WO2013022130A1 - 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자 - Google Patents

반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자 Download PDF

Info

Publication number
WO2013022130A1
WO2013022130A1 PCT/KR2011/005777 KR2011005777W WO2013022130A1 WO 2013022130 A1 WO2013022130 A1 WO 2013022130A1 KR 2011005777 W KR2011005777 W KR 2011005777W WO 2013022130 A1 WO2013022130 A1 WO 2013022130A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substrate
absorption region
laser absorption
semiconductor light
Prior art date
Application number
PCT/KR2011/005777
Other languages
English (en)
French (fr)
Inventor
한재호
김성태
채승완
이종호
김제원
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to PCT/KR2011/005777 priority Critical patent/WO2013022130A1/ko
Priority to US14/237,515 priority patent/US20140183589A1/en
Priority to CN201180072761.2A priority patent/CN103733359A/zh
Publication of WO2013022130A1 publication Critical patent/WO2013022130A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • the present invention relates to a semiconductor light emitting device manufacturing method and a semiconductor light emitting device manufactured thereby, and more particularly, to a semiconductor light emitting device manufacturing method that can minimize the damage to the light emitting structure during the scribing process for device unit separation. .
  • a semiconductor light emitting device is a semiconductor device capable of generating light of various colors based on recombination of electrons and holes at junctions of p and n type semiconductors when a current is applied.
  • Such semiconductor light emitting devices have a number of advantages, such as long lifespan, low power supply, excellent initial driving characteristics, high vibration resistance, etc., compared to filament based light emitting devices.
  • group III nitride semiconductors capable of emitting light in a blue series short wavelength region have been in the spotlight.
  • a scribing process is required for sequentially growing an n-type semiconductor layer, an active layer, and a p-type semiconductor layer on a substrate to form a light emitting stacked body, and then cutting the light into a device.
  • mechanical scribing or laser scribing using a diamond tip may be used.
  • a metal reflective film is applied to the back surface of the substrate, which is difficult to use. It is because it is difficult to form a groove
  • Laser scribing may be used when a metal reflective film is applied to the back surface of the substrate, but debris may be adsorbed to the light emitting structure (particularly, the side portion) or crystal change may occur by the laser beam during the scribing process.
  • a region acts as a light absorbing layer, thereby lowering the luminous efficiency.
  • An object of the present invention is to provide a method for manufacturing a semiconductor light emitting device that can minimize the damage to the light emitting structure during the scribing process for device unit separation. Further, another object of the present invention is to provide a semiconductor light emitting device obtained by the method for manufacturing a semiconductor light emitting device.
  • the light emitting structure may be partially removed from two or more regions to expose the first conductive semiconductor layer in element units, and a first surface may be exposed on the exposed surface of the first conductive semiconductor layer.
  • the method may further include forming an electrode and forming a second electrode on the second conductive semiconductor layer.
  • the region except for the laser absorption region of the reflective film may be made of a material containing Ag or Al.
  • the wavelength of the laser may be 800 ⁇ 1200nm.
  • the laser absorption region may be made of a metal or an alloy.
  • the laser absorption region may be made of a metal oxide.
  • the laser absorption region may be made of one material selected from the group consisting of C, Cu, and Ti.
  • the method may further include wrapping the substrate before forming the reflective film.
  • a substrate having a first and a second main surface facing each other, a light emitting structure formed on the first main surface of the substrate, the light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; It provides a semiconductor light emitting device comprising a reflective film formed on the second main surface of the laser and a laser absorption region formed on the side end portion of the reflective film.
  • the laser absorption region may form the same surface as one side of the substrate and the light emitting structure.
  • the laser absorption region may be made of a material capable of absorbing a laser having a wavelength of 800 ⁇ 1200nm.
  • the laser absorption region may be made of a metal or an alloy.
  • the laser absorption region may be made of a metal oxide.
  • the laser absorption region may be made of one material selected from the group consisting of C, Cu, and Ti.
  • the reflective film may be made of a material containing Ag or Al.
  • the scribing process can be performed using a stealth laser, it is possible to minimize the phenomenon that an unintended light absorbing layer is generated on the side of the light emitting structure. Therefore, the reliability and luminous efficiency of the semiconductor light emitting device thus obtained can be improved.
  • 1 to 7 are process cross-sectional views schematically showing a method of manufacturing a semiconductor light emitting device according to one embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a semiconductor light emitting device according to one embodiment of the present invention.
  • 1 to 7 are process cross-sectional views schematically showing a method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention.
  • 8 is a cross-sectional view schematically showing a semiconductor light emitting device according to an embodiment of the present invention and corresponds to a structure obtained by the manufacturing method proposed by the present invention.
  • the first main surface of the substrate 100 is prepared by providing a substrate 100 having first and second main surfaces facing each other.
  • the first conductivity type semiconductor layer 101, the active layer 102 and the second conductivity type semiconductor layer 103 are sequentially formed thereon.
  • a structure including the first conductive semiconductor layer 101, the active layer 102, and the second conductive semiconductor layer 103 may be referred to as a light emitting structure.
  • the light emitting structure may be separated into a plurality of unit light emitting devices by a scribing process.
  • the substrate 100 may be provided as a substrate for semiconductor growth, and a substrate made of an electrically insulating and conductive material such as sapphire, SiC, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN, or the like may be used.
