透明基板为厚度在厚度0.5~2.0毫米之间的化学强化玻璃基板;所述ITO电极规则结构为菱形,或条形,或方块形,或雪花型,或十字型等图形。
所述的黑色树脂层可有效遮挡非可视区的图层,可以遮光,以及遮挡金属线等产品下方的可见物。ITO过桥电极包括显示屏视窗区的过桥电极1和黑色树脂层边缘过桥电极2,两者具有规则图形结构;过桥电极1连接导通ITO电极的驱动线(ITO电极1左右端)或感应线(ITO电极2上下端---图中未显示);过桥电极2连接导通金属电极与ITO电极的驱动线(ITO电极1)或感应线(ITO电极2)和防止ITO电极的驱动线(ITO电极1)或感应线(ITO电极2)在黑色树脂层斜坡处断裂。第一绝缘层使ITO电极1与ITO电极2处于绝缘状况,互不导通。ITO电极信号导通的柔性线路板邦定区域通过金属电极实现。第二绝缘层保护金属电极与ITO导线,使之与空气绝缘。
本发明的目的之二在于提供一种ITO过桥一体式电容触摸屏的制造方法,采用如下技术方案:
黑色树脂层的形成:将黑色树脂经过旋转涂布方式或刮式涂布方式均匀涂布在透明基板上,涂布厚度为0.3um~5um,经过加热器预烤,曝光,显影,使之形成所需的黑色树脂区域;黑色树脂区域呈梯形结构,中间厚度为0.3um~5um,其边缘斜角为6~60度之间,角度平缓,目的为ITO电极(驱动线ITO电极1和感应线ITO电极2)通过斜坡时不会由于厚度差异大导致ITO电极断裂。黑色树脂区域为显示屏非视窗区,目的为遮挡金属电极;所述黑色树脂是感光性保护层光阻剂(商品为台湾永光化学所生产EK410),是一种黑色负性光阻材料,主要成分为:亚克力树脂,环氧树脂,负性感光剂,乙酸丙二醇单甲基醚酯及黑色颜料,具体比例为树脂类∶乙酸丙二醇单甲基醚酯∶黑色颜料及负性感光剂=15~30∶60~80∶1~10。
ITO过桥电极的形成:对形成黑色树脂层的透明基板,再经过ITO镀膜,使在玻璃基板上形成一层透明及厚度均匀的ITO膜层,其厚度为50埃米~2000埃米(面电阻为10~430欧姆);
经过ITO镀膜的透明基板,在其ITO表面涂布一层厚度均匀的正性光阻材料,光阻涂布厚度为1um~5um;
经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为50~2000埃米(面电阻为10~430欧姆)及规则ITO图案或电极。
所述的ITO过桥电极包括显示屏视区的过桥电极和黑色树脂层边缘搭接电极,具有规则图形结构,两者在同一层面,相互独立,相互绝缘。
第一绝缘层的形成:
经过ITO过桥电极后的透明基板,在其ITO膜面涂布一层厚度均匀的负性光阻材料,光阻涂布厚度为0.5um~3um;
经过光阻预烤,曝光,显影,最终形成厚度为0.5~3um和规则的绝缘层图案(如长方形,正方形,菱形,椭圆形等图案)。
ITO电极层的形成:
形成第一绝缘层的透明基板,再次经过ITO镀膜,使在玻璃基板上形成一层透明及厚度均匀的ITO膜层,其厚度为50埃米~2000埃米(面电阻为10~430欧姆);经过ITO镀膜的透明基板,在其ITO表面涂布一层厚度均匀的正性光阻材料,光阻涂布厚度为1um~5um;
经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为50~2000埃米(面电阻为10~430欧姆)及规则ITO图案或电极;
所述的ITO电极包括电容屏驱动(ITO电极1)和感应电极(ITO电极2),具有规则图形结构;ITO电极1与ITO电极2在同一层面,相互独立,相互绝缘,垂直设计。
ITO电极1导通是通过ITO过桥电极1左右搭接,使ITO电极1形成驱动通路;ITO电极2的导通是自身ITO通过第一绝缘层的底部到顶部的爬升,再从第一绝缘层的顶部到底部的下降,使ITO电极2形成感应通路。
金属电极层的形成:
