WO2013022072A1 - 多管式熱交換器 - Google Patents

多管式熱交換器 Download PDF

Info

Publication number
WO2013022072A1
WO2013022072A1 PCT/JP2012/070381 JP2012070381W WO2013022072A1 WO 2013022072 A1 WO2013022072 A1 WO 2013022072A1 JP 2012070381 W JP2012070381 W JP 2012070381W WO 2013022072 A1 WO2013022072 A1 WO 2013022072A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling medium
heat transfer
tube
casing
heat exchanger
Prior art date
Application number
PCT/JP2012/070381
Other languages
English (en)
French (fr)
Inventor
滝川 一儀
宮内 祐治
忠弘 後藤
一真 滝川
豪孝 伊藤
Original Assignee
臼井国際産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臼井国際産業株式会社 filed Critical 臼井国際産業株式会社
Publication of WO2013022072A1 publication Critical patent/WO2013022072A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Definitions

  • the present invention relates to a heat recovery from engine exhaust gas or a multi-tube heat exchanger that cools EGR gas with a liquid cooling medium such as cooling water of a diesel engine or a gasoline engine.
  • Patent Documents 1 to 5 the following EGR gas cooling devices (Patent Documents 1 to 5) have been proposed.
  • both ends of the trunk tube 201 provided with the cooling medium inlet 201-1a and the cooling medium outlet 201-2a at both ends are provided.
  • the heat transfer tube group 202 is fixedly arranged on the tube sheet 203 fixed to the tube tube, and end caps 204 are fixed to both ends of the trunk tube 201.
  • the end cap 204 has an EGR gas inlet 204-1 and An outlet 204-2 is provided, and a multi-tube having a structure in which a fastening flange 205 is fitted and fixed to an EGR gas inlet 204-1 of the end cap 204 and an outer opening end of the outlet 204-2.
  • the EGR gas cooling device provided with an inclination with respect to the vertical line with respect to the axis of Dokan 201 to flow along the tube sheet 203 is shown.
  • Patent Document 2 as schematically shown in FIGS. 43 and 44, a plurality of flat tubes 212, a case 213 formed so as to surround the outer periphery of the flat tubes 212, and the case 213 Header plates (tube sheets) 214 provided at both ends of each flat tube, and between the exhaust gas flowing through the flat tube 212 and the cooling water flowing through the case 213
  • the EGR cooler 211 is configured to perform heat exchange with the cooling water supply chamber 215 in which the base end 221 is connected to the case 213 and the cooling water inlet pipe 216 is connected to the tip 220.
  • the cooling water supply chamber 215 has a shape that gradually becomes wider from the distal end portion 220 toward the proximal end portion 221, and the width of the proximal end portion 221 is substantially equal to the width of the case 213. It is formed on so that, at the other end of the case 213 is illustrated EGR cooler cooling water outlet pipe 222 is provided.
  • 217 is an end cap
  • 218 is a fastening flange.
  • the heat exchanger for an EGR cooler in which high-temperature EGR gas is passed through the interior of 232 and heat is exchanged through the cooling water to the outside two or more cooling water inlets 231-1 for introducing cooling water into the shell 231 are provided.
  • An EGR cooler heat exchanger is shown in which one cooling water outlet 231-2 for discharging cooling water from the inside of H.231 is provided, and a cooling water inlet pipe adapter 235 is provided at the cooling water inlet 231-1.
  • reference numeral 231-1a denotes a cooling water inlet pipe
  • 231-2a denotes a cooling water outlet pipe.
  • Patent Document 4 as schematically shown in FIGS. 47 and 48, a hollow shell 241 having a cooling water introduction port 241-1 and a discharge port 241-2, and an EGR arranged inside the shell 241 are disclosed.
  • an EGR cooler 240 having a plurality of flat tubes 242 through which gas passes, a configuration in which an adapter member 243 for introducing cooling water is disposed in a cooling water inlet 241-1 provided in the lower side surface portion 241-3 of the shell 241 The EGR cooler is shown.
  • Patent Document 5 as schematically shown in FIGS. 49 and 50, a hollow shell 251 provided with a cooling water inlet 251-1 and a discharge outlet 251-2, and an EGR arranged inside the shell 251 are disclosed.
  • An EGR cooler 250 including a plurality of flat tubes 252 through which gas passes includes an adapter member 253 that is attached to the cooling water inlet 251-1 and introduces cooling water into the shell 251.
  • the adapter member 253 includes the adapter member 253.
  • An EGR cooler provided with a guide plate 254 that extends from the inside of the member to the inside of the shell 251 and adjusts the inflow direction of the cooling water introduced into the shell 251 from the cooling water introduction port 251-1 is shown.
  • a hollow shell 261 having a cylindrical cooling water inlet pipe 261-1 and a discharge port (not shown), and a shell 261 inside are provided.
  • the EGR cooler 260 includes a plurality of flat tubes 262 through which the EGR gas is disposed, and is a bottomed cylindrical press-molded product joined to the outlet in the shell 261 of the cooling water inlet pipe 261-1.
  • the EGR gas cooling device (FIGS. 41 and 42) described in Patent Document 1 is provided with a plurality of cooling medium inlets 201-1a, so that the overheat area near the tube sheet 203 can be substantially eliminated.
  • the cross-sectional area perpendicular to the inflow direction of the cooling medium inlet 201-1a is substantially equal to the cross-sectional area of the pipe flowing into the cooling medium inlet, and flows from the cooling medium inlet.
  • the EGR cooler heat exchanger (FIGS. 45 and 46) described in Patent Document 3 also flows into the shell 231 from the cooling water inlet 231-1.
  • the cooling water flow is not directional to the inner surface of the end plate (tube sheet) 233, and simply flows in the axial direction of the shell 231 toward the cooling water outlet 231-2a. There is a drawback that the boiling prevention effect cannot be obtained sufficiently.
  • this EGR cooler is limited to a configuration in which the flat heat transfer tubes are arranged vertically so that the longitudinal direction of the flat heat transfer tubes faces the vertical direction, and the flat heat transfer tubes are horizontally arranged and stacked.
  • an EGR cooler having a structure there is a difficulty that it is difficult to obtain an effect of preventing local boiling of cooling water.
  • the cooling water flowing into the shell 261 from the cylindrical cooling water inlet pipe 261-1 is the shell of the cooling water inlet pipe 261-1.
  • the cylindrical cooling water inlet pipe is discharged toward the vicinity of the end plate 264 on the gas inlet side by the bottomed cylindrical attachment 261-2 joined to the outlet in the H.261 and diffused to the left and right.
  • the present invention has been made to solve the above-described problems of the conventional multi-tube heat exchanger, and in particular, in a multi-tube heat exchanger in which the heat transfer tube group is constituted by flat tubes, the heat transfer tube group is introduced into a case or a shell.
  • the cooling water flow is inclined with respect to the vertical line with respect to the axis of the casing, and the directivity and speed-up property on the inner surface of the tube sheet (end plate) are further increased to increase the cooling medium on the exhaust gas (EGR gas) inlet side.
  • An object of the present invention is to provide a multitubular heat exchanger that can sufficiently enhance the boiling prevention effect.
  • a multitubular heat exchanger includes a plurality of stacked flat heat transfer tubes, a casing formed so as to surround an outer periphery of the flat heat transfer tubes, and both ends of the casing.
  • a multi-tubular heat exchanger that exchanges heat between the exhaust gas that circulates in the flat heat transfer tube and the cooling medium that circulates in the casing.
  • a cooling medium distributor having a cooling medium inflow pipe connected to a base end portion in a direction substantially perpendicular to the casing longitudinal direction in the vicinity of the exhaust gas inlet side end of the casing.
  • a nozzle member having a plurality of ejection holes in a direction substantially perpendicular to the longitudinal direction of the casing so that the jet velocity of the cooling medium is increased from the inside of the cooling medium distributor.
  • the sum of the cross-sectional area of the injection holes is characterized in that less than the flow direction the cross-sectional area of the cooling medium in the cooling medium distributor.
  • a multi-tube heat exchanger is provided with a plurality of stacked flat heat transfer tubes, a casing formed so as to surround the outer periphery of the flat heat transfer tubes, and both ends of the casing, And a tube sheet in which both ends of the flat heat transfer tube are penetrated, and a multi-tube heat of a system for exchanging heat between the exhaust gas flowing through the flat heat transfer tube and the cooling medium flowing through the casing
  • a cooling medium inflow pipe connected to the cooling medium distributor, wherein the cooling medium distributor flows the cooling medium flowing into the casing along the inner surface of the tube sheet on the exhaust gas inlet side.
  • a nozzle member provided with a plurality of ejection holes so as to increase the flow velocity of the cooling medium from the inside of the cooling medium distributor.
  • the sum of the sectional areas of the ejection holes is smaller than the sectional area in the flow direction of the cooling medium in the cooling medium distributor.
  • the cooling medium distributor is installed in an inclined manner as stipulated that the cooling medium distributor is provided in an inclined manner with respect to a vertical line with respect to the axis of the casing.
  • the cooling medium distributor should be configured to be parallel (perpendicular to the axis) to the axis perpendicular to the axis of the casing or in the opposite direction to the exhaust gas inlet.
  • this type of multi-tube heat exchanger is provided with a plurality of stacked flat heat transfer tubes, a casing formed so as to surround the outer periphery of the flat heat transfer tubes, and both ends of the casing.
  • a cooling medium distribution wherein a base end portion is connected to an opening portion having a long hole provided in an end portion on the exhaust gas inlet side of the casing in a direction substantially perpendicular to the longitudinal direction of the casing so as to cover the opening portion
  • a cooling medium inflow pipe connected to the cooling medium distributor, and the cooling medium distributor is parallel (perpendicular to the axis) to the axis of the casing or to the exhaust gas inlet side.
  • a nozzle member having a plurality of ejection holes is provided in the vicinity of the opening so that the ejection velocity of the cooling medium is increased from the inside of the cooling medium distributor, and the sum of the sectional areas of the ejection holes is the cooling medium.
  • the axial center of the ejection hole is smaller than the cross-sectional area in the flow direction of the cooling medium in the distributor and the exhaust medium flows so that the cooling medium flowing into the casing flows along the inner surface of the tube sheet on the exhaust gas inlet side. It is directed to the inner surface of the tube sheet on the inlet side.
  • the axis of the ejection hole is directed to (a) the inner surface of the tube sheet on the exhaust gas inlet side, and (b) a space between the laminated flat heat transfer tubes or flat transmission. Any one of directing the space between the heat tube and the inner surface of the casing is a preferred mode.
  • the nozzle member is provided in either the cooling water distributor or the casing.
  • the nozzle member preferably has a convex portion that protrudes continuously in the stacking direction of the heat transfer tubes on the heat transfer tube side and has the ejection holes on the wall surface.
  • the present invention may further include a protrusion in a space between the flat heat transfer tubes and / or a space between the flat heat transfer tube and the casing inner surface where the convex portions are stacked, It is a preferred embodiment that the holes are provided.
  • the nozzle member is also directed to the space between the flat heat transfer tubes in which the shaft cores are laminated or the space between the flat heat transfer tube and the casing inner surface, and to the tube sheet inner surface on the exhaust gas inlet side. It is preferable to provide a plurality of outflow holes that are not to be provided, or to provide ejection holes and / or outflow holes having different cross-sectional areas. Furthermore, it is preferable that the nozzle member has an ejection hole and / or an outflow hole that are continuously arranged in a substantially straight line substantially parallel to the stacking direction of the heat transfer tubes.
  • the nozzle member is provided with a convex portion continuously projecting in the laminating direction of the heat transfer tube on the flat heat transfer tube side, and has the ejection holes on the side wall surface of the tube sheet of the convex portion.
  • An outlet hole is provided in the wall surface, and the axial cross-sectional shape of the casing of the convex portion protruding continuously in the laminating direction of the heat transfer tube on the flat heat transfer tube side of the nozzle member is V-shaped,
  • a preferred embodiment is one of an inverted trapezoidal shape having a flat portion, a U shape, and an arc shape.
  • a cooling medium guide member is provided in the cooling medium distributor or the nozzle member or the inner wall of the casing, and the guide member is a space portion or a flat portion between the stacked flat heat transfer tubes. It is a preferable aspect to have an extending portion extending in a space between the heat transfer tube and the inner surface of the casing.
  • the guide member of the said cooling medium makes it a preferable aspect that the length of a guide part differs in the lamination direction of a flat heat exchanger tube.
  • a nozzle bush or a nozzle tube is attached to the ejection hole provided in the nozzle member, and the ejection hole is a circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube. It is a preferred embodiment.
  • the opening provided in the casing is provided substantially parallel to the laminating direction of the flat heat transfer tubes.
  • the present invention provides cooling that causes the cooling medium to flow toward the inner surface of the tube sheet at a higher speed as a means for sufficiently enhancing the boiling prevention action of the cooling medium on the exhaust gas (EGR gas) inlet side of the multi-tube heat exchanger.
  • the multitubular heat exchanger according to the present invention has the following effects. 1.
  • the cooling medium distributor preferably inclined with respect to the vertical line with respect to the axis of the casing, the cooling medium flows in the tube sheet inner surface on the exhaust gas inlet side and flows into the casing. Since the cooling medium flows along the inner surface of the tube sheet on the exhaust gas inlet side, boiling of the cooling medium near the inner surface of the tube sheet can be more effectively prevented.
  • a plurality of jet holes having a total cross-sectional area smaller than the cross-sectional area in the flow direction of the cooling medium in the cooling medium distributor are substantially the same as the longitudinal direction of the casing of the multitubular heat exchanger.
  • the inflow speed of the cooling medium is increased, and a larger cooling medium boiling prevention effect near the inner surface of the tube sheet can be obtained.
  • a larger cooling medium boiling prevention effect near the inner surface of the tube sheet can be obtained.
  • a cooling medium guide member is provided in the vicinity of the ejection hole, and a cooling medium jet from the ejection hole is caused to follow the surface of the guide member, so that the cooling medium is placed between the inner surface of the tube sheet and / or between each flat heat transfer tube. Since it can be accurately guided to the space, it is possible to further enhance the cooling medium boiling prevention action in the vicinity of the inner surface of the tube sheet. 6). Even if the cooling medium distributor is inclined parallel to the vertical line to the casing axis or in the opposite direction (exhaust gas inlet side), the plurality of ejection holes provided in the nozzle member are directed to the tube sheet side.
  • the cooling medium flows into the tube sheet inner surface in the same manner as described above, and the cooling medium flowing into the casing flows along the tube sheet inner surface on the exhaust gas inlet side. Coolant boiling near the inner surface can be prevented. 7). Since the EGR gas temperature rises and the gas flow rate increases during high-load operation of the engine, the phenomenon of boiling of the cooling medium occurs not only from the inner surface of the tube sheet but also from the outer surface of the flat heat transfer tube. An ejection hole and / or an outflow hole having an area are provided, or a convex portion continuously projecting in the stacking direction of the heat transfer tubes is provided on the heat transfer tube side of the nozzle member, and the ejection holes are formed on the tube sheet side wall surface of the convex portion.
  • the axial cross-sectional shape of the casing of the nozzle member convex portion is V-shaped, inverted trapezoidal shape having a flat portion at the bottom, U-shaped, or arc-shaped With this shape, it is possible to reliably prevent boiling in a wide range slightly along the flow direction of the EGR gas from the vicinity of the tube sheet even during high load operation. 8).
  • the length of the guide part of the guide member so as to differ in the laminating direction of the flat heat transfer tubes, even if there is a flat flow in the EGR gas flow, the tube sheet inner surface, the flat heat transfer tube from the tube sheet side outer surface The boiling of the cooling medium can also be effectively prevented.
  • the multi-tubular heat exchanger of the present invention by providing means for providing the cooling medium distributor for flowing the cooling medium toward the inner surface of the tube sheet at a higher speed, the cooling medium can be increased.
  • the cooling medium Since it can be accurately guided not only to the inner surface of the tube sheet but also to the space between the flat heat transfer tubes, the multi-tubular heat exchanger is not limited to the flat heat transfer tubes arranged horizontally, but is arranged horizontally.
  • cooling medium boiling prevention action from the outer surface of each flat heat transfer tube in the vicinity of the inner surface of the tube sheet can be further enhanced, and the deterioration of heat exchange performance due to the boiling of the cooling medium can be prevented.
  • Heat recovery from exhaust gases greatly contributes to the cooling of the exhaust gases, such as EGR gas.
  • FIG. 1 It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 3rd Example of this invention. It is a perspective view which shows the other example of the nozzle member of the multitubular heat exchanger shown in FIG. It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 4th Example of this invention. It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 5th Example of this invention. It is a perspective view which abbreviate
  • FIG. 20 is a longitudinal front view taken along the line AA in FIG.
  • FIG. 20 is an enlarged perspective view in which a part of the guide member of the multitubular heat exchanger shown in FIG. 19 is omitted.
  • FIG. 17 is a view corresponding to FIG.
  • FIG. 28 is a view corresponding to FIG. 12, showing an enlarged main part of the multitubular heat exchanger shown in FIG. 27. It is the FIG. 12 equivalent view which expands and shows the principal part of the multitubular heat exchanger which concerns on 18th Example of this invention. It is FIG. 4 equivalent view which shows the nozzle member of the multitubular heat exchanger which concerns on 19th Example of this invention. It is FIG. 4 equivalent view which shows the nozzle member of the multitubular heat exchanger which concerns on 20th Example of this invention.
  • FIG. 32 is a view corresponding to FIG.
  • FIG. 32 is a view corresponding to FIG. 13 showing a nozzle member of the multi-tube heat exchanger according to the twentieth embodiment shown in FIG. 31.
  • FIG. 13 is an enlarged view corresponding to FIG. 12 showing an enlarged main part of a multitubular heat exchanger according to a twenty-first embodiment of the present invention.
  • FIG. 13 is an enlarged view corresponding to FIG. 12 illustrating an essential part of a multitubular heat exchanger according to a twenty-second embodiment of the present invention.
  • FIG. 36 is a view corresponding to FIG. 13 showing a nozzle member of the multitubular heat exchanger according to the 22nd embodiment shown in FIG. 35.
  • FIG. 13 is an enlarged view corresponding to FIG. 12 showing an enlarged main part of a multitubular heat exchanger according to a twenty-third embodiment of the present invention.
  • FIG. 22 is an enlarged perspective view showing a modification of the guide member of the multitubular heat exchanger according to the eleventh embodiment shown in FIGS. It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the multitubular heat exchanger which concerns on 24th Example of this invention. It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the multitubular heat exchanger which concerns on 25th Example of this invention. It is a schematic plan view which abbreviate
  • FIG. 52 is a schematic horizontal and vertical view of the multitubular heat exchanger shown in FIG. 51.
  • the cooling medium supply sections reference numerals 6, 8, 9 etc.
  • the multi-tube heat exchanger according to the first embodiment of the present invention shown in FIGS. 1 to 4 is preferably a flat heat transfer tube 2 in which a plurality of flat heat transfer tubes 2 having heat transfer fins inserted and fixed therein are arranged side by side.
  • the exhaust gas inflow bonnet 4 is provided at one end of the casing 1, the exhaust gas outflow bonnet 5 is provided at the other end, and a flat transmission is provided at the end of the casing outer peripheral wall on the side of the exhaust gas inflow bonnet 4.
  • a cooling medium inflow opening 6 comprising a substantially rectangular long hole substantially parallel to the stacking direction of the heat pipes 2 is provided, and a cooling medium outflow pipe 7 is connected to an end of the exhaust gas outflow bonnet 5.
  • the cooling medium that has flowed into the casing 1 through the box-shaped cooling medium distributor 8 whose base end (bottom) is opened so as to cover the opening 6 is the exhaust gas.
  • the inclination angle ⁇ of the cooling medium distributor 8 is not particularly limited, but is preferably about 5 to 45 °.
  • This cooling medium distributor 8 has a flange portion 8-1 that covers the opening 6 at the base end, and a cooling medium inflow connected to a cooling medium pipe (not shown) at the end opposite to the base end.
  • a tube 9 is installed in parallel with the outer wall surface of the casing.
  • the cooling medium inflow pipe 9 is provided with a cooling medium inflow port 9-1 having a long hole communicating with the cooling medium distributor 8, and the other end is closed by a cap 9-2.
  • a plurality of ejection holes 10-1 are provided in the vicinity of the opening 6 of the cooling medium distributor 8 so that the jetting speed of the cooling medium is higher than that in the cooling medium distributor 8.
  • a nozzle member 10 having a direction substantially perpendicular to the casing longitudinal direction of the heat exchanger is attached to the inner wall of the casing 1.
  • the nozzle member 10 is formed of a flat plate provided with ejection holes 10-1 at corresponding positions between the flat heat transfer tubes 2 of the flattened heat transfer tube group laminated as shown in FIG. 4, and the ejection holes 10- 1 is smaller than the cross-sectional area in the flow direction of the cooling medium in the cooling medium distributor 8.
  • the reason is that the flow rate of the cooling medium ejected from the ejection hole 10-1 is higher than the flow rate in the cooling medium distributor 8 and is given high kinetic energy, so that By improving the straightness of the flow so as to reach the inner surface of the tube sheet 3 and rapidly moving the high-temperature cooling medium staying in the vicinity of the inner surface, the tube sheet 3 and the tube sheet 3 of the flat heat transfer tube 2 are moved.
  • the shape of the ejection hole 10-1 of the nozzle member 10 may be a perfect circle, an ellipse having a major axis in the axial direction of the flat heat transfer tube 2, or an oval shape.
  • the cooling medium flows from the cooling medium inflow pipe 9 through the cooling medium distributor 8, the opening 6 and the nozzle member 10 to the exhaust gas inflow bonnet 4 side.
  • the jet flow velocity of the cooling medium flowing out from the jet hole 10-1 of the nozzle member 10 is increased more than in the cooling medium distributor 8, so that the inner surface of the tube sheet 3 is increased. It reaches quickly and cools, and the boiling of the cooling medium is more effectively prevented.
  • the multitubular heat exchanger according to the second embodiment of the present invention shown in FIGS. 5 and 6 includes the nozzle member 10 of the multitubular heat exchanger according to the first embodiment of the multitubular heat exchanger.
  • the cooling medium distributor 8 is provided so as to be substantially orthogonal to the longitudinal direction of the casing, and the structure thereof is a flat heat transfer tube group formed on a plate member having a substantially crank shape in cross section as shown in FIGS.
  • the nozzle member 20 provided with the ejection holes 20-1 at the corresponding positions between the respective flat heat transfer tubes 2 is arranged such that the axis of the ejection hole 20-1 of the nozzle member 20 is the flat heat transfer tube 2 of the flat heat transfer tube group.
  • the sum total of the sectional areas of the ejection holes 20-1 is smaller than the sectional direction area of the cooling medium in the cooling medium distributor 8.
  • the shape of the ejection hole 20-1 of the nozzle member 20 may be either a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 as described above. Not too long.
  • the cooling medium is exhaust gas from the cooling medium inflow pipe 9 through the cooling medium distributor 8 and the nozzle member 20 through the opening 6.
  • the flow velocity of the cooling medium flowing out from the discharge hole 20-1 of the nozzle member 20 is increased more than in the cooling medium distributor 8 and the inner surface of the tube sheet 3 , And is quickly jetted to the inner surface of the tube sheet 3 and cooled, and the cooling medium is more effectively prevented from boiling.