  • an electrically insulating substrate 100 as the sapphire having electrical insulation, as will be described later, an etching process for forming an electrode connected to the first conductive semiconductor layer 101 may be performed. Entails.
  • Sapphire is a Hexa-Rhombo R3c symmetric crystal, whose lattice constants in the c-axis and a-direction are 13.001 ⁇ and 4.758 ⁇ , respectively, C (0001) plane, A (1120) plane, and R (1102). ) And the like.
  • the C plane is mainly used as a nitride growth substrate because the C surface is relatively easy to grow and stable at high temperatures.
  • the first and second conductivity-type semiconductor layers 101 and 103 may be n-type and p-type semiconductor layers, respectively, and may be formed of a nitride semiconductor. Therefore, the present invention is not limited thereto, but in the present embodiment, the first and second conductivity types may be understood to mean n-type and 9-type, respectively.
  • the first and second conductivity-type semiconductor layers 101 and 103 are Al x In y Ga (1-xy) N composition formulas, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ x + y ⁇ 1. ), And for example, a material such as GaN, AlGaN, InGaN, etc. may correspond to this.
  • the active layer 102 formed between the first and second conductivity type semiconductor layers 101 and 103 emits light having a predetermined energy by recombination of electrons and holes, and the quantum well layer and the quantum barrier layer alternate with each other.
  • a multi-quantum well (MQW) structure for example, InGaN / GaN structure, can be used.
  • the first and second conductivity-type semiconductor layers 101 and 103 and the active layer 102 constituting the light emitting structure may be grown using processes known in the art, such as MOCVD, MBE, HVPE, and the like.
  • the exposed area of the first conductivity type semiconductor layer 101 corresponds to the number of unit light emitting devices to be obtained.
  • an appropriate etching process such as ICP-RIE may be used.
  • the first conductive semiconductor layer 101 is exposed to form an electrode. If the first conductive semiconductor layer 101 does not need to be exposed, for example, the substrate 100 may be used. If it is a conductive substrate it may be omitted.
  • FIG. 2 illustrates a structure in which two light emitting devices are formed on the substrate 100, it will be apparent to those skilled in the art that three or more light emitting devices may be formed.
  • the first electrode 104a is formed on the exposed surface of the first conductivity-type semiconductor layer 101
  • the second electrode 104b is formed on the second conductivity-type semiconductor layer 103.
  • the first and second electrodes 104a and 104b may have a multilayer electrode structure, which is divided into a portion forming an ohmic contact with the first and second conductivity type semiconductor layers 101 and 103 and a bonding pad portion, respectively, and an appropriately selected metal.
  • the material may be formed by methods such as deposition or sputtering.
  • a transparent electrode formed using ITO or the like may be interposed between the second conductivity-type semiconductor layer 103 and the second electrode 104b for an ohmic contact function and a current distribution function.
  • the substrate 100 is wrapped to reduce the thickness.
  • the lapping step may be performed in the direction of the second main surface of the substrate 100 to reduce the size of the device and to improve heat dissipation performance by reducing the thickness of the substrate 100, which is an element included in the final light emitting device.
  • the process is not necessarily required in the present invention, and may be omitted if the thickness of the substrate 100 is initially provided thin.
  • the reflective film 105 is formed on the second main surface of the substrate 100, and some of the regions form the laser absorption region 106 using other materials.
  • the reflective film 105 is formed using a metal material having a relatively high light reflectance such as Ag or Al, and is deposited on the surface of the substrate 100 except for the laser absorption region 106 or by bonding a thin film. Can be formed.
  • the reflective film 105 made of a highly reflective material functions to reflect the light emitted from the device, in particular the active layer 102, upwards.
  • the laser absorption region 106 is formed in a region to be separated by a device unit, a scribing region, and is made of a material that absorbs a laser beam in the laser scribing process.
  • the laser absorption region 106 is adapted to absorb such a stealth laser. It may be made of a material for.
  • the laser absorption region 106 may be made of a metal or an alloy, or any other material capable of absorbing the laser.
  • the laser absorption region 106 may be made of a metal oxide or a material such as C, Cu, Ti, or the like.
  • the light emitting structures connected to each other are separated by a light emitting device unit by performing a laser scribing process.
  • the laser light source 107 used in the present embodiment emits a stealth laser L having a wavelength of about 800 to 1200 nm, and is opposite to the reflective film 105 and the laser absorption region 106, that is, The light emitting structure and the substrate 100 are irradiated from a position corresponding to the laser absorption region 106 in the upper portion of the light emitting structure.
  • the laser absorption region 106 made of a material capable of absorbing the stealth laser L at a portion corresponding to the scribing region to which the stealth laser L is irradiated among the second main surfaces of the substrate 100 is formed.
  • the focal point C of the stealth laser L may be formed inside the light emitting structure or the substrate 100. Therefore, by using the scribing process according to the present embodiment, the unit elements can be separated relatively easily and easily, and the possibility of adversely affecting the performance of the light emitting structure can be minimized in the process.
  • the unit light emitting device separated by the scribing process as described above is as shown in FIG.
  • a reflective film 105 is formed on the second main surface of the substrate 100, and the stealth laser L can be absorbed in a portion of the second main surface.
  • a laser absorption region 106 made of material is formed.
  • the side surface of the laser absorption region 106 is one of the light emitting structure and the substrate 100. It will be the same side as the side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자에 관한 것으로서, 본 발명의 일 측면은 서로 대향하는 제1 및 제2 주면을 갖는 기판의 상기 제1 주면 상에 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 순차적으로 성장시켜 발광구조물을 형성하는 단계와, 상기 기판의 상기 제2 주면에 적어도 하나의 레이저 흡수 영역을 갖는 반사막을 형성하는 단계 및 상기 발광구조물의 상부 중 상기 레이저 흡수 영역에 대응하는 위치로부터 상기 발광구조물 및 상기 기판을 향하여 레이저를 조사하여 상기 발광구조물 및 상기 기판을 소자 단위로 스크라이빙하는 단계를 포함하는 반도체 발광소자 제조방법을 제공한다.