形成ITO电极层的透明基板,经过金属镀膜,使之在透明基板上形成一层厚度均匀的金属膜层,其厚度为500埃米~4000埃米。
经过金属镀膜的透明基板,在其金属表面涂布一层厚度均匀的正性光阻材料,光阻涂布厚度为1um~5um;
经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为500~4000埃米及规则金属图案或电极。
第二绝缘层的形成:
经过金属电极后的透明基板,在其金属膜面涂布一层厚度均匀的负性光阻材料,光阻涂布厚度为0.5um~3um;
经过光阻预烤,曝光,显影,最终形成厚度为0.5~3um和规则的绝缘层图案。
优选的:所述的透明基板为厚度在厚度0.5mm~2.0mm之间毫米的化学强化玻璃基板;所述的ITO由In2O3和SnO2组成,其质量比为85~95∶5~15。ITO镀膜的方式可以采用真空磁控溅镀,化学气相沉积法,热蒸镀,溶胶凝胶。
所述的正性光阻材料主成分为乙酸丙二醇单甲基醚酯,环氧树脂及正性感光剂(商品名为台湾新应材公司生产的TR400);负性光阻材料主成分为乙酸丙二醇单甲基醚酯,亚克力树脂,环氧树脂及负性感光剂(商品名为台湾达兴公司生产POC A46)涂布光阻材料方式有滚涂,旋涂,刮涂等方式。
金属镀膜的金属膜层为MoNb,AlNd,MoNb堆积而成的三明治结构,厚度按50埃米~500埃米∶500埃米~3000埃米∶50埃米~500埃米比例搭配,其中MoNb合金材料中Mo和Nb质量比为85~95∶5~15,AlNd合金材料中Al和Nd质量比为95~98∶2~5。。金属材料选型也可由银合金或铜合金组成,成分按一定比例组合而成。金属膜层镀膜为真空磁控溅镀。
本发明与现有技术相比,具有如下优点和有益效果:
本发明通过对层叠结构进行合理的设置,在一层透明基板上完成触摸功能信号电极和黑色树脂覆盖层,优化层叠ITO过桥电极层等顺序和图案的方式,大幅提升了产品的良率,降低成本,提升产品可靠性。本发明中基板厚度0.5mm~2.0mm之间,具有厚度薄,质量轻等优势;通过对各层的合理设计,使得透过率可以达到90%以上。
本发明采用ITO过桥的设计结构,使得触摸屏在显示区视窗区域看不到金属过桥点,大幅提升了产品透过率。
附图说明
图1为本发明所述的ITO过桥电容触摸屏的结构示意图;
图2为本发明实施例所述的玻璃基板结构示意图;
图3为ITO过桥局部放大结构示意图;
图4为ITO过桥剖面结构示意图;
图5为黑色树脂边缘ITO与金属电极剖面结构示意图;
图6为本发明所述的ITO过桥电容一体式触摸屏的剖面结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
如图1及图2所示,所述的ITO过桥电容触摸屏,包括厚度在0.5mm~2.0mm之间的化学强化玻璃基板11,依次层叠于玻璃基板的黑色树脂层12、ITO过桥电极13、第一绝缘层14、ITO电极15、金属电极16和第二绝缘层17;所述的ITO过桥电极13包括显示屏视区的过桥电极和黑色树脂层边缘搭接电极,具有规则图形结构,可以是菱形,或条形,或方块形,或雪花型,或十字型等图形。
玻璃基板包括视窗区21和非视窗区22,黑色树脂层12分布在显示屏非视窗区22。
所述的黑色树脂层可有效遮挡非可视区的图层,可以遮光,以及遮挡金属线等产品下方的可见物。
图3至图6所示为本实施例所述ITO过桥电容触摸屏的局部结构放大示意图或者剖面结构示意图:ITO过桥电极43包括显示屏视窗区的过桥电极1和黑色树脂层51边缘过桥电极2,两者具有规则图形结构,可以是菱形,或条形,或方块形,或雪花型,或十字型等图形;过桥电极1连接导通ITO电极15的驱动线(ITO电极1左右端)42或感应线(ITO电极2上下端---图中未显示)46;过桥电极2连接导通金属电极52与ITO电极的驱动线(ITO电极1)42或感应线(ITO电极2)46和防止ITO电极的驱动线(ITO电极1)42或感应线(ITO电极2)46在黑色树脂层51斜坡处断裂。第一绝缘层45使ITO电极的驱动线(ITO电极1)42与感应线(ITO电极2)46处于绝缘状况,互不导通。ITO电极信号导通的柔性线路板邦定区域通过金属电极实现。第二绝缘层44保护金属电极52与ITO导线,使之与空气绝缘。