  • the multitubular heat exchanger according to the third embodiment of the present invention shown in FIG. 7 is a system in which a nozzle member is provided in the cooling medium distributor 8 as in the multitubular heat exchanger according to the second embodiment.
  • a nozzle member 30 integrated with a guide portion for allowing the cooling medium to flow more reliably between the flat heat transfer tubes 2 of the flat heat transfer tube group is adopted.
  • a plate member having a substantially S-shaped section having a guide portion 30-2 is provided with ejection holes 30-1 at corresponding positions between the flat heat transfer tubes 2 of the flat heat transfer tube group.
  • the nozzle member 30 is inserted and disposed in the casing 1 through the opening 6 so that the guide portion 30-2 of the nozzle member 30 is located in the space between the flat heat transfer tube 2 and the inner surface of the casing 1,
  • the axis of the ejection hole 30-1 of the nozzle member 30 is flat. It arrange
  • the sum total of the sectional areas of the ejection holes 30-1 is smaller than the sectional direction area of the cooling medium in the cooling medium distributor 8.
  • the shape of the ejection hole 30-1 may be either a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 as described above.
  • the guide member-integrated nozzle member 30 is folded inward so that the end opposite to the guide portion 31-2 is along the inner surface of the cooling medium distributor 8, as shown in FIG.
  • the guide portion 31-2 of the nozzle member 31 passes through the opening 6 so as to be located in the space between the flat heat transfer tube 2 and the inner surface of the casing 1.
  • the axial center of the ejection hole 31-1 of the nozzle member 31 is directed to the space between the flat heat transfer tubes 2 of the flat heat transfer tube group, and on the exhaust gas inflow bonnet 4 side. It arrange
  • distributor 8 so that it may face the inner surface of the tube sheet 3. As shown in FIG.
  • the cooling medium is exhausted from the opening 6 through the cooling medium inflow pipe 9 through the cooling medium distributor 8, the nozzle member 30 or the nozzle member 31.
  • the jet flow velocity of the cooling medium flowing out from the jet holes 30-1 and 31-1 of the nozzle members 30 and 31 is higher than that in the cooling medium distributor 8.
  • the coolant that is directed toward the inner surface of the tube sheet 3 is ejected with high kinetic energy, and the cooling medium that has flowed out of the ejection holes 30-1 and 31-1 travels along the guide portions 30-2 and 31-2.
  • the guide members 30-2 and 31-2 of the nozzle members 30 and 31 are formed in a strip shape, and the strip portion is extended into the space between the flat heat transfer tubes 2.
  • the cooling medium quickly and accurately reaches the inner surface of the tube sheet 3 and is cooled, and boiling is further effectively prevented.
  • the multitubular heat exchanger according to the fourth embodiment of the present invention shown in FIG. 9 has a nozzle member in the cooling medium distributor 8 as in the multitubular heat exchanger according to the second and third embodiments.
  • a groove-shaped nozzle member 40 having an L-shaped cross section is employed, and the structure thereof is that of the flat heat transfer tube group as shown in FIG. 9.
  • a groove-shaped nozzle member 40 having an L-shaped cross section provided with a jet hole 40-1 at a corresponding position between the flat heat transfer tubes 2, and the axis of the jet hole 40-1 of the nozzle member 40 is an exhaust gas inflow bonnet.
  • the nozzle member 40 also has a smaller sum of cross-sectional areas of the ejection holes 40-1 than the cross-sectional area in the flow direction of the cooling medium in the cooling medium distributor 8.
  • the shape of the hole 40-1 may be either a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 as described above.
  • the cooling medium is supplied from the cooling medium inflow pipe 9 through the cooling medium distributor 8 and the groove-shaped nozzle member 40 to the exhaust gas inflow bonnet 4 side.
  • the jet velocity of the cooling medium flowing out from the jet hole 40-1 of the nozzle member 40 is increased more than in the cooling medium distributor 8 and directed toward the inner surface of the tube sheet 3.
  • the cooling medium that is ejected with high kinetic energy and flows out from the ejection hole 40-1 flows between the flat heat transfer tubes 2 of the flat heat transfer tube group in the vicinity of the inner surface of the tube sheet 3. Boiling is more effectively prevented.
  • a guide member (not shown) is provided on the side surface of the groove-shaped nozzle member 40 so that the cooling medium flowing out from the ejection hole 40-1 flows between the flat heat transfer tubes 2 of the flat heat transfer tube group more reliably. Even better.
  • a nozzle member for increasing the flow rate of the cooling medium than in the cooling medium distributor 8 is provided in the opening of the casing 1.
  • a nozzle member 50 having a substantially Z-shaped cross section is employed in place of the nozzle members 20, 30, 31, and 40, and the structure thereof is as shown in FIG. 10 and FIG.
  • an ejection hole 50-1 is provided at a position corresponding to between the flat heat transfer tubes 2 of the flat heat transfer tube group and substantially perpendicular to the longitudinal direction of the casing.
  • the nozzle member 50 has a space between the inner surface of the tube sheet 3 on the exhaust gas inflow bonnet 4 side and the flat heat transfer tubes 2 of the flat heat transfer tube group, with the axial center of the ejection hole 50-1 of the nozzle member 50 being Near the opening 6 of the casing 1 so as to be oriented. It is constructed by attaching the pacing first inner wall. At that time, both ends of the nozzle member 50 are attached to the inner wall of the casing so that part of the upper surface side and the lower surface side of the nozzle member protrude into the cooling medium distributor 8 and the casing 1, respectively.
  • the sum of the sectional areas of the ejection holes 50-1 is smaller than the sectional area in the flow direction of the cooling medium in the cooling medium distributor 8, as with the nozzle members 20, 30, 31, 40.
  • the shape of the ejection hole 50-1 may be either a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 as described above.
  • the cooling medium flows into the exhaust gas inflow bonnet 4 from the cooling medium inflow pipe 9 through the cooling medium distributor 8 and the nozzle member 50 through the opening 6.
  • the jet flow velocity of the cooling medium flowing out from the jet holes 50-1 of the nozzle member 50 is increased more than in the cooling medium distributor 8 and directed toward the inner surface of the tube sheet 3.
  • the cooling medium that is ejected with high kinetic energy and flows out between the flat heat transfer tubes 2 of the flat heat transfer tube group in the vicinity of the inner surface of the tube sheet 3 as a result of the cooling medium flowing out from the ejection holes 50-1 Is effectively prevented from boiling.
  • a guide member (not shown) is attached to the lower surface of the nozzle member 50 in order to allow the cooling medium flowing out from the ejection holes 50-1 to flow more reliably between the flat heat transfer tubes 2 of the flat heat transfer tube group. Even better.
  • the multi-tube heat exchanger according to the sixth embodiment of the present invention shown in FIGS. 12 and 13 has a nozzle member for increasing the flow rate of the cooling medium higher than that in the cooling medium distributor 8.
  • the flat heat transfer tube 2 side protrudes according to the laminated width of the flat heat transfer tube 2 with a substantially V-shaped or U-shaped cross section.
  • a nozzle member 60 having a convex portion 60-3 is employed, and the structure thereof is on one side of the wall surface of the convex portion 60-3 having a substantially V-shaped cross section as shown in FIGS.
  • a nozzle member 60 provided with an ejection hole 60-1 at a position corresponding to the space between the flat heat transfer tubes 2 of the flat heat transfer tube group and substantially orthogonal to the longitudinal direction of the casing is formed in the inclined portion 60-2.
  • the axial center of the ejection hole 60-1 is the channel on the exhaust gas inflow bonnet 4 side. It is constructed by attaching to the casing 1 inside wall near the opening portion 6 of the casing 1 so as to direct the space between the flat heat transfer tubes 2 of the surface and the flattened heat transfer pipe group of Bushito 3. At that time, both ends of the nozzle member 60 are attached to the inner wall of the casing 1 so that the V-shaped convex portion 60-3 of the nozzle member protrudes into the casing 1.
  • the sum of the cross-sectional areas of the ejection holes 60-1 is smaller than the cross-sectional area in the flow direction of the cooling medium in the cooling medium distributor 8.
  • the shape of the ejection hole 60-1 may be either a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 as described above.
  • the cooling medium distributor is introduced from the cooling medium inflow pipe 9 similarly to the multitubular heat exchanger having the configurations shown in FIGS. 8.
  • the cooling medium flows into the tube sheet 3 on the exhaust gas inflow bonnet 4 side from the ejection hole 60-1 through the opening 6, the nozzle member 60, and the convex portion 60-3, the ejection of the nozzle member 60
  • the jet flow velocity of the cooling medium flowing out from the hole 60-1 is increased from that in the cooling medium distributor 8 and is jetted with high kinetic energy toward the inner surface of the tube sheet 3, and the jet hole 60-
  • the cooling medium flowing out from 1 flows between the flat heat transfer tubes 2 of the flat heat transfer tube group in the vicinity of the inner surface of the tube sheet 3, thereby preventing the cooling medium from boiling more effectively.
  • the cooling medium flowing out from the ejection hole 60-1 is more reliably introduced into the lower surface of the nozzle member 60 in order to flow between the flat heat transfer tubes 2 of the flat heat transfer tube group. It is even better if a guide member (not shown) is attached.
  • the multi-tube heat exchanger according to the seventh embodiment of the present invention has a nozzle member for increasing the flow rate of the cooling medium as compared with that in the cooling medium distributor 8 as an opening of the casing 1.
  • a convex portion 70-3 that protrudes corresponding to the laminated width of the flat heat transfer tube 2 with a substantially V-shaped or U-shaped cross section on the flat heat transfer tube 2 side.
  • a section U corresponding to a space portion between the flat heat transfer tubes 2 of the flat heat transfer tube group of the convex portion 70-3 and projecting into the space portion at a position substantially orthogonal to the longitudinal direction of the casing.
  • a nozzle member 70 in which a letter-shaped or V-shaped projecting portion 70-4 is formed and an ejection hole 70-1 is provided in an inclined portion 70-2 on one side of the wall surface of the projecting portion 70-4 is adopted.
  • the nozzle member 70 is connected to the nozzle. It is constructed by being attached to the inner wall of the casing 1 in the vicinity of the opening 6 of the casing 1 so that the axial center of the ejection hole 70-1 of the material 70 is directed to the space between the flat heat transfer tubes 2 of the flat heat transfer tube group. is there.
  • both ends of the nozzle member 70 are attached to the inner wall of the casing 1 so that the convex portions 70-3 and the protruding portions 70-4 of the nozzle member protrude into the casing 1.
  • the sum of the sectional areas of the ejection holes 70-1 is smaller than the sectional area of the cooling medium distributor 8 in the flow direction of the cooling medium.
  • the shape may be either a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 in the same manner as described above.
  • the cooling medium inflow pipe 9 passes through the cooling medium distributor 8 and the opening 6.
  • the jet velocity of the cooling medium flowing out from the jet hole 70-1 of the nozzle member 70 is higher than that in the cooling medium distributor 8.
  • the cooling medium which is accelerated and jets toward the inner surface of the tube sheet 3 with high kinetic energy, and the cooling medium flowing out from the ejection holes 70-1 of each of the flat heat transfer tube groups near the inner surface of the tube sheet 3 By flowing between the flat heat transfer tubes 2, the cooling medium is more effectively prevented from boiling.
  • the protruding portion 70-4 of the nozzle member 70 protrudes in a space portion between the flat heat transfer tubes 2 of the flat heat transfer tube group, the cooling medium flowing out from the ejection hole 70-1 is reliably ensured. Since it can be made to flow in between each flat heat exchanger tube 2 of a flat heat exchanger tube group, the above-mentioned guide member 61 etc. may be omitted.
  • the multitubular heat exchanger according to the eighth embodiment of the present invention shown in FIG. 16 has a nozzle member for increasing the jetting flow rate of the cooling medium higher than that in the cooling medium distributor 8 in the vicinity of the opening of the casing 1.
  • the nozzle member 80 having a convex portion with a substantially V-shaped cross section similar to the nozzle member 60 of the multi-tube heat exchanger according to the sixth embodiment of the present invention shown in FIGS.
  • the structure corresponds to the inclined portion on one side of the wall of the convex portion having a substantially V-shaped cross section between the flat heat transfer tubes 2 of the flat heat transfer tube group as shown in FIG.
  • a nozzle member 80 provided with a short tubular burring nozzle 80-2 having a jet hole 80-1 at the tip and bulging toward the flat heat transfer tube 2 is provided at the tip of the burring nozzle 80-2 of the nozzle member 80.
  • the center of the injection hole 80-1 is on the exhaust gas inflow bonnet 4 side. It is constructed by attaching to the casing 1 inside wall near the opening portion 6 of the casing 1 so as to direct the space between the flat heat transfer tubes 2 of the surface and the flattened heat transfer pipe group of Yubushito 3. At this time, both ends of the nozzle member 80 are attached to the inner wall of the casing 1 so that the burring nozzle 80-2 of the V-shaped convex portion of the nozzle member protrudes into the casing 1.
  • the sum of the cross-sectional areas of the ejection holes 80-1 is smaller than the cross-sectional area of the cooling medium distributor 8 in the flow direction of the cooling medium, and the burring nozzle 80-2 and Needless to say, the hole shape of the ejection hole 80-1 may be either a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 as described above.
  • the cooling medium is supplied from the cooling medium inflow pipe 9 through the cooling medium distributor 8 and the opening 6, and the cooling medium is supplied from the nozzle member 80 to the exhaust gas inflow bonnet 4 side tube.
  • the jetting flow velocity of the cooling medium flowing out by being guided by the tubular burring wall of the burring nozzle 80-2 of the nozzle member 80 is improved as compared with that in the cooling medium distributor 8.
  • the cooling medium that is accelerated and jets toward the inner surface of the tube sheet 3 with high kinetic energy, and the cooling medium that has flowed out of the burring nozzle 80-2 is formed in each flat heat transfer tube group near the inner surface of the tube sheet 3.
  • the linearity of the cooling medium is further increased by the action of the burring nozzle 80-2, whereby the inner surface of the tube sheet 3 of the cooling medium. Quickly and accurately reached to cool boiling can be prevented more effectively. It is more effective to attach a guide member (not shown) to the lower surface of the nozzle member 80.
  • the multitubular heat exchanger according to the ninth embodiment of the present invention shown in FIG. 17 has a nozzle member for increasing the flow rate of the jetted cooling medium as compared with that in the cooling medium distributor 8 in the vicinity of the opening of the casing 1.
  • a nozzle member 90 similar to the nozzle member 40 of the multitubular heat exchanger according to the fourth embodiment of the present invention shown in FIG. 9 is adopted, and the structure thereof is shown in FIG.
  • each of the outflow holes 90-3 of the groove-shaped member having a concave cross section provided with outflow holes 90-3 at positions corresponding to the flat heat transfer tubes 2 of the flat heat transfer tube group is ejected at the tip.
  • -1 axis is between each flat heat transfer tube 2 in the flat heat transfer tube group Space and mounted near the proximal end portion of the cooling medium distributor 8 to direct tubesheet 3 inside surface is obtained by configuration.
  • the nozzle member 90 with the nozzle bush 90-2 is preferably mounted in the cooling medium distributor 8 so that the nozzle bush 90-2 passes through the opening 6 and its tip protrudes into the casing 1. .
  • a guide member (Not shown) may be attached.
  • the flow hole 90-3 and the ejection hole 90-1 of the nozzle member 90 and the shape of the nozzle bush 90-2 and the ejection hole 90-1 are also the same as the above, and the axis of the perfect circular or flat heat transfer tube 2 is used. Needless to say, it may be oval or oval having a major axis in the direction.
  • the nozzle bush 90-2 may be formed integrally with the nozzle member 90 as in the eighth embodiment.
  • the cooling medium is supplied from the cooling medium inflow pipe 9 through the cooling medium distributor 8 and the nozzle member 90, and the cooling medium is supplied from the opening 6 to the exhaust gas inflow bonnet 4 side tube.
  • the jet velocity of the cooling medium flowing out from the flow hole 90-3 of the nozzle member 90 and the jet hole 90-1 of the nozzle bush 90-2 is increased more than in the cooling medium distributor 8.
  • the liquid is ejected toward the inner surface of the tube sheet 3 with high kinetic energy, and the cooling medium flowing out from the ejection hole 90-1 at the tip of the nozzle bush 90-2 is flattened near the inner surface of the tube sheet 3.
  • a nozzle member for increasing the jet velocity of the cooling medium as compared with that in the cooling medium distributor 8 is provided in the vicinity of the opening of the casing 1.
  • the nozzle member similar to the nozzle member 50 of the multitubular heat exchanger according to the fifth embodiment of the present invention shown in FIG. 10 is relatively long and has a nozzle tube 100-1 at the tip.
  • the structure of the flat heat transfer tube group in the flat heat transfer tube group is formed on the inclined portion of the central portion of the substantially Z-shaped plate member.
  • a long length having an ejection hole 100-1 at the tip so that the plate member passes through the plate member at a corresponding position between the heat tubes 2 and the axis is directed to the space between the flat heat transfer tubes 2 of the flat heat transfer tube group.
  • the nozzle member 100 to which the nozzle pipe 100-2 is attached is connected to the casing 1 Spiral fins 100-3 are provided in the nozzle tube 100-2 so as to provide a swirlability to the cooling medium and further improve linearity in the nozzle tube 100-2. ing.
  • the cross-sectional shape of the nozzle tube 100-2 and the tip ejection hole 100-1 of the nozzle member 100 is a perfect circle or an ellipse or an ellipse having a major axis in the axial direction of the flat heat transfer tube 2 as described above. Needless to say, any shape is acceptable.
  • the cooling medium is exhaust gas from the opening 6 through the cooling medium inflow pipe 9 through the cooling medium distributor 8, the nozzle member 100 and the nozzle pipe 100-2.
  • the jet flow velocity of the cooling medium flowing out from the jet hole 100-1 at the tip of the nozzle tube 100-2 of the nozzle member 100 is higher than that in the cooling medium distributor 8.
  • the coolant that is directed toward the inner surface of the tube sheet 3 with high kinetic energy is ejected, and the cooling medium that has flowed out of the ejection hole 100-1 is in the flat heat transfer tube group in the vicinity of the inner surface of the tube sheet 3.
  • a multi-tube heat exchanger according to an eleventh embodiment of the present invention shown in FIGS. 19 to 21 includes a nozzle member for increasing the jetting flow rate of the cooling medium more than that in the cooling medium distributor 8, the casing 1
  • a guide member is provided to allow the cooling medium flowing into the tube sheet to flow along the inner surface of the tube sheet or through the space between the flat heat transfer tubes 2, and the comb-shaped guide member is adopted as the guide member.
  • the structure is the same as that of the multitubular heat exchanger according to the first embodiment of the present invention shown in FIGS. 1 to 4 attached to the inner wall of the casing 1 near the opening 6 of the cooling medium distributor 8.
  • a comb-like guide member 110 having a nozzle member 10 with an ejection hole 10-1 and a strip-like guide portion 110-1 provided extending in each space between the laminated flat heat transfer tubes 2;
  • Strip-shaped guide portion of the guide member 110 10-1 is the one constructed by attaching a bent portion 110-2 of the upper end portions by penetrating the ejection holes 10-1 of the nozzle member 10 to the inner surface of the cooling medium distributor 8.
  • the cooling medium inflow pipe 9 passes through the cooling medium distributor 8, the nozzle member 10 with the ejection holes 10-1, and the comb-shaped guide member 110.
  • the flow velocity of the cooling medium flowing out from the opening 6 is increased more than in the cooling medium distributor 8 and is comb-shaped.
  • the guide member 110 By the action of the guide member 110, that is, the action by the strip-shaped guide part 110-1 being extended and crossing the space between the flat heat transfer tube groups and the guide tip reaching the inner surface of the tube sheet 3,
  • the cooling medium ejected with a higher kinetic energy than the ejection hole 10-1 through the opening 6 flows along the surface of the strip-shaped guide part 110-1 and reliably reaches the tip thereof.
  • Quickly and accurately reached to cool boiling tubesheet 3 inner surface through each space between the TairaDennetsu tube 2 can be prevented more effectively.
  • boiling prevention is achieved by appropriately selecting and changing the curved shape (guide surface shape) of the strip-shaped guide portion 110-1 according to the temperature distribution, flow velocity, flow direction characteristics, etc. of the cooling medium. It is possible to increase the effect.
  • the multi-tube heat exchanger shown in FIGS. 22 and 23 is a system in which the cooling medium that has flowed into the casing 1 is caused to flow toward the tube sheet 3 on the exhaust gas inflow bonnet 4 side by a guide member.
  • the nozzle member is not shown, but the nozzle member 20 of the second embodiment, the nozzle member 40 of the fourth embodiment, etc. are distributed as a cooling medium.
  • the casing 8 is disposed in the casing 8 so that the guide member 120 is positioned in the space between the flat heat transfer tube 2 of the flat heat transfer tube group and the inner surface of the casing 1 in the cooling medium inflow opening 6 provided on the outer peripheral wall surface of the casing.
  • this guide member 120 is good also as a structure which formed the lower end part in a strip shape as shown in the said FIG. 21, and extended the said strip-shaped part to the space part between each flat heat exchanger tubes 2 (2 points
  • the cooling medium flowing in from the cooling medium inflow pipe 9 and the cooling medium distributor 8 and the opening 6 is applied to the inner surface of the tube sheet 3 by the action of the guide member 120. It reaches quickly and cools, and the boiling of the cooling medium is effectively prevented.
  • the multitubular heat exchanger according to the thirteenth embodiment of the present invention shown in FIG. 23 has a nozzle member not shown, but the nozzle member 10 of the first embodiment, the nozzle member 50 of the fifth embodiment and the like are casings. 1, and a guide member 130 similar to the guide member 120 is configured to pass through the cooling medium inflow opening 6 provided on the outer peripheral wall surface of the casing and is attached to the inner wall of the cooling medium distributor 8.
  • the guide member 130 may have a structure in which the lower end portion is formed in a strip shape as shown in FIG. 21 and the strip portion is extended into the space between the flat heat transfer tubes 2 (two-dot chain line). ).
  • the multitubular heat exchanger having the configuration shown in FIG.
  • a multitubular heat exchanger according to a fourteenth embodiment of the present invention shown in FIG. 24 is for replacing the guide members 120 and 130 with a cooling medium flow rate higher than that in the cooling medium distributor 8.
  • the guide unit integrated nozzle member 140 has a structure in which the ejection hole 140 is formed at a position corresponding to between the flat heat transfer tubes 2 of the flat heat transfer tube group on the upper side corresponding to the nozzle member. -1 is provided, the guide end integrated nozzle member 140 having a guide portion 140-2 at a position facing the ejection hole by curving and extending its continuous end, and the guide portion 140-2 is a flat heat transfer tube.
  • the nozzle member 140 may have a structure in which a lower end portion is formed in a strip shape and the strip portion is extended into a space between the flat heat transfer tubes 2. Good (indicated by a two-dot chain line). Further, the sum of the cross-sectional areas of the ejection holes 140-1 is smaller than the cross-sectional area in the flow direction of the cooling medium in the cooling medium distributor 8, and the shape of the ejection holes 140-1 is a perfect circle or a flat transmission similar to the above. Needless to say, either an ellipse or an ellipse having a major axis in the axial direction of the heat tube 2 may be used.
  • the cooling medium is supplied from the cooling medium inflow pipe 9 through the cooling medium distributor 8 and the nozzle member 140, and the cooling medium is supplied from the opening 6 to the exhaust gas inflow bonnet 4 side tube.
  • the flow velocity of the cooling medium flowing out from the ejection hole 140-1 of the nozzle member 140 is increased from that in the cooling medium distributor 8 and also flows out from the ejection hole 140-1.
