WO2013021582A1 - Display drive circuit and display device provided with same - Google Patents

Display drive circuit and display device provided with same Download PDF

Info

Publication number
WO2013021582A1
WO2013021582A1 PCT/JP2012/004873 JP2012004873W WO2013021582A1 WO 2013021582 A1 WO2013021582 A1 WO 2013021582A1 JP 2012004873 W JP2012004873 W JP 2012004873W WO 2013021582 A1 WO2013021582 A1 WO 2013021582A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
timing
pulse
gate
Prior art date
Application number
PCT/JP2012/004873
Other languages
French (fr)
Japanese (ja)
Inventor
英司 廣田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013021582A1 publication Critical patent/WO2013021582A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0294Details of sampling or holding circuits arranged for use in a driver for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit

Definitions

  • the present invention relates to a display drive circuit and a display device including the display drive circuit, and more particularly to measures for preventing a shift in pulse timing of a control signal for controlling the operation of the display drive circuit.
  • the liquid crystal display device includes a liquid crystal display panel for displaying an image, a source driver and a gate driver which are display driving circuits, and a controller, and a display driver input from the outside is processed by the controller, and the source driver and the gate driver And the liquid crystal display panel is driven by these two drivers to display an image.
  • the liquid crystal display panel is configured such that a pair of substrates are bonded together via a frame-shaped sealing material, and a liquid crystal layer is sealed inside the sealing material between both substrates.
  • a plurality of source wirings and gate wirings extending in directions intersecting each other are provided as display wirings so as to form a lattice shape as a whole.
  • a TFT Thin Film ⁇ ⁇ Transistor
  • the source driver is connected to each source wiring, and includes a shift register circuit, a sampling memory circuit, a hold memory circuit, a level shifter circuit, a digital-analog (Digital-Analog) conversion circuit (hereinafter referred to as a DA conversion circuit), and an output circuit. Yes.
  • the source driver receives a digital display data signal from the controller and a source start pulse signal, a source clock signal, a horizontal synchronization signal (latch signal), a polarity inversion signal, and the like as a control signal.
  • Each of these control signals has a pulse that rises at a timing according to the specifications of the liquid crystal display device, and is a signal that controls the operation of the source driver according to the input timing of the pulse.
  • the source driver samples the display data signal in a sampling memory circuit in a time division manner based on the source start pulse signal, the source clock signal, and the horizontal synchronization signal, and transfers the sampled display data signal to the hold memory circuit.
  • the signal is converted into an analog signal by the DA conversion circuit, the signal polarity is inverted based on the polarity inversion signal, and the analog signal is output as a source signal from the output circuit to the source wiring.
  • the gate driver is connected to each gate wiring and includes a shift register circuit, a level shifter circuit, and an output circuit.
  • the gate driver receives a gate start pulse signal, a gate clock signal, and the like as a control signal for the display data from the controller.
  • Each of these control signals has a pulse that rises at a timing according to the specifications of the liquid crystal display device, and is a signal that controls the operation of the gate driver according to the input timing of the pulse.
  • the gate driver Based on the gate start pulse signal and the gate clock signal, the gate driver outputs the pulse signal sequentially delayed from each stage of the shift register circuit to one stage of the level shifter circuit, and outputs the pulse signal to the level shifter circuit. After being converted to a voltage level that can drive the gate of the TFT by the circuit, it is configured to output it from the output circuit to the gate wiring as a gate signal.
  • Patent Document 1 includes a comparison determination circuit and a switching circuit for detecting and repairing a defect in the source driver in a state where the electrical connection with the liquid crystal display panel is disconnected.
  • a display device that executes processing for detecting a failure of a source driver at the timing of switching a channel or switching from a program to CM (Commercial Message) by a comparison determination circuit and a switching circuit. According to this, it is described that self-detection and self-repair of a circuit failure can be performed at an appropriate timing.
  • the liquid crystal display device disclosed in Patent Document 1 self-repairs only malfunctions of internal circuits caused by problems in the manufacture of the source driver, so that control signals such as a horizontal synchronization signal and a polarity inversion signal are externally supplied to the source driver. If the pulse timing of the signal is shifted and the signal is out of the specifications of the display device in the first place, the data position may be shifted during data transfer from the sampling memory circuit to the hold memory circuit. An error may occur during conversion from a digital signal to an analog signal, and a desired data signal may not be supplied to the source wiring, resulting in a display failure.
  • the present invention has been made in view of such a point, and an object of the present invention is to compensate for a shift in the pulse timing of a control signal and to avoid occurrence of a display defect.
  • a plurality of control signals input to the display drive circuit include a signal outside the specification whose pulse timing is shifted
  • the signal outside the specification corresponds to the specification.
  • a regular control signal having pulse timing is replaced.
  • the present invention is directed to a display driving circuit for performing image display and a display device having the display driving circuit, and has taken the following solution.
  • the first invention is a display driving circuit, and stores normal pulse intervals between a plurality of control signals having pulses rising at predetermined intervals with timing according to the specifications of the display device.
  • the control unit receives the control signal in parallel with the memory unit, and compares the pulse interval between the control signals with the normal pulse interval stored in the memory unit, thereby shifting the pulse timing of the control signal.
  • a timing comparison unit that detects a deviation in pulse timing by the timing comparison unit, and a normal signal generation unit that generates a normal control signal having a pulse timing according to the specifications.
  • a signal replacement unit that replaces the normal control signal generated by the generation unit.
  • the normal pulse interval between the control signals input in parallel to the display drive circuit is stored as data in the memory unit.
  • the timing comparison unit The pulse interval between the control signals is compared with the regular pulse interval stored in the memory unit. At this time, if there is a control signal outside the specification whose pulse timing is shifted from the specification of the display device, the control signal outside the specification is detected.
  • the normal signal generation unit generates a normal control signal having a pulse timing according to the specifications of the display device.
  • the control signal outside the specification is detected by the timing comparison unit, the control signal outside the specification is replaced by the normal control signal generated by the normal signal generation unit at the signal replacement unit.
  • the timing comparison unit sets a pulse interval between the individual control signals and the other two control signals excluding the control signal in the memory unit. The comparison is made with a stored regular pulse interval.
  • the pulse interval between each of the four or more input control signals and the other two control signals excluding the control signal is stored in the memory unit in the timing comparison unit. And the pulse timing deviation in each control signal is inspected.
  • this method since the number of comparisons with the regular pulse interval is smaller than when comparing all pulse intervals between the control signals, it is possible to efficiently inspect the deviation of the pulse timing in each control signal. Is possible.
  • the display drive circuit of the first or second aspect further includes an alarm unit that issues an alarm when the timing comparison unit detects a shift in pulse timing of at least one of the control signals. It is characterized by that.
  • the alarm unit issues an alarm when the timing comparison unit detects a shift in the pulse timing of at least one control signal
  • the input signal to the display drive circuit is specified by performing the display inspection. It is possible to easily recognize that it is in an outside state, and it is possible to improve product development efficiency and increase efficiency when analyzing defective products.
  • a source start pulse signal and a source clock signal are inputted as the control signal, and the source start pulse signal is transferred based on the source clock signal.
  • a sampling memory circuit that receives a display data signal of a digital value, samples and outputs the display data signal based on a source start pulse signal transferred from the shift register circuit, and a plurality of horizontal synchronization signals as the control signal.
  • a hold memory circuit that receives a signal, holds a display data signal output from the sampling memory circuit based on the horizontal synchronization signals, and outputs the display data signal based on a horizontal synchronization signal input next;
  • a plurality of polarity inversion signals are input as the control signal.
  • a DA conversion circuit that converts the display data signal output from the hold memory circuit into an analog signal and inverts the polarity of the analog signal based on each polarity inversion signal, and outputs the analog signal.
  • a source driver that drives at least one of the source start pulse signal and the source clock signal, the plurality of horizontal synchronization signals, and the plurality of polarity inversion signals by the timing comparison unit and the signal replacement unit. It is characterized by processing.
  • the source clock signal and source start pulse signal input to the shift register circuit of the source driver, the plurality of horizontal synchronization signals input to the hold memory circuit, and the plurality of signals input to the DA converter circuit At least one of the polarity inversion signals is processed by the timing comparison unit and the signal replacement unit.
  • the timing comparison unit and the signal replacement unit When the source clock signal and the source start pulse signal are processed by the timing comparison unit and the signal replacement unit, the timing deviation of the pulse signal transferred to the sampling memory circuit is prevented.
  • the plurality of horizontal synchronization signals are processed by the timing comparison unit and the signal replacement unit, it is possible to prevent the data position from being shifted when the data signal is transferred from the sampling memory circuit to the hold memory circuit.
  • the plurality of polarity inversion signals are processed by the timing comparison unit and the signal replacement unit, it is possible to prevent an error from occurring when the DA signal is converted from a digital signal to an analog signal.
  • a shift register circuit that receives a gate start pulse signal and a gate clock signal as the control signal and transfers the gate start pulse signal based on the gate clock signal
  • a gate driver for driving the gate wiring of the display device, wherein the gate start pulse signal and the gate clock signal are processed by the timing comparison unit and the signal replacement unit.
  • the gate clock signal and the gate start pulse signal input to the shift register circuit of the gate driver are processed by the timing comparison unit and the signal replacement unit. As a result, timing deviation of the pulse signal transferred from the shift register circuit is prevented.
  • a sixth invention is a display device, comprising: the display drive circuit according to any one of the first to fifth inventions; and a display panel having a display wiring connected to the display drive circuit. It is characterized by that.
  • the display drive circuit of the first to fifth aspects of the invention has an excellent characteristic that can compensate for the deviation of the pulse timing of the control signal and avoid the occurrence of display failure. It is possible to avoid the occurrence of display defects and perform good image display.
  • the normal control when there are non-specification signals whose pulse timings are shifted in the plurality of control signals input to the display drive circuit, the normal control having the non-specification signal with the pulse timings according to the specifications. Since it is replaced with a signal, it is possible to compensate for the deviation in the pulse timing of the control signal and to avoid the occurrence of display defects.
  • FIG. 1 is a block diagram illustrating a configuration of a main part of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is an equivalent circuit diagram showing a configuration in the display area of the liquid crystal display panel.
  • FIG. 3 is a block diagram illustrating a configuration of a source driver IC (Integrated Circuit) according to the first embodiment.
  • FIG. 4 is a block diagram illustrating a configuration of the control signal compensation circuit of the source driver IC according to the first embodiment.
  • FIG. 5 is a conceptual diagram showing a schematic operation when each normal horizontal synchronization signal is input to the control signal compensation circuit in the first embodiment.
  • FIG. 6 is a conceptual diagram showing a schematic operation when a part of the horizontal synchronization signal out of the specification is inputted to the control signal compensation circuit in the first embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of a main part of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is an equivalent circuit diagram showing a configuration in the display area of the liquid crystal
  • FIG. 7 is a block diagram illustrating a configuration of the gate driver IC according to the second embodiment.
  • FIG. 8 is a block diagram illustrating a configuration of the control signal compensation circuit of the gate driver IC according to the second embodiment.
  • FIG. 9 is a conceptual diagram illustrating a schematic operation when a normal gate start pulse signal and a gate clock signal are input to the control signal compensation circuit according to the second embodiment.
  • FIG. 10 is a conceptual diagram showing a schematic operation when a gate start pulse signal and a gate clock signal out of specification are input to the control signal compensation circuit in the second embodiment.
  • FIG. 11 is a block diagram illustrating a configuration of a control signal compensation circuit according to the third embodiment.
  • Embodiment 1 of the Invention an active matrix liquid crystal display device S will be described as an example of a display device.
  • the liquid crystal display device S includes a liquid crystal display panel 1 that performs image display, a gate driver 2 and a source driver 3 that are display drive circuits, a controller 4 that supplies display signals to both the drivers 2 and 3, and a liquid crystal drive power source. 5, and in response to the output from the controller 4, the drivers 2 and 3 selectively apply the voltage from the liquid crystal driving power source 5 to the liquid crystal display panel 1, thereby displaying an image on the liquid crystal display panel 1. It is configured.
  • the liquid crystal display panel 1 includes an active matrix substrate and a counter substrate disposed so as to face each other, and the outer peripheral edges of both the substrates are bonded together with a frame-shaped sealing material. A liquid crystal layer is sealed between the substrates inside the sealing material.
  • the liquid crystal display panel 1 has a display area for displaying an image in an area where a liquid crystal layer is provided. The display area is configured by arranging a plurality of pixels, which are the minimum unit of an image, in a matrix.
  • the circuit configuration in the display area of the liquid crystal display panel 1 is shown in FIG.
  • a plurality of gate wirings 11 are provided so as to extend in parallel to each other, and a plurality of source wirings 13 extend in parallel to each other in a direction orthogonal to the gate wirings 11. Is provided.
  • the gate lines 11 and the source lines 13 are insulated from each other through an insulating film, and are formed in a lattice shape as a whole so as to partition each pixel P.
  • Each pixel P includes a TFT 15, a pixel electrode 17 connected to the TFT 15, a common electrode 19 facing the pixel electrode 17, and a liquid crystal capacitor having a structure in which the pixel electrode 17 and the common electrode 19 sandwich a liquid crystal layer. Clc.
  • the gate of each TFT 15 is connected to one gate wiring 11 that partitions the corresponding pixel P.
  • the source of each TFT 15 is connected to one source line 13 that partitions the corresponding pixel P.
  • the drain of each TFT 15 is connected to the pixel electrode 17 disposed in the corresponding pixel P.
  • the gate driver 2 is connected to each gate line 11 of the liquid crystal display panel 1 and is a circuit that drives each gate line 11. More specifically, the gate driver 3 sequentially selects one gate line 11 from all the gate lines 11 and applies a selection voltage (for example, a high level voltage) to the selected gate line 11. In addition, a non-selection voltage (for example, a low level voltage) is applied to the other gate wirings 11. Thereby, the gate driver 2 makes each TFT 15 connected to the selected gate wiring 11 conductive, and makes the pixel electrode 17 connected to each TFT 15 in the conductive state ready for voltage writing.
  • a selection voltage for example, a high level voltage
  • a non-selection voltage for example, a low level voltage
  • the source driver 3 is connected to each source wiring 13 of the liquid crystal display panel 1 and is a circuit that drives each source wiring 13 by, for example, dot inversion. More specifically, the source driver 3 switches the positive voltage and the negative voltage corresponding to the display data signal for each source line 13 for each source line 13 and each gate line 11 is selected. In addition, the positive voltage and the negative voltage corresponding to the display data signal are inverted and applied. Thus, the source driver 3 writes a positive voltage or a negative voltage corresponding to the display data signal to each pixel electrode 17 in a voltage writable state.
  • the gate driver 2 includes a plurality of gate driver ICs 20 as shown in FIG. A predetermined number of gate wirings 11 are distributed and connected to each gate driver IC 20.
  • the source driver 3 is composed of a plurality of source driver ICs 30. A predetermined number of source lines 13 are distributed and connected to each source driver IC 30.
  • the gate driver IC 20 and the source driver IC 30 are mounted on the liquid crystal display panel 1 as, for example, a TCP (Tape Carrier Package) in which an IC chip is mounted on a wiring board.
  • TCP Transmission Carrier Package
  • the controller 4 outputs a control signal S1 such as a gate start pulse signal GSP, a gate clock signal GCLK, and a gate ON signal to the gate driver 2.
  • a control signal S1 such as a gate start pulse signal GSP, a gate clock signal GCLK, and a gate ON signal to the gate driver 2.
  • the gate clock signal GCLK and the gate ON signal are input to each gate driver IC 20, but the gate start pulse signal GSP is supplied to any one gate driver IC (for example, the gate driver IC closest to the controller 4) 20. Only entered.
  • the controller 4 controls the source driver 3 as a control signal S2 for controlling the source driver IC 30 as a source start pulse signal SSP, a source clock signal SCLK, a horizontal synchronization signal (latch signal) LS, and a polarity inversion signal.
  • the signals DR, DG, and DB corresponding to red, green, and blue are output as REV and the digitized display data signal DS.
  • the source clock signal SCLK, the horizontal synchronization signal LS, the display data signal DS, and the polarity inversion signal REV are input to each source driver IC 30, but the source start pulse signal SSP is any one source driver IC (for example, It is input only to the source driver IC 30 that is closest to the controller 4.
  • the liquid crystal driving power supply 5 supplies an analog voltage for displaying an image on the display panel 1 to each gate driver IC 20 and each source driver IC 30, for example, a reference voltage VR for generating a gradation display voltage in each source driver IC 30.
  • a circuit for supplying a power source for supplying a voltage for driving each of the drivers 2 and 3 is omitted.
  • the configuration of the source driver 3 will be described in detail below with reference to FIGS.
  • the configuration of the source driver IC 30 is shown in FIG.
  • Each source driver IC 30 included in the source driver 3 includes a shift register circuit 31, an input latch circuit 33, a sampling memory circuit 35, a hold memory circuit 37, a level shifter circuit 39, a gradation voltage generation circuit 41, a DA conversion circuit 43, and an output circuit. 45.
  • the shift register circuit 31 is an n-stage shift register, and sequentially shifts the source start pulse signal SSP in synchronization with the source clock signal SCLK input from the controller 4, and a pulse signal based on the source start pulse signal SSP is transmitted from each stage. It is a circuit that outputs to the sampling memory circuit 35 in order. The output signal of the shift register circuit 31 determines the sampling position of the display data signal DS (DR, DG, DB).
  • the source start pulse signal SSP is a signal synchronized with the horizontal synchronization signal LS, and after being shifted to the final stage in the shift register circuit 31, the source start pulse signal SSP is sent to the shift register circuit 31 in the adjacent source driver IC 30. Input as signal SSP and similarly shifted. Then, the data is transferred to the shift register circuit 31 in the source driver IC 30 farthest from the controller 4.
  • the input latch circuit 33 temporarily latches the serially input display data signal DS of s bits (for example, each of 6 bits of DR, RG, DB, 18 bits in total) according to the source clock signal SCLK, and the latched display data This is a circuit for outputting the signal DS (DR, DG, DB) to the sampling memory circuit 35.
  • the sampling memory circuit 35 is an s-bit display data signal DS (DR, DG, DB) sent in a time-sharing manner from the input latch circuit 33 at a position specified by an output signal from each stage of the shift register circuit 31. ) And each display data signal DS is stored until n display data signals DS (DR, DG, DB) for one horizontal synchronization period are prepared.
  • the hold memory circuit 37 is based on the horizontal synchronization signal LS input from the control signal compensation circuit 50 described later, that is, at the rising edge of the latch pulse, the n display data signals DS (DR, DG) stored in the sampling memory circuit 35. , DB) are collectively held.
  • the level shifter circuit 39 is adapted to the DA conversion circuit 43 that processes the voltage level applied to the source line 13, and the signal level of the n display data signals DS (DR, DG, DB) stored in the hold memory circuit 37. Is converted by boosting or the like.
  • the gradation voltage generation circuit 41 includes a resistance dividing circuit, and generates a ⁇ -corrected 2 S level gradation voltage based on the reference voltage VR input from the liquid crystal driving power supply 5 using the resistor dividing circuit, and a DA conversion circuit 43 is a circuit that outputs the data.
  • the DA conversion circuit 43 outputs one of the 2 S levels generated by the gradation voltage generation circuit 41 for each of the n display data signals DS (DR, DG, DB) input from the level shifter circuit 39. Outputs after selecting a regulated voltage and converting the selected gradation voltage into an analog signal by switching to a positive polarity voltage or a negative polarity voltage in accordance with a polarity inversion signal REV input from a control signal compensation circuit 50 described later. This is a circuit that outputs to the circuit 45.