Description

반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자
본 발명은 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자에 관한 것으로서, 특히, 소자 단위 분리를 위한 스크라이빙 공정 시 발광구조물에 미치는 피해가 최소화될 수 있는 반도체 발광소자 제조방법에 관한 것이다.
반도체 발광소자는 전류가 가해지면 p, n형 반도체의 접합 부분에서 전자와 정공의 재결합에 기하여, 다양한 색상의 빛을 발생시킬 수 있는 반도체 장치이다. 이러한 반도체 발광소자는 필라멘트에 기초한 발광소자에 비해 긴 수명, 낮은 전원, 우수한 초기 구동 특성, 높은 진동 저항 등의 여러 장점을 갖기 때문에 그 수요가 지속적으로 증가하고 있다. 특히, 최근에는, 청색 계열의 단파장 영역의 빛을 발광할 수 있는 III족 질화물 반도체가 각광을 받고 있다.
이러한 반도체 발광소자의 경우, 일반적으로, 기판 상에 n형 반도체층, 활성층 및 p형 반도체층을 순차적으로 성장시켜 발광적층체를 형성한 후 이를 소자 단위로 절단하기 위한 스크라이빙 공정이 요구된다. 스크라이빙 공정의 경우, 다이아몬드 팁을 이용한 기계적 스크라이빙이나 레이저 스크라이빙을 이용할 수 있는데, 기계적 스크라이빙의 경우, 기판 이면에 금속 반사막을 적용한 경우에는 사용하기 어려운 문제가 있으며, 이는 연성을 갖는 금속에 다이아몬드 팁으로 홈을 형성하기 어렵기 때문이다. 레이저 스크라이빙의 경우, 기판 이면에 금속 반사막이 적용된 경우에도 이용될 수 있으나, 스크라이빙 과정 중에 레이저 빔에 의하여 발광구조물(특히, 측면 부분)에 파편(debris)이 흡착되거나 결정 변화가 일어날 수 있으며, 이러한 영역은 광 흡수층으로 작용하여 발광효율이 저하시키는 문제가 있다.
본 발명의 일 목적은 소자 단위 분리를 위한 스크라이빙 공정 시 발광구조물에 미치는 피해가 최소화될 수 될 수 있는 반도체 발광소자 제조방법을 제공하는 것에 있다. 또한, 본 발명의 다른 목적은 상기 반도체 발광소자 제조방법에 의하여 얻어진 반도체 발광소자를 제공하는 것에 있다.
상기한 목적을 달성하기 위해서, 본 발명의 일 측면은,
서로 대향하는 제1 및 제2 주면을 갖는 기판의 상기 제1 주면 상에 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 순차적으로 성장시켜 발광구조물을 형성하는 단계와, 상기 기판의 상기 제2 주면에 적어도 하나의 레이저 흡수 영역을 갖는 반사막을 형성하는 단계 및 상기 발광구조물의 상부 중 상기 레이저 흡수 영역에 대응하는 위치로부터 상기 발광구조물 및 상기 기판을 향하여 레이저를 조사하여 상기 발광구조물 및 상기 기판을 소자 단위로 스크라이빙하는 단계를 포함하는 반도체 발광소자 제조방법을 제공한다.
본 발명의 일 실시 예에서, 상기 발광구조물을 2개 이상의 영역에서 일부 제거되어 상기 제1 도전형 반도체층을 소자 단위로 노출시키는 단계와, 상기 제1 도전형 반도체층의 노출 면 상에 제1 전극을 형성하는 단계 및 상기 제2 도전형 반도체층 상에 제2 전극을 형성하는 단계를 더 포함할 수 있다.
본 발명의 일 실시 예에서, 상기 반사막 중 상기 레이저 흡수 영역을 제외한 영역은 Ag 또는 Al을 포함하는 물질로 이루어질 수 있다.
본 발명의 일 실시 예에서, 상기 레이저의 파장은 800 ~ 1200㎚일 수 있다.
본 발명의 일 실시 예에서, 상기 레이저 흡수 영역은 금속 또는 합금으로 이루어질 수 있다.