  • the cooling medium quickly reaches the inner surface of the tube sheet 3 by the action of the guide portion 140-2 and is cooled, so that boiling of the cooling medium is effectively prevented.
  • the cooling medium inflow pipe 9 is provided at the end opposite to the base end of the cooling medium distributor 8 to cool the cooling medium.
  • the supply method of the cooling medium is not limited to the above method, and the supply method shown in FIGS. 25 and 26 is used. It may be adopted. That is, in the multitubular heat exchangers according to the fifteenth and sixteenth embodiments of the present invention shown in FIGS. 25 and 26, the cooling medium inflow pipes 19 and 29 are directly connected to the cooling medium distributor 8, respectively. 25, the multi-tube heat exchanger shown in FIG.
  • the multi-tube heat exchanger shown in FIG. 26 uses the same cooling medium distributor 28 as described above, and supplies a cooling medium by connecting a linear cooling medium inflow pipe 29 above the back of the cooling medium distributor 28. It is a method to do.
  • the cooling medium inflow pipes 19 and 29 are provided to be inclined with respect to the tube axis of the heat transfer pipe 2 so that the cooling medium flows downward from above in order to increase the flow rate of the cooling medium as much as possible. preferable.
  • the embodiment shown in FIGS. 1 to 26 of the present invention is a multi-tube heat exchanger in which the cooling medium distributors 8, 18, and 28 are inclined with respect to the axis of the casing 1.
  • the structure of the nozzle member 60 for increasing the flow rate of the cooling medium from that in the cooling medium distributor 8 is provided in the casing 1.
  • the box-shaped cooling medium distributor 8A having a base end (bottom) opened so that the flange 8A-1 covers the cooling medium inflow opening 6 provided in the casing 1 is provided.
  • each flat heat transfer tube group Fixed vertically to the axis of the casing 1, each flat heat transfer tube group
  • the nozzle member 60 provided with the ejection holes 60-1 corresponding to the space between the heat transfer tubes 2 and substantially perpendicular to the longitudinal direction of the casing is arranged such that the axis of the ejection holes 60-1 of the nozzle member 60 is the exhaust gas inflow bonnet 4.
  • the casing 1 of the cooling medium inflow opening 6 of the casing 1 is directed to the inner surface of the tube sheet 3 (FIG. 1) on the (FIG.
  • the nozzle member 60 side and the space between the flat heat transfer tubes 2 of the flat heat transfer tube group. It is configured to be attached to the inner wall. At that time, both ends of the nozzle member 60 are attached to the inner wall of the casing 1 so that the V-shaped convex portion 60-3 of the nozzle member protrudes into the casing 1.
  • the sum of the cross-sectional areas of the ejection holes 60-1 is larger than the flow direction area of the cooling medium in the vertical cooling medium distributor 8A.
  • the shape of the ejection hole 60-1 may be either a perfect circle or an ellipse having a long diameter in the axial direction of the flat heat transfer tube 2 or an oval shape, similar to the above.
  • the cooling medium flows vertically to the axial center of the casing 1 by the cooling medium distributor 8A, but the ejection hole 60- 1 of the casing 1 is oriented so that the inner surface of the tube sheet 3 (FIG. 1) on the exhaust gas inflow bonnet 4 (FIG. 1) side and the space between the flat heat transfer tubes 2 of the flat heat transfer tube group are oriented. Since the cooling medium inflow opening 6 is attached to the inner wall of the casing 1 so as to be substantially orthogonal to the longitudinal direction of the casing, the cooling medium is cooled from the ejection hole 60-1 through the opening 6, the nozzle member 60, and the convex portion 60-3.
  • the jet flow velocity of the cooling medium flowing out from the jet hole 60-1 of the nozzle member 60 is increased as compared with that in the cooling medium distributor 8A and the tube sheet. 3 inner surface
  • the cooling medium flowing out from the ejection hole 60-1 flows between the flat heat transfer tubes 2 of the flat heat transfer tube group in the vicinity of the inner surface of the tube sheet 3 while being jetted with high kinetic energy. This effectively prevents the cooling medium from boiling.
  • the cooling medium flowing out from the ejection hole 60-1 is more reliably introduced into the lower surface of the nozzle member 60 so as to flow between the flat heat transfer tubes 2 of the flat heat transfer tube group. It is more effective to attach a guide member (not shown).
  • the multitubular heat exchanger according to the eighteenth embodiment of the present invention shown in FIG. 29 is the same as the heat exchanger according to the sixth embodiment shown in FIG.
  • a configuration (cooling medium distributor 8B) that is installed to be inclined at a desired angle ( ⁇ ) in the opposite direction the structure thereof is the same as that of the heat exchanger according to the sixth embodiment shown in FIG.
  • the cooling medium inflow opening 6 provided in the casing 1 is provided with the flange 8B-.
  • a box-shaped cooling medium distributor 8B having a base end (bottom) opened so as to cover 1 is inclined at a desired angle ( ⁇ ) toward the exhaust gas inflow bonnet 4 (FIG. 1) with respect to the axis of the casing 1 And fixed to the casing 1, flat heat transfer tube group
  • the nozzle member 60 provided with the ejection holes 60-1 at the corresponding positions between the flat heat transfer tubes 2 is connected to the exhaust gas inflow bonnet 4 (FIG. 1) side.
  • the cooling medium inflow opening 6 of the casing 1 is directed to the space between the inner surface of the tube sheet 3 (FIG. 1) and the flat heat transfer tubes 2 of the flat heat transfer tube group and substantially orthogonal to the casing longitudinal direction.
  • the casing 1 is attached to the inner wall of the casing 1.
  • both ends of the nozzle member 60 are attached to the inner wall of the casing 1 so that the V-shaped convex portion 60-3 of the nozzle member protrudes into the casing 1.
  • the sum of the cross-sectional areas of the ejection holes 60-1 is larger than the flow direction area of the cooling medium in the vertical cooling medium distributor 8A.
  • the shape of the ejection hole 60-1 may be either a perfect circle or an ellipse having a long diameter in the axial direction of the flat heat transfer tube 2 or an oval shape, similar to the above.
  • the cooling medium is opposite to the heat exchanger according to the sixth embodiment shown in FIG. 12 with respect to the axis of the casing 1 by the cooling medium distributor 8B.
  • the cooling medium inflow opening 6 of the casing 1 so as to be directed to the inner surface of the tube sheet 3 (FIG. 1) on the inflow bonnet 4 (FIG. 1) side and the space between the flat heat transfer tubes 2 of the flat heat transfer tube group.
  • the nozzle member 60 When the cooling medium flows into the tube sheet 3 from the ejection hole 60-1 through the opening 6, the nozzle member 60, and the convex portion 60-3, the nozzle member 60 is attached to the inner wall of the casing 1. Flows out from the nozzle 60-1 The jet velocity of the cooling medium is increased as compared with that in the cooling medium distributor 8B and is jetted with high kinetic energy toward the inner surface of the tube sheet 3, and the jet hole 60- The cooling medium flowing out from 1 flows between the flat heat transfer tubes 2 of the flat heat transfer tube group in the vicinity of the inner surface of the tube sheet 3, thereby effectively preventing the cooling medium from boiling.
  • the cooling medium flowing out from the ejection hole 60-1 is more reliably introduced into the lower surface of the nozzle member 60 so as to flow between the flat heat transfer tubes 2 of the flat heat transfer tube group. It is more effective to attach a guide member (not shown).
  • the multitubular heat exchanger according to the nineteenth embodiment of the present invention shown in FIG. 30 employs a nozzle member 60A provided with ejection holes having different cross-sectional areas in the nozzle member.
  • the ejection holes provided between the flat heat transfer tubes 2 and at positions substantially orthogonal to the longitudinal direction of the casing, the ejection holes 60A- having different cross-sectional areas so that the cross-sectional area gradually increases along the laminating direction of the flat heat transfer tubes. 1 to 60A-4 are provided.
  • the nozzle member is provided with the ejection holes 60A-1 to 60A-4 having different cross-sectional areas as described above, particularly in a large-sized multi-tube heat exchanger having a large number of flat heat transfer tubes.
  • the cross-sectional area of the ejection holes 60A-1 to 60A-4 is sequentially changed
  • the correspondence for changing the cross-sectional area of the ejection holes is not limited to this, and the cross-sectional area is not limited to each of the ejection holes. Needless to say, the area may be changed as desired.
  • the multitubular heat exchanger according to the twentieth embodiment of the present invention shown in FIGS. 31 to 33 has a nozzle member with an ejection hole directed to the tube sheet inner surface on the exhaust gas inlet side and an outflow not directed to the tube sheet inner surface.
  • the nozzle member 60B having a hole is employed, and the structure thereof is, for example, that the EGR gas of the convex portion 60B-3 having a substantially V-shaped cross section protruding continuously in the stacking direction of the heat transfer tube on the heat transfer tube side.
  • an ejection hole 60B-1 is provided at a position corresponding to the space between the flat heat transfer tubes of the flat heat transfer tube group and substantially orthogonal to the casing longitudinal direction.
  • 60B-3 EGR gas flow direction downstream side wall surface (inclined portion) 60B-4 is directed to a space portion between flat heat transfer tubes in which axial cores are laminated or a space portion between flat heat transfer tubes and the inner surface of the casing.
  • a plurality of nozzle members 60B provided with outflow hole 60B-5 of small diameter which does not directed to Bushito inner surface is constructed by attaching to the inner wall of the casing 1.
  • the nozzle member 60B-1 directed to the inner surface of the tube sheet on the exhaust gas inlet side but also the nozzle member 60B provided with the outflow hole 60B-5 not directed to the inner surface of the tube sheet is employed in the nozzle member.
  • the EGR gas temperature rises and the gas flow rate increases, so that not only the inner surface of the tube sheet but also the outer surface of the flat heat transfer tube in the vicinity of the tube sheet may cause boiling of the cooling medium.
  • the cooling medium from the small diameter outflow hole is accelerated and flows between the flat heat transfer tubes in the vicinity of the tube sheet.
  • the outflow hole 60B-5 may be provided, for example, only at a position where the outer surface of the flat heat transfer tube is at a high temperature or by changing the cross-sectional area.
  • the multitubular heat exchanger according to the twenty-first embodiment of the present invention shown in FIG. 34 is a nozzle having a convex portion 60B-3 having a substantially V-shaped cross section of the multitubular heat exchanger according to the twentieth embodiment.
  • a nozzle member 60C having a convex portion 60C-3 having a substantially U-shaped cross section is adopted, and the structure thereof is a cross section substantially protruding in the stacking direction of the heat transfer tubes on the heat transfer tube side.
  • the portion of the flange portion 60C-6 formed at the opening end of the nozzle member 60C on the cooling medium distributor 8A side is the base end of the cooling medium distributor 8A. It is possible to adopt a method of being fixed to the outer surface of the casing 1 by being interposed between the flange portion 8A-1. Also in this case, not only the ejection hole 60C-1 directed to the inner surface of the tube sheet on the exhaust gas inlet side but also the small diameter not directed to the inner surface of the tube sheet in the nozzle member having the convex portion 60C-3 having a substantially U-shaped cross section.
  • the nozzle member 60C provided with the outflow hole 60C-5 is not only the inner surface of the tube sheet but also the flatness in the vicinity of the tube sheet, because the EGR gas temperature rises and the gas flow rate increases at the time of high load operation of the engine.
  • the phenomenon that boiling of the cooling medium also occurs from the outer surface of the heat transfer tube, and not only the cooling in the vicinity of the inner surface of the tube sheet by the cooling water from the ejection hole 60C-1, but also the cooling medium from the small diameter outlet hole 60C-5
  • Even when the engine is under high engine load the air flows between the flat heat transfer tubes near the tube sheet and effectively cools the outer surface of each flat heat transfer tube. This is because it is possible to reliably prevent boiling of a wide range around Yubushito.
  • the method of fixing the nozzle member 60 ⁇ / b> C on the outer surface of the casing 1 has better workability for assembling the nozzle member than the method of fixing the nozzle member 60 ⁇ / b> C on the inner surface of the casing 1.
  • the outflow hole 60C-5 may be provided, for example, only at a position where the outer surface of the flat heat transfer tube is at a high temperature or by changing the cross-sectional area.
  • the multitubular heat exchanger according to the 22nd embodiment of the present invention shown in FIGS. 35 and 36 has an ejection hole directed to the inner surface of the tube sheet on the exhaust gas inlet side and an outflow not directed to the inner surface of the tube sheet.
  • a nozzle member 60D provided with a hole and an outflow hole provided between the ejection hole and the outflow hole that does not face the inner surface of the tube sheet is employed, and the structure thereof is, for example, the lamination of the heat transfer tube on the heat transfer tube side.
  • the space between the flat heat transfer tubes Alternatively, there are provided a plurality of small-diameter outflow holes 60D-5 that are directed to the space between the flat heat transfer tube and the inner surface of the casing and are not directed to the inner surface of the tube sheet on the exhaust gas inlet side.
  • a space between the flat heat transfer tubes or the space between the flat heat transfer tubes and the inner surface of the casing, which is located between the gas flow outlet 60D-5 and the shaft core is laminated on the bottom of the convex portion 60D-3.
  • a nozzle member 60D having a plurality of small-diameter outflow holes 60D-6 that are directed and do not face the inner surface of the tube sheet on the exhaust gas inlet side is attached to the inner wall of the casing 1.
  • a small-diameter outflow is formed at the bottom of the convex portion 60D-3.
  • the nozzle member 60D provided with the hole 60D-6 is used because the EGR gas temperature rises and the gas flow rate increases during high load operation of the engine, so that not only the inner surface of the tube sheet but also the flat heat transfer tube near the tube sheet.
  • the coolant flowing in at right angles flows into the flat heat transfer tube through the outflow hole 60D-6, and has a small diameter provided on the downstream side wall surface in the EGR gas flow direction.
  • the cooling medium from the outlet hole 60D-5 is accelerated and flows into the flat heat transfer tubes slightly away from the tube sheet, thereby effectively cooling the outer surface of each flat heat transfer tube. This is because boiling in a wide range including the vicinity of the tube sheet can be more reliably prevented.
  • the cross-sectional area of the ejection hole 60D-1 is provided by changing the cross-sectional area as desired for each of the ejection holes, or the outflow holes 60D-5 and 60D-6 are provided, for example, on the outer surface of a flat heat transfer tube. Needless to say, it may be provided only at a position where the temperature is high, or may be provided by changing the cross-sectional area.
  • a multitubular heat exchanger according to a twenty-third embodiment of the present invention shown in FIG. 37 has a nozzle having a convex part 60D-3 having a substantially inverted trapezoidal cross section of the multitubular heat exchanger according to the twenty-second embodiment.
  • a nozzle member 60E having a convex portion 60E-3 having a substantially arc-shaped cross section is adopted, and the structure thereof is, for example, a cross section substantially projecting in the stacking direction of the heat transfer tubes on the heat transfer tube side.
  • the ejection hole 60E corresponds to the space between the flat heat transfer tubes of the flat heat transfer tube group and is substantially orthogonal to the casing longitudinal direction.
  • a plurality of small-diameter outflow holes 60E-6 that are directed to the space between the formed flat heat transfer tubes or the space between the flat heat transfer tubes and the inner surface of the casing and not to the inner surface of the tube sheet on the exhaust gas inlet side.
  • the nozzle member 60E having the same is formed by attaching the flange portion 60E-7 to the casing 1 by a method in which the nozzle portion 60E-7 is fixed to the outer surface of the casing 1 in the same manner as described above.
  • the ejection hole 60E-1 directed toward the inner surface of the tube sheet on the exhaust gas inlet side and the outflow hole 60E-5 not directed toward the inner surface of the tube sheet the small diameter outflow is formed at the bottom of the convex portion 60E-3.
  • the nozzle member 60E provided with the hole 60E-6 is used not only for the inner surface of the tube sheet but also for the vicinity of the tube sheet because the EGR gas temperature rises and the gas flow rate increases during high load operation of the engine as described above.
  • the cooling medium flowing in substantially perpendicular to the flow direction is caused to flow into the flat heat transfer tube through the outflow hole 60E-6, and on the downstream side wall surface in the EGR gas flow direction.
  • the cooling medium from the small-diameter outlet hole 60E-5 is accelerated and flows between the flat heat transfer tubes slightly away from the tube sheet to effectively cool the outer surface of each flat heat transfer tube, so that the engine can be operated at high engine load.
  • the outflow holes 60E-5 and 60E-6 may be provided, for example, only at a position where the outer surface of the flat heat transfer tube is at a high temperature or by changing the cross-sectional area.
  • a comb-teeth guide member 110A shown in FIG. 38 is the same as the comb-teeth guide member shown in FIGS. 19 to 21 except that the length of the guide portion is different in the laminating direction of the flat heat transfer tubes.
  • the length of the strip-shaped guide portion 110A-1 extending in each space between the stacked flat heat transfer tubes is gradually increased along the stacking direction of the flat heat transfer tubes, and the center portion is formed to be the longest. It is a thing.
  • the strip-shaped guide portion 110A-1 is provided with a bent portion 110A-2 for attaching the guide member 110A to the cooling medium distributors 8 and 8A.
  • the reason why the length of the guide portion is different in the laminating direction of the flat heat transfer tubes is as follows. That is, the flow rate distribution of the EGR gas flowing into the EGR gas cooling device (EGR cooler) is not uniform and flows while generating a drift, and the tube sheet and the flat transmission near the flat heat transfer tube having a high EGR gas flow rate and a high gas flow rate.
  • EGR cooler EGR gas cooling device
  • a nozzle member 60F having an ejection hole 60F-1 directed to the inner surface of the tube sheet on the exhaust gas inlet side at a position corresponding to the space between the heat pipes 2 and substantially orthogonal to the longitudinal direction of the casing is attached to the inner wall of the casing 1 It is.
  • 7 is a cooling medium outflow pipe.
  • the cooling medium flows horizontally from the side surface of the casing 1 by the cooling medium distributor 8A, but the ejection hole 60F-1 of the nozzle member 60F is a flat heat transfer tube group.
  • the ejection holes 60 F ⁇ are provided through the opening 6 and the nozzle member 60 F.
  • Boiling of the cooling medium is effectively prevented by flowing between the flat heat transfer tubes 2 of the flat heat transfer tube group horizontal arrangement in the near.
  • natural convection due to a rise in the temperature of the cooling medium is unlikely to occur, and the flow is stagnant and is likely to boil.
  • boiling of the cooling medium is reliably prevented by high-speed ejection of the cooling medium between the flat heat transfer tubes in a substantially horizontal direction directed to the tube sheet from the ejection hole 60F-1 of the nozzle member 60F. It becomes possible to do. In addition, even if fine bubbles are generated, they can be accelerated and flowed down quickly by a high-speed cooling medium flow, effectively preventing the bubble growth and boiling caused by the low flow rate. be able to.
  • a series of flat heat transfer tube groups has been described here as an example, the same effect is also obtained in the case of a double flat heat transfer tube group (not shown) in which flat heat transfer tube groups are arranged in parallel in the horizontal direction. It goes without saying that it can be obtained.
  • the multitubular heat exchanger according to the 25th embodiment of the present invention shown in FIG. 40 is different from the multitubular heat exchanger (series of flat heat transfer tube group) according to the 24th embodiment shown in FIG.
  • a multi-tubular heat exchanger having a configuration in which a triple-type flat heat transfer tube group is horizontally arranged is illustrated, and the configuration is such that seven flat heat transfer tubes 2 are horizontally arranged and stacked.
  • the cooling medium flows into the side surfaces on both sides of the casing 1 in which the flat heat transfer tube groups in which the flat heat transfer tube groups are horizontally arranged in three rows are accommodated so as to cover the openings 6 provided on the both side surfaces.
  • a cooling medium distributor 8A with a tube 9 is fixed, and the tube sheet inner surface on the exhaust gas inlet side is disposed at a position corresponding to the space between the flat heat transfer tubes 2 of the flat heat transfer tube groups on both sides and substantially orthogonal to the longitudinal direction of the casing.
  • a nozzle member 60G having a directed ejection hole 60G-1 is attached to the inner walls on both sides of the casing 1 It is obtained by configuration Te.
  • the cooling medium flows horizontally from the side surface of the casing 1 by the cooling medium distributor 8A provided on both sides of the casing 1, but the series shown in FIG.
  • the nozzle hole 60G-1 is directed toward the inner surface of the tube sheet correspondingly between the flat heat transfer tubes 2 of the flat heat transfer tube group.
  • the cooling medium flows into the tube sheet from the ejection holes 60G-1 through the openings 6 on both sides of the casing and the nozzle member 60G.
  • the jet velocity of the coolant flowing out from the jet holes 60G-1 of both nozzle members 60G in the substantially horizontal direction is increased more than in the coolant distributor 8A and the tube sheet
  • the coolant flowing out from the jet hole 60G-1 flows between the flat heat transfer tubes 2 of the three horizontal flat heat transfer tube groups while being jetted with high kinetic energy directed toward the surface. This effectively prevents the cooling medium from boiling.
  • each of the tubes in a substantially horizontal direction directed to the tube sheet from the ejection hole 60G-1 of the nozzle member 60G provided on both sides of the casing 1 Due to the high-speed ejection of the cooling medium between the flat heat transfer tubes, it is possible to reliably prevent the cooling medium from boiling not only in the flat heat transfer tube groups on both sides but also in the central flat heat transfer tube group.
  • a multi-tube heat exchanger composed of a series and triple-type flat heat transfer tube group has been described as an example, but the same effect is also obtained in the case of a double-type flat heat transfer tube group (not shown). Needless to say, an effect can be obtained.
  • the multi-tube heat exchanger according to the present invention allows the cooling medium to flow toward the inner surface of the tube sheet at a higher speed as a means for sufficiently enhancing the boiling prevention effect of the cooling medium on the exhaust gas (EGR gas) inlet side.
  • a cooling medium distributor, a nozzle member, a guide member, and the like having a plurality of ejection holes through which the cooling medium flows at a higher speed than the inside of the cooling medium distributor in a direction substantially perpendicular to the casing longitudinal direction of the multi-tubular heat exchanger are provided.
  • the cooling medium can be accelerated, and the directivity toward the inner surface of the tube sheet can be further improved, so that the cooling medium on the exhaust gas (EGR gas) inlet side Boiling Not only can it be eliminated almost certainly, but also the outer surface of each flat heat transfer tube in the vicinity of the tube sheet can be effectively cooled, so that it is possible to reliably prevent boiling in a wide area near the tube sheet. Decrease in heat exchange performance due to boiling of the gas can be prevented, greatly contributing to heat recovery from engine exhaust gas and cooling of exhaust gas such as EGR gas.
  • Cooling medium inflow opening 7 Cooling medium outflow pipes 8, 8A, 8B, 18, 28 Cooling medium distributors 8-1, 8A- 1, 8B-1 Flange portion 9, 19, 29 Cooling medium inflow pipe 9-1
  • Cooling medium inlet 9-2 Cap 10, 20, 30, 31, 40, 50, 60, 60A, 60B, 60C, 60D, 60E 60F, 60G, 70, 80, 90, 100 Nozzle members 10-1, 20-1, 30-1, 31-1, 40-1, 50-1, 60-1, 60A-1 to 60A-4, 60B-1, 60C-1, 60D-1, 60E-1, 60F-1, 60G-1, 70-1, 80-1, 90-1, 100-1, 140-1 ejection holes 50-2, 60 -2 70-2 Inclined part 60-3, 60B-3, 60C-3, 60D-3, 60E-3, 70-3 Convex part 60B-2, 60C-2,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 特に伝熱管群を扁平チューブで構成した多管式熱交換器において、ケースあるいはシェル内に導入される冷却媒体流にチューブシート内面に対する指向性と増速性をより高めて排気ガス流入口側での冷却媒体の沸騰防止作用を高めることができる多管式熱交換器の提供。 ケーシングの両端部に設けられたチューブシートに複数積層された扁平伝熱管群が固着され、扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、ケーシングの排気ガス流入口側端部付近に冷却媒体流入管を備えた冷却媒体分配器を設け、冷却媒体分配器とケーシングの接続部付近に、冷却媒体の噴出流速が冷却媒体分配器内より増速されるよう複数の噴出孔をケーシング長手方向と略直交する方向に有するノズル部材を備えることを特徴とする。