  • the output circuit 45 includes n voltage followers composed of, for example, an operational amplifier and an output buffer.
  • the output circuit 45 amplifies an analog signal input from the DA converter circuit 43 using the voltage follower and converts the amplified analog signal into a low-impedance output. As shown in FIG.
  • Each source driver IC 3 in this embodiment further includes a control signal compensation circuit 50 in addition to the various circuits 31, 33, 35, 37, 39, 41, 43, 45 described above.
  • the control signal compensation circuit 50 is a circuit that compensates the pulse timing of the horizontal synchronization signal LS and the polarity inversion signal REV input from the controller 4.
  • the horizontal synchronization signal LS and the polarity inversion signal REV are control signals having pulses that rise with a predetermined interval from each other at a timing according to the specifications of the liquid crystal display device S, and are input to the source driver 3 in parallel.
  • the individual horizontal synchronization signals LS and the polarity inversion signals REV are distinguished and expressed as horizontal synchronization signals LS (0) to (k) and polarity inversion signals REV (0) to (k).
  • k is a number corresponding to the number of source lines 13 connected to each source driver IC 30.
  • control signal compensation circuit 50 The configuration of the control signal compensation circuit 50 is shown in FIG.
  • the control signal compensation circuit 50 includes a first compensation circuit 51 that compensates for pulse timing deviations of the horizontal synchronization signals LS (0) to (k), and pulse timings of the polarity inversion signals REV (0) to (k). And a second compensation circuit 57 for compensating for the deviation.
  • the first compensation circuit 51 includes a first timing comparison unit 53 that detects a pulse timing shift of the horizontal synchronization signals LS (0) to (k), and a pulse timing shift by the first timing comparison unit 53. And a first signal replacement unit 55 that replaces the horizontal synchronization signals LS (0) to (k) in which are detected with normal horizontal synchronization signals LS (0) ′ to (k) ′ corresponding thereto.
  • the first timing comparison unit 53 has a first memory unit 54 therein.
  • a normal pulse interval between the horizontal synchronization signals LS (0) to (k) is stored in advance as data. Then, the first timing comparison unit 53 detects the pulse interval between the plurality of horizontal synchronization signals LS (0) to (k) inputted in parallel and the normal pulse stored in the first memory unit 54. By comparing the interval, a deviation in pulse timing of each horizontal synchronization signal LS (0) to (k) is detected.
  • the pulse interval between (0) to (k) is compared with the regular pulse interval stored in the first memory unit.
  • the horizontal synchronization signals LS (k ⁇ 2), LS (k), and LS (0) are each 1
  • Each pulse interval in the horizontal synchronization signal LS (k) and the horizontal synchronization signal (0) is compared with a normal pulse interval.
  • the first timing comparison unit 53 outputs to the first signal replacement unit 55 a determination signal indicating whether or not the pulse timing is shifted for each of the horizontal synchronization signals LS (0) to (k). It has become.
  • the first signal replacement unit 55 has a first normal signal generation unit 56 therein.
  • the first normal signal generator 56 is a circuit that generates normal horizontal synchronization signals LS (0) ′ to (k) ′ having pulse timings according to the specifications of the liquid crystal display device S.
  • the first signal replacement unit 55 uses the horizontal synchronization signals LS (0) to (k) in which the deviation of the pulse timing is detected based on the determination signal input from the first timing comparison unit 53 as the first signal.
  • the normal horizontal synchronization signals LS (0) ′ to (k) ′ corresponding to the normal signal generation unit 56 generated by the normal signal generation unit 56 are replaced.
  • the first signal replacement unit 55 outputs the horizontal synchronization signals LS (0) to (k) for which no shift in pulse timing has been detected by the first timing comparison unit 53 as they are. .
  • the second compensation circuit 57 includes a second timing comparison unit 59 that detects a pulse timing shift of each polarity inversion signal REV (0) to (k), and a pulse timing shift by the second timing comparison unit 59. And a second signal replacement unit 61 that replaces the polarity reversal signals REV (0) to (k) in which are detected with normal polarity reversal signals REV (0) ′ to (k) ′ corresponding thereto.
  • the second timing comparison unit 59 has a second memory unit 60 inside.
  • the normal pulse interval between the polarity inversion signals REV (0) to (k) is stored in advance as data.
  • the second timing comparison unit 59 detects the pulse interval between the plurality of polarity reversal signals REV (0) to (k) input in parallel and the normal pulse stored in the second memory unit 60. By comparing the interval, a deviation in pulse timing of each polarity inversion signal REV (0) to (k) is detected.
  • the pulse interval in the combination of the polarity inversion signals REV (0) to (k) similar to the first timing comparison unit 53 is set in the second memory unit 60. Compare with the stored regular pulse interval.
  • the second timing comparison unit 59 outputs a determination signal indicating whether or not the pulse timings of the polarity inversion signals REV (0) to (k) are shifted to the second signal replacement unit 61. It has become.
  • the second signal replacement unit 61 has a second normal signal generation unit 62 therein.
  • the second normal signal generator 62 is a circuit that generates normal polarity inversion signals REV (0) ′ to (k) ′ having pulse timings according to the specifications of the liquid crystal display device S.
  • the second signal replacement unit 61 converts the polarity reversal signals REV (0) to (k) from which the pulse timing deviation is detected based on the determination signal input from the second timing comparison unit 59 into the second
  • the normal polarity inversion signals REV (0) ′ to (k) ′ corresponding to the normal signal generation unit 62 generated by the normal signal generation unit 62 are replaced.
  • the second signal replacement unit 61 outputs the polarity reversal signals REV (0) to (k) for which the pulse timing deviation is not detected by the second timing comparison unit 59 as they are. .
  • FIG. 5 and FIG. 6 show schematic operations when the horizontal synchronization signals LS (0) to (k) are input in the control signal compensation circuit 50 configured as described above.
  • FIG. 5 shows a case where the pulse timings of all the horizontal synchronization signals LS (0) to (k) are regular timings.
  • FIG. 6 shows a case where the pulse timings of some horizontal synchronization signals LS are out of specification.
  • a case where the horizontal synchronization signals LS (1) and LS (k) have pulse timings out of specification will be described as an example.
  • indicates that the pulse timing is regular according to the specification of the liquid crystal display device S, and “x” is out of specification due to deviation from the regular pulse timing. Indicates that it is pulse timing. This also applies to FIGS. 9 and 10 referred to later.
  • the pulse timings of all the horizontal synchronization signals LS (0) to (k) input from the controller 4 are normal timings according to the specifications of the liquid crystal display device S. In this case, all the horizontal synchronization signals LS (0) to (k) are output to the hold memory circuit 37 as they are.
  • the pulse timings of the horizontal synchronization signals LS (1) and LS (k) are shifted at the stage of external input, the pulse timings of the horizontal synchronization signals LS (1) and LS (k) are shifted. Is compensated by replacement with the regular horizontal synchronization signals LS (1) ′ and LS (k) ′. As a result, the data position can be prevented from shifting when the display data signal DS (DR, DG, DB) is transferred from the sampling memory circuit 35 to the hold memory circuit 37.
  • the horizontal synchronization signals LS (0) to (k) are also generated by the second timing comparison unit 59 and the second signal replacement unit 61 of the control signal compensation circuit 50. By processing in the same manner as described above, a deviation in pulse timing is compensated.
  • the pulse timings of all polarity inversion signals REV (0) to (k) input from the controller 4 are normal timings according to the specifications of the liquid crystal display device S.
  • all the polarity inversion signals REV (0) to (k) are output to the DA conversion circuit 43 as they are.
  • the pulse timing is shifted and the timing is out of specification. If so, the polarity reversal signals REV (REV (1) and REV (k)) outside these specifications are detected by the second timing comparison unit 59. Then, the non-specification polarity reversal signals REV (REV (1) and REV (k)) detected by the second timing comparison unit 59 are converted into normal polarity reversal signals REV ′ ( After being replaced by REV (1) ′, REV (k) ′), it is output to the DA conversion circuit 43.
  • REV for example, REV (1) and REV (k)
  • the polarity reversal signals REV (REV (1) and REV (k)) Is compensated by replacement with the normal polarity inversion signal REV (REV (1) ′, REV (k) ′).
  • the horizontal synchronization signals LS (0) to (k) and the polarity inversion signals REV (0) to (k) are once input to the control signal compensation circuit 50.
  • the control signal compensation circuit 50 inspects deviations in pulse timings of these control signals LS (0) to (k) and REV (0) to (k). If there is a horizontal synchronization signal LS (0) to (k) that is out of specification with the pulse timing shifted, it is replaced with the corresponding normal horizontal synchronization signal LS (0) ′ to (k) ′.
  • the pulse timing is shifted to the horizontal synchronization signals LS (0) to (k) or the polarity inversion signals REV (0) to (k) input to the source driver 3, and the specification is out of specification. Even when the control signals LS (0) to (k) and REV (0) to (k) exist, the control signals LS (0) to (k) and REV (0) to (k) outside the specification are specified. Are output in place of regular control signals LS (0) ′ to (k) ′ and REV (0) ′ to (k) ′ having pulse timings corresponding to the horizontal synchronization signals LS (0) to (k). ) And the pulse timing deviations of the polarity inversion signals REV (0) to (k) can be compensated to avoid the occurrence of display defects.
  • FIG. 7 is a block diagram showing a configuration of the gate driver IC 20 according to the second embodiment.
  • the configuration of the liquid crystal display device S is the same as that of the first embodiment except that the configuration of the gate driver IC 20 is different from that of the first embodiment. Therefore, only the gate driver IC 20 having a different configuration will be described.
  • the same components are left to the description of the first embodiment based on FIGS. 1 to 6, and the detailed description thereof is omitted.
  • the source driver 3 has a characteristic configuration, but in the present embodiment, the gate driver 2 has a characteristic configuration in addition to this.
  • Each gate driver IC 20 included in the gate driver 2 includes a shift register circuit 71, a level shifter circuit 73, and an output circuit 75.
  • the shift register circuit 71 is an m-stage shift register, and sequentially shifts the gate start pulse signal GSP in synchronization with a gate clock signal GCLK input from a control signal compensation circuit 80, which will be described later. This is a circuit for outputting a signal to the level shifter circuit 73 in order from each stage.
  • the gate start pulse signal GSP is shifted to the final stage in the shift registration circuit 71, and then input to the shift register circuit 71 in the adjacent gate driver IC 20 as the gate start pulse signal GSP, and is similarly shifted. Then, the data is transferred to the shift register circuit 71 in the gate driver IC 20 farthest from the controller 4.
  • the level shifter circuit 73 is a circuit that converts an output signal sent from each stage of the shift register circuit 71 into a voltage level that can drive the gate of the TFT 15 of the liquid crystal display panel 1 and then outputs the voltage level to the output circuit 75.
  • the level shifter circuit 73 also receives a gate ON signal from the controller 4. This gate ON signal is a high level signal for turning on the gate of the TFT 15 in order to turn off the entire liquid crystal display panel 1 during the power OFF sequence.
  • the output circuit 75 is a circuit that buffers the signal input from the level shifter circuit 73 and outputs it as a selection voltage or a non-selection voltage to each gate wiring 11 at a predetermined timing.
  • Each gate driver IC 20 in the present embodiment further includes a control signal compensation circuit 80 in addition to the various circuits 71, 73, and 75 described above.
  • the control signal compensation circuit 80 is a circuit that compensates the pulse timing of the gate start pulse signal GSP with respect to the gate clock signal GCLK input from the controller 4.
  • the gate start pulse signal GSP and the gate clock signal GCLK are control signals having pulses that rise with a predetermined interval from each other at a timing according to the specifications of the liquid crystal display device S, and are input to the gate driver 2 in parallel. Is done. That is, when the pulse timing of the gate start pulse signal GSP with respect to the gate clock signal GCLK is deviated from the specification of the liquid crystal display device S, a display defect is caused.
  • control signal compensation circuit 80 The configuration of the control signal compensation circuit 80 is shown in FIG.
  • the control signal compensation circuit 80 includes a third timing comparison unit 81 that detects a shift in the pulse timing of the gate start pulse signal GSP, and a gate start pulse signal in which the shift in the pulse timing is detected by the third timing comparison unit 81. And a third signal replacement unit 83 for replacing the GSP with the corresponding normal gate start pulse signal GSP ′.
  • the third timing comparison unit 81 has a third memory unit 82 therein.
  • a regular pulse interval corresponding to the specification of the liquid crystal display device S of the gate start pulse signal GSP with respect to the gate clock signal GCLK is stored in advance as data.
  • the third timing comparison unit 81 compares the pulse interval between the gate start pulse signal GSP and the gate clock signal GCLK input in parallel with the regular pulse interval stored in the third memory unit 82. By doing so, the shift of the pulse timing of the gate start pulse signal GSP is detected.
  • the third timing comparison unit 81 outputs a determination signal indicating whether or not the pulse timing of the gate start pulse signal GSP is shifted to the third signal replacement unit 83.
  • the third signal replacement unit 83 has a third normal signal generation unit 84 therein.
  • the third normal signal generator 84 is a circuit that generates a normal gate start pulse signal GSP ′ having a pulse timing according to the specifications of the liquid crystal display device S.
  • the third signal replacement unit 83 converts the gate start pulse signal GSP in which the deviation of the pulse timing is detected based on the determination signal input from the third timing comparison unit 81 to the third normal signal generation unit 84. Is replaced with the corresponding normal gate start pulse signal GSP ′ generated in step (b).
  • the third signal replacement unit 83 outputs the gate start pulse signal GSP as it is when the third timing comparison unit 81 does not detect a shift in the pulse timing in the gate start pulse signal GSP. Yes.
  • FIG. 9 and 10 show schematic operations when the gate start pulse signal GSP and the gate clock signal GCLK are input in the control signal compensation circuit 80 configured as described above.
  • FIG. 9 shows a case where the pulse timing of the gate start pulse signal GSP is a normal timing.
  • FIG. 10 shows a case where the pulse timing of the gate start pulse signal GSP is out of specification.
  • the gate start pulse The signal GSP is output to the shift register circuit 71 as it is.
  • the gate timing of the gate start pulse signal GSP input from the controller 4 is shifted and the timing is out of specification in the first place, It is detected by the third timing comparison unit 81.
  • the non-specification gate start pulse signal GSP detected by the third timing comparison unit 81 is replaced by the regular gate start pulse signal GSP ′ by the third signal replacement unit 83, and is then sent to the shift register circuit 71. Is output.
  • the gate start pulse signal GSP and the gate clock signal GCLK are once input to the control signal compensation circuit 80, and the control signal compensation circuit 80 determines the gate start pulse signal GSP.
  • the pulse timing deviation is inspected. If the pulse timing of the gate start pulse signal GSP is out of specification due to a shift, this is replaced with the corresponding normal gate start pulse signal GSP 'and output to the shift register circuit 71.
  • Embodiment 2- the same effects as those of the first embodiment can be obtained, and even when the gate start pulse signal GSP input to the gate driver 2 is out of specification with the pulse timing shifted, Since the gate start pulse signal GSP outside the specification is replaced with a normal gate start pulse signal GSP ′ having a pulse timing according to the specification and output, the deviation of the pulse timing of the gate start pulse signal GSP is also compensated and displayed. The occurrence of defects can be avoided more reliably.
  • FIG. 11 is a block diagram showing the configuration of the control signal compensation circuit 50 of the source driver IC 30 according to the third embodiment.
  • the configuration of the control signal compensation circuit 50 is the same as that of the first embodiment except that the configuration of the control signal compensation circuit 50 is different from that of the first embodiment. Only the circuit 50 portion will be described, and the same components will be left to the description of the first embodiment based on FIGS. 1 to 6, and the detailed description thereof will be omitted.
  • the control signal compensation circuit 50 further includes an alarm unit 90 in addition to the same configuration as that of the first embodiment.
  • the alarm unit 90 receives from the second timing comparison unit 59 a determination signal indicating whether or not the pulse timings of the horizontal synchronization signals LS (0) to (k) are shifted from the first timing comparison unit 53.
  • a determination signal indicating whether the pulse timing has shifted for each of the polarity inversion signals REV (0) to (k) is input.
  • the alarm unit 90 determines that a shift in the pulse timing of at least one horizontal synchronization signal LS (0) to (k) has been detected based on the determination signal from the first timing comparison unit 53, or Based on the determination signal from the second timing comparison unit 59, an alarm is issued when it is determined that a pulse timing shift of at least one polarity inversion signal REV (0) to (k) is detected.
  • At least one horizontal synchronization signal LS (0) to (k) or polarity inversion signal REV (0) to (k) is generated in the first timing comparison unit 53 or the second timing comparison unit 59.
  • the alarm unit 90 issues an alarm, so that it is possible to easily recognize that the input signal to the source driver 3 is out of specification by performing the display inspection. It is possible to improve development efficiency and efficiency when analyzing defective products.
  • the horizontal synchronization signals LS (0) to (k) and the polarity inversion signals REV (0) to (k) are supplied to the control signal compensation circuit (timing comparison units 53 and 59 and signal replacement units 55 and 61) 50.
  • the control signal compensation circuit 50 may further have a function of compensating for a deviation in pulse timing of the source start pulse signal SSP with respect to the source clock signal SCLK.
  • the control signal compensation circuit 50 includes a timing comparison unit that detects a shift in the pulse timing of the source start pulse signal SSP separately from the first and second compensation circuits 51 and 57, and a pulse timing by the timing comparison unit.
  • a signal replacement unit that replaces the source start pulse signal SSP in which the deviation is detected with a normal source start pulse signal SSP ′ corresponding thereto may be included.
  • the timing comparison unit has a configuration corresponding to the first and second timing comparison units 53 and 59
  • the signal replacement unit has a configuration corresponding to the first and second signal replacement units 55 and 61. . According to such a configuration, it is possible to prevent timing deviation of the pulse signal transferred from the shift register circuit 31 to the sampling memory circuit 35.
  • the first timing comparison unit 53 is the first memory unit 54
  • the first signal replacement unit 55 is the first normal signal generation unit 56
  • the second timing comparison unit 59 is the second timing comparison unit 59.
  • the second signal replacement unit 61 has the second normal signal generation unit 62 in the second memory unit 60
  • the first timing comparison unit 53, the first memory unit 54, and the first The signal replacement unit 55 and the first normal signal generation unit 56, the second timing comparison unit 59 and the second memory unit 60, and the second signal replacement unit 61 and the second normal signal generation unit 62 are separately provided. May be provided.
  • the third timing comparison unit 81 includes the third memory unit 82, and the third signal replacement unit 83 includes the third normal signal generation unit 84.
  • the third timing comparison unit 81, the third memory unit 82, the third signal replacement unit 83, and the third normal signal generation unit 84 may be provided separately.
  • the alarm unit 90 is provided in the control signal compensation circuit 50 of the source driver IC 30 .
  • the alarm unit 90 similar to the control signal compensation circuit 80 of the gate driver IC 20 in the second embodiment is described. May be provided.
  • the gate driver 2 includes a plurality of gate driver ICs 20 mounted on the liquid crystal display panel 1 as TCP
  • the source driver 3 also includes a plurality of source driver ICs 30 mounted on the liquid crystal display panel 1 as TCP.
  • the present invention is not limited to this, and the gate driver 2 and the source driver 3 include the TFT 15 and the like constituting each pixel P on the active matrix substrate constituting the liquid crystal display panel 1. It may be integrated as a monolithic circuit.
  • the liquid crystal display device has been described as an example.
  • the present invention is not limited thereto, and of course, other various display devices such as an organic EL (Electro-Luminescence) display device and a plasma display device. Can be applied.
  • organic EL Electro-Luminescence
  • plasma display device a plasma display device.
  • the present invention is useful for a display driving circuit and a display device including the display driving circuit, and in particular, it is desired to compensate for a shift in the pulse timing of a control signal and avoid occurrence of a display defect. It is suitable for a display drive circuit and a display device including the display drive circuit.
  • Liquid crystal display device 1 Liquid crystal display panel 2 Gate driver (display drive circuit) 3 Source driver (display drive circuit) 11 Gate wiring (display wiring) 13 Source wiring (display wiring) 31 Shift register circuit 35 Sampling memory circuit 37 Hold memory circuit 43 DA conversion circuit (digital analog conversion circuit) 53 First Timing Comparison Unit 54 First Memory Unit 55 First Signal Replacement Unit 56 First Normal Signal Generation Unit 59 Second Timing Comparison Unit 60 Second Memory Unit 61 Second Signal Replacement Unit 62 Second 2 normal signal generation unit 71 shift register circuit 81 third timing comparison unit 82 third memory unit 83 third signal replacement unit 84 third normal signal generation unit 90 alarm unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