其制备工艺如下:
将黑色树脂经过旋转涂布方式或刮式涂布方式均匀涂布在透明基板41(11)上,涂布厚度为0.3um~5um,经过加热器预烤,曝光,显影,使之形成所需的黑色树脂区域;黑色树脂区域呈梯形结构,中间厚度为0.3um~5um,其边缘斜角为6~60度之间,角度平缓,目的为ITO电极(驱动线ITO电极1和感应线ITO电极2)通过斜坡时不会由于厚度差异大导致ITO电极断裂。黑色树脂区域为显示屏非视窗区,目的为遮挡金属电极;所述黑色树脂是感光性保护层光阻剂(商品为台湾永光化学所生产EK410),是一种黑色负性光阻材料,主要成分为:亚克力树脂,环氧树脂,负性感光剂,乙酸丙二醇单甲基醚酯及黑色颜料,具体比例为树脂类∶乙酸丙二醇单甲基醚酯∶黑色颜料及负性感光剂=15~30∶60~80∶1~10。
预烤温度及时间范围为:60度~150度,50秒到200秒,曝光能量采用100mj到500mj,显影液采用Na系或Ka系碱性溶液,显影之温度采用20~40度恒温作业。再经过黑色树脂层硬烤,条件为200度到300度,时间为半小时到3小时,经过上述制程后,最终形成厚度为0.3um~5um,图形规则的黑色树脂层51(12)。
ITO过桥电极的形成:对透明玻璃基板进行化学强化,再经过ITO镀膜,使在玻璃基板上形成一层透明及厚度均匀的ITO膜层,其厚度为50埃米~2000埃米(面电阻为10~430欧姆);ITO材料由In2O3和SnO2组成,其质量比为85~95∶5~15。ITO镀膜的方式有真空磁控溅镀,化学气相沉积法,热蒸镀,溶胶凝胶。
经过ITO镀膜的透明玻璃基板,在其ITO表面涂布一层厚度均匀的正性光阻材料,光阻涂布厚度为1um~5um;正性光阻材料主成分为乙酸丙二醇单甲基醚酯,环氧树脂及感光材料。光阻涂布厚度为1um~5um。涂布光阻材料方式有滚涂,旋涂,刮涂等方式。
经过上述制程之后产品经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为50~2000埃米(面电阻为10~430欧姆)及规则ITO图案或电极。预烤温度及时间范围为:60度~150度,50秒到200秒,曝光能量采用100mj到500mj,显影液采用Na系或Ka系碱性溶液,显影之温度采用20~40度恒温作业。ITO蚀刻液采用盐酸及硝酸按一定比例混合而成的药液,使其酸的PH值落在1~3之间,蚀刻温度在40~50度之间作业。脱光阻膜液采用二甲亚砜和乙醇胺按一定的比例混合而成,百分比为70%∶30%,脱膜温度在40~80度之间作业。
第一绝缘层的形成:
经过ITO过桥电极后的透明玻璃基板,在其ITO膜面涂布一层厚度均匀的负性光阻材料,负性光阻材料主成分为乙酸丙二醇单甲基醚酯,亚克力树脂,环氧树脂及负性感光剂,光阻涂布厚度为0.5um~3um;涂布负性光阻材料方式有旋涂,刮涂等方式。
经过上述制程之后产品经过光阻预烤,曝光,显影,最终形成厚度为0.5~3um和规则的绝缘层图案。预烤温度及时间范围为:60度~150度,50秒到200秒,曝光能量采用100mj到500mj,显影液采用Na系或Ka系碱性溶液,显影之温度采用20~40度恒温作业。再经过绝缘层硬烤,条件为200度到300度,时间为半小时到3小时,经过上述制程后,最终形成厚度为0.5um~3um,图形规则的绝缘层。
ITO电极层的形成:
形成第一绝缘层的透明玻璃基板,再次经过ITO镀膜,使在玻璃基板上形成一层透明及厚度均匀的ITO膜层,其厚度为50埃米~2000埃米(面电阻为10~430欧姆);ITO材料由In2O3和SnO2组成,其质量比为85~95∶5~15。ITO镀膜的方式有真空磁控溅镀,化学气相沉积法,热蒸镀,溶胶凝胶。
经过ITO镀膜的玻璃基板,在其ITO表面涂布一层厚度均匀的正性光阻材料,正性光阻材料主成分为乙酸丙二醇单甲基醚酯,环氧树脂及感光材料;光阻涂布厚度为1um~5um。涂布光阻材料方式有滚涂,旋涂,刮涂等方式。
经过上述制程之后产品经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为50~2000埃米(面电阻为10~430欧姆)及规则ITO图案或电极。预烤温度及时间范围为:60度~150度,50秒到200秒,曝光能量采用100mj到500mj,显影液采用Na系或Ka系碱性溶液,显影之温度采用20~40度恒温作业。ITO蚀刻液采用盐酸及硝酸按一定比例混合而成的药液,使其酸的PH值落在1~3之间,蚀刻温度在40~50度之间作业。脱光阻膜液采用二甲亚砜和乙醇胺按一定的比例混合而成,百分比为70%∶30%,脱膜温度在40~80度之间作业。
所述的ITO电极包括电容屏驱动(ITO电极1)和感应电极(ITO电极2),具有规则图形结构;ITO电极1与ITO电极2在同一层面,相互独立,相互绝缘,垂直设计。
金属电极层的形成:
形成ITO电极层的玻璃基板,再经过金属镀膜,使在玻璃基板上形成一层厚度均匀的金属膜层,其厚度为500埃米~4000埃米。金属膜层材料为MoNb,AlNd,MoNb堆积而成的三明治结构,厚度按50埃米~500埃米∶500埃米~3000埃米∶50埃米~500埃米比例搭配,其中MoNb合金材料中Mo和Nb质量比为85~95∶5~15,AlNd合金材料中Al和Nd质量比为95~98∶2~5。金属材料选型也可由银合金或铜合金组成,成分按一定比例组合而成。金属镀膜为真空磁控溅镀。
经过金属镀膜的玻璃基板,在其金属表面涂布一层厚度均匀的正性光阻材料,正性光阻材料主成分为乙酸丙二醇单甲基醚酯,环氧树脂及感光材料;光阻涂布厚度为1um~5um。涂布光阻材料方式有滚涂,旋涂,刮涂等方式。经过上述制程之后产品经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为500~4000埃米及规则金属图案或电极。预烤温度及时间范围为:60度~150度,50秒到200秒,曝光能量采用100mj到500mj,显影液采用Na系或Ka系碱性溶液,显影之温度采用20~40度恒温作业。金属蚀刻液采用磷酸、醋酸及硝酸按一定比例混合而成的药液,蚀刻温度在40~50度之间作业。脱光阻膜液采用二甲亚砜和乙醇胺按一定的比例混合而成,百分比为70%∶30%,脱膜温度在40~80度之间作业。
所述的金属电极线路布线仅在黑色树脂区域,视窗区无金属电极。
第二绝缘层的形成:
经过金属电极后的玻璃基板,在其金属膜面涂布一层厚度均匀的负性光阻材料,负性光阻材料主成分为乙酸丙二醇单甲基醚酯,亚克力树脂,环氧树脂及负性感光剂(商品名为台湾达兴公司生产POC A46);光阻涂布厚度为0.5um~3um。涂布负性光阻材料方式有旋涂,刮涂等方式。
经过上述制程之后产品经过光阻预烤,曝光,显影,最终形成厚度为0.5~3um和规则的绝缘层图案。预烤温度及时间范围为:60度~150度,50秒到200秒,曝光能量采用100mj到500mj,显影液采用Na系或Ka系碱性溶液,显影之温度采用20~40度恒温作业。再经过绝缘层硬烤,条件为200度到300度,时间为0.5小时到3小时,经过上述制程后,最终形成厚度为0.5um~3um,图形规则的第二绝缘层。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