Description

多管式熱交換器
 本発明は、ディーゼルエンジンあるいはガソリンエンジン等の冷却水等の液体状の冷却媒体によってエンジンの排気ガスからの熱回収や、EGRガスを冷却する多管式熱交換器に関するものである。
 この種の多管式の熱交換器としては、例えば以下に記載するEGRガス冷却装置(特許文献1~5)が提案されている。
 即ち、特許文献1には、図41、図42にその概略を示すように、両端部に冷却媒体流入口201-1a及び冷却媒体流出口201-2aが設けられた胴管201の両端部付近に固定されたチューブシート203に伝熱管群202が固着配列され、さらに胴管201の両端部に端部キャップ204が固着され、該端部キャップ204にはEGRガスの流入口204-1と及び流出口204-2が設けられ、該端部キャップ204のEGRガスの流入口204-1と及び流出口204-2の外側開口端部に締結用フランジ205が外嵌固着された構造の多管式のEGRガス冷却装置において、EGRガスの流入口204-1側に設ける複数個の冷却媒体流入口201-1aを、胴管201内に流入した冷却媒体がEGRガス流入口204-1側のチューブシート203に沿って流れるように胴管201の軸芯に対する垂直線に対し傾斜させて設けたEGRガス冷却装置が示されている。
 特許文献2には、図43、図44にその概略を示すように、複数並設された扁平チューブ212と、該扁平チューブ212の外周を囲繞するように形成されたケース213と、該ケース213の両端部に設けられ各扁平チューブの両端部が貫設されたヘッダプレート(チューブシート)214とを備え、扁平チューブ212内を流通する排気ガスと、ケース213内を流通する冷却水との間で熱交換を行うように構成されたEGRクーラ211であって、基端部221がケース213に接続されると共に、先端部220に冷却水入口管216が接続される冷却水供給チャンバ215を備え、該冷却水供給チャンバ215は先端部220から基端部221に向って漸次幅広となる形状と成し、基端部221の幅がケース213の幅に略等しくなるように形成され、ケース213の他端部には冷却水出口管222が設けられたEGRクーラが示されている。図中、217は端部キャップ、218は締結用フランジである。
 特許文献3には、図45、図46にその概略を示すように、熱交換器のシェル231にチューブアセンブリ234を内蔵し、両端部をエンドプレート(チューブシート)233に支持された各扁平チューブ232の内部に高温のEGRガスを通し、その外部に冷却水を通して熱交換するEGRクーラ用熱交換器において、シェル231内に冷却水を導入する冷却水入口231-1を2箇所以上設け、シェル231内から冷却水を排出する冷却水出口231-2を1箇所設け、冷却水入口231-1に冷却水入口パイプアダプタ235を設ける構成となしたEGRクーラ用熱交換器が示されている。図中、231-1aは冷却水入口パイプ、231-2aは冷却水出口パイプである。
 特許文献4には、図47、図48にその概略を示すように、冷却水導入口241-1及び排出口241-2を備えた中空状のシェル241と、シェル241内部に配置されたEGRガスが通過する複数の扁平チューブ242とを備えたEGRクーラ240において、シェル241の下側面部241-3に設けた冷却水導入口241-1に冷却水を導入するアダプタ部材243を配置した構成のEGRクーラが示されている。
 特許文献5には、図49、図50にその概略を示すように、冷却水導入口251-1及び排出口251-2を備えた中空状のシェル251と、シェル251内部に配置されたEGRガスが通過する複数の扁平チューブ252とを備えたEGRクーラ250において、冷却水導入口251-1に取り付けられシェル251内に冷却水を導入するアダプタ部材253を備え、このアダプタ部材253は当該アダプタ部材内部からシェル251内まで延設され、冷却水導入口251-1からシェル251内に導入される冷却水の流入方向を調整する案内板254を備えたEGRクーラが示されている。
 特許文献6には、図51、図52にその概略を示すように、円筒状の冷却水入口パイプ261-1及び排出口(図面省略)を備えた中空状のシェル261と、シェル261内部に配置されたEGRガスが通過する複数の扁平チューブ262とを備えたEGRクーラ260において、冷却水入口パイプ261-1のシェル261内の出口に接合される有底筒状のプレス成形品であって、底面あるいは側面下部に冷却水を任意の方向に向けて放出する放出口261-2aを形成したアタッチメント261-2を設けたEGRクーラが示されている。
特許第4386215号 特開2007-154683号 特開2008-231929号 特開2009-114924号 特開2009-91948号 特開2012-47105号
 しかしながら、上記した従来の多管式の熱交換器には、以下に記載する欠点がある。
 即ち、前記特許文献1に記載されたEGRガス冷却装置(図41、図42)は、冷却媒体流入口201-1aを複数個設けることによりチューブシート203付近のオーバーヒートエリアをほとんど皆無にできるので冷却媒体の沸騰の解消に有効であるが、冷却媒体流入口201-1aの流入方向に直角な断面積は冷却媒体流入口へ流入する配管の断面積とは略等しく、冷却媒体流入口から流入する冷却媒体の流速を冷却媒体流入口へ流入する配管内の流速より増速させる作用を有しないため、チューブシート203内面に沿って流れる流速の増速作用が十分に得られず、沸騰防止作用の不足が危惧されている。
 特許文献2に記載されたEGRガス冷却装置(図43、図44)は、冷却水供給チャンバ215がヘッダプレート214と平行に位置していることから、流入冷却水流にヘッダプレート214内面に対する指向性がなく、冷却水供給チャンバ215の先端部220から流入した冷却水は単に冷却水出口管222に向ってケース213の軸方向に流れるだけであるから、排気ガス(EGRガス)流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。
 特許文献3に記載されたEGRクーラ用熱交換器(図45、図46)も、前記特許文献2に記載されたEGRガス冷却装置と同様に、冷却水入口231-1よりシェル231内に流入する冷却水流にエンドプレート(チューブシート)233内面に対する指向性がなく、単に冷却水出口231-2aに向ってシェル231の軸方向に流れるだけであるから、EGRガス流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。
 特許文献4に記載されたEGRクーラ(図47、図48)の場合は、冷却水導入口241-1から流入した冷却水はアダプタ部材243を通過してシェル241内に流入しチューブ列の各チューブの間に導入され、シェル241内の各チューブの軸方向を側面に沿い、排出口241-2に向って流れるだけでありその冷却水流にエンドプレート内面に対する指向性がないため、前記特許文献2、3に記載されたEGRガス冷却装置及びEGRクーラ用熱交換器と同様に、EGRガス流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。又、このEGRクーラは、扁平伝熱管列として扁平伝熱管の長寸方向が上下方向を向くように垂直に配置された構成のものに限られ、扁平伝熱管が水平に配置されて積層された構造のEGRクーラの場合は、局所的な冷却水の沸騰を防止する効果が得難いという難点がある。
 特許文献5に記載されたEGRクーラ(図49、図50)の場合は、冷却水導入口251-1からシェル251内に流入する冷却水流は、案内板254により扁平チューブ252の積層方向に指向されるのみでその冷却水流にエンドプレート内面に対する指向性がないため、前記特許文献2~4に記載されたものと同様に、単にシェル251の軸方向を排出口251-2に向って流れるだけであるから、EGRガス流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。
 特許文献6に記載されたEGRクーラ(図51、図52)の場合は、円筒状の冷却水入口パイプ261-1からシェル261内に流入する冷却水は、冷却水入口パイプ261-1のシェル261内の出口に接合された有底筒状のアタッチメント261-2によりガス入口側のエンドプレート264付近に向けて放出され、かつ左右に拡散して放出されるも、円筒状の冷却水入口パイプ261-1はシェル261の端部に設置されている関係上、冷却水の沸騰防止作用は冷却水入口パイプ261-1の近傍が最も大きく、冷却水入口パイプ261-1より離れるほど小さく、シェル261の幅方向全体にわたって均一な冷却水の沸騰防止効果が得難いという欠点がある。又、冷却水の放出口261-2aをエンドプレート264付近に向けて形成したアタッチメント261-2であっても、シェル261の幅方向全体にわたって冷却水の放出量及び流入速度を適切に制御することができないため、排気ガス(EGRガス)流入口側での冷却水の沸騰防止作用を均一にかつ十分に高めることができないという欠点があり、特に大型のEGRクーラには適さないという難点がある。図中、262は扁平チューブ、263は入口ヘッダである。
 本発明は上記した従来の多管式熱交換器の問題を解決するためになされたもので、特に伝熱管群を扁平チューブで構成した多管式熱交換器において、ケースあるいはシェル内に導入される冷却水流に、ケーシングの軸芯に対する垂直線に対して傾斜してチューブシート(エンドプレート)内面に対する指向性と増速性をより高めて排気ガス(EGRガス)流入口側での冷却媒体の沸騰防止作用を十分に高めることができる多管式熱交換器を提供しようとするものである。
 本発明に係る多管式熱交換器は、複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、前記ケーシングの排気ガス流入口側端部付近に前記ケーシング長手方向と略直交する方向に基端部を接続すると共に冷却媒体流入管を備えた冷却媒体分配器を備え、前記冷却媒体分配器と前記ケーシングの接続部付近に、冷却媒体の噴出流速が前記冷却媒体分配器内より増速されるよう複数の噴出孔を該ケーシング長手方向と略直交する方向に有するノズル部材が設けられ、かつ前記噴出孔の断面積の総和が該冷却媒体分配器内の冷却媒体の流れ方向断面積より小さいことを特徴とするものである。
 又、本発明に係る多管式熱交換器は、複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けた長孔からなる開口部に、該開口部を覆うように基端部を接続する冷却媒体分配器と、該冷却媒体分配器に接続した冷却媒体流入管を備え、かつ前記冷却媒体分配器は、前記ケーシング内に流入した冷却媒体が前記排気ガス流入口側のチューブシート内面に沿って流れるようにケーシングの軸芯に対する垂直線に対し傾斜させて設け、さらに、冷却媒体の噴出流速が前記冷却媒体分配器内より増速されるよう複数の噴出孔を設けたノズル部材を前記開口部付近に設け、かつ前記噴出孔の断面積の総和が該冷却媒体分配器内の冷却媒体の流れ方向断面積より小さいことを特徴とするものである。
 上記本発明の多管式熱交換器は、冷却媒体分配器をケーシングの軸芯に対する垂直線に対して傾斜させて設けると規定しているように、冷却媒体分配器を傾斜して設置することを必須の構成要件としているが、冷却媒体分配器は例えば、ケーシングの軸芯に対する垂直線に対し平行(軸芯と直角方向)もしくは排気ガス流入口側へ前記と逆向きに設けて構成することも可能である。
 即ち、この種の多管式熱交換器は、複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けた長孔からなる開口部に、該開口部を覆うように基端部を接続する冷却媒体分配器と、該冷却媒体分配器に接続した冷却媒体流入管を備え、かつ前記冷却媒体分配器は、ケーシングの軸芯に対する垂直線に対し平行(軸芯と直角方向)もしくは排気ガス流入口側へ逆向きに設けられ、さらに冷却媒体の噴出流速が前記冷却媒体分配器内より増速されるよう複数の噴出孔を設けたノズル部材が前記開口部付近に設けられ、かつ前記噴出孔の断面積の総和が該冷却媒体分配器内の冷却媒体の流れ方向断面積より小さく、かつ前記ケーシング内に流入した冷却媒体が前記排気ガス流入口側のチューブシート内面に沿って流れるように該噴出孔の軸芯が排気ガス流入口側のチューブシート内面を指向していることを特徴とするものである。
 又、本発明は、前記噴出孔の軸芯が、(a)排気ガス流入口側のチューブシート内面を指向していること、(b)積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向していること、のいずれかを好ましい態様とするものである。
 更に、本発明は、前記ノズル部材が冷却水分配器内、及び、ケーシング内のいずれかに設けられることを好ましい態様とするものである。
 前記ノズル部材は、伝熱管側に当該伝熱管の積層方向に連続して突出し、壁面に前記噴出孔を有する凸状部が設けられていることを好ましい態様とするものである。
 本発明は又、前記凸状部の積層された各扁平伝熱管の間の空間部及び/又は扁平伝熱管とケーシング内面との間の空間部に突出部を有し、該突出部に前記噴出孔が設けられていることを好ましい態様とするものである。
 前記ノズル部材には又、軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向し、かつ排気ガス流入口側のチューブシート内面を指向しない複数の流出孔が設けられていること、あるいは断面積の異なる噴出孔及び/又は流出孔が設けられていることを好ましい態様とするものである。さらに、前記ノズル部材には、噴出孔及び/又は流出孔が前記伝熱管の積層方向と略平行で略直線状に連続して配置されていることを好ましい態様とするものである。
 又、前記ノズル部材の扁平伝熱管側に当該伝熱管の積層方向に連続して突出した凸状部が設けられ、該凸状部のチューブシート側壁面に前記噴出孔を有し、かつその他の壁面に流出孔が設けられていること、前記ノズル部材の扁平伝熱管側に当該伝熱管の積層方向に連続して突出した凸状部のケーシングの軸方向断面形状が、V字状、底部に平坦部を有する逆台形状、U字状、円弧状のいずれかの形状であることを好ましい態様とするものである。
 更に又、本発明は、前記冷却媒体分配器内又はノズル部材あるいはケーシング内壁に、冷却媒体のガイド部材が設けられ、かつこのガイド部材は、積層された各扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部に延びる延伸部を有することを好ましい態様とするものである。なお、前記冷却媒体のガイド部材は、ガイド部の長さが扁平伝熱管の積層方向で異なることを好ましい態様とするものである。
 又更に、前記ノズル部材に設けられた噴出孔には、ノズルブッシュ又はノズル管が装着されていること、及び該噴出孔は円形又は扁平伝熱管の軸芯方向に長径を有する楕円もしくは長円形であることを好ましい態様とするものである。
 なお、本発明の多管式熱交換器において、ケーシングに設けられた開口部は扁平伝熱管の積層方向に略平行に設けられていることを好ましい態様とするものである。
 本発明は、多管式熱交換器の排気ガス(EGRガス)流入口側での冷却媒体の沸騰防止作用を十分に高める手段として、冷却媒体をチューブシート内面に向けてより高速で流入させる冷却媒体分配器と、冷却媒体を前記冷却媒体分配器内より高速で流入させる複数の噴出孔を当該多管式熱交換器のケーシング長手方向と略直交する方向に有するノズル部材を設ける手段をこうじたもので、これにより冷却媒体の増速作用が得られると共に、チューブシートへの指向性がより高められ、排気ガス(EGRガス)流入口側での冷却媒体の沸騰防止効果をさらに向上させることが可能となる。
 即ち、本発明に係る多管式熱交換器は、以下に記載する効果を奏する。
1.冷却媒体分配器をケーシングの軸芯に対する垂直線に対し好ましくは傾斜させて設けたことにより、冷却媒体が排気ガス流入口側のチューブシート内面を指向して流入することとなり、ケーシング内に流入した冷却媒体が排気ガス流入口側のチューブシート内表面に沿って流れるので、チューブシート内表面付近での冷却媒体沸騰をより効果的に防止することができる。
2.ケーシングに設けられた開口部付近に、前記冷却媒体分配器内の冷却媒体の流れ方向断面積より小さい断面積の総和の、複数の噴出孔を当該多管式熱交換器のケーシング長手方向と略直交する方向に有するノズル部材を設けたことにより、冷却媒体の流入速度が増速されてチューブシート内表面付近でのより大きな冷却媒体沸騰防止効果が得られる。
3.前記噴出孔の軸芯を排気ガス流入口側のチューブシート内表面に指向させることにより、チューブシート内表面付近での冷却媒体沸騰防止作用をより高めることが可能となる。
4.前記噴出孔にノズルブッシュ又はノズル管を装着することにより、冷却媒体の流れをより効果的にチューブシート内表面に指向させることができるので、この場合もチューブシート内表面付近での冷却媒体沸騰防止作用をより一層高めることが可能となる。
5.前記噴出孔の付近に冷却媒体のガイド部材を設けて噴出孔からの冷却媒体の噴流を該ガイド部材表面に添わせることにより、冷却媒体をチューブシート内表面及び/又は各扁平伝熱管の間の空間に的確に導くことができるので、この場合もチューブシート内表面付近での冷却媒体沸騰防止作用をより一層高めることが可能となる。
6.冷却媒体分配器をケーシングの軸芯に対する垂直線に対して平行もしくは逆方向(排気ガス流入口側)に傾斜させて設けても、ノズル部材に設けられた複数の噴出孔がチューブシート側を指向していることにより、前記と同様に冷却媒体がチューブシート内面を指向して流入することとなり、ケーシング内に流入した冷却媒体が排気ガス流入口側のチューブシート内面に沿って流れるので、チューブシート内面付近での冷却媒体沸騰を防止できる。
7.エンジンの高負荷運転時にはEGRガス温度が上昇しかつガス流量が増大するため、チューブシート内表面のみならず扁平伝熱管外表面からも冷却媒体の沸騰を生じる現象が起きるが、ノズル部材に異なる断面積の噴出孔及び/又は流出孔を設けたり、ノズル部材の伝熱管側に伝熱管の積層方向に連続して突出した凸状部を設け、かつ該凸状部のチューブシート側壁面に噴出孔を設けると共にその他の壁面に流出孔を設けたり、ノズル部材凸状部のケーシングの軸方向断面形状が、V字状、底部に平坦部を有する逆台形状、U字状、円弧状のいずれかの形状とすること等により、高負荷運転時であってもチューブシート付近からEGRガスの流れ方向に少し沿った広い範囲での沸騰を確実に防止することができる。
8.ガイド部材のガイド部の長さを扁平伝熱管の積層方向で異なるように設けることにより、例えEGRガス流に扁流があってもチューブシート内表面、扁平伝熱管のチューブシート側外表面からの冷却媒体の沸騰も効果的に防止できる。
9.上記のように、本発明の多管式熱交換器によれば、冷却媒体をチューブシート内表面に向けてより高速で流入させる冷却媒体分配器を設ける手段を講じたことにより、冷却媒体の増速作用が得られると共にチューブシートへの指向性がより高められ、排気ガス(EGRガス)流入口側のチューブシート内表面での冷却媒体の沸騰をほぼ確実に解消できる効果に加え、冷却媒体をチューブシート内表面のみならず各扁平伝熱管の間の空間にも的確に導くことができるので、扁平伝熱管が垂直に配置されたものに限らず、水平に配置された多管式熱交換器においても、チューブシート内表面付近の各扁平伝熱管の外表面からの冷却媒体沸騰防止作用をも、より一層高めることが可能となり、冷却媒体の沸騰に伴う熱交換性能の低下の防止、エンジンの排気ガスからの熱回収、EGRガス等の排気ガスの冷却に大きく寄与する。