This display drive circuit is provided with: a memory unit that stores regular pulse intervals for control signals (LS (0) - LS (k)) corresponding to specifications for a display device; a timing comparison unit that compares the pulse intervals among the control signals (LS (0) - LS (k)) that have been input and the pulse intervals stored in the memory and detects offsets in the pulse timing for the control signals (LS (0) - LS (k)); a regular signal generating unit that generates regular control signals (LS (0)' - LS (k)'); and a signal substitution unit that substitutes the regular control signals (LS (0)' - LS (k)') generated by the regular signal generating unit for the control signals (LS (0) - LS (k)) for which an offset in the pulse timing has been detected by the timing comparison unit.

Description

表示駆動回路及びそれを備えた表示装置Display drive circuit and display device including the same
 本発明は、表示駆動回路及びそれを備えた表示装置に関し、特に、表示駆動回路の動作を制御する制御信号のパルスタイミングのずれ防止対策に関するものである。 The present invention relates to a display drive circuit and a display device including the display drive circuit, and more particularly to measures for preventing a shift in pulse timing of a control signal for controlling the operation of the display drive circuit.
 液晶表示装置は、画像表示を行う液晶表示パネルと、表示駆動回路であるソースドライバ及びゲートドライバと、コントローラとを備え、外部から入力された表示用信号をコントローラで処理してソースドライバ及びゲートドライバに供給し、これら両ドライバによって液晶表示パネルを駆動することにより、画像表示を行うように構成されている。 The liquid crystal display device includes a liquid crystal display panel for displaying an image, a source driver and a gate driver which are display driving circuits, and a controller, and a display driver input from the outside is processed by the controller, and the source driver and the gate driver And the liquid crystal display panel is driven by these two drivers to display an image.
 液晶表示パネルは、一対の基板が枠状のシール材を介して貼り合わされ、両基板の間でシール材の内側に液晶層が封入されて構成されている。この液晶表示パネルを構成する一方の基板には、表示用配線として、互いに交差する方向に延びるソース配線とゲート配線とが全体として格子状をなすように複数設けられている。そして、各ソース配線と各ゲート配線との交差部には、これら両配線に接続されたTFT(Thin Film Transistor)及びこれに接続された画素電極が設けられている。 The liquid crystal display panel is configured such that a pair of substrates are bonded together via a frame-shaped sealing material, and a liquid crystal layer is sealed inside the sealing material between both substrates. On one substrate constituting the liquid crystal display panel, a plurality of source wirings and gate wirings extending in directions intersecting each other are provided as display wirings so as to form a lattice shape as a whole. At the intersection of each source line and each gate line, a TFT (Thin Film 接 続 Transistor) connected to these two wires and a pixel electrode connected thereto are provided.
 ソースドライバは、各ソース配線に接続されており、シフトレジスタ回路、サンプリングメモリ回路、ホールドメモリ回路、レベルシフタ回路、デジタルアナログ(Digital Analog)変換回路(以下、DA変換回路という)及び出力回路を備えている。 The source driver is connected to each source wiring, and includes a shift register circuit, a sampling memory circuit, a hold memory circuit, a level shifter circuit, a digital-analog (Digital-Analog) conversion circuit (hereinafter referred to as a DA conversion circuit), and an output circuit. Yes.
 このソースドライバには、コントローラからデジタル値の表示データ信号と共に、これに対する制御信号としてソーススタートパルス信号やソースクロック信号、水平同期信号(ラッチ信号)、極性反転信号などが入力される。これら各制御信号は、液晶表示装置の仕様に応じたタイミングで立ち上がるパルスを有し、該パルスの入力タイミングによりソースドライバの動作を制御する信号である。 The source driver receives a digital display data signal from the controller and a source start pulse signal, a source clock signal, a horizontal synchronization signal (latch signal), a polarity inversion signal, and the like as a control signal. Each of these control signals has a pulse that rises at a timing according to the specifications of the liquid crystal display device, and is a signal that controls the operation of the source driver according to the input timing of the pulse.
 そして、ソースドライバは、ソーススタートパルス信号、ソースクロック信号及び水平同期信号に基づき、表示データ信号を時分割でサンプリングメモリ回路にてサンプリングし、サンプリングした表示データ信号を、ホールドメモリ回路に転送してホールドした後、DA変換回路にてアナログ信号に変換すると共に極性反転信号に基づき信号極性を反転させ、該アナログ信号をソース信号として出力回路からソース配線に出力するように構成されている。 Then, the source driver samples the display data signal in a sampling memory circuit in a time division manner based on the source start pulse signal, the source clock signal, and the horizontal synchronization signal, and transfers the sampled display data signal to the hold memory circuit. After the hold, the signal is converted into an analog signal by the DA conversion circuit, the signal polarity is inverted based on the polarity inversion signal, and the analog signal is output as a source signal from the output circuit to the source wiring.
 ゲートドライバは、各ゲート配線に接続されており、シフトレジスタ回路、レベルシフタ回路及び出力回路を備えている。このゲートドライバには、コントローラから上記表示データに対する制御信号として、ゲートスタートパルス信号やゲートクロック信号などが入力される。これら各制御信号は、液晶表示装置の仕様に応じたタイミングで立ち上がるパルスを有し、該パルスの入力タイミングによりゲートドライバの動作を制御する信号である。 The gate driver is connected to each gate wiring and includes a shift register circuit, a level shifter circuit, and an output circuit. The gate driver receives a gate start pulse signal, a gate clock signal, and the like as a control signal for the display data from the controller. Each of these control signals has a pulse that rises at a timing according to the specifications of the liquid crystal display device, and is a signal that controls the operation of the gate driver according to the input timing of the pulse.
 そして、ゲートドライバは、ゲートスタートパルス信号及びゲートクロック信号に基づき、シフトレジスタ回路の各段から1水平期間に順次遅延されたパルス信号をレベルシフタ回路の各段に出力し、該パルス信号を、レベルシフタ回路にてTFTのゲートを駆動できる電圧レベルに変換した後に、ゲート信号として出力回路からゲート配線に出力するように構成されている。 Based on the gate start pulse signal and the gate clock signal, the gate driver outputs the pulse signal sequentially delayed from each stage of the shift register circuit to one stage of the level shifter circuit, and outputs the pulse signal to the level shifter circuit. After being converted to a voltage level that can drive the gate of the TFT by the circuit, it is configured to output it from the output circuit to the gate wiring as a gate signal.
 このような液晶表示装置として、例えば、特許文献1には、液晶表示パネルとの電気的な接続を切り離した状態でソースドライバの不良を検出して修復する比較判定回路及び切替回路を備え、これら比較判定回路及び切替回路により、チャンネルの切替えや番組からCM(Commercial Message)へ移行するタイミングでソースドライバの不良を検出する処理を実行する表示装置が開示されている。そして、これによれば、適切なタイミングで回路不良の自己検出及び自己修復を行うことができる、と記載されている。 As such a liquid crystal display device, for example, Patent Document 1 includes a comparison determination circuit and a switching circuit for detecting and repairing a defect in the source driver in a state where the electrical connection with the liquid crystal display panel is disconnected. There is disclosed a display device that executes processing for detecting a failure of a source driver at the timing of switching a channel or switching from a program to CM (Commercial Message) by a comparison determination circuit and a switching circuit. According to this, it is described that self-detection and self-repair of a circuit failure can be performed at an appropriate timing.
特開2010-122513号公報JP 2010-122513 A
 しかしながら、特許文献1に開示の液晶表示装置は、ソースドライバの製造上の問題で発生する内部回路の誤動作だけを自己修復するため、外部から水平同期信号や極性反転信号などの制御信号をソースドライバに入力する段階で、その信号のパルスタイミングがずれてそもそも表示装置の仕様外の状態となっている場合、サンプリングメモリ回路からホールドメモリ回路へのデータ転送時にデータ位置がずれたり、DA変換回路におけるデジタル信号からアナログ信号への変換時にエラーが発生したりして、ソース配線に所望のデータ信号が供給されない事態となり、表示不良に陥ってしまう。 However, the liquid crystal display device disclosed in Patent Document 1 self-repairs only malfunctions of internal circuits caused by problems in the manufacture of the source driver, so that control signals such as a horizontal synchronization signal and a polarity inversion signal are externally supplied to the source driver. If the pulse timing of the signal is shifted and the signal is out of the specifications of the display device in the first place, the data position may be shifted during data transfer from the sampling memory circuit to the hold memory circuit. An error may occur during conversion from a digital signal to an analog signal, and a desired data signal may not be supplied to the source wiring, resulting in a display failure.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、制御信号のパルスタイミングのずれを補償して、表示不良の発生を回避することにある。 The present invention has been made in view of such a point, and an object of the present invention is to compensate for a shift in the pulse timing of a control signal and to avoid occurrence of a display defect.
 上記の目的を達成するために、この発明では、表示駆動回路に入力された複数の制御信号にパルスタイミングがずれた仕様外の信号が存在する場合に、当該仕様外の信号を仕様に応じたパルスタイミングを有する正規の制御信号に置き換えるようにした。 In order to achieve the above object, according to the present invention, when a plurality of control signals input to the display drive circuit include a signal outside the specification whose pulse timing is shifted, the signal outside the specification corresponds to the specification. A regular control signal having pulse timing is replaced.
 具体的には、本発明は、画像表示を行うための表示駆動回路及びそれを備えた表示装置を対象とし、以下の解決手段を講じたものである。 Specifically, the present invention is directed to a display driving circuit for performing image display and a display device having the display driving circuit, and has taken the following solution.
 すなわち、第1の発明は、表示駆動回路であって、表示装置の仕様に応じたタイミングで互いに所定の間隔をあけて立ち上がるパルスを有する複数の制御信号同士の正規のパルス間隔をデータとして記憶するメモリ部と、上記各制御信号がパラレルに入力され、該各制御信号同士のパルス間隔と、上記メモリ部に記憶した正規のパルス間隔とを比較することにより、上記各制御信号のパルスタイミングのずれを検出するタイミング比較部と、上記仕様に応じたパルスタイミングを有する正規の制御信号を生成する正規信号生成部と、上記タイミング比較部によってパルスタイミングのずれが検出された制御信号を、上記正規信号生成部で生成された正規の制御信号に置き換える信号置換部とを備えることを特徴とする。 That is, the first invention is a display driving circuit, and stores normal pulse intervals between a plurality of control signals having pulses rising at predetermined intervals with timing according to the specifications of the display device. The control unit receives the control signal in parallel with the memory unit, and compares the pulse interval between the control signals with the normal pulse interval stored in the memory unit, thereby shifting the pulse timing of the control signal. A timing comparison unit that detects a deviation in pulse timing by the timing comparison unit, and a normal signal generation unit that generates a normal control signal having a pulse timing according to the specifications. And a signal replacement unit that replaces the normal control signal generated by the generation unit.
 この第1の発明では、表示駆動回路にパラレルに入力される各制御信号同士の正規のパルス間隔がメモリ部にデータとして記憶されていて、各制御信号が入力されると、まず、タイミング比較部にて、各制御信号同士のパルス間隔とメモリ部に記憶してある正規のパルス間隔とが比較される。このとき、表示装置の仕様に対してパルスタイミングのずれた仕様外の制御信号が存在する場合には、該仕様外の制御信号が検出される。また、正規信号生成部では、表示装置の仕様に応じたパルスタイミングを有する正規の制御信号が生成される。そして、タイミング比較部にて仕様外の制御信号が検出された場合には、信号置換部にて、上記仕様外の制御信号が正規信号生成部で生成された正規の制御信号に置き換えられる。これにより、制御信号のパルスタイミングが外部から入力される段階でずれていても、その制御信号のパルスタイミングのずれが補償される。その結果、表示不良の発生を回避することが可能になる。 In the first aspect of the invention, the normal pulse interval between the control signals input in parallel to the display drive circuit is stored as data in the memory unit. When each control signal is input, first, the timing comparison unit The pulse interval between the control signals is compared with the regular pulse interval stored in the memory unit. At this time, if there is a control signal outside the specification whose pulse timing is shifted from the specification of the display device, the control signal outside the specification is detected. In addition, the normal signal generation unit generates a normal control signal having a pulse timing according to the specifications of the display device. When the control signal outside the specification is detected by the timing comparison unit, the control signal outside the specification is replaced by the normal control signal generated by the normal signal generation unit at the signal replacement unit. Thereby, even if the pulse timing of the control signal is shifted at the stage of input from the outside, the shift of the pulse timing of the control signal is compensated. As a result, it is possible to avoid the occurrence of display defects.
 第2の発明は、第1の発明の表示駆動回路において、上記タイミング比較部では、上記個々の制御信号と当該制御信号を除く他の2つの上記制御信号とのパルス間隔を、上記メモリ部に記憶した正規のパルス間隔と比較することを特徴とする。 According to a second aspect of the present invention, in the display drive circuit according to the first aspect of the invention, the timing comparison unit sets a pulse interval between the individual control signals and the other two control signals excluding the control signal in the memory unit. The comparison is made with a stored regular pulse interval.
 この第2の発明では、タイミング比較部にて、入力された4つ以上の制御信号のそれぞれと当該制御信号を除く他の2つの制御信号とのパルス間隔がメモリ部に記憶した正規のパルス間隔と比較され、各制御信号におけるパルスタイミングのずれが検査される。この手法によると、正規のパルス間隔との比較回数が各制御信号同士で全通りのパルス間隔を比較する場合に比べて少なく済むので、各制御信号におけるパルスタイミングのずれを効率良く検査することが可能である。 In the second aspect of the invention, the pulse interval between each of the four or more input control signals and the other two control signals excluding the control signal is stored in the memory unit in the timing comparison unit. And the pulse timing deviation in each control signal is inspected. According to this method, since the number of comparisons with the regular pulse interval is smaller than when comparing all pulse intervals between the control signals, it is possible to efficiently inspect the deviation of the pulse timing in each control signal. Is possible.
 第3の発明は、第1又は第2の発明の表示駆動回路において、上記タイミング比較部によって少なくとも1つの上記制御信号のパルスタイミングのずれが検出された場合に、警報を発する警報部をさらに備えることを特徴とする。 According to a third aspect of the present invention, the display drive circuit of the first or second aspect further includes an alarm unit that issues an alarm when the timing comparison unit detects a shift in pulse timing of at least one of the control signals. It is characterized by that.
 この第3の発明では、タイミング比較部にて少なくとも1つの制御信号のパルスタイミングのずれが検出された場合に警報部が警報を発するので、表示検査の実施によって表示駆動回路への入力信号が仕様外の状態になっていることを容易に認識でき、製品開発効率の向上及び不良品解析時の効率化を図ることが可能になる。 In the third aspect of the invention, since the alarm unit issues an alarm when the timing comparison unit detects a shift in the pulse timing of at least one control signal, the input signal to the display drive circuit is specified by performing the display inspection. It is possible to easily recognize that it is in an outside state, and it is possible to improve product development efficiency and increase efficiency when analyzing defective products.
 第4の発明は、第1の発明の表示駆動回路において、上記制御信号としてソーススタートパルス信号及びソースクロック信号が入力され、上記ソースクロック信号に基づいて上記ソーススタートパルス信号を転送するシフトレジスタ回路と、デジタル値の表示データ信号が入力され、該表示データ信号を、上記シフトレジスタ回路から転送されるソーススタートパルス信号に基づきサンプリングして出力するサンプリングメモリ回路と、上記制御信号として複数の水平同期信号が入力され、該各水平同期信号に基づいて上記サンプリングメモリ回路から出力される表示データ信号をホールドし、該表示データ信号を次に入力される水平同期信号に基づいて出力するホールドメモリ回路と、上記制御信号として複数の極性反転信号が入力され、上記ホールドメモリ回路から出力された表示データ信号をアナログ信号に変換すると共に、上記各極性反転信号に基づき上記アナログ信号の極性を反転させて出力するDA変換回路とをさらに備え、表示装置のソース配線を駆動するソースドライバを構成し、上記ソーススタートパルス信号及びソースクロック信号と、上記複数の水平同期信号と、上記複数の極性反転信号とのうち少なくとも1つを上記タイミング比較部及び信号置換部により処理することを特徴とする。 According to a fourth invention, in the display drive circuit according to the first invention, a source start pulse signal and a source clock signal are inputted as the control signal, and the source start pulse signal is transferred based on the source clock signal. A sampling memory circuit that receives a display data signal of a digital value, samples and outputs the display data signal based on a source start pulse signal transferred from the shift register circuit, and a plurality of horizontal synchronization signals as the control signal. A hold memory circuit that receives a signal, holds a display data signal output from the sampling memory circuit based on the horizontal synchronization signals, and outputs the display data signal based on a horizontal synchronization signal input next; A plurality of polarity inversion signals are input as the control signal. A DA conversion circuit that converts the display data signal output from the hold memory circuit into an analog signal and inverts the polarity of the analog signal based on each polarity inversion signal, and outputs the analog signal. A source driver that drives at least one of the source start pulse signal and the source clock signal, the plurality of horizontal synchronization signals, and the plurality of polarity inversion signals by the timing comparison unit and the signal replacement unit. It is characterized by processing.
 この第4の発明では、ソースドライバのシフトレジスタ回路に入力されるソースクロック信号及びソーススタートパルス信号と、ホールドメモリ回路に入力される複数の水平同期信号と、DA変換回路に入力される複数の極性反転信号との少なくとも1つをタイミング比較部及び信号置換部により処理する。上記ソースクロック信号及びソーススタートパルス信号をタイミング比較部及び信号置換部により処理する場合には、サンプリングメモリ回路に転送されるパルス信号のタイミングずれが防止される。また、上記複数の水平同期信号をタイミング比較部及び信号置換部により処理する場合には、サンプリングメモリ回路からホールドメモリ回路へのデータ信号転送時におけるデータ位置がずれることが防止される。さらに、上記複数の極性反転信号をタイミング比較部及び信号置換部により処理する場合には、DA変換回路におけるデジタル信号からアナログ信号への変換時にエラーが発生することが防止される。 In the fourth aspect of the invention, the source clock signal and source start pulse signal input to the shift register circuit of the source driver, the plurality of horizontal synchronization signals input to the hold memory circuit, and the plurality of signals input to the DA converter circuit At least one of the polarity inversion signals is processed by the timing comparison unit and the signal replacement unit. When the source clock signal and the source start pulse signal are processed by the timing comparison unit and the signal replacement unit, the timing deviation of the pulse signal transferred to the sampling memory circuit is prevented. Further, when the plurality of horizontal synchronization signals are processed by the timing comparison unit and the signal replacement unit, it is possible to prevent the data position from being shifted when the data signal is transferred from the sampling memory circuit to the hold memory circuit. Furthermore, when the plurality of polarity inversion signals are processed by the timing comparison unit and the signal replacement unit, it is possible to prevent an error from occurring when the DA signal is converted from a digital signal to an analog signal.
 第5の発明は、第1の発明の表示駆動回路において、上記制御信号としてゲートスタートパルス信号及びゲートクロック信号が入力され、上記ゲートクロック信号に基づいて上記ゲートスタートパルス信号を転送するシフトレジスタ回路を備え、表示装置のゲート配線を駆動するゲートドライバを構成し、上記ゲートスタートパルス信号及びゲートクロック信号を上記タイミング比較部及び信号置換部により処理することを特徴とする。 According to a fifth aspect of the present invention, in the display drive circuit according to the first aspect, a shift register circuit that receives a gate start pulse signal and a gate clock signal as the control signal and transfers the gate start pulse signal based on the gate clock signal And a gate driver for driving the gate wiring of the display device, wherein the gate start pulse signal and the gate clock signal are processed by the timing comparison unit and the signal replacement unit.
 この第5の発明では、ゲートドライバのシフトレジスタ回路に入力されるゲートクロック信号及びゲートスタートパルス信号がタイミング比較部及び信号置換部により処理される。これにより、シフトレジスタ回路から転送されるパルス信号のタイミングずれが防止される。 In the fifth aspect of the invention, the gate clock signal and the gate start pulse signal input to the shift register circuit of the gate driver are processed by the timing comparison unit and the signal replacement unit. As a result, timing deviation of the pulse signal transferred from the shift register circuit is prevented.
 第6の発明は、表示装置であって、第1~第5の発明のいずれか1つに記載の表示駆動回路と、上記表示駆動回路に接続された表示用配線を有する表示パネルとを備えることを特徴とする。 A sixth invention is a display device, comprising: the display drive circuit according to any one of the first to fifth inventions; and a display panel having a display wiring connected to the display drive circuit. It is characterized by that.
 この第6の発明では、第1~第5の発明の表示駆動回路が制御信号のパルスタイミングのずれを補償して表示不良の発生を回避することができるという優れた特性を備えているので、表示不良の発生を回避して、良好な画像表示を行うことが可能になる。 In the sixth aspect of the invention, the display drive circuit of the first to fifth aspects of the invention has an excellent characteristic that can compensate for the deviation of the pulse timing of the control signal and avoid the occurrence of display failure. It is possible to avoid the occurrence of display defects and perform good image display.