본 발명의 일 실시 예에서, 상기 레이저 흡수 영역은 금속산화물로 이루어질 수 있다. 이와 달리, 상기 레이저 흡수 영역은 C, Cu 및 Ti으로 구성된 그룹으로부터 선택된 하나의 물질로 이루어질 수도 있다.
본 발명의 일 실시 예에서, 상기 반사막을 형성하는 단계 전에 상기 기판을 랩핑하는 단계를 더 포함할 수 있다.
한편, 본 발명의 다른 측면은,
서로 대향하는 제1 및 제2 주면을 갖는 기판과, 상기 기판의 상기 제1 주면 상에 형성되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 구비하는 발광구조물과, 상기 기판의 상기 제2 주면에 형성된 반사막 및 상기 반사막의 측단부에 형성된 레이저 흡수 영역을 포함하는 반도체 발광소자를 제공한다.
본 발명의 일 실시 예에서, 상기 레이저 흡수 영역은 상기 기판 및 상기 발광구조물의 일 측면과 동일한 면을 이룰 수 있다.
본 발명의 일 실시 예에서, 상기 레이저 흡수 영역은 파장이 800 ~ 1200㎚인 레이저를 흡수할 수 있는 물질로 이루어질 수 있다.
본 발명의 일 실시 예에서, 상기 레이저 흡수 영역은 금속 또는 합금으로 이루어질 수 있다.
본 발명의 일 실시 예에서, 상기 레이저 흡수 영역은 금속산화물로 이루어질 수 있다. 이와 달리, 상기 레이저 흡수 영역은 C, Cu 및 Ti으로 구성된 그룹으로부터 선택된 하나의 물질로 이루어질 수도 있다.
본 발명의 일 실시 예에서, 상기 반사막은 Ag 또는 Al을 포함하는 물질로 이루어질 수 있다.
본 발명에 따른 반도체 발광소자 제조방법을 사용할 경우, 스텔스 레이저를 이용하여 스크라이빙 공정을 수행할 수 있으므로, 발광구조물의 측면에 의도하지 않는 광 흡수층이 발생하는 현상을 최소화할 수 있다. 따라서, 이에 의하여 얻어진 반도체 발광소자의 신뢰성과 발광 효율이 향상될 수 있다.
도 1 내지 7은 본 발명의 일 실시 형태에 따른 반도체 발광소자 제조방법을 개략적으로 나타낸 공정 단면도이다.
도 8은 본 발명의 일 실시 형태에 따른 반도체 발광소자를 개략적으로 나타낸 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태들을 설명한다.
그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
도 1 내지 7은 본 발명의 일 실시 형태에 따른 반도체 발광소자 제조방법을 개략적으로 나타내는 공정 단면도이다. 또한, 도 8은 본 발명의 일 실시 형태에 따른 반도체 발광소자를 개략적으로 나타낸 단면도로서, 본 발명에서 제안하는 제조방법에 의하여 얻어진 구조에 해당한다.
본 실시 형태에 따른 반도체 발광소자 제조방법을 설명하면, 우선, 도 1에 도시된 것과 같이, 서로 대향하는 제1 및 제2 주면을 갖는 기판(100)을 마련하여 기판(100)의 제1 주면 상에 제1 도전형 반도체층(101), 활성층(102) 및 제2 도전형 반도체층(103)을 순차적으로 형성한다. 이 경우, 제1 도전형 반도체층(101), 활성층(102) 및 제2 도전형 반도체층(103)을 구비하는 구조를 발광구조물로 칭할 수 있다. 본 실시 형태의 경우, 상기 발광구조물은 스크라이빙(scribing) 공정에 의하여 복수 개의 단위 발광소자로 분리될 수 있다.