本発明の第1実施例に係る多管式熱交換器を一部省略して示す要部破断概略側面図である。 図1に示す多管式熱交換器の排気ガス流入口側の外観を示す部分概略斜視図である。 図1に示す多管式熱交換器の冷却媒体流入管を一部破断して示す斜視図である。 図1に示す多管式熱交換器のノズル部材を示す平面図である。 本発明の第2実施例に係る多管式熱交換器の要部を示す概略縦断面図である。 図5に示す多管式熱交換器のノズル部材を示す斜視図である。 本発明の第3実施例に係る多管式熱交換器の要部を示す概略縦断面図である。 図7に示す多管式熱交換器のノズル部材の他の例を示す斜視図である。 本発明の第4実施例に係る多管式熱交換器の要部を示す概略縦断面図である。 本発明の第5実施例に係る多管式熱交換器の要部を示す概略縦断面図である。 図10に示す多管式熱交換器のノズル部材を一部省略して示す斜視図である。 本発明の第6実施例に係る多管式熱交換器の要部を拡大して示す縦断面図である。 図12に示す多管式熱交換器のノズル部材を一部省略して示す斜視図である。 本発明の第7実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 図14に示す多管式熱交換器のノズル部材を一部省略して示す概略側面図である。 本発明の第8実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 本発明の第9実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 本発明の第10実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 本発明の第11実施例に係る多管式熱交換器の要部を示す概略縦断面図である。 図19A-A線上の縦断正面図である。 図19に示す多管式熱交換器のガイド部材を一部省略して示す拡大斜視図である。 本発明の第12実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 本発明の第13実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 本発明の第14実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 本発明の第15実施例に係る多管式熱交換器の要部を示す図2相当図である。 本発明の第16実施例に係る多管式熱交換器の要部を示す図2相当図である。 本発明の第17実施例に係る多管式熱交換器を一部省略して示す図1相当図である。 図27に示す多管式熱交換器の要部を拡大して示す図12相当図である。 本発明の第18実施例に係る多管式熱交換器の要部を拡大して示す図12相当図である。 本発明の第19実施例に係る多管式熱交換器のノズル部材を示す図4相当図である。 本発明の第20実施例に係る多管式熱交換器のノズル部材を示す図4相当図である。 図31に示す第20実施例に係る多管式熱交換器の要部を拡大して示す図12相当図である。 図31に示す第20実施例に係る多管式熱交換器のノズル部材を示す図13相当図である。 本発明の第21実施例に係る多管式熱交換器の要部を拡大して示す図12相当図である。 本発明の第22実施例に係る多管式熱交換器の要部を拡大して示す図12相当図である。 図35に示す第22実施例に係る多管式熱交換器のノズル部材を示す図13相当図である。 本発明の第23実施例に係る多管式熱交換器の要部を拡大して示す図12相当図である。 図19~図21に示す第11実施例に係る多管式熱交換器のガイド部材の変形例を一部省略して示す拡大斜視図である。 本発明の第24実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 本発明の第25実施例に係る多管式熱交換器の要部を拡大して示す概略縦断面図である。 従来の多管式熱交換器の第1例を中央部を省略して示す概略平面図である。 図41に示す多管式熱交換器の中央部を省略して示す概略縦断面図である。 従来の多管式熱交換器の第2例を中央部を省略して示す概略縦断面図である。 図43のイ-イ線上の概略図である。 従来の多管式熱交換器の第3例を斜め下方から見た概略斜視図である。 図45に示す多管式熱交換器の概略縦断面図である。 従来の多管式熱交換器の第4例を斜め下方から見た概略斜視図である。 図47に示す多管式熱交換器の概略縦断面図である。 従来の多管式熱交換器の第5例を示す概略斜視図である。 図49に示す多管式熱交換器の概略縦断面図である。 従来の多管式熱交換器の第6例を示す概略縦断面図である。 図51に示す多管式熱交換器の概略横縦面図である。 なお、図2から図38においては説明の便宜上、冷却媒体の供給部(符号6、8、9等)を図1と逆向きに記載しました。
 図1~4に示す本発明の第1実施例に係る多管式熱交換器は、好ましくは伝熱フィンが内挿固着された複数本の扁平伝熱管2が並設されて積層された扁平伝熱管群と、該扁平伝熱管群の外周を囲繞するように形成されたケーシング1と、該ケーシング1の両端部に設けられ、各扁平伝熱管2の両端部が貫通支持されたチューブシート3を備え、ケーシング1の片側の端部には排気ガス流入ボンネット4が、他端には排気ガス流出ボンネット5がそれぞれ設けられ、さらにケーシング外周壁面の排気ガス流入ボンネット4側端部には扁平伝熱管2の積層方向に略平行な略矩形の長孔からなる冷却媒体流入用開口部6が設けられ、排気ガス流出ボンネット5側端部には冷却媒体流出管7が接続されている。
 前記冷却媒体流入用開口部6には、該開口部6を覆うように基端部(底部)が開口されたボックス形の冷却媒体分配器8をケーシング1内に流入した冷却媒体が該排気ガス流入ボンネット4側のチューブシート3に向かって流入するようにケーシング1の軸芯に対する垂直線に対し所望の角度傾斜させて固設する。ここで、前記冷却媒体分配器8の傾斜角度θとしては、特に限定するものではないが5~45°程度が好ましい。この冷却媒体分配器8は、基端部に前記開口部6を覆うフランジ部8-1を有し、該基端部と反対側端部に冷却媒体配管(図面省略)に接続する冷却媒体流入管9がケーシング外壁面と平行に横設されている。この冷却媒体流入管9には、図3に示すように前記冷却媒体分配器8内に連通する長孔からなる冷却媒体流入口9-1が設けられ、他端はキャップ9-2により閉鎖されている。さらに本発明では、前記冷却媒体分配器8の開口部6付近に、冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されるように複数の噴出孔10-1を当該多管式熱交換器のケーシング長手方向と略直交する方向に有するノズル部材10をケーシング1内壁に取り付ける。このノズル部材10は、図4に示すように積層された扁平伝熱管群の各扁平伝熱管2の間に対応する位置に噴出孔10-1を設けた平板からなり、かつ前記噴出孔10-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さくなっている。その理由は、前記噴出孔10-1より噴出する冷却媒体の流速を前記冷却媒体分配器8内の流速より増速させて高い運動エネルギーを付与することによって、ケーシング1内に噴出された後の流れの直進性を向上させてチューブシート3内表面に到達させて当該内表面付近に滞留する高温の冷却媒体を迅速に移動させることにより、チューブシート3内表面及び扁平伝熱管2のチューブシート3付近の表面温度を速やかに低下させてこれら表面からの冷却媒体の沸騰を確実に防止するためである。
 なお、前記ノズル部材10の噴出孔10-1の形状としては、真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよい。
 上記図1~4に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、開口部6及びノズル部材10を介して冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材10の噴出孔10-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されることにより、チューブシート3内表面に速やかに到達して冷却し冷却媒体の沸騰がより効果的に防止される。
 図5、図6に示す本発明の第2実施例に係る多管式熱交換器は、前記第1実施例に係る多管式熱交換器のノズル部材10を当該多管式熱交換器のケーシング長手方向と略直交するよう冷却媒体分配器8内に設ける方式となしたもので、その構造は図5、図6に示すように断面略クランク形状に形成した板部材に、扁平伝熱管群の各扁平伝熱管2の間に対応する位置に噴出孔20-1を設けたノズル部材20を、当該ノズル部材20の噴出孔20-1の軸心が扁平伝熱管群の各扁平伝熱管2の間の空間部及び排気ガス流入ボンネット4側のチューブシート3の内表面を指向するように冷却媒体分配器8の基端部近くに配設したものである。なお、このノズル部材20も前記ノズル部材10と同様に、噴出孔20-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さくなっている。又、前記ノズル部材20の噴出孔20-1の形状としては、前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図5、図6に示す構成の本発明の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、ノズル部材20を介して開口部6より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材20の噴出孔20-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3内表面を指向して高い運動エネルギーを持って噴出されることにより、チューブシート3内表面に速やかに到達して冷却し冷却媒体の沸騰がより効果的に防止される。
 図7に示す本発明の第3実施例に係る多管式熱交換器は、前記第2実施例に係る多管式熱交換器と同様にノズル部材を冷却媒体分配器8内に設ける方式において、前記ノズル部材20に替えて、冷却媒体をより確実に扁平伝熱管群の各扁平伝熱管2の間に流入させるためのガイド部一体型のノズル部材30を採用したもので、その構造は図7にその断面構造を示すようにガイド部30-2を有する断面略S字形の板部材に、扁平伝熱管群の各扁平伝熱管2の間に対応する位置に噴出孔30-1を設けたノズル部材30を、当該ノズル部材30のガイド部30-2が扁平伝熱管2とケーシング1内面との間の空間に位置するように開口部6を貫通してケーシング1内に挿入配置するとともに、当該ノズル部材30の噴出孔30-1の軸心が扁平伝熱管群の各扁平伝熱管2の間の空間部を指向すると共に排気ガス流入ボンネット4側のチューブシート3の内表面を指向するように冷却媒体分配器8の基端部近くに配設したものである。なお、このノズル部材30も前記ノズル部材20と同様に、噴出孔30-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さく、又、前記ノズル部材30の噴出孔30-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 又、前記ガイド部一体型のノズル部材30としては、図8にその変形例を示すように、ガイド部31-2と反対側端部を冷却媒体分配器8の内面に沿うように内側に折曲げて形成した屈曲部31-3を有するノズル部材31を採用してもよい。このノズル部材31の場合も前記ノズル部材30と同様に、当該ノズル部材31のガイド部31-2が扁平伝熱管2とケーシング1内面との間の空間に位置するように開口部6を貫通してケーシング1内に挿入配置するとともに、当該ノズル部材31の噴出孔31-1の軸心が扁平伝熱管群の各扁平伝熱管2の間の空間部を指向すると共に排気ガス流入ボンネット4側のチューブシート3の内表面を指向するように冷却媒体分配器8の基端部近くに配設する。
 上記図7、図8に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、ノズル部材30又はノズル部材31を介して開口部6より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材30、31の噴出孔30-1、31-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3内表面を指向して高い運動エネルギーを持って噴出されるとともに、その噴出孔30-1、31-1より流出した冷却媒体がガイド部30-2、31-2に沿って流れてより確実にチューブシート3内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰がより効果的に防止される。なお、ノズル部材30、31のガイド部30-2、31-2の部分を短冊状に形成して当該短冊状部分を各扁平伝熱管2の間の空間部に延伸させた構造とすると、後述するように冷却媒体がチューブシート3内表面に速やかにかつ的確に到達して冷却し沸騰がよりいっそう効果的に防止される。
 図9に示す本発明の第4実施例に係る多管式熱交換器は、前記第2、第3実施例に係る多管式熱交換器と同様にノズル部材を冷却媒体分配器8内に設ける方式において、前記ノズル部材20、30、31に替えて、断面L字状の溝形ノズル部材40を採用したもので、その構造は図9にその断面構造を示すように扁平伝熱管群の各扁平伝熱管2の間に対応する位置に噴出孔40-1を設けた断面L字状の溝形ノズル部材40を、当該ノズル部材40の噴出孔40-1の軸心が排気ガス流入ボンネット4側のチューブシート3の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するように冷却媒体分配器8の基端部近くに開口部6を貫通して噴出孔40-1の部分がケーシング1内に突出するように該冷却媒体分配器8に取付けて構成したものである。なお、このノズル部材40も前記ノズル部材20、30、31と同様に、噴出孔40-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さく、又、噴出孔40-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図9に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、溝形ノズル部材40を介して開口部6より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材40の噴出孔40-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3内表面を指向して高い運動エネルギーを持って噴出されるとともに、その噴出孔40-1より流出した冷却媒体がチューブシート3内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰がより効果的に防止される。なお、噴出孔40-1より流出する冷却媒体をより確実に扁平伝熱管群の各扁平伝熱管2の間に流入させるために該溝形ノズル部材40の側面にガイド部材(図示せず)を取付けるとさらによい。
 図10、図11に示す本発明の第5実施例に係る多管式熱交換器は、冷却媒体の流速を冷却媒体分配器8内よりも増速させるためのノズル部材をケーシング1の開口部付近に設ける方式において、前記ノズル部材20、30、31、40に替えて、断面略Z状のノズル部材50を採用したもので、その構造は図10、図11にその断面構造を示すように断面略Z状の板部材の中央部の傾斜部50-2に、扁平伝熱管群の各扁平伝熱管2の間に対応し且つケーシング長手方向と略直交する位置に噴出孔50-1を設けたノズル部材50を、当該ノズル部材50の噴出孔50-1の軸心が排気ガス流入ボンネット4側のチューブシート3の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するようにケーシング1の開口部6付近のケーシング1内壁に取付けて構成したものである。その際、ノズル部材50は当該ノズル部材の上面側と下面側の一部がそれぞれ冷却媒体分配器8内とケーシング1内に突出するように両端部をケーシング内壁に取付ける。なお、このノズル部材50も前記ノズル部材20、30、31、40と同様に、噴出孔50-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さく、又、噴出孔50-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図10、図11に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、ノズル部材50を介して開口部6より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材50の噴出孔50-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3内表面を指向して高い運動エネルギーを持って噴出されるとともに、その噴出孔50-1より流出した冷却媒体がチューブシート3内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰がより効果的に防止される。なお、噴出孔50-1より流出する冷却媒体をより確実に扁平伝熱管群の各扁平伝熱管2の間に流入させるために該ノズル部材50の下面にガイド部材(図示せず)を取付けるとさらによい。
 図12、図13に示す本発明の第6実施例に係る多管式熱交換器は、冷却媒体の流速を冷却媒体分配器8内よりも増速させるためのノズル部材をケーシング1の開口部付近に設ける方式において、前記ノズル部材20、30、31、40、50に替えて、扁平伝熱管2側に断面略V字状もしくはU字状で扁平伝熱管2の積層幅に応じて突出した凸状部60-3を有するノズル部材60を採用したもので、その構造は図12、図13にその断面構造を示すように断面略V字状の凸状部60-3の壁面の片側の傾斜部60-2に、扁平伝熱管群の各扁平伝熱管2の間に対応し且つケーシング長手方向と略直交する位置に噴出孔60-1を設けたノズル部材60を、当該ノズル部材60の噴出孔60-1の軸心が排気ガス流入ボンネット4側のチューブシート3の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するようにケーシング1の開口部6付近のケーシング1内壁に取付けて構成したものである。その際、ノズル部材60は当該ノズル部材のV字状の凸状部60-3がケーシング1内に突出するように両端部をケーシング1内壁に取付ける。なお、このノズル部材60も前記ノズル部材20、30、31、40、50と同様に、噴出孔60-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さく、又、噴出孔60-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図12、図13に示す構成の多管式熱交換器の場合も、前記図10、図11に示す構成の多管式熱交換器と同様に、冷却媒体流入管9より冷却媒体分配器8、開口部6、ノズル部材60、凸状部60-3を介して噴出孔60-1より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材60の噴出孔60-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3の内表面を指向して高い運動エネルギーを持って噴出するとともに、その噴出孔60-1より流出した冷却媒体がチューブシート3の内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰がより効果的に防止される。なおこの場合も、前記のものと同様に、噴出孔60-1より流出する冷却媒体をより確実に扁平伝熱管群の各扁平伝熱管2の間に流入させるために該ノズル部材60の下面にガイド部材(図示せず)を取付けるとさらによい。
 図14、図15に示す本発明の第7実施例に係る多管式熱交換器は、冷却媒体の流速を冷却媒体分配器8内よりも増速させるためのノズル部材をケーシング1の開口部付近に設ける方式において、前記の各ノズル部材に替えて、扁平伝熱管2側に断面略V字状もしくはU字状で扁平伝熱管2の積層幅に対応して突出した凸状部70-3を有し、さらに前記凸状部70-3の扁平伝熱管群の各扁平伝熱管2の間の空間部位に対応し且つケーシング長手方向と略直交する位置に該空間部位に突出する断面略U字状もしくはV字状の突出部70-4を形成し、該突出部70-4の壁面の片側の傾斜部70-2に噴出孔70-1を設けたノズル部材70を採用したもので、その構造は図14、図15に示すように前記ノズル部材70を、当該ノズル部材70の噴出孔70-1の軸心が扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するようにケーシング1の開口部6付近のケーシング1内壁に取付けて構成したものである。その際、ノズル部材70は当該ノズル部材の凸状部70-3及び突出部70-4がケーシング1内に突出するように両端部をケーシング1内壁に取付ける。なお、このノズル部材70も前記ノズル部材と同様に、噴出孔70-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さく、又、噴出孔70-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図14、図15に示す構成の多管式熱交換器の場合も、前記の多管式熱交換器と同様に、冷却媒体流入管9より冷却媒体分配器8、開口部6を介してノズル部材70より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材70の噴出孔70-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3の内表面を指向して高い運動エネルギーを持って噴出するとともに、その噴出孔70-1より流出した冷却媒体がチューブシート3の内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰がより効果的に防止される。