 本発明によれば、表示駆動回路に入力された複数の制御信号にパルスタイミングがずれた仕様外の信号が存在する場合に、当該仕様外の信号を仕様に応じたパルスタイミングを有する正規の制御信号に置き換えるので、制御信号のパルスタイミングのずれを補償して、表示不良の発生を回避することができる。 According to the present invention, when there are non-specification signals whose pulse timings are shifted in the plurality of control signals input to the display drive circuit, the normal control having the non-specification signal with the pulse timings according to the specifications. Since it is replaced with a signal, it is possible to compensate for the deviation in the pulse timing of the control signal and to avoid the occurrence of display defects.
図1は、実施形態1に係る液晶表示装置の要部の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of a main part of the liquid crystal display device according to the first embodiment. 図2は、液晶表示パネルの表示領域での構成を示す等価回路図である。FIG. 2 is an equivalent circuit diagram showing a configuration in the display area of the liquid crystal display panel. 図3は、実施形態1に係るソースドライバIC(Integrated Circuit)の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a source driver IC (Integrated Circuit) according to the first embodiment. 図4は、実施形態1に係るソースドライバICの制御信号補償回路の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of the control signal compensation circuit of the source driver IC according to the first embodiment. 図5は、実施形態1における制御信号補償回路に正規の各水平同期信号が入力された場合の概略動作を示す概念図である。FIG. 5 is a conceptual diagram showing a schematic operation when each normal horizontal synchronization signal is input to the control signal compensation circuit in the first embodiment. 図6は、実施形態1における制御信号補償回路に仕様外の水平同期信号が一部入力された場合の概略動作を示す概念図である。FIG. 6 is a conceptual diagram showing a schematic operation when a part of the horizontal synchronization signal out of the specification is inputted to the control signal compensation circuit in the first embodiment. 図7は、実施形態2に係るゲートドライバICの構成を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration of the gate driver IC according to the second embodiment. 図8は、実施形態2に係るゲートドライバICの制御信号補償回路の構成を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration of the control signal compensation circuit of the gate driver IC according to the second embodiment. 図9は、実施形態2における制御信号補償回路に正規のゲートスタートパルス信号及びゲートクロック信号が入力された場合の概略動作を示す概念図である。FIG. 9 is a conceptual diagram illustrating a schematic operation when a normal gate start pulse signal and a gate clock signal are input to the control signal compensation circuit according to the second embodiment. 図10は、実施形態2における制御信号補償回路に仕様外のゲートスタートパルス信号及びゲートクロック信号が入力された場合の概略動作を示す概念図である。FIG. 10 is a conceptual diagram showing a schematic operation when a gate start pulse signal and a gate clock signal out of specification are input to the control signal compensation circuit in the second embodiment. 図11は、実施形態3に係る制御信号補償回路の構成を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration of a control signal compensation circuit according to the third embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
 《発明の実施形態1》
 この実施形態1では、表示装置の一例として、アクティブマトリクス駆動方式の液晶表示装置Sについて説明する。
Embodiment 1 of the Invention
In the first embodiment, an active matrix liquid crystal display device S will be described as an example of a display device.
 液晶表示装置Sの要部の構成を図1に示す。 The structure of the main part of the liquid crystal display device S is shown in FIG.
 液晶表示装置Sは、画像表示を行う液晶表示パネル1と、表示駆動回路であるゲートドライバ2及びソースドライバ3と、これら両ドライバ2,3に表示用信号を供給するコントローラ4と、液晶駆動電源5とを備え、コントローラ4からの出力に応答してドライバ2,3が液晶駆動電源5からの電圧を選択的に液晶表示パネル1に印加することにより、液晶表示パネル1において画像表示を行うように構成されている。 The liquid crystal display device S includes a liquid crystal display panel 1 that performs image display, a gate driver 2 and a source driver 3 that are display drive circuits, a controller 4 that supplies display signals to both the drivers 2 and 3, and a liquid crystal drive power source. 5, and in response to the output from the controller 4, the drivers 2 and 3 selectively apply the voltage from the liquid crystal driving power source 5 to the liquid crystal display panel 1, thereby displaying an image on the liquid crystal display panel 1. It is configured.
 液晶表示パネル1は、図示しないが、互いに対向するように配置されたアクティブマトリクス基板と対向基板とを備え、これら両基板の外周縁部同士が枠状のシール材で接着されると共に、これら両基板の間でシール材の内側に液晶層が封入されて構成されている。この液晶表示パネル1は、液晶層が設けられた領域に画像表示を行う表示領域を有している。表示領域は、画像の最小単位である画素がマトリクス状に複数配列されて構成されている。 Although not shown, the liquid crystal display panel 1 includes an active matrix substrate and a counter substrate disposed so as to face each other, and the outer peripheral edges of both the substrates are bonded together with a frame-shaped sealing material. A liquid crystal layer is sealed between the substrates inside the sealing material. The liquid crystal display panel 1 has a display area for displaying an image in an area where a liquid crystal layer is provided. The display area is configured by arranging a plurality of pixels, which are the minimum unit of an image, in a matrix.
 液晶表示パネル1の表示領域での回路構成を図2に示す。 The circuit configuration in the display area of the liquid crystal display panel 1 is shown in FIG.
 液晶表示パネル1の表示領域には、互いに平行に延びるように複数のゲート配線11が設けられていると共に、該各ゲート配線11に直交する方向に互いに平行に延びるように複数のソース配線13が設けられている。これら各ゲート配線11と各ソース配線13とは、絶縁膜を介して互いに絶縁状態にあり、各画素Pを区画するように全体として格子状に形成されている。 In the display area of the liquid crystal display panel 1, a plurality of gate wirings 11 are provided so as to extend in parallel to each other, and a plurality of source wirings 13 extend in parallel to each other in a direction orthogonal to the gate wirings 11. Is provided. The gate lines 11 and the source lines 13 are insulated from each other through an insulating film, and are formed in a lattice shape as a whole so as to partition each pixel P.
 各画素Pには、TFT15及びこれに接続された画素電極17と、画素電極17に対向する共通電極19と、これら画素電極17と共通電極19とが液晶層を挟み込む構造により構成される液晶容量Clcとが設けられている。各TFT15のゲートは、対応する画素Pを区画する一方のゲート配線11に接続されている。また、各TFT15のソースは、対応する画素Pを区画する一方のソース配線13に接続されている。そして、各TFT15のドレインは、対応する画素Pに配置された画素電極17に接続されている。 Each pixel P includes a TFT 15, a pixel electrode 17 connected to the TFT 15, a common electrode 19 facing the pixel electrode 17, and a liquid crystal capacitor having a structure in which the pixel electrode 17 and the common electrode 19 sandwich a liquid crystal layer. Clc. The gate of each TFT 15 is connected to one gate wiring 11 that partitions the corresponding pixel P. The source of each TFT 15 is connected to one source line 13 that partitions the corresponding pixel P. The drain of each TFT 15 is connected to the pixel electrode 17 disposed in the corresponding pixel P.
 ゲートドライバ2は、液晶表示パネル1の各ゲート配線11に接続されており、該各ゲート配線11を駆動する回路である。より詳細には、ゲートドライバ3は、全てのゲート配線11の中から1本のゲート配線11を順次に選択し、その選択したゲート配線11に対して選択電圧(例えば、ハイレベル電圧)を印加すると共に、それ以外のゲート配線11に対して非選択電圧(例えば、ローレベル電圧)を印加するようになっている。これにより、ゲートドライバ2は、選択されたゲート配線11に接続された各TFT15を導通状態とし、その導通状態の各TFT15に接続された画素電極17を電圧書き込み可能な状態とする。 The gate driver 2 is connected to each gate line 11 of the liquid crystal display panel 1 and is a circuit that drives each gate line 11. More specifically, the gate driver 3 sequentially selects one gate line 11 from all the gate lines 11 and applies a selection voltage (for example, a high level voltage) to the selected gate line 11. In addition, a non-selection voltage (for example, a low level voltage) is applied to the other gate wirings 11. Thereby, the gate driver 2 makes each TFT 15 connected to the selected gate wiring 11 conductive, and makes the pixel electrode 17 connected to each TFT 15 in the conductive state ready for voltage writing.
 ソースドライバ3は、液晶表示パネル1の各ソース配線13に接続されており、該各ソース配線13を例えばドット反転駆動する回路である。より詳細には、ソースドライバ3は、各ソース配線13に対して、1本のソース配線13毎に表示データ信号に応じた正極性電圧と負極性電圧とを切り替え、且つ各ゲート配線11選択毎に表示データ信号に応じた正極性電圧と負極性電圧とを反転させて印加するようになっている。これにより、ソースドライバ3は、電圧書き込み可能な状態にある各画素電極17に表示データ信号に応じた正極性電圧又は負極性電圧を書き込む。 The source driver 3 is connected to each source wiring 13 of the liquid crystal display panel 1 and is a circuit that drives each source wiring 13 by, for example, dot inversion. More specifically, the source driver 3 switches the positive voltage and the negative voltage corresponding to the display data signal for each source line 13 for each source line 13 and each gate line 11 is selected. In addition, the positive voltage and the negative voltage corresponding to the display data signal are inverted and applied. Thus, the source driver 3 writes a positive voltage or a negative voltage corresponding to the display data signal to each pixel electrode 17 in a voltage writable state.
 上記ゲートドライバ2は、図1に示すように、複数のゲートドライバIC20からなる。各ゲートドライバIC20には、所定本数のゲート配線11が分配して接続されている。また、上記ソースドライバ3は、複数のソースドライバIC30からなる。各ソースドライバIC30には、所定本数のソース配線13が分配して接続されている。これらゲートドライバIC20及びソースドライバIC30は、例えば配線基板上にICチップを搭載したTCP(Tape Carrier Package)として液晶表示パネル1に実装されている。 The gate driver 2 includes a plurality of gate driver ICs 20 as shown in FIG. A predetermined number of gate wirings 11 are distributed and connected to each gate driver IC 20. The source driver 3 is composed of a plurality of source driver ICs 30. A predetermined number of source lines 13 are distributed and connected to each source driver IC 30. The gate driver IC 20 and the source driver IC 30 are mounted on the liquid crystal display panel 1 as, for example, a TCP (Tape Carrier Package) in which an IC chip is mounted on a wiring board.
 コントローラ4は、ゲートドライバ2に対して、ゲートスタートパルス信号GSP、ゲートクロック信号GCLK及びゲートON信号などの制御信号S1を出力する。なお、ゲートクロック信号GCLK及びゲートON信号は、各ゲートドライバIC20に入力されるが、ゲートスタートパルス信号GSPは、いずれか1つのゲートドライバIC(例えば、最もコントローラ4に近いゲートドライバIC)20にのみ入力される。 The controller 4 outputs a control signal S1 such as a gate start pulse signal GSP, a gate clock signal GCLK, and a gate ON signal to the gate driver 2. The gate clock signal GCLK and the gate ON signal are input to each gate driver IC 20, but the gate start pulse signal GSP is supplied to any one gate driver IC (for example, the gate driver IC closest to the controller 4) 20. Only entered.
 また、コントローラ4は、各ソースドライバ3に対して、ソースドライバIC30を制御するための制御信号S2として、ソーススタートパルス信号SSP及びソースクロック信号SCLK、水平同期信号(ラッチ信号)LS及び極性反転信号REVと、デジタル化された表示データ信号DSとして、例えば赤色、緑色及び青色に対応する各信号DR,DG,DBとを出力する。なお、ソースクロック信号SCLK、水平同期信号LS、表示データ信号DS及び極性反転信号REVは、各ソースドライバIC30に入力されるが、ソーススタートパルス信号SSPは、いずれか1つのソースドライバIC(例えば、最もコントローラ4に近いソースドライバIC)30にのみ入力される。 In addition, the controller 4 controls the source driver 3 as a control signal S2 for controlling the source driver IC 30 as a source start pulse signal SSP, a source clock signal SCLK, a horizontal synchronization signal (latch signal) LS, and a polarity inversion signal. For example, the signals DR, DG, and DB corresponding to red, green, and blue are output as REV and the digitized display data signal DS. Note that the source clock signal SCLK, the horizontal synchronization signal LS, the display data signal DS, and the polarity inversion signal REV are input to each source driver IC 30, but the source start pulse signal SSP is any one source driver IC (for example, It is input only to the source driver IC 30 that is closest to the controller 4.
 液晶駆動電源5は、各ゲートドライバIC20及び各ソースドライバIC30に対して、表示パネル1に画像表示を行うためのアナログ電圧、例えば各ソースドライバIC30に階調表示電圧を発生させるための参照電圧VRを供給する回路である。なお、ここでは、各ドライバ2,3を駆動する電圧を供給するための電源は省略している。 The liquid crystal driving power supply 5 supplies an analog voltage for displaying an image on the display panel 1 to each gate driver IC 20 and each source driver IC 30, for example, a reference voltage VR for generating a gradation display voltage in each source driver IC 30. Is a circuit for supplying Here, a power source for supplying a voltage for driving each of the drivers 2 and 3 is omitted.
 本実施形態では、ソースドライバ3に特徴的な構成を有するので、以下にソースドライバ3の構成について、図3~図6を参照しながら詳細に説明する。 In the present embodiment, since the source driver 3 has a characteristic configuration, the configuration of the source driver 3 will be described in detail below with reference to FIGS.
 ソースドライバIC30の構成を図3に示す。 The configuration of the source driver IC 30 is shown in FIG.
 上記ソースドライバ3が備える各ソースドライバIC30は、シフトレジスタ回路31、入力ラッチ回路33、サンプリングメモリ回路35、ホールドメモリ回路37、レベルシフタ回路39、階調電圧生成回路41、DA変換回路43及び出力回路45を備えている。 Each source driver IC 30 included in the source driver 3 includes a shift register circuit 31, an input latch circuit 33, a sampling memory circuit 35, a hold memory circuit 37, a level shifter circuit 39, a gradation voltage generation circuit 41, a DA conversion circuit 43, and an output circuit. 45.
 シフトレジスタ回路31は、n段のシフトレジスタであり、コントローラ4から入力されるソースクロック信号SCLKに従いこれに同期をとってソーススタートパルス信号SSPを順にシフトさせ、これに基づくパルス信号を各段から順にサンプリングメモリ回路35に出力する回路である。このシフトレジスタ回路31の出力信号は、表示データ信号DS(DR,DG,DB)のサンプリング位置を定めるものである。 The shift register circuit 31 is an n-stage shift register, and sequentially shifts the source start pulse signal SSP in synchronization with the source clock signal SCLK input from the controller 4, and a pulse signal based on the source start pulse signal SSP is transmitted from each stage. It is a circuit that outputs to the sampling memory circuit 35 in order. The output signal of the shift register circuit 31 determines the sampling position of the display data signal DS (DR, DG, DB).
 上記ソーススタートパルス信号SSPは、水平同期信号LSと同期が取られた信号であって、シフトレジスタ回路31において最終段までシフトされた後に、隣のソースドライバIC30におけるシフトレジスタ回路31にソーススタートパルス信号SSPとして入力され、同様にシフトされる。そして、最もコントローラ4から遠いソースドライバIC30におけるシフトレジスタ回路31にまで転送される。 The source start pulse signal SSP is a signal synchronized with the horizontal synchronization signal LS, and after being shifted to the final stage in the shift register circuit 31, the source start pulse signal SSP is sent to the shift register circuit 31 in the adjacent source driver IC 30. Input as signal SSP and similarly shifted. Then, the data is transferred to the shift register circuit 31 in the source driver IC 30 farthest from the controller 4.
 入力ラッチ回路33は、シリアルに入力されるsビット(例えばDR,RG,DB各6ビットの計18ビット)の表示データ信号DSをソースクロック信号SCLKに従い一時的にラッチし、そのラッチした表示データ信号DS(DR,DG,DB)をサンプリングメモリ回路35に出力する回路である。 The input latch circuit 33 temporarily latches the serially input display data signal DS of s bits (for example, each of 6 bits of DR, RG, DB, 18 bits in total) according to the source clock signal SCLK, and the latched display data This is a circuit for outputting the signal DS (DR, DG, DB) to the sampling memory circuit 35.
 サンプリングメモリ回路35は、シフトレジスタ回路31の各段からの出力信号によって指定された位置に、入力ラッチ回路33から時分割して送られてくるsビットの表示データ信号DS(DR,DG,DB)をサンプリングし、1水平同期期間分のn個の表示データ信号DS(DR,DG,DB)が揃うまで、各表示データ信号DSを記憶しておく回路である。 The sampling memory circuit 35 is an s-bit display data signal DS (DR, DG, DB) sent in a time-sharing manner from the input latch circuit 33 at a position specified by an output signal from each stage of the shift register circuit 31. ) And each display data signal DS is stored until n display data signals DS (DR, DG, DB) for one horizontal synchronization period are prepared.
 ホールドメモリ回路37は、後述する制御信号補償回路50から入力される水平同期信号LSに基づき、つまりラッチパルスの立ち上がりで、サンプリングメモリ回路35に記憶されたn個の表示データ信号DS(DR,DG,DB)を一括してホールドする回路である。 The hold memory circuit 37 is based on the horizontal synchronization signal LS input from the control signal compensation circuit 50 described later, that is, at the rising edge of the latch pulse, the n display data signals DS (DR, DG) stored in the sampling memory circuit 35. , DB) are collectively held.
 レベルシフタ回路39は、ソース配線13への印加電圧レベルを処理するDA変換回路43に適合させるため、ホールドメモリ回路37に記憶されたn個の表示データ信号DS(DR,DG,DB)の信号レベルを昇圧等により変換する回路である。 The level shifter circuit 39 is adapted to the DA conversion circuit 43 that processes the voltage level applied to the source line 13, and the signal level of the n display data signals DS (DR, DG, DB) stored in the hold memory circuit 37. Is converted by boosting or the like.
 階調電圧生成回路41は、抵抗分割回路を含み、これを用いて液晶駆動電源5から入力される参照電圧VRに基づき、γ補正された2Sレベルの階調電圧を生成し、DA変換回路43に出力する回路である。 The gradation voltage generation circuit 41 includes a resistance dividing circuit, and generates a γ-corrected 2 S level gradation voltage based on the reference voltage VR input from the liquid crystal driving power supply 5 using the resistor dividing circuit, and a DA conversion circuit 43 is a circuit that outputs the data.
 DA変換回路43は、レベルシフタ回路39から入力されたn個の表示データ信号DS(DR,DG,DB)のそれぞれについて、階調電圧生成回路41で生成された2Sレベルのうちから1つの階調電圧を選択すると共に、その選択した階調電圧を、後述する制御信号補償回路50から入力される極性反転信号REVに従って正極性電圧又は負極性電圧に切り替えることにより、アナログ信号に変換した後に出力回路45に出力する回路である。 The DA conversion circuit 43 outputs one of the 2 S levels generated by the gradation voltage generation circuit 41 for each of the n display data signals DS (DR, DG, DB) input from the level shifter circuit 39. Outputs after selecting a regulated voltage and converting the selected gradation voltage into an analog signal by switching to a positive polarity voltage or a negative polarity voltage in accordance with a polarity inversion signal REV input from a control signal compensation circuit 50 described later. This is a circuit that outputs to the circuit 45.
 出力回路45は、例えばオペアンプ及び出力バッファで構成されたボルテージフォロワをn個含んでおり、これを用いてDA変換回路43から入力されたアナログ信号を増幅すると共に低インピーダンス出力に変えて、ソース信号として各ソース配線13に出力する回路である。 The output circuit 45 includes n voltage followers composed of, for example, an operational amplifier and an output buffer. The output circuit 45 amplifies an analog signal input from the DA converter circuit 43 using the voltage follower and converts the amplified analog signal into a low-impedance output. As shown in FIG.
 そして、本実施形態における各ソースドライバIC3は、上記の各種回路31,33,35,37,39,41,43,45に加えて制御信号補償回路50をさらに備えている。 Each source driver IC 3 in this embodiment further includes a control signal compensation circuit 50 in addition to the various circuits 31, 33, 35, 37, 39, 41, 43, 45 described above.
 制御信号補償回路50は、コントローラ4から入力される水平同期信号LS及び極性反転信号REVのパルスタイミングを補償する回路である。ここで、水平同期信号LS及び極性反転信号REVは、液晶表示装置Sの仕様に応じたタイミングで互いに所定の間隔をあけて立ち上がるパルスを有する制御信号であり、ソースドライバ3にパラレルに複数入力される。 The control signal compensation circuit 50 is a circuit that compensates the pulse timing of the horizontal synchronization signal LS and the polarity inversion signal REV input from the controller 4. Here, the horizontal synchronization signal LS and the polarity inversion signal REV are control signals having pulses that rise with a predetermined interval from each other at a timing according to the specifications of the liquid crystal display device S, and are input to the source driver 3 in parallel. The
 以降、個々の水平同期信号LS及び極性反転信号REVを区別して、水平同期信号LS(0)~(k)、極性反転信号REV(0)~(k)と表記する。ここで、kは各ソースドライバIC30に接続されたソース配線13の本数に対応する数である。これら各水平同期信号LS(0)~(k)又は各極性反転信号REV(0)~(k)のパルスタイミングが液晶表示装置Sの仕様に対してずれている場合には、表示不良を招いてしまう。 Hereinafter, the individual horizontal synchronization signals LS and the polarity inversion signals REV are distinguished and expressed as horizontal synchronization signals LS (0) to (k) and polarity inversion signals REV (0) to (k). Here, k is a number corresponding to the number of source lines 13 connected to each source driver IC 30. When the pulse timing of each of the horizontal synchronization signals LS (0) to (k) or the polarity inversion signals REV (0) to (k) is deviated from the specification of the liquid crystal display device S, a display defect is caused. I will.
 制御信号補償回路50の構成を図4に示す。 The configuration of the control signal compensation circuit 50 is shown in FIG.
 制御信号補償回路50は、各水平同期信号LS(0)~(k)のパルスタイミングのずれを補償する第1の補償回路51と、各極性反転信号REV(0)~(k)のパルスタイミングのずれを補償する第2の補償回路57とを備えている。 The control signal compensation circuit 50 includes a first compensation circuit 51 that compensates for pulse timing deviations of the horizontal synchronization signals LS (0) to (k), and pulse timings of the polarity inversion signals REV (0) to (k). And a second compensation circuit 57 for compensating for the deviation.
 第1の補償回路51は、各水平同期信号LS(0)~(k)のパルスタイミングのずれを検出する第1のタイミング比較部53と、該第1のタイミング比較部53によってパルスタイミングのずれが検出された水平同期信号LS(0)~(k)をこれに対応する正規の水平同期信号LS(0)’~(k)’に置き換える第1の信号置換部55とを含んでいる。 The first compensation circuit 51 includes a first timing comparison unit 53 that detects a pulse timing shift of the horizontal synchronization signals LS (0) to (k), and a pulse timing shift by the first timing comparison unit 53. And a first signal replacement unit 55 that replaces the horizontal synchronization signals LS (0) to (k) in which are detected with normal horizontal synchronization signals LS (0) ′ to (k) ′ corresponding thereto.