1.一种ITO过桥一体式电容触摸屏,包括透明基板,依次层叠于透明基板的黑色树脂层、ITO过桥电极、第一绝缘层、ITO电极、金属电极和第二绝缘层;所述的ITO电极包括电容屏驱动和感应电极,具有规则图形结构;电容屏驱动与感应电极在同一层面,相互独立,相互绝缘,垂直设计;所述透明基板包括视窗区和非视窗区,黑色树脂层分布在显示屏非视窗区;所述的金属电极线路布线仅在黑色树脂层区域;金属电极层为在ITO电极层的玻璃基板经过金属镀膜形成的一层厚度均匀的金属膜层,所述的金属膜层为MoNb,AlNd,MoNb堆积而成的三明治结构,三者厚度按50埃米~500埃米:500埃米~3000埃米:50埃米~500埃米比例搭配,其中MoNb合金材料中Mo和Nb质量比为85~95:5~15,AlNd合金材料中Al和Nd质量比为95~98:2~5。
2.如权利要求1所述的ITO过桥一体式电容触摸屏,其特征是:所述的透明基板为厚度在0.5mm~2.0mm的化学强化玻璃基板;所述ITO电极规则结构为菱形,或条形,或方块形,或十字型。
3.如权利要求2所述的ITO过桥一体式电容触摸屏,其特征是:所述的黑色树脂层厚度为0.3um~5um;ITO过桥电极厚度为50埃米~2000埃米;第一绝缘层的厚度为0.5~3um;ITO电极层厚度为50~2000埃米;金属电极层的厚度为500~4000埃米;第二绝缘层厚度为0.5~3um。
4.如权利要求3所述的ITO过桥一体式电容触摸屏,其特征是:所述的ITO包括In2O3和SnO2,其质量比为85~95:5~15。
5.一种制备ITO过桥一体式电容触摸屏的方法,包括步骤:
黑色树脂层的形成:
将黑色树脂经过旋转涂布方式或刮式涂布方式均匀涂布在透明基板的非视窗区,涂布厚度为0.3um~5um,经过加热器预烤,曝光,显影,使之形成所需的黑色树脂区域;所述黑色树脂是感光性保护层光阻剂,所述光阻剂包括亚克力树脂,环氧树脂,负性感光剂,乙酸丙二醇单甲基醚酯及黑色颜料;其比例为树脂类:乙酸丙二醇单甲基醚酯:黑色颜料及负性感光剂=15~30:60~80:1~10;
ITO过桥电极的形成:
对形成黑色树脂层的透明基板,再经过ITO镀膜,使在透明基板上形成一层透明及厚度均匀的ITO膜层,其厚度为50埃米~2000埃米;
经过ITO镀膜的透明基板,在其ITO表面涂布一层厚度均匀的正性光阻材料,光阻涂布厚度为1um~5um;
经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为50~2000埃米及规则ITO图案或电极;
所述的ITO过桥电极包括视窗区的过桥电极1和黑色树脂层边缘搭接电极2,两者具有规则图形结构;过桥电极1连接导通ITO电极的驱动线或感应线;过桥电极2连接导通金属电极与ITO电极的驱动线或感应线;
第一绝缘层的形成:
经过ITO过桥电极后的透明基板,在其ITO膜面涂布一层厚度均匀的负性光阻材料,光阻涂布厚度为0.5um~3um;
经过光阻预烤,曝光,显影,最终形成厚度为0.5~3um和规则的绝缘层图案;
ITO电极层的形成:
形成第一绝缘层的透明基板,再次经过ITO镀膜,使在玻璃基板上形成一层透明及厚度均匀的ITO膜层,其厚度为50埃米~2000埃米;
经过ITO镀膜的透明基板,在其ITO表面涂布一层厚度均匀的正性光阻材料,光阻涂布厚度为1um~5um;
经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为50~2000埃米及规则ITO图案或电极;
所述的ITO电极包括ITO电极1和ITO电极2,具有规则图形结构;ITO电极1与ITO电极2在同一层面,相互独立,相互绝缘,垂直设计;
金属电极层的形成:
形成ITO电极层的透明基板,经过金属镀膜,使之在透明基板上形成一层厚度均匀的金属膜层,其厚度为500埃米~4000埃米;
经过金属镀膜的透明基板,在其金属表面涂布一层厚度均匀的正性光阻材料,光阻涂布厚度为1um~5um;
经过光阻预烤,曝光,显影,蚀刻,脱光阻膜,最终形成厚度为500~4000埃米及规则金属图案或电极;
第二绝缘层的形成:
经过金属电极后的透明基板,在其金属膜面涂布一层厚度均匀的负性光阻材料,光阻涂布厚度为0.5um~3um;
经过光阻预烤,曝光,显影,最终形成厚度为0.5~3um和规则的绝缘层图案。
6.如权利要求5所述的制备ITO过桥一体式电容触摸屏的方法,其特征是:所述的透明基板为厚度在0.5~2.0毫米的化学强化玻璃基板;所述的ITO包括In2O3和SnO2,其质量比为85~95:5~15。
7.如权利要求6所述的制备ITO过桥一体式电容触摸屏的方法,其特征是:所述的正性光阻材料主成分为乙酸丙二醇单甲基醚酯,环氧树脂及正性感光剂;负性光阻材料主成分为乙酸丙二醇单甲基醚酯,亚克力树脂,环氧树脂及负性感光剂。
8.如权利要求7所述的制备ITO过桥一体式电容触摸屏的方法,其特征是:
所述的金属镀膜的金属膜层为MoNb,AlNd,MoNb堆积而成的三明治结构,其厚度按50埃米~500埃米:500埃米~3000埃米:50埃米~500埃米比例搭配,其中MoNb合金材料中Mo和Nb质量比为85~95:5~15,AlNd合金材料中Al和Nd质量比为95~98:2~5。
9.如权利要求8所述的制备ITO过桥一体式电容触摸屏的方法,其特征是:所述的ITO镀膜的方式为真空磁控溅镀,或者为化学气相沉积法,或者为热蒸镀,或者为溶胶凝胶。
CN201110234553XA 2011-08-16 2011-08-16 Ito过桥一体式电容触摸屏及制造方法 Active CN102253782B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110234553XA CN102253782B (zh) 2011-08-16 2011-08-16 Ito过桥一体式电容触摸屏及制造方法
PCT/CN2012/077140 WO2013023482A1 (zh) 2011-08-16 2012-06-19 Ito过桥一体式电容触摸屏及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110234553XA CN102253782B (zh) 2011-08-16 2011-08-16 Ito过桥一体式电容触摸屏及制造方法

Publications (2)

Publication Number Publication Date
CN102253782A CN102253782A (zh) 2011-11-23
CN102253782B true CN102253782B (zh) 2013-05-08

Family

ID=44981075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110234553XA Active CN102253782B (zh) 2011-08-16 2011-08-16 Ito过桥一体式电容触摸屏及制造方法

Country Status (2)

Country Link
CN (1) CN102253782B (zh)
WO (1) WO2013023482A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298475B (zh) * 2011-08-16 2012-08-29 深圳市宝明科技股份有限公司 Ito通孔一体式电容触摸屏及制造方法
CN102253782B (zh) * 2011-08-16 2013-05-08 深圳市宝明科技股份有限公司 Ito过桥一体式电容触摸屏及制造方法
CN102541383B (zh) * 2012-02-09 2014-11-26 深圳市宝明科技股份有限公司 无金属电极层非搭接一体式电容触摸屏及其制造方法
CN102662543B (zh) * 2012-03-27 2013-10-30 深圳市宝明科技股份有限公司 新型ito过桥一体式电容触摸屏及其制造方法
CN102662542A (zh) * 2012-03-27 2012-09-12 深圳市宝明科技股份有限公司 新型无金属电极层非搭接一体式电容触摸屏及其制造方法
CN103294293B (zh) 2012-07-27 2016-04-06 上海天马微电子有限公司 内嵌式电容触控屏的触控图形结构
CN102830880A (zh) * 2012-08-21 2012-12-19 深圳市宝明科技股份有限公司 新型ito层非搭接一体式电容触摸屏及其制造方法
CN102955615B (zh) * 2012-11-09 2016-04-06 北京京东方光电科技有限公司 一种触摸屏、触控显示装置及一种触摸屏的制造方法
CN103186309A (zh) * 2013-04-15 2013-07-03 芜湖长信科技股份有限公司 一种电容触控屏及其生产工艺
KR102098386B1 (ko) * 2013-10-24 2020-04-07 엘지이노텍 주식회사 터치 패널
KR102187911B1 (ko) * 2013-11-13 2020-12-07 엘지이노텍 주식회사 터치 패널
CN103970391A (zh) * 2014-04-10 2014-08-06 湖北仁齐科技有限公司 Ito架桥的ogs电容触摸屏及其加工工艺
CN104035644A (zh) * 2014-06-19 2014-09-10 深圳市宝明科技股份有限公司 一种彩色电容触摸屏及其制造方法
CN108803924B (zh) * 2018-05-23 2021-06-22 业成科技(成都)有限公司 单层式感应电极及其制造方法
CN113050825B (zh) * 2021-03-09 2024-03-12 昆山龙腾光电股份有限公司 触摸屏的制备方法及触摸屏
CN113296361B (zh) * 2021-05-31 2024-04-12 汕头超声显示器技术有限公司 图形化光敏树脂涂层及其制作方法、电路结构和电容触摸屏

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156846A1 (en) * 2008-12-23 2010-06-24 Flextronics Ap, Llc Single substrate capacitive touch panel
CN101853115A (zh) * 2010-05-18 2010-10-06 程抒一 一体化投射式电容触摸屏及其制造方法
CN102081477A (zh) * 2010-12-29 2011-06-01 广东中显科技有限公司 多点触摸面板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506785B2 (ja) * 2007-06-14 2010-07-21 エプソンイメージングデバイス株式会社 静電容量型入力装置
CN201812112U (zh) * 2010-06-25 2011-04-27 姜苓秀 电容触摸屏
CN102253782B (zh) * 2011-08-16 2013-05-08 深圳市宝明科技股份有限公司 Ito过桥一体式电容触摸屏及制造方法
CN102253781B (zh) * 2011-08-16 2013-09-11 深圳市宝明科技股份有限公司 金属过桥一体式电容触摸屏及制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156846A1 (en) * 2008-12-23 2010-06-24 Flextronics Ap, Llc Single substrate capacitive touch panel
CN101853115A (zh) * 2010-05-18 2010-10-06 程抒一 一体化投射式电容触摸屏及其制造方法
CN102081477A (zh) * 2010-12-29 2011-06-01 广东中显科技有限公司 多点触摸面板

Also Published As

Publication number Publication date
WO2013023482A1 (zh) 2013-02-21
CN102253782A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
CN102253782B (zh) Ito过桥一体式电容触摸屏及制造方法
CN102253781B (zh) 金属过桥一体式电容触摸屏及制造方法
CN102662543B (zh) 新型ito过桥一体式电容触摸屏及其制造方法
CN102236492B (zh) 一种ito过桥电容触摸屏及制造方法
CN102298475B (zh) Ito通孔一体式电容触摸屏及制造方法
CN102289334B (zh) 一种ito通孔电容触摸屏及其制造方法
CN102830880A (zh) 新型ito层非搭接一体式电容触摸屏及其制造方法
CN102541383B (zh) 无金属电极层非搭接一体式电容触摸屏及其制造方法
CN104035644A (zh) 一种彩色电容触摸屏及其制造方法
CN102629176A (zh) 新型金属过桥一体式电容触摸屏及其制造方法
CN102637102A (zh) 新型非搭接一体式电容触摸屏及其制造方法
CN102637101B (zh) 新型ito通孔一体式电容触摸屏及其制造方法
CN202711212U (zh) 新型无金属电极层非搭接一体式电容触摸屏
CN202183091U (zh) 一种ito过桥电容式触摸屏
CN102662542A (zh) 新型无金属电极层非搭接一体式电容触摸屏及其制造方法
CN202171796U (zh) 一种ito通孔电容式触摸屏
CN203882300U (zh) 一种彩色电容触摸屏
CN202177885U (zh) Ito过桥一体式电容触摸屏
CN202331415U (zh) 金属过桥一体式电容触摸屏
CN202230465U (zh) Ito通孔一体式电容触摸屏
CN202486761U (zh) 非搭接一体式电容触摸屏
CN202486760U (zh) 无金属电极层非搭接一体式电容触摸屏
CN202711213U (zh) 新型金属过桥一体式电容触摸屏
CN202995687U (zh) 新型ito层非搭接一体式电容触摸屏
CN203117948U (zh) 新型ito过桥一体式电容触摸屏

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 518000 room 3001, building 2, Huilong business center, North Station community, Minzhi street, Longhua District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN BAOMING TECHNOLOGY Ltd.

Address before: 518000, District, Guangdong City, Baoan District Province, Guanlan Road, Niu Tai Lake paddy Industry Park, B District

Patentee before: SHENZHEN BAOMING TECHNOLOGY Ltd.