 なおこの場合は、ノズル部材70の突出部70-4が扁平伝熱管群の各扁平伝熱管2の間の空間部位に突出位置することから、噴出孔70-1より流出する冷却媒体を確実に扁平伝熱管群の各扁平伝熱管2の間に流入させることができるので、前記ガイド部材61等はなくてもよい。
 図16に示す本発明の第8実施例に係る多管式熱交換器は、冷却媒体の噴出流速を冷却媒体分配器8内よりも増速させるためのノズル部材をケーシング1の開口部付近に設ける方式において、前記図12、図13に示す本発明の第6実施例に係る多管式熱交換器のノズル部材60と類似の断面略V字状の凸状部を有するノズル部材80を採用したもので、その構造は図16にその断面構造を示すように断面略V字状の凸状部の壁面の片側の傾斜部に、扁平伝熱管群の各扁平伝熱管2の間に対応する位置に、先端に噴出孔80-1を有し該扁平伝熱管2側に膨出した短管状のバーリングノズル80-2を設けたノズル部材80を、当該ノズル部材80のバーリングノズル80-2先端の噴出孔80-1の軸心が排気ガス流入ボンネット4側のチューブシート3の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するようにケーシング1の開口部6付近のケーシング1内壁に取付けて構成したものである。その際、ノズル部材80は当該ノズル部材のV字状凸状部のバーリングノズル80-2部がケーシング1内に突出するように両端部をケーシング1内壁に取付ける。なお、このノズル部材80も前記ノズル部材と同様に、噴出孔80-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さく、又、バーリングノズル80-2及び噴出孔80-1の孔形状も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図16に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、開口部6を介してノズル部材80より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材80のバーリングノズル80-2の管状のバーリング壁に案内されて直進性が向上して流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3の内表面を指向して高い運動エネルギーを持って噴出するとともに、そのバーリングノズル80-2より流出した冷却媒体がチューブシート3の内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入するが、その際バーリングノズル80-2の作用により冷却媒体の直線性がより増すことにより冷却媒体のチューブシート3内表面に速やかにかつ的確に到達して冷却し沸騰がより効果的に防止される。なお、ノズル部材80の下面にガイド部材(図示せず)を取付けるとより効果的である。
 図17に示す本発明の第9実施例に係る多管式熱交換器は、噴出冷却媒体の流速を冷却媒体分配器8内よりも増速させるためのノズル部材をケーシング1の開口部付近に設ける方式において、前記図9に示す本発明の第4実施例に係る多管式熱交換器のノズル部材40と類似のノズル部材90を採用したもので、その構造は図17にその断面構造を示すように扁平伝熱管群の各扁平伝熱管2の間に対応する位置に流出孔90-3を設けた断面凹形の溝形部材の前記各流出孔90-3の部分に、先端に噴出孔90-1を有する比較的長尺のノズルブッシュ90-2を同一軸心上に取付けたノズル部材90を、当該ノズル部材90の流出孔90-3及びノズルブッシュ90-2先端の噴出孔90-1の軸心が扁平伝熱管群の各扁平伝熱管2の間の空間部及びチューブシート3内面を指向するように冷却媒体分配器8の基端部近くに取付けて構成したものである。ここで、前記ノズルブッシュ90-2付きノズル部材90は、好ましくはノズルブッシュ90-2が開口部6を貫通してその先端部分がケーシング1内に突出するように冷却媒体分配器8内に取付ける。更に、ノズルブッシュ90-2より流出する冷却媒体をより確実にチューブシート3内面付近及び扁平伝熱管群の各扁平伝熱管2の間に流入させるために開口部6のケーシング1内壁にガイド部材(図示せず)を取付けてもよい。なお、このノズル部材90の流通孔90-3及び噴出孔90-1及びノズルブッシュ90-2の孔形状及び噴出孔90-1も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。又、ノズルブッシュ90-2は、前記第8実施例のごとくノズル部材90と一体に形成してもよい。
 上記図17に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、ノズル部材90を介して開口部6より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材90の流通孔90-3及びノズルブッシュ90-2の噴出孔90-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3の内表面を指向して高い運動エネルギーを持って噴出するとともに、そのノズルブッシュ90-2先端の噴出孔90-1より流出した冷却媒体がチューブシート3の内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入するが、その際管状のノズルブッシュ90-2の作用により冷却媒体の直進性がより増すことにより冷却媒体のチューブシート3内表面に速やかにかつ的確に到達して冷却し沸騰がより効果的に防止される。
 図18に示す本発明の第10実施例に係る多管式熱交換器は、冷却媒体の噴出流速を冷却媒体分配器8内よりも増速させるためのノズル部材をケーシング1の開口部付近に設ける方式において、前記図10に示す本発明の第5実施例に係る多管式熱交換器のノズル部材50と類似のノズル部材に比較的長尺で先端に噴出孔100-1を有するノズル管を一体的に設けたノズル部材を採用したもので、その構造は図18にその断面構造を示すように断面略Z状の板部材の中央部の傾斜部に、扁平伝熱管群の各扁平伝熱管2の間に対応する位置に当該板部材を貫通して軸心が扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するように先端に噴出孔100-1を有する長尺のノズル管100-2を取付けたノズル部材100を、ケーシング1の開口部6付近のケーシング1内壁に取付けて構成したもので、かつ前記ノズル管100-2内には、冷却媒体に旋回性を与えて直進性をさらに良くするためにスパイラルフィン100-3を設けている。なお、このノズル部材100のノズル管100-2及び先端の噴出孔100-1の断面形状は、前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図18に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、ノズル部材100及びノズル管100-2を介して開口部6より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材100のノズル管100-2先端の噴出孔100-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されかつチューブシート3の内表面を指向して高い運動エネルギーを持って噴出するとともに、その噴出孔100-1より流出した冷却媒体がチューブシート3の内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入するが、その際ノズル管100-2の作用により冷却媒体の直進性がより増すことにより冷却媒体のチューブシート3内表面に速やかにかつ的確に到達して冷却し沸騰がより効果的に防止される。なお、ノズル部材100の下面にガイド部材(図示せず)を取付けるとより効果的である。
 図19~図21に示す本発明の第11実施例に係る多管式熱交換器は、冷却媒体の噴出流速を冷却媒体分配器8内よりも増速させるためのノズル部材と、ケーシング1内に流入した冷却媒体がチューブシート内面に沿うように又は扁平伝熱管2の間の空間部を流れるようにするためのガイド部材を設ける方式であって、前記ガイド部材として櫛歯状ガイド部材を採用したもので、その構造は冷却媒体分配器8の開口部6付近のケーシング1内壁に取付けた、前記図1~図4に示す本発明の第1実施例に係る多管式熱交換器と同じ噴出孔10-1付きノズル部材10と、積層された扁平伝熱管2の間の各空間部に延伸させて設けた短冊状ガイド部110-1を有する櫛歯状ガイド部材110を備え、櫛歯状ガイド部材110の短冊状ガイド部110-1を前記ノズル部材10の噴出孔10-1を貫通させてその上部両端部の屈曲部110-2を冷却媒体分配器8の内面に取付けて構成したものである。
 上記図19~図21に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、噴出孔10-1付きノズル部材10及び櫛歯状ガイド部材110を介して冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、開口部6より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されるとともに、櫛歯状ガイド部材110の作用、即ち短冊状ガイド部110-1が延伸されていて扁平伝熱管群の間の空間を横断しかつそのガイド先端がチューブシート3内面付近に到達していることによる作用により、開口部6を介して噴出孔10-1より高い運動エネルギーを持って噴出する冷却媒体が短冊状ガイド部110-1の表面に沿って流動して確実にその先端まで達するので、積層された扁平伝熱管2の間の各空間部を通ってチューブシート3内表面に速やかにかつ的確に到達して冷却し沸騰がより効果的に防止される。
 なお、本実施例においては、冷却媒体の温度分布や流速、流れ方向の特性等に応じて短冊状ガイド部110-1の湾曲形状(ガイド面形状)を適宜、選択・変更することにより沸騰防止効果をより高めることが可能である。
 図22、図23に示す多管式熱交換器は、ケーシング1内に流入した冷却媒体をガイド部材により排気ガス流入ボンネット4側のチューブシート3に向かって流入させる方式であり、このうち図22に示す本発明の第12実施例に係る多管式熱交換器は、ノズル部材は図示していないが前記第2実施例のノズル部材20や第4実施例のノズル部材40等を冷却媒体分配器8内に設け、前記ケーシング外周壁面に設けた冷却媒体流入用開口部6にガイド部材120を扁平伝熱管群の扁平伝熱管2とケーシング1内面との間の空間に位置するように当該ケーシング1内壁に取付けて構成したものである。なお、このガイド部材120は、前記図21に示すように下端部を短冊状に形成して当該短冊状部分を各扁平伝熱管2の間の空間部に延伸させた構造としてもよい(2点鎖線で示す)。
 上記図22に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8及び開口部6より流入する冷却媒体がガイド部材120の作用によりチューブシート3内表面に速やかに到達して冷却し冷却媒体の沸騰が効果的に防止される。
 図23に示す本発明の第13実施例に係る多管式熱交換器は、ノズル部材は図示していないが前記第1実施例のノズル部材10や第5実施例のノズル部材50等をケーシング1内に設け、前記ガイド部材120と同様のガイド部材130を前記ケーシング外周壁面に設けた冷却媒体流入用開口部6を貫通して冷却媒体分配器8内壁に取付けで構成したもので、この場合も前記ガイド部材130は、前記図21に示すように下端部を短冊状に形成して当該短冊状部分を各扁平伝熱管2の間の空間部に延伸させた構造としてもよい(2点鎖線で示す)。
 上記図23に示す構成の多管式熱交換器の場合も前記図22に示す多管式熱交換器と同様に、冷却媒体流入管9より冷却媒体分配器8及び開口部6より流入する冷却媒体がガイド部材130の作用によりチューブシート3内表面に速やかに到達して冷却し冷却媒体の沸騰が効果的に防止される。
 図24に示す本発明の第14実施例に係る多管式熱交換器は、前記ガイド部材120、130に替えて、冷却媒体の流速を冷却媒体分配器8内よりも増速化するためのガイド部一体型ノズル部材140を採用したもので、その構造は図24に示すようにノズル部材に相当する上辺部に扁平伝熱管群の各扁平伝熱管2の間に対応する位置に噴出孔140-1を設け、その連続した端部を湾曲させて延伸して噴出孔に対向する位置にガイド部140-2を有するガイド部一体型ノズル部材140を、当該ガイド部140-2が扁平伝熱管群の扁平伝熱管2とケーシング1内面との間の空間に位置するようにケーシング1内壁に取付けて構成したものである。なお、このノズル部材140も前記ガイド部材120、130のものと同様に、下端部を短冊状に形成して当該短冊状部分を各扁平伝熱管2の間の空間部に延伸させた構造としてもよい(2点鎖線で示す)。又、噴出孔140-1の断面積の総和が冷却媒体分配器8内の冷却媒体の流れ方向断面積より小さく、該噴出孔140-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸心方向に長径を有する楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図24に示す構成の多管式熱交換器の場合は、冷却媒体流入管9より冷却媒体分配器8、ノズル部材140を介して開口部6より冷却媒体が排気ガス流入ボンネット4側のチューブシート3に向かって流入する際、ノズル部材140の噴出孔140-1より流出する冷却媒体の噴出流速が冷却媒体分配器8内よりも増速されるとともに、その噴出孔140-1より流出した冷却媒体がガイド部140-2の作用によりチューブシート3内表面に速やかに到達して冷却し冷却媒体の沸騰が効果的に防止される。
 上記本発明の図1~図24に示す実施例では、冷却媒体の供給方式として冷却媒体分配器8の基端部と反対側端部に冷却媒体流入管9を横設して冷却媒体を冷却媒体分配器8内に流入させる方式を採用した多管式熱交換器を示したが、冷却媒体の供給方式としては上記方式に限定されるものではなく、図25及び図26に示す供給方式を採用してもよい。
 即ち、図25及び図26に示す本発明の第15実施例及び第16実施例に係る多管式熱交換器はそれぞれ、冷却媒体流入管19、29を直接冷却媒体分配器8に接続して供給する方式を採用したもので、図25に示す多管式熱交換器は、上面を閉塞した冷却媒体分配器18を用い、該冷却媒体分配器8の片方の側面上部もしくは両側面上部に、曲げ加工された冷却媒体流入管19を接続して冷却媒体を供給する方式である。又、図26に示す多管式熱交換器は、上記と同じ冷却媒体分配器28を用い、冷却媒体分配器28の背面上方に直線状の冷却媒体流入管29を接続して冷却媒体を供給する方式である。なお、上記冷却媒体流入管19、29は、冷却媒体の流速を可及的に高めるために冷却媒体が上方より下向きに流入するように伝熱管2の管軸に対して傾斜させて設けるのが好ましい。
 上記本発明の図1~図26に示す実施例は、冷却媒体分配器8、18、28をケーシング1の軸芯に対し傾斜させて設けた多管式熱交換器であるが、図27、図28に示す本発明の第17実施例に係る多管式熱交換器は、前記冷却媒体分配器8をケーシング1の軸芯に対し傾斜させずに垂直(θ=0度)に設けた構成となしたもので、その構造は図12に示す第6実施例に係る熱交換器と同様に、冷却媒体の流速を冷却媒体分配器8内よりも増速させるためのノズル部材60をケーシング1の開口部付近に設ける方式において、ケーシング1に設けられた冷却媒体流入用開口部6をフランジ8A-1が覆うように基端部(底部)が開口されたボックス形の冷却媒体分配器8Aをケーシング1の軸芯に対し垂直に固設し、扁平伝熱管群の各扁平伝熱管2の間に対応し且つケーシング長手方向と略直交する位置に噴出孔60-1を設けたノズル部材60を、当該ノズル部材60の噴出孔60-1の軸芯が排気ガス流入ボンネット4(図1)側のチューブシート3(図1)の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するようにケーシング1の冷却媒体流入用開口部6のケーシング1内壁に取付けて構成したものである。その際、ノズル部材60は当該ノズル部材のV字状の凸状部60-3がケーシング1内に突出するように両端部をケーシング1内壁に取付ける。なお、このノズル部材も前記ノズル部材20、30、31、40、50と同様に、噴出孔60-1の断面積の総和が垂直形の冷却媒体分配器8A内の冷却媒体の流れ方向面積より小さく、又、噴出孔60-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸芯方向に長径の楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図27、図28に示す構成の多管式熱交換器の場合、冷却媒体は冷却媒体分配器8Aによりケーシング1の軸芯に対して垂直に流入するも、ノズル部材60の噴出孔60-1の軸芯が排気ガス流入ボンネット4(図1)側のチューブシート3(図1)の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するようにケーシング1の冷却媒体流入用開口部6のケーシング1内壁にケーシング長手方向と略直交するよう取付けられているため、開口部6、ノズル部材60、凸状部60-3を介して噴出孔60-1より冷却媒体がチューブシート3に向かって流入する際、ノズル部材60の噴出孔60-1より流出する冷却媒体の噴出流速は前記のものと同様に冷却媒体分配器8A内よりも増速されかつチューブシート3の内表面を指向して高い運動エネルギーを有して噴出するとともに、その噴出孔60-1より流出した冷却媒体がチューブシート3の内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰が効果的に防止される。なおこの場合も、前記のものと同様に、噴出孔60-1より流出する冷却媒体をより確実に扁平伝熱管群の各扁平伝熱管2の間に流入させるためにノズル部材60の下面に前記ガイド部材(図示せず)を取付けるとさらに効果的である。
 図29に示す本発明の第18実施例に係る多管式熱交換器は、前記冷却媒体分配器8Aをケーシング1の軸芯に対し前記図12に示す第6実施例に係る熱交換器と逆向きに所望の角度(-θ)に傾斜させて設置した構成となしたもの(冷却媒体分配器8B)で、その構造は図12に示す第6実施例に係る熱交換器と同様に、冷却媒体の流速を冷却媒体分配器8B内よりも増速させるためのノズル部材60をケーシング1の開口部付近に設ける方式において、ケーシング1に設けられた冷却媒体流入用開口部6をフランジ8B-1が覆うように基端部(底部)が開口されたボックス形の冷却媒体分配器8Bをケーシング1の軸芯に対し排気ガス流入ボンネット4(図1)側に所望の角度(-θ)傾斜させてケーシング1に固設し、扁平伝熱管群の各扁平伝熱管2の間に対応する位置に噴出孔60-1を設けたノズル部材60を、当該ノズル部材60の噴出孔60-1の軸芯が排気ガス流入ボンネット4(図1)側のチューブシート3(図1)の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向し且つケーシング長手方向と略直交するようにケーシング1の冷却媒体流入用開口部6のケーシング1内壁に取付けて構成したものである。この場合も、ノズル部材60は当該ノズル部材のV字状の凸状部60-3がケーシング1内に突出するように両端部をケーシング1内壁に取付ける。なお、このノズル部材も前記ノズル部材20、30、31、40、50と同様に、噴出孔60-1の断面積の総和が垂直形の冷却媒体分配器8A内の冷却媒体の流れ方向面積より小さく、又、噴出孔60-1の形状も前記のものと同様に真円又は扁平伝熱管2の軸芯方向に長径の楕円もしくは長円形状のいずれでもよいことはいうまでもない。