 第1のタイミング比較部53は、第1のメモリ部54を内部に有している。この第1のメモリ部54には、各水平同期信号LS(0)~(k)同士の正規のパルス間隔がデータとして予め記憶されている。そして、第1のタイミング比較部53は、パラレルに入力された複数の水平同期信号LS(0)~(k)同士のパルス間隔と、上記第1のメモリ部54に記憶してある正規のパルス間隔とを比較することにより、各水平同期信号LS(0)~(k)のパルスタイミングのずれを検出するように構成されている。 The first timing comparison unit 53 has a first memory unit 54 therein. In the first memory unit 54, a normal pulse interval between the horizontal synchronization signals LS (0) to (k) is stored in advance as data. Then, the first timing comparison unit 53 detects the pulse interval between the plurality of horizontal synchronization signals LS (0) to (k) inputted in parallel and the normal pulse stored in the first memory unit 54. By comparing the interval, a deviation in pulse timing of each horizontal synchronization signal LS (0) to (k) is detected.
 本実施形態における第1のタイミング比較部53では、個々の水平同期信号LS(0)~(k)と、当該水平同期信号LS(0)~(k)を除く他の2つの水平同期信号LS(0)~(k)とのパルス間隔を、第1のメモリ部54に記憶した正規のパルス間隔と比較する。 In the first timing comparison unit 53 in this embodiment, the individual horizontal synchronization signals LS (0) to (k) and the other two horizontal synchronization signals LS excluding the horizontal synchronization signals LS (0) to (k). The pulse interval between (0) to (k) is compared with the regular pulse interval stored in the first memory unit.
 具体的には、パルスタイミングが早い順に3つずつの水平同期信号LSを一組として、各組における水平同期信号LS同士の相互のパルス間隔を第1のメモリ部54に記憶した正規のパルス間隔と比較する。ここで、パルスタイミングの遅い水平同期信号LS(k-1),LS(k)について3つ一組にできず余る場合には、パルスタイミングの早い水平同期信号LS(0),LS(1)を必要に応じて加え3つ一組とする。 Specifically, regular pulse intervals in which the horizontal synchronization signals LS of three each in the order of the earliest pulse timing are set as one set, and the mutual pulse intervals between the horizontal synchronization signals LS in each set are stored in the first memory unit 54. Compare with Here, when the horizontal synchronization signals LS (k−1) and LS (k) having late pulse timing cannot be combined into three sets, the horizontal synchronization signals LS (0) and LS (1) having early pulse timing are left. Is added as necessary to form a set of three.
 例えば、水平同期信号LS(0)~(2)、水平同期信号LS(3)~(6)、…、水平同期信号LS(k-2)、LS(k)、LS(0)をそれぞれ1組とし、水平同期信号LS(0)と水平同期信号(1)、水平同期信号LS(0)と水平同期信号(2)、水平同期信号LS(1)と水平同期信号(2)、水平同期信号LS(2)と水平同期信号(3)、…、水平同期信号LS(k-1)と水平同期信号(k)、水平同期信号LS(k-1)と水平同期信号(0)、及び水平同期信号LS(k)と水平同期信号(0)における各パルス間隔を正規のパルス間隔と比較する。 For example, the horizontal synchronization signals LS (0) to (2), the horizontal synchronization signals LS (3) to (6),..., The horizontal synchronization signals LS (k−2), LS (k), and LS (0) are each 1 The horizontal synchronization signal LS (0) and the horizontal synchronization signal (1), the horizontal synchronization signal LS (0) and the horizontal synchronization signal (2), the horizontal synchronization signal LS (1) and the horizontal synchronization signal (2), and the horizontal synchronization Signal LS (2) and horizontal synchronization signal (3),..., Horizontal synchronization signal LS (k−1) and horizontal synchronization signal (k), horizontal synchronization signal LS (k−1) and horizontal synchronization signal (0), and Each pulse interval in the horizontal synchronization signal LS (k) and the horizontal synchronization signal (0) is compared with a normal pulse interval.
 そして、上記第1のタイミング比較部53は、各水平同期信号LS(0)~(k)についてパルスタイミングがずれていたか否かを示す判定信号を第1の信号置換部55に出力するようになっている。 Then, the first timing comparison unit 53 outputs to the first signal replacement unit 55 a determination signal indicating whether or not the pulse timing is shifted for each of the horizontal synchronization signals LS (0) to (k). It has become.
 第1の信号置換部55は、第1の正規信号生成部56を内部に有している。この第1の正規信号生成部56は、液晶表示装置Sの仕様に応じたパルスタイミングを有する正規の各水平同期信号LS(0)’~(k)’を生成する回路である。 The first signal replacement unit 55 has a first normal signal generation unit 56 therein. The first normal signal generator 56 is a circuit that generates normal horizontal synchronization signals LS (0) ′ to (k) ′ having pulse timings according to the specifications of the liquid crystal display device S.
 そして、第1の信号置換部55は、第1のタイミング比較部53から入力された判定信号に基づき、パルスタイミングのずれが検出された水平同期信号LS(0)~(k)を、第1の正規信号生成部56で生成されたこれに対応する正規の水平同期信号LS(0)’~(k)’に置き換えるように構成されている。 Then, the first signal replacement unit 55 uses the horizontal synchronization signals LS (0) to (k) in which the deviation of the pulse timing is detected based on the determination signal input from the first timing comparison unit 53 as the first signal. The normal horizontal synchronization signals LS (0) ′ to (k) ′ corresponding to the normal signal generation unit 56 generated by the normal signal generation unit 56 are replaced.
 なお、第1の信号置換部55は、第1のタイミング比較部53でパルスタイミングのずれが検出されなかった水平同期信号LS(0)~(k)については、そのまま出力するようになっている。 Note that the first signal replacement unit 55 outputs the horizontal synchronization signals LS (0) to (k) for which no shift in pulse timing has been detected by the first timing comparison unit 53 as they are. .
 第2の補償回路57は、各極性反転信号REV(0)~(k)のパルスタイミングのずれを検出する第2のタイミング比較部59と、該第2のタイミング比較部59によってパルスタイミングのずれが検出された極性反転信号REV(0)~(k)をこれに対応する正規の極性反転信号REV(0)’~(k)’に置き換える第2の信号置換部61とを含んでいる。 The second compensation circuit 57 includes a second timing comparison unit 59 that detects a pulse timing shift of each polarity inversion signal REV (0) to (k), and a pulse timing shift by the second timing comparison unit 59. And a second signal replacement unit 61 that replaces the polarity reversal signals REV (0) to (k) in which are detected with normal polarity reversal signals REV (0) ′ to (k) ′ corresponding thereto.
 第2のタイミング比較部59は、第2のメモリ部60を内部に有している。この第2のメモリ部60には、各極性反転信号REV(0)~(k)同士の正規のパルス間隔がデータとして予め記憶されている。 The second timing comparison unit 59 has a second memory unit 60 inside. In the second memory unit 60, the normal pulse interval between the polarity inversion signals REV (0) to (k) is stored in advance as data.
 そして、第2のタイミング比較部59は、パラレルに入力された複数の極性反転信号REV(0)~(k)同士のパルス間隔と、上記第2のメモリ部60に記憶してある正規のパルス間隔とを比較することにより、各極性反転信号REV(0)~(k)のパルスタイミングのずれを検出するように構成されている。 Then, the second timing comparison unit 59 detects the pulse interval between the plurality of polarity reversal signals REV (0) to (k) input in parallel and the normal pulse stored in the second memory unit 60. By comparing the interval, a deviation in pulse timing of each polarity inversion signal REV (0) to (k) is detected.
 本実施形態における第2のタイミング比較部59でも、上記第1のタイミング比較部53と同様な各極性反転信号REV(0)~(k)の組合せにおけるパルス間隔を、第2のメモリ部60に記憶した正規のパルス間隔と比較する。 Also in the second timing comparison unit 59 in this embodiment, the pulse interval in the combination of the polarity inversion signals REV (0) to (k) similar to the first timing comparison unit 53 is set in the second memory unit 60. Compare with the stored regular pulse interval.
 そして、上記第2のタイミング比較部59は、各極性反転信号REV(0)~(k)についてパルスタイミングがずれていたか否かを示す判定信号を第2の信号置換部61に出力するようになっている。 Then, the second timing comparison unit 59 outputs a determination signal indicating whether or not the pulse timings of the polarity inversion signals REV (0) to (k) are shifted to the second signal replacement unit 61. It has become.
 第2の信号置換部61は、第2の正規信号生成部62を内部に有している。この第2の正規信号生成部62は、液晶表示装置Sの仕様に応じたパルスタイミングを有する正規の各極性反転信号REV(0)’~(k)’を生成する回路である。 The second signal replacement unit 61 has a second normal signal generation unit 62 therein. The second normal signal generator 62 is a circuit that generates normal polarity inversion signals REV (0) ′ to (k) ′ having pulse timings according to the specifications of the liquid crystal display device S.
 そして、第2の信号置換部61は、第2のタイミング比較部59から入力された判定信号に基づき、パルスタイミングのずれが検出された極性反転信号REV(0)~(k)を、第2の正規信号生成部62で生成されたこれに対応する正規の極性反転信号REV(0)’~(k)’に置き換えるように構成されている。 Then, the second signal replacement unit 61 converts the polarity reversal signals REV (0) to (k) from which the pulse timing deviation is detected based on the determination signal input from the second timing comparison unit 59 into the second The normal polarity inversion signals REV (0) ′ to (k) ′ corresponding to the normal signal generation unit 62 generated by the normal signal generation unit 62 are replaced.
 なお、第2の信号置換部61は、第2のタイミング比較部59でパルスタイミングのずれが検出されなかった極性反転信号REV(0)~(k)については、そのまま出力するようになっている。 Note that the second signal replacement unit 61 outputs the polarity reversal signals REV (0) to (k) for which the pulse timing deviation is not detected by the second timing comparison unit 59 as they are. .
 上記構成の制御信号補償回路50における水平同期信号LS(0)~(k)が入力されたときの概略動作を図5及び図6に示す。図5は、全ての水平同期信号LS(0)~(k)のパルスタイミングが正規のタイミングである場合を示す。図6は、一部の水平同期信号LSのパルスタイミングが仕様外のタイミングである場合を示す。ここでは、水平同期信号LS(1)及びLS(k)が仕様外のパルスタイミングである場合を例に挙げて説明する。 FIG. 5 and FIG. 6 show schematic operations when the horizontal synchronization signals LS (0) to (k) are input in the control signal compensation circuit 50 configured as described above. FIG. 5 shows a case where the pulse timings of all the horizontal synchronization signals LS (0) to (k) are regular timings. FIG. 6 shows a case where the pulse timings of some horizontal synchronization signals LS are out of specification. Here, a case where the horizontal synchronization signals LS (1) and LS (k) have pulse timings out of specification will be described as an example.
 なお、図5及び図6において、「○」は液晶表示装置Sの仕様に応じた正規のパルスタイミングとなっていることを示し、「×」は正規のパルスタイミングに対してずれて仕様外のパルスタイミングとなっていることを示す。このことは、後に参照する図9及び図10においても同じである。 In FIGS. 5 and 6, “◯” indicates that the pulse timing is regular according to the specification of the liquid crystal display device S, and “x” is out of specification due to deviation from the regular pulse timing. Indicates that it is pulse timing. This also applies to FIGS. 9 and 10 referred to later.
 上記制御信号補償回路50では、図5に示すように、コントローラ4から入力された全ての水平同期信号LS(0)~(k)のパルスタイミングが液晶表示装置Sの仕様に応じた正規のタイミングである場合、それら全ての水平同期信号LS(0)~(k)がそのままホールドメモリ回路37に出力される。 In the control signal compensation circuit 50, as shown in FIG. 5, the pulse timings of all the horizontal synchronization signals LS (0) to (k) input from the controller 4 are normal timings according to the specifications of the liquid crystal display device S. In this case, all the horizontal synchronization signals LS (0) to (k) are output to the hold memory circuit 37 as they are.
 一方、図6に示すように、コントローラ4から入力された一部の水平同期信号LS(1)及びLS(k)について、パルスタイミングがずれてそもそも仕様外のタイミングとなっている場合には、これら仕様外の水平同期信号LS(1)及びLS(k)が第1のタイミング比較部53にて検出される。そして、第1のタイミング比較部53で検出された仕様外の水平同期信号LS(1)及びLS(k)は、第1の信号置換部55によって正規の水平同期信号LS(1)’及びLS(k)’に置き換えられた後に、ホールドメモリ回路37に出力される。その他の各水平同期信号LS(0),LS(2)~(k-1)については、そのままホールドメモリ回路37に出力される。 On the other hand, as shown in FIG. 6, when some of the horizontal synchronization signals LS (1) and LS (k) input from the controller 4 are out of specification because the pulse timing is shifted, The horizontal synchronization signals LS (1) and LS (k) outside these specifications are detected by the first timing comparison unit 53. Then, the out-of-specification horizontal synchronization signals LS (1) and LS (k) detected by the first timing comparison unit 53 are converted into normal horizontal synchronization signals LS (1) ′ and LS by the first signal replacement unit 55. After being replaced with (k) ′, it is output to the hold memory circuit 37. The other horizontal synchronization signals LS (0), LS (2) to (k−1) are output to the hold memory circuit 37 as they are.
 このように、水平同期信号LS(1)及びLS(k)のパルスタイミングが外部から入力される段階でずれていても、それら水平同期信号LS(1)及びLS(k)のパルスタイミングのずれが正規の水平同期信号LS(1)’及びLS(k)’への置換によって補償される。これにより、サンプリングメモリ回路35からホールドメモリ回路37に表示データ信号DS(DR,DG,DB)を転送する際にデータ位置がずれることを防止できる。 As described above, even if the pulse timings of the horizontal synchronization signals LS (1) and LS (k) are shifted at the stage of external input, the pulse timings of the horizontal synchronization signals LS (1) and LS (k) are shifted. Is compensated by replacement with the regular horizontal synchronization signals LS (1) ′ and LS (k) ′. As a result, the data position can be prevented from shifting when the display data signal DS (DR, DG, DB) is transferred from the sampling memory circuit 35 to the hold memory circuit 37.
 また、極性反転信号REV(0)~(k)についても、制御信号補償回路50の第2のタイミング比較部59及び第2の信号置換部61により上記水平同期信号LS(0)~(k)と同様に処理されることにより、パルスタイミングのずれが補償される。 For the polarity inversion signals REV (0) to (k), the horizontal synchronization signals LS (0) to (k) are also generated by the second timing comparison unit 59 and the second signal replacement unit 61 of the control signal compensation circuit 50. By processing in the same manner as described above, a deviation in pulse timing is compensated.
 すなわち、制御信号補償回路50では、図示しないが、コントローラ4から入力された全ての極性反転信号REV(0)~(k)のパルスタイミングが液晶表示装置Sの仕様に応じた正規のタイミングである場合、それら全ての極性反転信号REV(0)~(k)がそのままDA変換回路43に出力される。 That is, in the control signal compensation circuit 50, although not shown, the pulse timings of all polarity inversion signals REV (0) to (k) input from the controller 4 are normal timings according to the specifications of the liquid crystal display device S. In this case, all the polarity inversion signals REV (0) to (k) are output to the DA conversion circuit 43 as they are.
 一方、コントローラ4から入力された一部の極性反転信号REV(例えば、REV(1)及びREV(k)、以下括弧書きはこの例に従う)について、パルスタイミングがずれて仕様外のそもそもタイミングとなっている場合には、これら仕様外の極性反転信号REV(REV(1)及びREV(k))が第2のタイミング比較部59にて検出される。そして、第2のタイミング比較部59にて検出された仕様外の極性反転信号REV(REV(1)及びREV(k))は、第2の信号置換部61によって正規の極性反転信号REV’(REV(1)’,REV(k)’)に置き換えられた後に、DA変換回路43に出力される。 On the other hand, for some of the polarity inversion signals REV (for example, REV (1) and REV (k), the parenthesized text follows this example) input from the controller 4, the pulse timing is shifted and the timing is out of specification. If so, the polarity reversal signals REV (REV (1) and REV (k)) outside these specifications are detected by the second timing comparison unit 59. Then, the non-specification polarity reversal signals REV (REV (1) and REV (k)) detected by the second timing comparison unit 59 are converted into normal polarity reversal signals REV ′ ( After being replaced by REV (1) ′, REV (k) ′), it is output to the DA conversion circuit 43.
 このように、極性反転信号REV(REV(1)及びREV(k))のパルスタイミングが外部から入力される段階でずれていても、それら極性反転信号REV(REV(1)及びREV(k))のパルスタイミングのずれが正規の極性反転信号REV(REV(1)’,REV(k)’)への置換によって補償される。これにより、DA変換回路43においてデジタル信号からアナログ信号に変換する際にエラーが発生することを防止できる。 As described above, even if the pulse timings of the polarity reversal signals REV (REV (1) and REV (k)) are shifted at the stage of external input, the polarity reversal signals REV (REV (1) and REV (k)) ) Is compensated by replacement with the normal polarity inversion signal REV (REV (1) ′, REV (k) ′). Thereby, it is possible to prevent an error from occurring when the DA conversion circuit 43 converts a digital signal into an analog signal.
 以上の如く、本実施形態の各ソースドライバIC30では、各水平同期信号LS(0)~(k)及び各極性反転信号REV(0)~(k)がいったん制御信号補償回路50に入力され、当該制御信号補償回路50にて、これら各制御信号LS(0)~(k),REV(0)~(k)のパルスタイミングのずれを検査する。そして、パルスタイミングがずれた仕様外の水平同期信号LS(0)~(k)が存在する場合には、これを対応する正規の水平同期信号LS(0)’~(k)’に置き換えた後にホールドメモリ回路37に出力し、パルスタイミングがずれた仕様外の極性反転信号REV(0)~(k)が存在する場合には、これを対応する正規の極性反転信号REV(0)’~(k)’に置き換えた後にDA変換回路43に出力する。 As described above, in each source driver IC 30 of the present embodiment, the horizontal synchronization signals LS (0) to (k) and the polarity inversion signals REV (0) to (k) are once input to the control signal compensation circuit 50. The control signal compensation circuit 50 inspects deviations in pulse timings of these control signals LS (0) to (k) and REV (0) to (k). If there is a horizontal synchronization signal LS (0) to (k) that is out of specification with the pulse timing shifted, it is replaced with the corresponding normal horizontal synchronization signal LS (0) ′ to (k) ′. If there are non-specification polarity reversal signals REV (0) to (k) that are output to the hold memory circuit 37 later and the pulse timing is shifted, these are converted to the corresponding normal polarity reversal signals REV (0) ′ to (K) Output to the DA converter circuit 43 after replacing with '.
  -実施形態1の効果-
 したがって、この実施形態1によると、ソースドライバ3に入力された各水平同期信号LS(0)~(k)又は各極性反転信号REV(0)~(k)にパルスタイミングがずれた仕様外の制御信号LS(0)~(k),REV(0)~(k)が存在する場合でも、当該仕様外の制御信号LS(0)~(k),REV(0)~(k)を仕様に応じたパルスタイミングを有する正規の制御信号LS(0)’~(k)’,REV(0)’~(k)’に置き換えて出力するので、各水平同期信号LS(0)~(k)及び各極性反転信号REV(0)~(k)のパルスタイミングのずれを補償して、表示不良の発生を回避することができる。
-Effect of Embodiment 1-
Therefore, according to the first embodiment, the pulse timing is shifted to the horizontal synchronization signals LS (0) to (k) or the polarity inversion signals REV (0) to (k) input to the source driver 3, and the specification is out of specification. Even when the control signals LS (0) to (k) and REV (0) to (k) exist, the control signals LS (0) to (k) and REV (0) to (k) outside the specification are specified. Are output in place of regular control signals LS (0) ′ to (k) ′ and REV (0) ′ to (k) ′ having pulse timings corresponding to the horizontal synchronization signals LS (0) to (k). ) And the pulse timing deviations of the polarity inversion signals REV (0) to (k) can be compensated to avoid the occurrence of display defects.
 《発明の実施形態2》
 図7は、この実施形態2に係るゲートドライバIC20の構成を示すブロック図である。なお、本実施形態では、ゲートドライバIC20の構成が上記実施形態1と異なる他は液晶表示装置Sについて上記実施形態1と同様に構成されているので、構成の異なるゲートドライバIC20についてのみ説明し、同一の構成箇所は図1~図6に基づく上記実施形態1の説明に譲ることにして、その詳細な説明を省略する。
<< Embodiment 2 of the Invention >>
FIG. 7 is a block diagram showing a configuration of the gate driver IC 20 according to the second embodiment. In the present embodiment, the configuration of the liquid crystal display device S is the same as that of the first embodiment except that the configuration of the gate driver IC 20 is different from that of the first embodiment. Therefore, only the gate driver IC 20 having a different configuration will be described. The same components are left to the description of the first embodiment based on FIGS. 1 to 6, and the detailed description thereof is omitted.
 上記実施形態1では、ソースドライバ3に特徴的な構成を有するとしたが、本実施形態では、これに加えてゲートドライバ2にも特徴的な構成を有している。 In the first embodiment, the source driver 3 has a characteristic configuration, but in the present embodiment, the gate driver 2 has a characteristic configuration in addition to this.
 ゲートドライバ2が備える各ゲートドライバIC20は、シフトレジスタ回路71、レベルシフタ回路73、出力回路75を備えている。 Each gate driver IC 20 included in the gate driver 2 includes a shift register circuit 71, a level shifter circuit 73, and an output circuit 75.
 シフトレジスタ回路71は、m段のシフトレジスタであり、後述する制御信号補償回路80から入力されるゲートクロック信号GCLKに従いこれに同期をとってゲートスタートパルス信号GSPを順にシフトさせ、これに基づくパルス信号を各段から順にレベルシフタ回路73に出力する回路である。 The shift register circuit 71 is an m-stage shift register, and sequentially shifts the gate start pulse signal GSP in synchronization with a gate clock signal GCLK input from a control signal compensation circuit 80, which will be described later. This is a circuit for outputting a signal to the level shifter circuit 73 in order from each stage.
 上記ゲートスタートパルス信号GSPは、シフトレジスト回路71において最終段までシフトされた後に、隣のゲートドライバIC20におけるシフトレジスタ回路71にゲートスタートパルス信号GSPとして入力され、同様にシフトされる。そして、最もコントローラ4から遠いゲートドライバIC20におけるシフトレジスタ回路71にまで転送される。 The gate start pulse signal GSP is shifted to the final stage in the shift registration circuit 71, and then input to the shift register circuit 71 in the adjacent gate driver IC 20 as the gate start pulse signal GSP, and is similarly shifted. Then, the data is transferred to the shift register circuit 71 in the gate driver IC 20 farthest from the controller 4.