기판(100)은 반도체 성장용 기판으로 제공되며, 사파이어, SiC, MgAl2O4, MgO, LiAlO2, LiGaO2, GaN 등과 같이 전기 절연성 및 도전성 물질로 이루어진 기판을 사용할 수 있다. 이 경우, 가장 바람직하게 사용될 수 있는 것은 전기 절연성을 갖는 사파이어로서 전기 절연성 기판(100)을 사용함에 따라 후술할 바와 같이, 제1 도전형 반도체층(101)에 연결되는 전극 형성을 위한 에칭 공정이 수반된다. 사파이어는 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다.
제1 및 제2 도전형 반도체층(101, 103)은 각각 n형 및 p형 반도체층이 될 수 있으며, 질화물 반도체로 이루어질 수 있다. 따라서, 이에 제한되는 것은 아니지만, 본 실시 형태의 경우, 제1 및 제2 도전형은 각각 n형 및 9형 의미하는 것으로 이해될 수 있다. 제1 및 제2 도전형 반도체층(101, 103)은 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 가지며, 예컨대, GaN, AlGaN, InGaN 등의 물질이 이에 해당될 수 있다. 제1 및 제2 도전형 반도체층(101, 103) 사이에 형성되는 활성층(102)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조, 예컨대, InGaN/GaN 구조가 사용될 수 있다. 발광구조물을 구성하는 제1 및 제2 도전형 반도체층(101, 103)과 활성층(102)은 MOCVD, MBE, HVPE 등과 같은 당 기술 분야에서 공지된 공정을 이용하여 성장될 수 있다.
다음으로, 도 2에 도시된 것과 같이, 발광구조물의 일부를 제거하여 제1 도전형 반도체층(101)을 노출시킨다. 여기서, 제1 도전형 반도체층(101)의 노출 영역은 얻고자하는 단위 발광소자의 수에 해당한다. 상기 발광구조물의 일부를 제거하기 위하여 ICP-RIE 등과 같은 적절한 식각 공정을 이용할 수 있다. 다만, 본 단계의 경우, 제1 도전형 반도체층(101)을 노출시켜 전극을 형성하기 위한 것으로서 만약, 제1 도전형 반도체층(101)을 노출시킬 필요가 없는 경우, 예컨대, 기판(100)이 도전성 기판인 경우라면 생략될 수 있을 것이다. 한편, 도 2에서는 기판(100) 상에 2개의 발광소자가 형성된 구조를 나타내고 있으나, 3개 이상의 발광소자가 형성될 수 있음은 당업자에게 자명한 사항이라 할 것이다.
다음으로, 도 3에 도시된 것과 같이, 제1 도전형 반도체층(101)의 노출면에는 제1 전극(104a)을 형성하고, 제2 도전형 반도체층(103) 상에는 제2 전극(104b)을 형성한다. 제1 및 제2 전극(104a, 104b)은 각각 제1 및 제2 도전형 반도체층(101, 103)과 오믹 컨택을 이루는 부분과 본딩 패드 부분으로 나뉘어 다층 전극 구조를 가질 수 있으며, 적절히 선택된 금속 물질을 증착이나 스퍼터링과 같은 방법으로 형성될 수 있을 것이다. 이 경우, 도시하지는 않았으나, 오믹 컨택 기능과 전류분산 기능을 위하여 제2 도전형 반도체층(103)과 제2 전극(104b) 사이에는 ITO 등을 이용하여 형성된 투명 전극이 개재될 수 있다.
다음으로, 도 4에 도시된 것과 같이, 기판(100)을 랩핑(lapping)하여 두께를 감소시킨다. 본 랩핑 단계는 최종 발광소자에 포함되는 요소인 기판(100)의 두께를 감소시킴으로써 소자의 크기를 줄이고 방열 성능 등을 향상하기 위한 것으로 기판(100)의 상기 제2 주면 방향에서 실행될 수 있다. 다만, 본 랩핑 단계의 경우, 본 발명에서 필수적으로 요구되는 공정은 아니며, 기판(100)의 두께가 초기부터 얇게 제공될 경우라면 생략될 수 있을 것이다.
다음으로, 도 5에 도시된 것과 같이, 기판(100)의 제2 주면에 반사막(105)을 형성하되, 그 중 일부 영역은 다른 물질을 이용하여 레이저 흡수 영역(106)을 형성한다. 반사막(105)은 Ag나 Al 등과 같이 광 반사율이 상대적으로 높은 금속 물질을 이용하여 형성되며, 레이저 흡수 영역(106)을 제외하고 기판(100) 표면에 증착을 하거나 박막을 접합하는 등의 방식으로 형성될 수 있다. 고 반사 물질로 이루어진 반사막(105)은 소자, 특히, 활성층(102)에서 방출된 빛을 상부를 향하도록 반사하는 기능을 한다. 레이저 흡수 영역(106)은 소자 단위로 분리될 영역, 스크라이빙 영역에 형성되며, 레이저 스크라이빙 과정에서 레이저 빔을 흡수하는 물질로 이루어진다. 본 실시 형태의 경우, 후술할 바와 같이, 상대적으로 장 파장, 예컨대, 약 800 ~ 1200㎚의 파장을 갖는 스텔스 레이저(stealth laser)를 사용하므로, 레이저 흡수 영역(106)은 이러한 스텔스 레이저를 흡수하기 위한 물질로 이루어질 수 있다. 레이저 흡수 영역(106)은 금속 또는 합금으로 이루어지거나 이 외에도 레이저를 흡수할 수 있는 물질이면 모두 사용이 가능하며, 예를 들어, 금속산화물이나 C, Cu, Ti 등과 같은 물질로 이루어질 수 있다.
다음으로, 도 6에 도시된 것과 같이, 레이저 스크라이빙 공정을 수행하여 서로 연결되어있는 발광구조물을 발광소자 단위로 분리한다. 앞서 설명한 것과 같이, 본 실시 형태에서 사용되는 레이저 광원(107)은 약 800 ~ 1200㎚의 파장을 갖는 스텔스 레이저(L)를 방출하며, 반사막(105)과 레이저 흡수 영역(106)의 반대편, 즉, 상기 발광구조물의 상부 중 레이저 흡수 영역(106)에 대응하는 위치로부터 상기 발광구조물과 기판(100)에 조사된다. 스텔스 레이저(L)를 이용한 스크라이빙 공정을 사용할 경우, UV 레이저와 비교하여 발광구조물 표면에 파편이 흡착되거나 발광구조물을 이루는 물질의 결정 구조가 변화하는 문제를 현저히 줄일 수 있다.
다만, 스텔스 레이저(L)를 이용한 스크라이빙 공정에서는 스텔스 레이저(L)가 Ag나 Al과 같은 고반사 물질에 의하여 반사된다면 초점 형성 자체가 되지 않을 수 있으며, 이 경우, 스크라이빙이 불가해진다. 본 실시 형태에서는 기판(100)의 제2 주면 중에서 스텔스 레이저(L)가 조사되는 스크라이빙 영역에 대응하는 곳에 스텔스 레이저(L)를 흡수할 수 할 수 있는 물질로 이루어진 레이저 흡수 영역(106)을 형성함으로써 도 7에 도시된 것과 같이, 발광구조물이나 기판(100) 내부에서 스텔스 레이저(L)의 초점(C)이 형성될 수 있도록 하였다. 따라서, 본 실시 형태에 따른 스크라이빙 공정을 이용하여 비교적 간단하고 용이하게 단위 소자를 분리할 수 있으며, 그 과정에서 발광구조물의 성능에 악 영향을 미칠 가능성을 최소화할 수 있다.
한편, 상기와 같은 스크라이빙 공정에 의하여 분리된 단위 발광소자는 도 8에 도시된 것과 같다. 본 발명에서 제안하는 공정에 의하여 얻어진 반도체 발광소자의 경우, 기판(100)의 제2 주면에는 반사막(105)이 형성되되, 상기 제2 주면 중 일부 영역에는 스텔스 레이저(L)를 흡수할 수 있는 물질로 이루어진 레이저 흡수 영역(106)이 형성된다. 이 경우, 앞서 설명한 것과 같이, 레이저 흡수 영역(106)은 스크라이빙 영역에 위치하므로, 도 8에 도시된 것과 같이, 레이저 흡수 영역(106)의 측면은 상기 발광구조물 및 기판(100)의 일 측면과 동일한 면을 이루게 될 것이다.
본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.

Claims (15)

  1. 서로 대향하는 제1 및 제2 주면을 갖는 기판의 상기 제1 주면 상에 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 순차적으로 성장시켜 발광구조물을 형성하는 단계;
    상기 기판의 상기 제2 주면에 적어도 하나의 레이저 흡수 영역을 갖는 반사막을 형성하는 단계; 및
    상기 발광구조물의 상부 중 상기 레이저 흡수 영역에 대응하는 위치로부터 상기 발광구조물 및 상기 기판을 향하여 레이저를 조사하여 상기 발광구조물 및 상기 기판을 소자 단위로 스크라이빙하는 단계;
    를 포함하는 반도체 발광소자 제조방법.
  2. 제1항에 있어서,
    상기 발광구조물을 2개 이상의 영역에서 일부 제거되어 상기 제1 도전형 반도체층을 소자 단위로 노출시키는 단계;
    상기 제1 도전형 반도체층의 노출 면 상에 제1 전극을 형성하는 단계; 및
    상기 제2 도전형 반도체층 상에 제2 전극을 형성하는 단계;
    를 더 포함하는 것을 특징으로 하는 반도체 발광소자 제조방법.
  3. 제1항에 있어서,
    상기 반사막 중 상기 레이저 흡수 영역을 제외한 영역은 Ag 또는 Al을 포함하는 물질로 이루어진 것을 특징으로 하는 반도체 발광소자 제조방법.
  4. 제1항에 있어서,
    상기 레이저의 파장은 800 ~ 1200㎚인 것을 특징으로 하는 반도체 발광소자 제조방법.
  5. 제1항에 있어서,
    상기 레이저 흡수 영역은 단일 금속 또는 합금으로 이루어진 것을 특징으로 하는 반도체 발광소자 제조방법.
  6. 제1항에 있어서,
    상기 레이저 흡수 영역은 금속산화물로 이루어진 것을 특징으로 하는 반도체 발광소자 제조방법.
  7. 제1항에 있어서,
    상기 레이저 흡수 영역은 C, Cu 및 ti으로 구성된 그룹으로부터 선택된 하나의 물질로 이루어진 것을 특징으로 하는 반도체 발광소자 제조방법.
  8. 제1항에 있어서,
    상기 반사막을 형성하는 단계 전에 상기 기판을 랩핑하는 단계를 더 포함하는 것을 특징으로 하는 반도체 발광소자 제조방법.
  9. 서로 대향하는 제1 및 제2 주면을 갖는 기판;
    상기 기판의 상기 제1 주면 상에 형성되며, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 구비하는 발광구조물;
    상기 기판의 상기 제2 주면에 형성된 반사막; 및
    상기 반사막의 측단부에 형성된 레이저 흡수 영역;
    을 포함하는 반도체 발광소자.
  10. 제9항에 있어서,
    상기 레이저 흡수 영역은 상기 기판 및 상기 발광구조물의 일 측면과 동일한 면을 이루는 것을 특징으로 하는 반도체 발광소자.
  11. 제9항에 있어서,
    상기 레이저 흡수 영역은 파장이 800 ~ 1200㎚인 레이저를 흡수할 수 있는 물질로 이루어진 것을 특징으로 하는 반도체 발광소자.
  12. 제9항에 있어서,
    상기 레이저 흡수 영역은 단일 금속 또는 합금으로 이루어진 것을 특징으로 하는 반도체 발광소자.
  13. 제9항에 있어서,
    상기 레이저 흡수 영역은 금속산화물로 이루어진 것을 특징으로 하는 반도체 발광소자.
  14. 제9항에 있어서,
    상기 레이저 흡수 영역은 C, Cu 및 Ti으로 구성된 그룹으로부터 선택된 하나의 물질로 이루어진 것을 특징으로 하는 반도체 발광소자.
  15. 제9항에 있어서,
    상기 반사막은 Ag 또는 Al을 포함하는 물질로 이루어진 것을 특징으로 하는 반도체 발광소자.
PCT/KR2011/005777 2011-08-09 2011-08-09 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자 WO2013022130A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2011/005777 WO2013022130A1 (ko) 2011-08-09 2011-08-09 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자
US14/237,515 US20140183589A1 (en) 2011-08-09 2011-08-09 Method for manufacturing a semiconductor light-emitting element and semiconductor light-emitting element manufactured thereby
CN201180072761.2A CN103733359A (zh) 2011-08-09 2011-08-09 半导体发光器件制造方法和以该方法制造的半导体发光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005777 WO2013022130A1 (ko) 2011-08-09 2011-08-09 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자

Publications (1)

Publication Number Publication Date
WO2013022130A1 true WO2013022130A1 (ko) 2013-02-14

Family

ID=47668624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005777 WO2013022130A1 (ko) 2011-08-09 2011-08-09 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자

Country Status (3)

Country Link
US (1) US20140183589A1 (ko)
CN (1) CN103733359A (ko)
WO (1) WO2013022130A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461701A (zh) * 2018-09-27 2019-03-12 全球能源互联网研究院有限公司 一种功率芯片的复合划片方法及半导体器件
CN111293201B (zh) * 2018-12-14 2022-04-26 广州国显科技有限公司 用于激光剥离的半导体结构以及半导体结构的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036691A2 (en) * 2001-10-22 2003-05-01 Oriol, Inc. Method of making diode having reflective layer
KR20080040880A (ko) * 2006-11-06 2008-05-09 엘지전자 주식회사 수직형 발광 소자의 제조방법
KR20080096997A (ko) * 2007-04-30 2008-11-04 삼성전기주식회사 발광다이오드 소자의 제조방법
KR100872678B1 (ko) * 2007-07-23 2008-12-10 엘지이노텍 주식회사 반도체 발광소자의 제조 방법
US20110031508A1 (en) * 2009-05-01 2011-02-10 Bridgelux, Inc. Method and Apparatus for Manufacturing LED Devices using Laser Scribing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872717B1 (ko) * 2007-06-22 2008-12-05 엘지이노텍 주식회사 발광 소자 및 그 제조방법
TWI411124B (zh) * 2007-07-10 2013-10-01 Delta Electronics Inc 發光二極體裝置及其製造方法
KR101047721B1 (ko) * 2010-03-09 2011-07-08 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036691A2 (en) * 2001-10-22 2003-05-01 Oriol, Inc. Method of making diode having reflective layer
KR20080040880A (ko) * 2006-11-06 2008-05-09 엘지전자 주식회사 수직형 발광 소자의 제조방법
KR20080096997A (ko) * 2007-04-30 2008-11-04 삼성전기주식회사 발광다이오드 소자의 제조방법
KR100872678B1 (ko) * 2007-07-23 2008-12-10 엘지이노텍 주식회사 반도체 발광소자의 제조 방법
US20110031508A1 (en) * 2009-05-01 2011-02-10 Bridgelux, Inc. Method and Apparatus for Manufacturing LED Devices using Laser Scribing

Also Published As

Publication number Publication date
CN103733359A (zh) 2014-04-16
US20140183589A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
KR101007130B1 (ko) 발광소자 및 그 제조방법
KR102276207B1 (ko) 반도체 발광 소자 및 반도체 발광 장치
KR101469979B1 (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
JP2013102162A (ja) 発光素子
KR20090012494A (ko) 광자결정 발광소자 및 그 제조방법
JP2009510730A (ja) 半導体発光デバイスおよびその製造方法
KR20120042500A (ko) 반도체 발광 소자 및 그 제조방법
KR20140094752A (ko) 전자소자 패키지 및 이에 사용되는 패키지 기판
KR20130011575A (ko) 반도체 발광소자 및 발광장치
KR20140006485A (ko) 멀티셀 어레이를 갖는 반도체 발광장치 및 그 제조 방법
KR100999800B1 (ko) 발광 소자 패키지 및 그 제조방법
US8735923B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR20110085726A (ko) 반도체 발광소자 및 이를 제조하는 방법
KR20150010146A (ko) 발광소자 및 조명시스템
WO2013022130A1 (ko) 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자
KR20110095640A (ko) 반도체 발광소자 제조방법 및 이에 의하여 제조된 반도체 발광소자
KR20110132161A (ko) 반도체 발광 소자 및 그 제조방법
KR101628384B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20040005270A (ko) 발광다이오드 및 그 제조방법
KR20130104518A (ko) 반도체 발광소자의 제조방법
KR20110115795A (ko) 반도체 발광소자 및 그 제조방법
KR101381984B1 (ko) 발광 다이오드 칩 제조방법 및 그에 의해 제조된 발광다이오드 칩
JP2004228297A (ja) 半導体発光装置
WO2016108422A1 (en) Vertical light emitting diode with v-pit current spreading member and manufacturing method of the same
KR20120016831A (ko) 반도체 발광 소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14237515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870794

Country of ref document: EP

Kind code of ref document: A1