 上記図29に示す構成の多管式熱交換器の場合、冷却媒体は冷却媒体分配器8Bによりケーシング1の軸芯に対して前記図12に示す第6実施例に係る熱交換器と逆向きに流入していったんノズル部材60の噴出孔60-1と反対側傾斜面に当たるもガイドされて噴出孔60-1側を指向し、当該ノズル部材60の噴出孔60-1の軸芯が排気ガス流入ボンネット4(図1)側のチューブシート3(図1)の内表面及び扁平伝熱管群の各扁平伝熱管2の間の空間部を指向するようにケーシング1の冷却媒体流入用開口部6のケーシング1内壁に取付けられているため、開口部6、ノズル部材60、凸状部60-3を介して噴出孔60-1より冷却媒体がチューブシート3に向かって流入する際、ノズル部材60の噴出孔60-1より流出する冷却媒体の噴出流速は前記のものと同様に冷却媒体分配器8B内よりも増速されかつチューブシート3の内表面を指向して高い運動エネルギーを有して噴出するとともに、その噴出孔60-1より流出した冷却媒体がチューブシート3の内表面付近における扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰が効果的に防止される。なおこの場合も、前記のものと同様に、噴出孔60-1より流出する冷却媒体をより確実に扁平伝熱管群の各扁平伝熱管2の間に流入させるためにノズル部材60の下面に前記ガイド部材(図示せず)を取付けるとさらに効果的である。
 図30に示す本発明の第19実施例に係る多管式熱交換器は、ノズル部材に断面積の異なる噴出孔を設けたノズル部材60Aを採用したもので、積層された扁平伝熱管群の各扁平伝熱管2の間に対応し且つケーシング長手方向と略直交する位置に設ける噴出孔として、断面積が扁平伝熱管の積層方向に沿って次第に大きくなるように断面積が異なる噴出孔60A-1~60A-4を設けたものである。このようにノズル部材に異なる断面積の噴出孔60A-1~60A-4を設けるのは、特に多数に扁平伝熱管を内蔵する大型の多管式熱交換器にあっては扁平伝熱管内のEGRガス流量分布が均等ではなく、積層方向中央に向かうほど流量が多くかつ流速が速い場合、中央付近ほどチューブシート内表面及び扁平伝熱管外表面の温度が高温になり易く沸騰し易いこと、又、積層方向中央付近の噴出孔の断面積を徐々に大きくすることにより、冷却媒体量を徐々に増加、増速させて冷却性能を制御することにより、広い範囲での沸騰を効果的に防止することが可能となるためである。なお、噴出孔60A-1~60A-4の断面積が順次変化する例を示したが、噴出孔の断面積を変化させる対応はこれに限定されるものではなく、各々の噴出孔毎に断面積を所望に変化させて良いことは言うまでもない。
 図31~図33に示す本発明の第20実施例に係る多管式熱交換器は、ノズル部材に排気ガス流入口側のチューブシート内面を指向する噴出孔と、チューブシート内面を指向しない流出孔を設けたノズル部材60Bを採用したもので、その構造は、例えば伝熱管側に当該伝熱管の積層方向に連続して突出した断面略V字状の凸状部60B-3のEGRガスの流れ方向上流側壁面(傾斜部)60B-2に、扁平伝熱管群の各扁平伝熱管の間に対応し且つケーシング長手方向と略直交する位置に噴出孔60B-1を設けると共に、凸状部60B-3のEGRガスの流れ方向下流側壁面(傾斜部)60B-4に、軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向し、かつ排気ガス流入口側のチューブシート内面を指向しない複数の小径の流出孔60B-5を設けたノズル部材60Bをケーシング1の内壁に取付けて構成したものである。
 ここで、ノズル部材に排気ガス流入口側のチューブシート内面を指向する噴出孔60B-1のみならず、チューブシート内面を指向しない流出孔60B-5を設けたノズル部材60Bを採用したのは、エンジンの高負荷運転時にはEGRガス温度が上昇しかつガス流量が増大するためチューブシート内表面のみならず、チューブシート付近の扁平伝熱管外表面からも冷却媒体の沸騰を生じる現象が起きること、又、噴出孔60B-1からの冷却媒体によるチューブシート内面付近の冷却のみならず、小径の流出孔からの冷却媒体が増速されてチューブシート付近の扁平伝熱管間に流入し各扁平伝熱管の外表面を効果的に冷却することにより、高いエンジン負荷時であってもチューブシート付近の広い範囲での沸騰を確実に防止することができるためである。なお、流出孔60B-5は、所望に応じ例えば扁平伝熱管の外表面が高温となる位置のみに設けたり、断面積を変化させて設けても良いことは言うまでもない。
 図34に示す本発明の第21実施例に係る多管式熱交換器は、前記第20実施例に係る多管式熱交換器の断面略V字状の凸状部60B-3を有するノズル部材60Bに替えて、断面略U字状の凸状部60C-3を有するノズル部材60Cを採用したもので、その構造は伝熱管側に当該伝熱管の積層方向に連続して突出した断面略U字状の凸状部60C-3のEGRガスの流れ方向上流側壁面(円弧状部)60C-2に、扁平伝熱管群の各扁平伝熱管の間に対応し且つケーシング長手方向と略直交する位置に噴出孔60C-1を設けると共に、略U字状凸状部60C-3のEGRガスの流れ方向下流側壁面(円弧状部)60C-4に、軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向し、かつ排気ガス流入口側のチューブシート内面を指向しない複数の小径の流出孔60C-5を設けたノズル部材60Cをケーシング1に取付けて構成したものである。その際、前記ノズル部材60Cの取付け方式としては、例えば当該ノズル部材60Cの冷却媒体分配器8A側の開口端部に形成した鍔部60C-6の部分を冷却媒体分配器8Aの基端部のフランジ部8A-1との間に介在させてケーシング1の外面に固設する方式を採用することができる。そしてこの場合も、断面略U字状の凸状部60C-3を有するノズル部材に排気ガス流入口側のチューブシート内面を指向する噴出孔60C-1のみならず、チューブシート内面を指向しない小径の流出孔60C-5を設けたノズル部材60Cを採用したのは、エンジンの高負荷運転時にはEGRガス温度が上昇しかつガス流量が増大するためチューブシート内表面のみならず、チューブシート付近の扁平伝熱管外表面からも冷却媒体の沸騰を生じる現象が起きること、又、噴出孔60C-1からの冷却水によるチューブシート内面付近の冷却のみならず、小径の流出孔60C-5からの冷却媒体が増速されてチューブシート付近の扁平伝熱管間に流入し各扁平伝熱管の外表面を効果的に冷却することにより、高いエンジン負荷時であってもチューブシート付近の広い範囲での沸騰を確実に防止することができるためである。なお、ノズル部材60Cをケーシング1の外面に固設する方式は、ケーシング1の内面に固設する方式に比べノズル部材の組み付け作業性が良い。なお、流出孔60C-5は、所望に応じ例えば扁平伝熱管の外表面が高温となる位置のみに設けたり、断面積を変化させて設けても良いことは言うまでもない。
 図35、図36に示す本発明の第22実施例に係る多管式熱交換器は、ノズル部材に排気ガス流入口側のチューブシート内面を指向する噴出孔と、チューブシート内面を指向しない流出孔、及び、前記噴出孔と流出孔の間に設けられたチューブシート内面を指向しない流出孔を設けたノズル部材60Dを採用したもので、その構造は、例えば伝熱管側に当該伝熱管の積層方向に連続して突出した断面略逆台形状の凸状部60D-3のEGRガスの流れ方向上流側壁面(傾斜部)60D-2に、扁平伝熱管群の各扁平伝熱管の間に対応し且つケーシング長手方向と略直交する位置に噴出孔60D-1を設けると共に、凸状部60D-3のEGRガスの流れ方向下流側壁面(傾斜部)60D-4に、軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向し、かつ排気ガス流入口側のチューブシート内面を指向しない複数の小径の流出孔60D-5を設け、さらに前記噴出孔60D-1と流出孔60D-5との間に位置しかつ凸状部60D-3の底部に軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向し、かつ排気ガス流入口側のチューブシート内面を指向しない複数の小径の流出孔60D-6を有するノズル部材60Dをケーシング1の内壁に取付けて構成したものである。
 ここで、ノズル部材に排気ガス流入口側のチューブシート内面を指向する噴出孔60D-1及びチューブシート内面を指向しない流出孔60D-5に加え、凸状部60D-3の底部に小径の流出孔60D-6を設けたノズル部材60Dを採用したのは、エンジンの高負荷運転時にはEGRガス温度が上昇しかつガス流量が増大するためチューブシート内表面のみならず、チューブシート付近の扁平伝熱管外表面からも冷却媒体の沸騰を生じる現象が起きること、又、噴出孔60D-1からの冷却媒体によるチューブシート内面付近の冷却のみならず、冷却媒体分配器8AよりEGRガスの流れ方向と概ね直交して流入する冷却媒体を流出孔60D-6より扁平伝熱管間に流入させると共に、EGRガスの流れ方向下流側壁面に設けた小径の流出孔60D-5からの冷却媒体が増速されてチューブシートより少し離れた扁平伝熱管間に流入し各扁平伝熱管の外表面を効果的に冷却することにより、高いエンジン負荷時であってもチューブシート付近を含めた広い範囲での沸騰をより確実に防止することができるためである。なお、噴出孔60D-1の断面積は各々の噴出孔毎に断面積を所望に変化させて設けたり、流出孔60D-5、60D-6は、所望に応じ例えば扁平伝熱管の外表面が高温となる位置のみに設けたり、断面積を変化させて設けても良いことは言うまでもない。
 図37に示す本発明の第23実施例に係る多管式熱交換器は、前記第22実施例に係る多管式熱交換器の断面略逆台形状の凸状部60D-3を有するノズル部材60Dに替えて、断面略円弧状の凸状部60E-3を有するノズル部材60Eを採用したもので、その構造は例えば伝熱管側に当該伝熱管の積層方向に連続して突出した断面略円弧状の凸状部60E-3のEGRガスの流れ方向上流側壁面60E-2に、扁平伝熱管群の各扁平伝熱管の間に対応し且つケーシング長手方向と略直交する位置に噴出孔60E-1を設けると共に、凸状部60E-3のEGRガスの流れ方向下流側壁面60E-4に、軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向し、かつ排気ガス流入口側のチューブシート内面を指向しない複数の小径の流出孔60E-5を設け、さらに前記噴出孔60E-1と流出孔60E-5との間に位置しかつ凸状部60E-3の底部に軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向し、かつ排気ガス流入口側のチューブシート内面を指向しない複数の小径の流出孔60E-6を有するノズル部材60Eを、前記と同様に鍔部60E-7の部分をケーシング1の外面に固設する方式によりケーシング1に取付けて構成したものである。
 ここで、ノズル部材に排気ガス流入口側のチューブシート内面を指向する噴出孔60E-1及びチューブシート内面を指向しない流出孔60E-5に加え、凸状部60E-3の底部に小径の流出孔60E-6を設けたノズル部材60Eを採用したのは、前記と同様にエンジンの高負荷運転時にはEGRガス温度が上昇しかつガス流量が増大するためチューブシート内表面のみならず、チューブシート付近の扁平伝熱管外表面からも冷却媒体の沸騰を生じる現象が起きること、又、噴出孔60E-1からの冷却媒体によるチューブシート内面付近の冷却のみならず、冷却媒体分配器8AよりEGRガスの流れ方向と概ね直交して流入する冷却媒体を流出孔60E-6より扁平伝熱管間に流入させると共に、EGRガスの流れ方向下流側壁面に設けた小径の流出孔60E-5からの冷却媒体が増速されてチューブシートより少し離れた扁平伝熱管間に流入し各扁平伝熱管の外表面を効果的に冷却することにより、高いエンジン負荷時であってもチューブシート付近を含めた広い範囲での沸騰をより確実に防止することができるためである。なお、流出孔60E-5、60E-6は、所望に応じ例えば扁平伝熱管の外表面が高温となる位置のみに設けたり、断面積を変化させて設けても良いことは言うまでもない。
 図38に示す櫛歯状ガイド部材110Aは、前記図19~図21に示す櫛歯状ガイド部材において、ガイド部の長さを扁平伝熱管の積層方向で異なる長さとしたもので、その構造は積層された扁平伝熱管の間の各空間部に延伸させて設ける短冊状ガイド部110A-1の長さが扁平伝熱管の積層方向に沿って次第に大きくなり、中央部分が最も長くなるように形成したものである。なお、短冊状ガイド部110A-1には、当該ガイド部材110Aを冷却媒体分配器8、8Aに取付けるための屈曲部110A-2を設けている。
 ここで、ガイド部の長さを扁平伝熱管の積層方向で異なる長さとしたのは、以下に記載する理由による。
 即ち、EGRガス冷却装置(EGRクーラ)に流入するEGRガスの流速分布は均一ではなく偏流を生じながら流入すること、EGRガス流量が多くかつガス流速が速い扁平伝熱管付近のチューブシート及び扁平伝熱管の表面温度が最も高温となり、最も冷却を必要とする部位であること、EGRガスが高速で流入し高温となるチューブシート付近への冷却媒体の流量を確保すべく、チューブシートの温度分布に合わせてガイド部材のガイド部の長さを調整する必要があること、即ち、高温となる部位には長いガイド部を、高温とならない部位には短いガイド部を配置する必要があること、例えEGRガス流量が偏流していてもチューブシート内表面、チューブシート内表面付近の扁平伝熱管外表面からも冷却媒体の沸騰を生じる現象を効果的に防止できること、をその理由とするものである。
 図39に示す本発明の第24実施例に係る多管式熱交換器は、自然対流により発生した気泡が流出し易いので多用される扁平伝熱管を垂直(縦向き)向きではなく、気泡が流出し難い水平に配置した構成の多管式熱交換器に適用した実施例を示したもので、その構造は複数本の扁平伝熱管2が水平に並設されて積層された扁平伝熱管群が内部に収納されたケーシング1の片側の側面に、当該側面に設けた開口部6を覆うように冷却媒体流入管9付き冷却媒体分配器8Aを固設し、扁平伝熱管群の各扁平伝熱管2の間に対応し且つケーシング長手方向と略直交する位置に排気ガス流入口側のチューブシート内面を指向する噴出孔60F-1を有するノズル部材60Fをケーシング1の内壁に取付けて構成したものである。図中、7は冷却媒体流出管である。
 上記図39に示す構成の多管式熱交換器の場合、冷却媒体は冷却媒体分配器8Aによりケーシング1の側面より水平に流入するも、ノズル部材60Fの噴出孔60F-1が扁平伝熱管群の各扁平伝熱管2の間に対応して排気ガス流入口側のチューブシート内面を指向するようにケーシング1内壁に取付けられているので、開口部6、ノズル部材60Fを介して噴出孔60F-1より冷却媒体がチューブシートに向かって流入する際、ノズル部材60Fの60F-1よりほぼ水平方向に流出する冷却媒体の噴出流速はこの水平配置方式の場合も冷却媒体分配器8A内よりも増速されかつチューブシートの内表面を指向して高い運動エネルギーを有して噴出するとともに、その噴出孔60F-1より流出した冷却媒体がチューブシートの内表面付近における水平配置の扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰が効果的に防止される。一般的に複数本の扁平伝熱管2が水平に並設されて積層された扁平伝熱管群の場合、冷却媒体の温度上昇に伴う自然対流が発生しにくく流れが停滞して沸騰し易いが、本発明の方式によればノズル部材60Fの噴出孔60F-1からのチューブシートを指向したほぼ水平方向で各扁平伝熱管間への冷却媒体の高速な噴出により、冷却媒体の沸騰を確実に防止することが可能となる。また、例え微細な気泡が発生したとしても増速されて高速な冷却媒体流によって速やかに流下させる事が出来、流速が遅い場合に発生する気泡の成長とそれに伴う沸騰とを効果的に防止することができる。なお、ここでは一連式の扁平伝熱管群を例にとり説明したが、扁平伝熱管群を水平方向に並設した二連式の扁平伝熱管群(図示せず)の場合も同様の作用効果が得られることはいうまでもない。
 図40に示す本発明の第25実施例に係る多管式熱交換器は、前記図39に示す第24実施例に係る多管式熱交換器(一連式の扁平伝熱管群)の他の実施例として、三連式の扁平伝熱管群を水平に配置した構成の多管式熱交換器を例示したもので、その構成は7本の扁平伝熱管2が水平に並設されて積層された扁平伝熱管群が水平に三列に配置された三連式の扁平伝熱管群が収納されたケーシング1の両側の側面に、当該両側面に設けた開口部6を覆うように冷却媒体流入管9付き冷却媒体分配器8Aを固設し、両側の扁平伝熱管群の各扁平伝熱管2の間に対応し且つケーシング長手方向と略直交する位置に排気ガス流入口側のチューブシート内面を指向する噴出孔60G-1を有するノズル部材60Gをケーシング1の両側の内壁に取付けて構成したものである。
 上記図40に示す構成の多管式熱交換器の場合、冷却媒体はケーシング1の両側に設けられた冷却媒体分配器8Aによりケーシング1の側面より水平に流入するも、前記図39に示す一連式の扁平伝熱管群からなる多管式熱交換器と同様に、ノズル部材60Gの噴出孔60G-1が扁平伝熱管群の各扁平伝熱管2の間に対応してチューブシート内面を指向し且つケーシング長手方向と略直交するようにケーシングの両側の内壁に取付けられているので、ケーシング両側の開口部6、ノズル部材60Gを介して噴出孔60G-1より冷却媒体がチューブシートに向かって流入する際、両方のノズル部材60Gの噴出孔60G-1よりほぼ水平方向に流出する冷却媒体の噴出流速は、冷却媒体分配器8A内よりも増速されかつチューブシートの内表面を指向して高い運動エネルギーを有して噴出するとともに、その噴出孔60G-1より流出した冷却媒体が水平配置の三連の扁平伝熱管群の各扁平伝熱管2の間に流入することにより冷却媒体の沸騰が効果的に防止される。即ち、三連式の扁平伝熱管群からなる多管式熱交換器の場合も、ケーシング1の両側に設けたノズル部材60Gの噴出孔60G-1からのチューブシートを指向したほぼ水平方向で各扁平伝熱管間への冷却媒体の高速な噴出により、両サイドの扁平伝熱管群のみならず中央の扁平伝熱管群においても冷却媒体の沸騰を確実に防止することが可能となる。
 なお、ここでは、一連式と三連式の扁平伝熱管群からなる多管式熱交換器を例にとり説明したが、二連式の扁平伝熱管群(図示せず)の場合も同様の作用効果が得られることはいうまでもない。
 本発明に係る多管式熱交換器は、排気ガス(EGRガス)流入口側での冷却媒体の沸騰防止作用を十分に高める手段として、冷却媒体をチューブシート内面に向けてより高速で流入させる冷却媒体分配器、冷却媒体を前記冷却媒体分配器内より高速で流入させる複数の噴出孔を当該多管式熱交換器のケーシング長手方向と略直交する方向に有するノズル部材、ガイド部材等を設ける手段をこうじたことにより、扁平伝熱管が垂直に並設されて積層された扁平伝熱管群を有する多管式熱交換器のみならず、扁平伝熱管が水平に並設されて積層された扁平伝熱管群を有する多管式熱交換器においても、冷却媒体の増速作用が得られると共にチューブシート内面側への指向性がより高められ、排気ガス(EGRガス)流入口側での冷却媒体の沸騰をほぼ確実に解消できるのみならず、チューブシート付近の各扁平伝熱管の外表面をも効果的に冷却することによりチューブシート付近の広い範囲での沸騰を確実に防止することが可能となり、冷却媒体の沸騰に伴う熱交換性能の低下を防止でき、エンジンの排気ガスからの熱回収や、EGRガス等の排気ガスの冷却に大きく寄与する。
1   ケーシング
2   扁平伝熱管
3   チューブシート
4   排気ガス流入ボンネット
5   排気ガス出口ボンネット
6   冷却媒体流入用開口部
7   冷却媒体流出管
8、8A、8B、18、28   冷却媒体分配器
8-1、8A-1、8B-1   フランジ部
9、19、29   冷却媒体流入管
9-1   冷却媒体流入口
9-2   キャップ
10、20、30、31、40、50、60、60A、60B、60C、60D、60E、60F、60G、70、80、90、100   ノズル部材
10-1、20-1、30-1、31-1、40-1、50-1、60-1、60A-1~60A-4、60B-1、60C-1、60D-1、60E-1、60F-1、60G-1、70-1、80-1、90-1、100-1、140-1   噴出孔
50-2、60-2、70-2   傾斜部
60-3、60B-3、60C-3、60D-3、60E-3、70-3   凸状部
60B-2、60C-2、60D-2、60E-2   EGRガスの流れ方向上流側壁面
60B-4、60C-4、60D-4、60E-4   EGRガスの流れ方向下流側壁面
60B-5、60C-5、60D-5、60D-6、60E-5、60E-6   流出孔
60C-6、60E-7   鍔部
70-4   突出部
80-2   バーリングノズル
90-2   ノズルブッシュ
90-3   流通孔
100-2   ノズル管
100-3   スパイラルフィン
110、110A   櫛歯状ガイド部材
110-1、110A-1   短冊状ガイド部
31-3、110-2、110A-2   屈曲部
120、130   ガイド部材
140   ガイド部一体型ノズル部材
30-2、31-2、140-2   ガイド部