 レベルシフタ回路73は、シフトレジスタ回路71の各段から送られてくる出力信号を、液晶表示パネル1のTFT15のゲートを駆動できる電圧レベルに変換した後に出力回路75に出力する回路である。このレベルシフタ回路73には、コントローラ4からゲートON信号も入力される。このゲートON信号は、電源OFFシーケンス時に、液晶表示パネル1を全面OFFさせるために、TFT15のゲートをON状態とするためのハイレベル信号である。 The level shifter circuit 73 is a circuit that converts an output signal sent from each stage of the shift register circuit 71 into a voltage level that can drive the gate of the TFT 15 of the liquid crystal display panel 1 and then outputs the voltage level to the output circuit 75. The level shifter circuit 73 also receives a gate ON signal from the controller 4. This gate ON signal is a high level signal for turning on the gate of the TFT 15 in order to turn off the entire liquid crystal display panel 1 during the power OFF sequence.
 出力回路75は、レベルシフタ回路73から入力された信号をバッファリングしておき、所定のタイミングで各ゲート配線11に選択電圧若しくは非選択電圧として出力する回路である。 The output circuit 75 is a circuit that buffers the signal input from the level shifter circuit 73 and outputs it as a selection voltage or a non-selection voltage to each gate wiring 11 at a predetermined timing.
 そして、本実施形態における各ゲートドライバIC20は、上記の各種回路71,73,75に加えて制御信号補償回路80をさらに備えている。 Each gate driver IC 20 in the present embodiment further includes a control signal compensation circuit 80 in addition to the various circuits 71, 73, and 75 described above.
 制御信号補償回路80は、コントローラ4から入力されるゲートクロック信号GCLKに対するゲートスタートパルス信号GSPのパルスタイミングを補償する回路である。ここで、ゲートスタートパルス信号GSPとゲートクロック信号GCLKとは、液晶表示装置Sの仕様に応じたタイミングで互いに所定の間隔をあけて立ち上がるパルスを有する制御信号であり、ゲートドライバ2にパラレルに入力される。すなわち、ゲートクロック信号GCLKに対するゲートスタートパルス信号GSPのパルスタイミングが液晶表示装置Sの仕様に対してずれている場合には、表示不良を招いてしまう。 The control signal compensation circuit 80 is a circuit that compensates the pulse timing of the gate start pulse signal GSP with respect to the gate clock signal GCLK input from the controller 4. Here, the gate start pulse signal GSP and the gate clock signal GCLK are control signals having pulses that rise with a predetermined interval from each other at a timing according to the specifications of the liquid crystal display device S, and are input to the gate driver 2 in parallel. Is done. That is, when the pulse timing of the gate start pulse signal GSP with respect to the gate clock signal GCLK is deviated from the specification of the liquid crystal display device S, a display defect is caused.
 制御信号補償回路80の構成を図8に示す。 The configuration of the control signal compensation circuit 80 is shown in FIG.
 制御信号補償回路80は、ゲートスタートパルス信号GSPのパルスタイミングのずれを検出する第3のタイミング比較部81と、該第3のタイミング比較部81によってパルスタイミングのずれが検出されたゲートスタートパルス信号GSPをこれに対応する正規のゲートスタートパルス信号GSP’に置き換える第3の信号置換部83とを含んでいる。 The control signal compensation circuit 80 includes a third timing comparison unit 81 that detects a shift in the pulse timing of the gate start pulse signal GSP, and a gate start pulse signal in which the shift in the pulse timing is detected by the third timing comparison unit 81. And a third signal replacement unit 83 for replacing the GSP with the corresponding normal gate start pulse signal GSP ′.
 第3のタイミング比較部81は、第3のメモリ部82を内部に有している。この第3のメモリ部82には、ゲートクロック信号GCLKに対するゲートスタートパルス信号GSPの液晶表示装置Sの仕様に応じた正規のパルス間隔がデータとして予め記憶されている。 The third timing comparison unit 81 has a third memory unit 82 therein. In the third memory unit 82, a regular pulse interval corresponding to the specification of the liquid crystal display device S of the gate start pulse signal GSP with respect to the gate clock signal GCLK is stored in advance as data.
 そして、第3のタイミング比較部81は、パラレルに入力されたゲートスタートパルス信号GSP及びゲートクロック信号GCLKのパルス間隔と、上記第3のメモリ部82に記憶してある正規のパルス間隔とを比較することにより、ゲートスタートパルス信号GSPのパルスタイミングのずれを検出するように構成されている。 The third timing comparison unit 81 compares the pulse interval between the gate start pulse signal GSP and the gate clock signal GCLK input in parallel with the regular pulse interval stored in the third memory unit 82. By doing so, the shift of the pulse timing of the gate start pulse signal GSP is detected.
 この第3のタイミング比較部81は、ゲートスタートパルス信号GSPについてパルスタイミングがずれていたか否かを示す判定信号を第3の信号置換部83に出力するようになっている。 The third timing comparison unit 81 outputs a determination signal indicating whether or not the pulse timing of the gate start pulse signal GSP is shifted to the third signal replacement unit 83.
 第3の信号置換部83は、第3の正規信号生成部84を内部に有している。この第3の正規信号生成部84は、液晶表示装置Sの仕様に応じたパルスタイミングを有する正規のゲートスタートパルス信号GSP’を生成する回路である。 The third signal replacement unit 83 has a third normal signal generation unit 84 therein. The third normal signal generator 84 is a circuit that generates a normal gate start pulse signal GSP ′ having a pulse timing according to the specifications of the liquid crystal display device S.
 そして、第3の信号置換部83は、第3のタイミング比較部81から入力された判定信号に基づき、パルスタイミングのずれが検出されたゲートスタートパルス信号GSPを、第3の正規信号生成部84で生成されたこれに対応する正規のゲートスタートパルス信号GSP’に置き換えるように構成されている。 Then, the third signal replacement unit 83 converts the gate start pulse signal GSP in which the deviation of the pulse timing is detected based on the determination signal input from the third timing comparison unit 81 to the third normal signal generation unit 84. Is replaced with the corresponding normal gate start pulse signal GSP ′ generated in step (b).
 なお、第3の信号置換部83は、第3のタイミング比較部81でゲートスタートパルス信号GSPにパルスタイミングのずれが検出されなかった場合、当該ゲートスタートパルス信号GSPをそのまま出力するようになっている。 The third signal replacement unit 83 outputs the gate start pulse signal GSP as it is when the third timing comparison unit 81 does not detect a shift in the pulse timing in the gate start pulse signal GSP. Yes.
 上記構成の制御信号補償回路80におけるゲートスタートパルス信号GSP及びゲートクロック信号GCLKが入力されたときの概略動作を図9及び図10に示す。図9は、ゲートスタートパルス信号GSPのパルスタイミングが正規のタイミングである場合を示す。図10は、ゲートスタートパルス信号GSPのパルスタイミングが仕様外のタイミングである場合を示す。 9 and 10 show schematic operations when the gate start pulse signal GSP and the gate clock signal GCLK are input in the control signal compensation circuit 80 configured as described above. FIG. 9 shows a case where the pulse timing of the gate start pulse signal GSP is a normal timing. FIG. 10 shows a case where the pulse timing of the gate start pulse signal GSP is out of specification.
 上記制御信号補償回路80では、図9に示すように、コントローラ4から入力されたゲートスタートパルス信号GSPのパルスタイミングが液晶表示装置Sの仕様に応じた正規のタイミングである場合、当該ゲートスタートパルス信号GSPがそのままシフトレジスタ回路71に出力される。 In the control signal compensation circuit 80, as shown in FIG. 9, when the pulse timing of the gate start pulse signal GSP input from the controller 4 is a normal timing according to the specifications of the liquid crystal display device S, the gate start pulse The signal GSP is output to the shift register circuit 71 as it is.
 一方、図10に示すように、コントローラ4から入力されたゲートスタートパルス信号GSPについて、パルスタイミングがずれてそもそも仕様外のタイミングとなっている場合には、当該仕様外のゲートスタートパルス信号GSPが第3のタイミング比較部81にて検出される。そして、第3のタイミング比較部81で検出された仕様外のゲートスタートパルス信号GSPは、第3の信号置換部83によって正規のゲートスタートパルス信号GSP’に置き換えられた後に、シフトレジスタ回路71に出力される。 On the other hand, as shown in FIG. 10, when the gate timing of the gate start pulse signal GSP input from the controller 4 is shifted and the timing is out of specification in the first place, It is detected by the third timing comparison unit 81. The non-specification gate start pulse signal GSP detected by the third timing comparison unit 81 is replaced by the regular gate start pulse signal GSP ′ by the third signal replacement unit 83, and is then sent to the shift register circuit 71. Is output.
 このように、ゲートスタートパルス信号GSPのパルスタイミングが外部から入力される段階でずれていても、当該ゲートスタートパルス信号GSPのパルスタイミングのずれが正規のゲートスタートパルス信号GSP’への置換によって補償される。これにより、シフトレジスタ回路71に転送されるパルス信号のタイミングずれを防止することができる。 In this way, even if the pulse timing of the gate start pulse signal GSP is deviated when it is input from the outside, the deviation of the pulse timing of the gate start pulse signal GSP is compensated by replacement with the normal gate start pulse signal GSP ′. Is done. As a result, a timing shift of the pulse signal transferred to the shift register circuit 71 can be prevented.
 以上の如く、本実施形態の各ゲートドライバIC20では、ゲートスタートパルス信号GSP及びゲートクロック信号GCLKがいったん制御信号補償回路80に入力され、当該制御信号補償回路80にて、ゲートスタートパルス信号GSPのパルスタイミングのずれが検査される。そして、ゲートスタートパルス信号GSPのパルスタイミングがずれて仕様外の状態となっている場合には、これを対応する正規のゲートスタートパルス信号GSP’に置き換えた後にシフトレジスタ回路71に出力する。 As described above, in each gate driver IC 20 of the present embodiment, the gate start pulse signal GSP and the gate clock signal GCLK are once input to the control signal compensation circuit 80, and the control signal compensation circuit 80 determines the gate start pulse signal GSP. The pulse timing deviation is inspected. If the pulse timing of the gate start pulse signal GSP is out of specification due to a shift, this is replaced with the corresponding normal gate start pulse signal GSP 'and output to the shift register circuit 71.
  -実施形態2の効果-
 この実施形態2によると、上記実施形態1と同様な効果が得られる上に、ゲートドライバ2に入力されたゲートスタートパルス信号GSPがパルスタイミングのずれた仕様外の状態となっている場合でも、当該仕様外のゲートスタートパルス信号GSPを仕様に応じたパルスタイミングを有する正規のゲートスタートパルス信号GSP’に置き換えて出力するので、ゲートスタートパルス信号GSPのパルスタイミングのずれをも補償して、表示不良の発生をより確実に回避することができる。
-Effect of Embodiment 2-
According to the second embodiment, the same effects as those of the first embodiment can be obtained, and even when the gate start pulse signal GSP input to the gate driver 2 is out of specification with the pulse timing shifted, Since the gate start pulse signal GSP outside the specification is replaced with a normal gate start pulse signal GSP ′ having a pulse timing according to the specification and output, the deviation of the pulse timing of the gate start pulse signal GSP is also compensated and displayed. The occurrence of defects can be avoided more reliably.
 《発明の実施形態3》
 図11は、この実施形態3に係るソースドライバIC30の制御信号補償回路50の構成を示すブロック図である。なお、本実施形態では、制御信号補償回路50の一部の構成が上記実施形態1と異なる他は液晶表示装置Sについて上記実施形態1と同様に構成されているので、構成の異なる制御信号補償回路50部分についてのみ説明し、同一の構成箇所は図1~図6に基づく上記実施形態1の説明に譲ることにして、その詳細な説明を省略する。
<< Embodiment 3 of the Invention >>
FIG. 11 is a block diagram showing the configuration of the control signal compensation circuit 50 of the source driver IC 30 according to the third embodiment. In the present embodiment, the configuration of the control signal compensation circuit 50 is the same as that of the first embodiment except that the configuration of the control signal compensation circuit 50 is different from that of the first embodiment. Only the circuit 50 portion will be described, and the same components will be left to the description of the first embodiment based on FIGS. 1 to 6, and the detailed description thereof will be omitted.
 本実施形態に係る制御信号補償回路50は、上記実施形態1と同様な構成に加えて警報部90をさらに備えている。この警報部90には、第1のタイミング比較部53から各水平同期信号LS(0)~(k)についてパルスタイミングがずれていたか否かを示す判定信号が、第2のタイミング比較部59から各極性反転信号REV(0)~(k)についてパルスタイミングがずれていたか否かを示す判定信号がそれぞれ入力されるようになっている。 The control signal compensation circuit 50 according to the present embodiment further includes an alarm unit 90 in addition to the same configuration as that of the first embodiment. The alarm unit 90 receives from the second timing comparison unit 59 a determination signal indicating whether or not the pulse timings of the horizontal synchronization signals LS (0) to (k) are shifted from the first timing comparison unit 53. A determination signal indicating whether the pulse timing has shifted for each of the polarity inversion signals REV (0) to (k) is input.
 そして、警報部90は、第1のタイミング比較部53からの判定信号に基づき少なくとも1つの水平同期信号LS(0)~(k)のパルスタイミングのずれが検出されたと判断したとき、又は、第2のタイミング比較部59からの判定信号に基づき少なくとも1つの極性反転信号REV(0)~(k)のパルスタイミングのずれが検出されたと判断したときに、警報を発するように構成されている。 Then, when the alarm unit 90 determines that a shift in the pulse timing of at least one horizontal synchronization signal LS (0) to (k) has been detected based on the determination signal from the first timing comparison unit 53, or Based on the determination signal from the second timing comparison unit 59, an alarm is issued when it is determined that a pulse timing shift of at least one polarity inversion signal REV (0) to (k) is detected.
  -実施形態3の効果-
 この実施形態3によると、第1のタイミング比較部53又は第2のタイミング比較部59にて少なくとも1つの水平同期信号LS(0)~(k)又は極性反転信号REV(0)~(k)のパルスタイミングのずれが検出された場合に、警報部90が警報を発するので、表示検査の実施によってソースドライバ3への入力信号が仕様外の状態になっていることを容易に認識でき、製品開発効率の向上及び不良品解析時の効率化を図ることができる。
-Effect of Embodiment 3-
According to the third embodiment, at least one horizontal synchronization signal LS (0) to (k) or polarity inversion signal REV (0) to (k) is generated in the first timing comparison unit 53 or the second timing comparison unit 59. When the deviation of the pulse timing is detected, the alarm unit 90 issues an alarm, so that it is possible to easily recognize that the input signal to the source driver 3 is out of specification by performing the display inspection. It is possible to improve development efficiency and efficiency when analyzing defective products.
 《その他の実施形態》
 上記実施形態1では、水平同期信号LS(0)~(k)及び極性反転信号REV(0)~(k)を制御信号補償回路(タイミング比較部53,59及び信号置換部55,61)50にて処理するソースドライバIC30を例に挙げて説明したが、本発明はこれに限らない。例えば、制御信号補償回路50は、ソースクロック信号SCLKに対するソーススタートパルス信号SSPのパルスタイミングのずれを補償する機能をさらに有していてもよい。
<< Other Embodiments >>
In the first embodiment, the horizontal synchronization signals LS (0) to (k) and the polarity inversion signals REV (0) to (k) are supplied to the control signal compensation circuit ( timing comparison units 53 and 59 and signal replacement units 55 and 61) 50. However, the present invention is not limited to this. For example, the control signal compensation circuit 50 may further have a function of compensating for a deviation in pulse timing of the source start pulse signal SSP with respect to the source clock signal SCLK.
 すなわち、制御信号補償回路50は、第1及び第2の補償回路51,57とは別個に、ソーススタートパルス信号SSPのパルスタイミングのずれを検出するタイミング比較部と、該タイミング比較部によってパルスタイミングのずれが検出されたソーススタートパルス信号SSPをこれに対応する正規のソーススタートパルス信号SSP’に置き換える信号置換部とを含んでいても構わない。ここで、上記タイミング比較部は第1及び第2のタイミング比較部53,59に対応する構成を備え、上記信号置換部は第1及び第2の信号置換部55,61に対応する構成を備える。このような構成によれば、シフトレジスタ回路31からサンプリングメモリ回路35に転送されるパルス信号のタイミングずれを防止することができる。 That is, the control signal compensation circuit 50 includes a timing comparison unit that detects a shift in the pulse timing of the source start pulse signal SSP separately from the first and second compensation circuits 51 and 57, and a pulse timing by the timing comparison unit. A signal replacement unit that replaces the source start pulse signal SSP in which the deviation is detected with a normal source start pulse signal SSP ′ corresponding thereto may be included. Here, the timing comparison unit has a configuration corresponding to the first and second timing comparison units 53 and 59, and the signal replacement unit has a configuration corresponding to the first and second signal replacement units 55 and 61. . According to such a configuration, it is possible to prevent timing deviation of the pulse signal transferred from the shift register circuit 31 to the sampling memory circuit 35.
 また、上記実施形態1では、第1のタイミング比較部53が第1のメモリ部54を、第1の信号置換部55が第1の正規信号生成部56を、第2のタイミング比較部59が第2のメモリ部60を、第2の信号置換部61が第2の正規信号生成部62をそれぞれ有するとしたが、これら第1のタイミング比較部53と第1のメモリ部54、第1の信号置換部55と第1の正規信号生成部56、第2のタイミング比較部59と第2のメモリ部60、第2の信号置換部61と第2の正規信号生成部62とは、それぞれ別個に設けられていてもよい。 Further, in the first embodiment, the first timing comparison unit 53 is the first memory unit 54, the first signal replacement unit 55 is the first normal signal generation unit 56, and the second timing comparison unit 59 is the second timing comparison unit 59. Although the second signal replacement unit 61 has the second normal signal generation unit 62 in the second memory unit 60, the first timing comparison unit 53, the first memory unit 54, and the first The signal replacement unit 55 and the first normal signal generation unit 56, the second timing comparison unit 59 and the second memory unit 60, and the second signal replacement unit 61 and the second normal signal generation unit 62 are separately provided. May be provided.
 また、上記実施形態2では、第3のタイミング比較部81が第3のメモリ部82を、第3の信号置換部83が第3の正規信号生成部84をそれぞれ有しているとしたが、これら第3のタイミング比較部81と第3のメモリ部82、第3の信号置換部83と第3の正規信号生成部84とは、それぞれ別個に設けられていてもよい。 In the second embodiment, the third timing comparison unit 81 includes the third memory unit 82, and the third signal replacement unit 83 includes the third normal signal generation unit 84. The third timing comparison unit 81, the third memory unit 82, the third signal replacement unit 83, and the third normal signal generation unit 84 may be provided separately.
 上記実施形態3では、ソースドライバIC30の制御信号補償回路50に警報部90が設けられている場合を説明したが、上記実施形態2におけるゲートドライバIC20の制御信号補償回路80に同様な警報部90が設けられていてもよい。 In the third embodiment, the case where the alarm unit 90 is provided in the control signal compensation circuit 50 of the source driver IC 30 has been described. However, the alarm unit 90 similar to the control signal compensation circuit 80 of the gate driver IC 20 in the second embodiment is described. May be provided.
 以上、本発明の好ましい実施形態について説明したが、本発明の技術的範囲は上記実施形態に記載の範囲に限定されない。上記実施形態が例示であり、それらの各構成要素や各処理プロセスの組合せに、さらに色々な変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The preferred embodiments of the present invention have been described above, but the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be understood by those skilled in the art that the above-described embodiment is an example, and that various modifications can be made to the combination of each component and each processing process, and such modifications are within the scope of the present invention. By the way.
 例えば、上記各実施形態では、ゲートドライバ2がTCPとして液晶表示パネル1に実装された複数のゲートドライバIC20からなり、ソースドライバ3が同じくTCPとして液晶表示パネル1に実装された複数のソースドライバIC30からなる構成を例に挙げて説明したが、本発明はこれに限らず、ゲートドライバ2及びソースドライバ3は、液晶表示パネル1を構成するアクティブマトリクス基板上に各画素Pを構成するTFT15等と一体にモノリシック回路として作り込まれていても構わない。 For example, in each of the above embodiments, the gate driver 2 includes a plurality of gate driver ICs 20 mounted on the liquid crystal display panel 1 as TCP, and the source driver 3 also includes a plurality of source driver ICs 30 mounted on the liquid crystal display panel 1 as TCP. However, the present invention is not limited to this, and the gate driver 2 and the source driver 3 include the TFT 15 and the like constituting each pixel P on the active matrix substrate constituting the liquid crystal display panel 1. It may be integrated as a monolithic circuit.
 また、上記各実施形態では、液晶表示装置を例に挙げて説明したが、本発明はこれに限らず、有機EL(Electro Luminescence)表示装置やプラズマ表示装置などの他の各種表示装置にも勿論適用することができる。 In each of the above embodiments, the liquid crystal display device has been described as an example. However, the present invention is not limited thereto, and of course, other various display devices such as an organic EL (Electro-Luminescence) display device and a plasma display device. Can be applied.
 以上説明したように、本発明は、表示駆動回路及びそれを備えた表示装置について有用であり、特に、制御信号のパルスタイミングのずれを補償して表示不良の発生を回避することが要望される表示駆動回路及びそれを備えた表示装置に適している。 As described above, the present invention is useful for a display driving circuit and a display device including the display driving circuit, and in particular, it is desired to compensate for a shift in the pulse timing of a control signal and avoid occurrence of a display defect. It is suitable for a display drive circuit and a display device including the display drive circuit.
 S   液晶表示装置
 1   液晶表示パネル
 2   ゲートドライバ(表示駆動回路)
 3   ソースドライバ(表示駆動回路)
 11  ゲート配線(表示用配線)
 13  ソース配線(表示用配線)
 31  シフトレジスタ回路
 35  サンプリングメモリ回路
 37  ホールドメモリ回路
 43  DA変換回路(デジタルアナログ変換回路)
 53  第1のタイミング比較部
 54  第1のメモリ部
 55  第1の信号置換部
 56  第1の正規信号生成部
 59  第2のタイミング比較部
 60  第2のメモリ部
 61  第2の信号置換部
 62  第2の正規信号生成部
 71  シフトレジスタ回路
 81  第3のタイミング比較部
 82  第3のメモリ部
 83  第3の信号置換部
 84  第3の正規信号生成部
 90  警報部
S Liquid crystal display device 1 Liquid crystal display panel 2 Gate driver (display drive circuit)
3 Source driver (display drive circuit)
11 Gate wiring (display wiring)
13 Source wiring (display wiring)
31 Shift register circuit 35 Sampling memory circuit 37 Hold memory circuit 43 DA conversion circuit (digital analog conversion circuit)
53 First Timing Comparison Unit 54 First Memory Unit 55 First Signal Replacement Unit 56 First Normal Signal Generation Unit 59 Second Timing Comparison Unit 60 Second Memory Unit 61 Second Signal Replacement Unit 62 Second 2 normal signal generation unit 71 shift register circuit 81 third timing comparison unit 82 third memory unit 83 third signal replacement unit 84 third normal signal generation unit 90 alarm unit

Claims (6)

  1.  表示装置の仕様に応じたタイミングで互いに所定の間隔をあけて立ち上がるパルスを有する複数の制御信号同士の正規のパルス間隔をデータとして記憶するメモリ部と、
     上記各制御信号がパラレルに入力され、該各制御信号同士のパルス間隔と、上記メモリ部に記憶した正規のパルス間隔とを比較することにより、上記各制御信号のパルスタイミングのずれを検出するタイミング比較部と、
     上記仕様に応じたパルスタイミングを有する正規の制御信号を生成する正規信号生成部と、
     上記タイミング比較部によってパルスタイミングのずれが検出された制御信号を、上記正規信号生成部で生成された正規の制御信号に置き換える信号置換部とを備える
    ことを特徴とする表示駆動回路。
    A memory unit that stores, as data, regular pulse intervals between a plurality of control signals having pulses that rise with a predetermined interval at a timing according to the specifications of the display device;
    The timing at which the control signals are input in parallel, and the pulse timing difference between the control signals is detected by comparing the pulse interval between the control signals with the normal pulse interval stored in the memory unit. A comparison unit;
    A normal signal generation unit that generates a normal control signal having a pulse timing according to the above specifications;
    A display drive circuit comprising: a signal replacement unit that replaces a control signal in which a pulse timing shift is detected by the timing comparison unit with a normal control signal generated by the normal signal generation unit.
  2.  請求項1に記載の表示駆動回路において、
     上記制御信号は、上記タイミング比較部に4つ以上入力され、
     上記タイミング比較部では、上記個々の制御信号と当該制御信号を除く他の2つの上記制御信号とのパルス間隔を、上記メモリ部に記憶した正規のパルス間隔と比較する
    ことを特徴とする表示駆動回路。
    The display drive circuit according to claim 1,
    Four or more of the control signals are input to the timing comparison unit,
    The timing comparison unit compares a pulse interval between the individual control signal and the other two control signals excluding the control signal with a normal pulse interval stored in the memory unit. circuit.
  3.  請求項1又は2に記載の表示駆動回路において、
     上記タイミング比較部によって少なくとも1つの上記制御信号のパルスタイミングのずれが検出された場合に、警報を発する警報部をさらに備える
    ことを特徴とする表示駆動回路。
    The display drive circuit according to claim 1 or 2,
    A display drive circuit, further comprising an alarm unit that issues an alarm when the timing comparison unit detects a shift in pulse timing of at least one of the control signals.
  4.  請求項1に記載の表示駆動回路において、
     上記制御信号としてソーススタートパルス信号及びソースクロック信号が入力され、上記ソースクロック信号に基づいて上記ソーススタートパルス信号を転送するシフトレジスタ回路と、
     デジタル値の表示データ信号が入力され、該表示データ信号を、上記シフトレジスタ回路から転送されるソーススタートパルス信号に基づきサンプリングして出力するサンプリングメモリ回路と、
     上記制御信号として複数の水平同期信号が入力され、該各水平同期信号に基づいて上記サンプリングメモリ回路から出力される表示データ信号をホールドし、該表示データ信号を次に入力される水平同期信号に基づいて出力するホールドメモリ回路と、
     上記制御信号として複数の極性反転信号が入力され、上記ホールドメモリ回路から出力された表示データ信号をアナログ信号に変換すると共に、上記各極性反転信号に基づき上記アナログ信号の極性を反転させて出力するデジタルアナログ変換回路とをさらに備え、
     表示装置のソース配線を駆動するソースドライバを構成し、
     上記ソーススタートパルス信号及びソースクロック信号と、上記複数の水平同期信号と、上記複数の極性反転信号とのうち少なくとも1つを上記タイミング比較部及び信号置換部により処理する
    ことを特徴とする表示駆動回路。
    The display drive circuit according to claim 1,
    A shift register circuit that receives a source start pulse signal and a source clock signal as the control signal and transfers the source start pulse signal based on the source clock signal;
    A sampling memory circuit that receives a display data signal of a digital value and samples and outputs the display data signal based on a source start pulse signal transferred from the shift register circuit;
    A plurality of horizontal synchronization signals are input as the control signal, a display data signal output from the sampling memory circuit is held based on each horizontal synchronization signal, and the display data signal is converted into a next input horizontal synchronization signal. A hold memory circuit based on the output;
    A plurality of polarity inversion signals are input as the control signal, the display data signal output from the hold memory circuit is converted into an analog signal, and the polarity of the analog signal is inverted based on each polarity inversion signal and output. A digital-analog conversion circuit,
    Configure a source driver to drive the source wiring of the display device,
    Display driving characterized in that at least one of the source start pulse signal and source clock signal, the plurality of horizontal synchronization signals, and the plurality of polarity inversion signals is processed by the timing comparison unit and the signal replacement unit. circuit.
  5.  請求項1に記載の表示駆動回路において、
     上記制御信号としてゲートスタートパルス信号及びゲートクロック信号が入力され、上記ゲートクロック信号に基づいて上記ゲートスタートパルス信号を転送するシフトレジスタ回路を備え、
     表示装置のゲート配線を駆動するゲートドライバを構成し、
     上記ゲートスタートパルス信号及びゲートクロック信号を上記タイミング比較部及び信号置換部により処理する
    ことを特徴とする表示駆動回路。
    The display drive circuit according to claim 1,
    A shift register circuit that receives a gate start pulse signal and a gate clock signal as the control signal and transfers the gate start pulse signal based on the gate clock signal;
    Configure the gate driver to drive the gate wiring of the display device,
    A display driving circuit, wherein the gate start pulse signal and the gate clock signal are processed by the timing comparison unit and the signal replacement unit.
  6.  請求項1~5のいずれか1項に記載の表示駆動回路と、
     上記表示駆動回路に接続された表示用配線を有する表示パネルとを備える
     ことを特徴とする表示装置。
    A display driving circuit according to any one of claims 1 to 5;
    And a display panel having a display wiring connected to the display drive circuit.
PCT/JP2012/004873 2011-08-05 2012-07-31 Display drive circuit and display device provided with same WO2013021582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011172005 2011-08-05
JP2011-172005 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013021582A1 true WO2013021582A1 (en) 2013-02-14