Claims (19)

  1.  複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、前記ケーシングの排気ガス流入口側端部付近に前記ケーシング長手方向と略直交する方向に基端部を接続すると共に冷却媒体流入管を備えた冷却媒体分配器を備え、前記冷却媒体分配器と前記ケーシングの接続部付近に、冷却媒体の噴出流速が前記冷却媒体分配器内より増速されるよう複数の噴出孔を該ケーシング長手方向と略直交する方向に有するノズル部材が設けられ、かつ前記噴出孔の断面積の総和が該冷却媒体分配器内の冷却媒体の流れ方向断面積より小さいことを特徴とする多管式熱交換器。
  2.  複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けた長孔からなる開口部に、該開口部を覆うように基端部を接続する冷却媒体分配器と、該冷却媒体分配器に接続した冷却媒体流入管を備え、かつ前記冷却媒体分配器は、前記ケーシング内に流入した冷却媒体が前記排気ガス流入口側のチューブシート内面に沿って流れるようにケーシングの軸芯に対する垂直線に対し傾斜させて設けられ、さらに冷却媒体の噴出流速が前記冷却媒体分配器内より増速されるよう複数の噴出孔を設けたノズル部材が前記開口部付近に設けられ、かつ前記噴出孔の断面積の総和が該冷却媒体分配器内の冷却媒体の流れ方向断面積より小さいことを特徴とする多管式熱交換器。
  3.  前記ノズル部材の噴出孔の軸芯が排気ガス流入口側のチューブシート内面を指向していることを特徴とする請求項1又は2に記載の多管式熱交換器。
  4.  複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けた長孔からなる開口部に、該開口部を覆うように基端部を接続する冷却媒体分配器と、該冷却媒体分配器に接続した冷却媒体流入管を備え、かつ前記冷却媒体分配器はケーシングの軸芯に対する垂直線に対し平行もしくは排気ガス流入口側へ逆向きに傾斜させて設けられ、さらに冷却媒体の噴出流速が前記冷却媒体分配器内より増速されるよう複数の噴出孔を設けたノズル部材が前記開口部付近に設けられ、前記噴出孔の断面積の総和が該冷却媒体分配器内の冷却媒体の流れ方向断面積より小さく、前記ケーシング内に流入した冷却媒体が前記排気ガス流入口側のチューブシート内面に沿って流れるように該噴出孔の軸芯が排気ガス流入口側のチューブシート内面を指向していることを特徴とする多管式熱交換器。
  5.  前記ノズル部材の噴出孔の軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向していることを特徴とする請求項1乃至4のいずれか1項に記載の多管式熱交換器。
  6.  ノズル部材が冷却水分配器内に設けられていることを特徴とする請求項1乃至5のいずれか1項に記載の多管式熱交換器。
  7.  ノズル部材がケーシング内に設けられていることを特徴とする請求項1乃至5のいずれか1項に記載の多管式熱交換器。
  8.  ノズル部材の伝熱管側に当該伝熱管の積層方向に連続して突出し、壁面に前記噴出孔を有する凸状部が設けられていることを特徴とする請求項1乃至5のいずれか1項に記載の多管式熱交換器。
  9.  前記凸状部の積層された各扁平伝熱管の間の空間部及び/又は扁平伝熱管とケーシング内面との間の空間部に突出部を有し、該突出部に前記噴出孔が設けられていることを特徴とする請求項8に記載の多管式熱交換器。
  10.  前記ノズル部材には、軸芯が積層された扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部を指向しかつ排気ガス流入口側のチューブシート内面を指向しない複数の流出孔が設けられていることを特徴とする請求項1乃至9のいずれか1項に記載の多管式熱交換器。
  11.  前記ノズル部材には、断面積の異なる噴出孔及び/又は流出孔が設けられていることを特徴とする請求項1乃至10のいずれか1項に記載の多管式熱交換器。
  12.  前記ノズル部材には、噴出孔及び/又は流出孔が前記伝熱管の積層方向と略平行で略直線状に連続して配置されていることを特徴とする請求項1乃至11のいずれか1項に記載の多管式熱交換器。
  13.  前記ノズル部材の扁平伝熱管側に当該伝熱管の積層方向に連続して突出した凸状部が設けられ、該凸状部のチューブシート側壁面に前記噴出孔を有し、かつその他の壁面に前記流出孔が設けられていることを特徴とする請求項1乃至12のいずれか1項に記載の多管式熱交換器。
  14.  前記ノズル部材の扁平伝熱管側に当該伝熱管の積層方向に連続して突出した凸状部のケーシングの軸方向断面形状がV字状、底部に平坦部を有する逆台形状、U字状、円弧状のいずれかの形状であることを特徴とする請求項1乃至13のいずれか1項に記載の多管式熱交換器。
  15.  冷却媒体分配器内又はノズル部材あるいはケーシング内壁に、冷却媒体のガイド部材が設けられていることを特徴とする請求項1乃至14のいずれか1項に記載の多管式熱交換器。
  16.  ガイド部材は積層された各扁平伝熱管の間の空間部もしくは扁平伝熱管とケーシング内面との間の空間部に延びる延伸部を有することを特徴とする請求項15に記載の多管式熱交換器。
  17.  噴出孔にはノズルブッシュ又はノズル管が装着されていることを特徴とする請求項1乃至16のいずれか1項に記載の多管式熱交換器。
  18.  ケーシングに設けられた開口部は扁平伝熱管の積層方向に略平行に設けられていることを特徴とする請求項1乃至17のいずれか1項に記載の多管式熱交換器。
  19.  噴出孔は円形又は扁平伝熱管の軸芯方向に長径を有する楕円もしくは長円形であることを特徴とする請求項1乃至18のいずれか1項に記載の多管式熱交換器。
PCT/JP2012/070381 2011-08-10 2012-08-09 多管式熱交換器 WO2013022072A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011174580 2011-08-10
JP2011-174580 2011-08-10
JP2012-176248 2012-08-08
JP2012176248A JP5988296B2 (ja) 2011-08-10 2012-08-08 多管式熱交換器

Publications (1)

Publication Number Publication Date
WO2013022072A1 true WO2013022072A1 (ja) 2013-02-14

Family

ID=47668576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070381 WO2013022072A1 (ja) 2011-08-10 2012-08-09 多管式熱交換器

Country Status (2)

Country Link
JP (1) JP5988296B2 (ja)
WO (1) WO2013022072A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129182A1 (en) * 2012-05-01 2015-05-14 Benteler Automobiltechnik Gmbh Heat exchanger comprising a supply channel
DE102014213718A1 (de) * 2014-07-15 2016-01-21 Mahle International Gmbh Wärmeübertrager
EP3034979A1 (de) * 2014-12-19 2016-06-22 Benteler Automobiltechnik GmbH Abgaswärmeübertrager
EP3246647A1 (en) * 2016-05-19 2017-11-22 Borgwarner Emissions Systems Spain, S.L.U. Heat exchange device
IT201700021474A1 (it) * 2017-02-24 2018-08-24 Mitsubishi Electric Hydronics & It Cooling Systems S P A Scambiatore di calore a fascio tubiero ad espansione secca
JP2019095077A (ja) * 2017-11-17 2019-06-20 株式会社ティラド ヘッダープレートレス型熱交換器の冷却水入口構造
EP3567331A1 (en) * 2018-05-09 2019-11-13 João de Deus & Filhos, S.A. Heat exchanger
EP3786567A1 (en) * 2019-08-26 2021-03-03 Valeo Termico S.A. An egr cooler
EP3786562A1 (en) * 2019-08-28 2021-03-03 Valeo Termico S.A. Exhaust gas recirculation cooler
WO2021116630A1 (fr) * 2019-12-13 2021-06-17 Valeo Systemes Thermiques Echangeur de chaleur avec collecteur rapporté
EP3869025A1 (en) * 2020-02-21 2021-08-25 Mahle International GmbH Heat exchanger, in particular exhaust gas cooling device, for cooling exhaust gas from an internal combustion engine
EP4015976A1 (en) * 2020-12-15 2022-06-22 Valeo Autosystemy SP. Z.O.O. Heat exchanger

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143335B2 (ja) * 2013-03-28 2017-06-07 臼井国際産業株式会社 多管式熱交換器
JP5941878B2 (ja) * 2013-07-25 2016-06-29 株式会社ユタカ技研 熱交換器及び熱交換デバイス
KR20150073705A (ko) 2013-12-23 2015-07-01 현대자동차주식회사 내연기관의 배기열 재활용 시스템
DE102014202447A1 (de) * 2014-02-11 2015-08-13 MAHLE Behr GmbH & Co. KG Abgaswärmeübertrager
DE102014219078A1 (de) 2014-09-22 2016-03-24 Mahle International Gmbh Vorrichtung zur Zuführung eines Kühlmittels zu einem Wärmeübertrager, vorzugsweise für einen Abgaskühler eines Verbrennungsmotors eines Kraftfahrzeuges
DE102014226883A1 (de) * 2014-12-22 2016-06-23 Mahle International Gmbh Wärmeübertrager
EP3404247B1 (en) 2016-01-12 2020-09-09 T.RAD Co., Ltd. Exhaust gas heat exchanger having stacked flat tubes
KR101825120B1 (ko) * 2017-04-17 2018-02-07 주식회사 코렌스 냉각수 유동성이 개선된 이지알 쿨러
DE102017130153B4 (de) 2017-12-15 2022-12-29 Hanon Systems Vorrichtung zur Wärmeübertragung und Verfahren zum Herstellen der Vorrichtung
WO2019198554A1 (ja) * 2018-04-12 2019-10-17 パナソニック株式会社 シェルアンドチューブ式熱交換器及びそれにおける噴霧方法
FR3084408B1 (fr) * 2018-07-24 2021-09-17 Faurecia Systemes Dechappement Echangeur de chaleur et procede de fabrication correspondant
JP7134842B2 (ja) * 2018-11-15 2022-09-12 株式会社ティラド Egrクーラの冷却水入口構造
WO2021171715A1 (ja) * 2020-02-25 2021-09-02 日本碍子株式会社 熱交換器の流路構造、及び熱交換器
WO2022130986A1 (ja) * 2020-12-17 2022-06-23 パナソニックIpマネジメント株式会社 シェルアンドチューブ式熱交換器、冷凍サイクル装置、及び熱交換方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103058A (en) * 1976-02-24 1977-08-29 Corning Glass Works Multiple passage and method of producing same
JPH1113550A (ja) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egrクーラ
WO2006035985A1 (ja) * 2004-09-28 2006-04-06 T.Rad Co., Ltd. 熱交換器
KR100748756B1 (ko) * 2006-05-11 2007-08-13 현대자동차주식회사 차량용 egr 장치의 egr 쿨러
JP2008045444A (ja) * 2006-08-11 2008-02-28 Hino Motors Ltd Egrクーラ
JP2009091948A (ja) * 2007-10-05 2009-04-30 Tokyo Radiator Mfg Co Ltd Egrクーラ
JP2009114923A (ja) * 2007-11-05 2009-05-28 Tokyo Radiator Mfg Co Ltd Egrクーラ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103058A (en) * 1976-02-24 1977-08-29 Corning Glass Works Multiple passage and method of producing same
JPH1113550A (ja) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egrクーラ
WO2006035985A1 (ja) * 2004-09-28 2006-04-06 T.Rad Co., Ltd. 熱交換器
KR100748756B1 (ko) * 2006-05-11 2007-08-13 현대자동차주식회사 차량용 egr 장치의 egr 쿨러
JP2008045444A (ja) * 2006-08-11 2008-02-28 Hino Motors Ltd Egrクーラ
JP2009091948A (ja) * 2007-10-05 2009-04-30 Tokyo Radiator Mfg Co Ltd Egrクーラ
JP2009114923A (ja) * 2007-11-05 2009-05-28 Tokyo Radiator Mfg Co Ltd Egrクーラ

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129182A1 (en) * 2012-05-01 2015-05-14 Benteler Automobiltechnik Gmbh Heat exchanger comprising a supply channel
US10337807B2 (en) 2014-07-15 2019-07-02 Mahle International Gmbh Heat exchanger with coolant channel and panel
DE102014213718A1 (de) * 2014-07-15 2016-01-21 Mahle International Gmbh Wärmeübertrager
EP3034979A1 (de) * 2014-12-19 2016-06-22 Benteler Automobiltechnik GmbH Abgaswärmeübertrager
DE102014119227A1 (de) * 2014-12-19 2016-06-23 Benteler Automobiltechnik Gmbh Abgaswärmeübertrager
US20160177888A1 (en) * 2014-12-19 2016-06-23 Benteler Automobiltechnik Gmbh Exhaust gas heat exchanger
US9995250B2 (en) 2014-12-19 2018-06-12 Benteler Automobiltechnik Gmbh Exhaust gas heat exchanger
EP3246647A1 (en) * 2016-05-19 2017-11-22 Borgwarner Emissions Systems Spain, S.L.U. Heat exchange device
CN107401939A (zh) * 2016-05-19 2017-11-28 博格华纳排放系统西班牙有限责任公司 热交换装置
IT201700021474A1 (it) * 2017-02-24 2018-08-24 Mitsubishi Electric Hydronics & It Cooling Systems S P A Scambiatore di calore a fascio tubiero ad espansione secca
EP3367036A1 (en) * 2017-02-24 2018-08-29 Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. A dry-expansion tube bundle heat exchanger
JP2019095077A (ja) * 2017-11-17 2019-06-20 株式会社ティラド ヘッダープレートレス型熱交換器の冷却水入口構造
EP3567331A1 (en) * 2018-05-09 2019-11-13 João de Deus & Filhos, S.A. Heat exchanger
US10989487B2 (en) 2018-05-09 2021-04-27 João de Deus & Filhos, S.A. Heat exchanger
EP3786567A1 (en) * 2019-08-26 2021-03-03 Valeo Termico S.A. An egr cooler
EP3786562A1 (en) * 2019-08-28 2021-03-03 Valeo Termico S.A. Exhaust gas recirculation cooler
WO2021116630A1 (fr) * 2019-12-13 2021-06-17 Valeo Systemes Thermiques Echangeur de chaleur avec collecteur rapporté
FR3107344A1 (fr) * 2019-12-13 2021-08-20 Valeo Systemes Thermiques Echangeur de chaleur avec collecteur rapporté.
EP3869025A1 (en) * 2020-02-21 2021-08-25 Mahle International GmbH Heat exchanger, in particular exhaust gas cooling device, for cooling exhaust gas from an internal combustion engine
EP4015976A1 (en) * 2020-12-15 2022-06-22 Valeo Autosystemy SP. Z.O.O. Heat exchanger

Also Published As

Publication number Publication date
JP5988296B2 (ja) 2016-09-07
JP2013053620A (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2013022072A1 (ja) 多管式熱交換器
JP6143335B2 (ja) 多管式熱交換器
EP3246647B1 (en) Heat exchange device
JP4798655B2 (ja) 排気ガス冷却装置用多管式熱交換器
EP2917550B1 (en) Heat exchange device for exchanging heat between fluids
US7245689B2 (en) Nuclear reactor internal structure
US8240365B2 (en) Heat exchanger
JP4938610B2 (ja) Egrクーラ
US20060048921A1 (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
US8627880B2 (en) Exhaust gas cooler
JP4544575B2 (ja) Egrガス冷却装置
JP2007046890A (ja) Egrガス冷却装置用多管式熱交換器
US9638476B2 (en) Plate-shaped heat exchanger for a cooling device comprising at least one heart exchanger package
ES2598837T3 (es) Transmisor de calor
CN101551207A (zh) 管壳式螺旋扁管换热器
EP3029407A1 (en) Grooved baffle for a heat exchanger
JP3407722B2 (ja) 組合せ型熱交換器
JP4041437B2 (ja) 半導体素子の冷却装置
WO2011115748A1 (en) Slotted impingement plates for heat exchangers
EP2246655A1 (en) Heat exchanger
JP2001027158A (ja) Egrガス冷却装置
JP2003090693A (ja) 排気熱交換器
CN110542334A (zh) 一种纯逆流壳管式淡水冷却器
EP2463490B1 (en) Improvements in or relating to gas coolers for internal combustion engines
JP2001304049A (ja) 多管式egrガス冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822430

Country of ref document: EP

Kind code of ref document: A1