Family

ID=47668120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004873 WO2013021582A1 (en) 2011-08-05 2012-07-31 Display drive circuit and display device provided with same

Country Status (1)

Country Link
WO (1) WO2013021582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144391A (en) * 2014-01-31 2015-08-06 ローム株式会社 Image data receiving circuit, electronic apparatus using the same, and method of transmitting image data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254969A (en) * 1995-03-17 1996-10-01 Hitachi Ltd Liquid crystal display device
JP2003167545A (en) * 2001-11-30 2003-06-13 Sharp Corp Method for detecting abnormality of image display signal, and image display device
JP2006098532A (en) * 2004-09-28 2006-04-13 Sharp Corp Display device
JP2006098923A (en) * 2004-09-30 2006-04-13 Toshiba Matsushita Display Technology Co Ltd Flat display device
JP2006222687A (en) * 2005-02-09 2006-08-24 Matsushita Electric Ind Co Ltd Synchronizing signal generating device and video signal processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254969A (en) * 1995-03-17 1996-10-01 Hitachi Ltd Liquid crystal display device
JP2003167545A (en) * 2001-11-30 2003-06-13 Sharp Corp Method for detecting abnormality of image display signal, and image display device
JP2006098532A (en) * 2004-09-28 2006-04-13 Sharp Corp Display device
JP2006098923A (en) * 2004-09-30 2006-04-13 Toshiba Matsushita Display Technology Co Ltd Flat display device
JP2006222687A (en) * 2005-02-09 2006-08-24 Matsushita Electric Ind Co Ltd Synchronizing signal generating device and video signal processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144391A (en) * 2014-01-31 2015-08-06 ローム株式会社 Image data receiving circuit, electronic apparatus using the same, and method of transmitting image data

Similar Documents

Publication Publication Date Title
JP4953948B2 (en) Display device data driver, test method thereof, and probe card
KR101253271B1 (en) Display device and display device testing system and method for testing display device using the same
JP6305709B2 (en) Display panel
KR101240655B1 (en) Driving apparatus for display device
KR101943000B1 (en) Liquid crystal display device inculding inspection circuit and inspection method thereof
JP5762330B2 (en) Drive control device, display device including the same, and drive control method
KR101393635B1 (en) Driving apparatus for display device and display device including the same
US20170169757A1 (en) Gate driving circuit and display device including the same
JP2008176269A (en) Display device and driving method thereof
JP2010015125A (en) Gate driver for liquid crystal display device and method of repairing the same
KR20160033316A (en) Display Device
KR20130036909A (en) Driving method for display device
US11514848B2 (en) Display device and driving method thereof
US20120013592A1 (en) Display device and method for manufacturing the same
JP5305570B2 (en) Display device
JP2009058685A (en) Panel display device, and method for detecting abnormality in panel
WO2008047495A1 (en) Display device
WO2013021582A1 (en) Display drive circuit and display device provided with same
KR102262407B1 (en) Control circuit device and display comprising thereof
KR102401064B1 (en) Gate driving circuit and Flat panel display device using the same
US10304406B2 (en) Display apparatus with reduced flash noise, and a method of driving the display apparatus
KR102689613B1 (en) Display device and method of detecting defect thereof
KR102437178B1 (en) Gate driver
KR20150034373A (en) Light testing apparatus and method
JP5189007B2 (en) Display device and test method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP