WO2013021487A1 - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
WO2013021487A1
WO2013021487A1 PCT/JP2011/068283 JP2011068283W WO2013021487A1 WO 2013021487 A1 WO2013021487 A1 WO 2013021487A1 JP 2011068283 W JP2011068283 W JP 2011068283W WO 2013021487 A1 WO2013021487 A1 WO 2013021487A1
Authority
WO
WIPO (PCT)
Prior art keywords
nacelle
duct portion
heat exchanger
cooling medium
heat
Prior art date
Application number
PCT/JP2011/068283
Other languages
English (en)
French (fr)
Inventor
悠 明石
松尾 毅
慎輔 佐藤
拓郎 亀田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2012503164A priority Critical patent/JP5449523B2/ja
Priority to KR1020127034050A priority patent/KR20130040947A/ko
Priority to CN2011800316189A priority patent/CN103052797A/zh
Priority to EP11817189.1A priority patent/EP2584195B1/en
Priority to PCT/JP2011/068283 priority patent/WO2013021487A1/ja
Priority to US13/291,662 priority patent/US8632303B2/en
Priority to PCT/JP2012/054770 priority patent/WO2013021670A1/ja
Priority to JP2013505002A priority patent/JP5297568B1/ja
Priority to EP12801794.4A priority patent/EP2743502B1/en
Publication of WO2013021487A1 publication Critical patent/WO2013021487A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/64Aeration, ventilation, dehumidification or moisture removal of closed spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a wind power generator having a cooling function of a heat generation source (for example, a generator, a hydraulic transmission, a transformer, a converter, a control panel, etc.) in a tower or a nacelle.
  • a heat generation source for example, a generator, a hydraulic transmission, a transformer, a converter, a control panel, etc.
  • wind power generators using wind power which is one of renewable energies
  • Wind turbine generators are being increased in size to improve power generation efficiency.
  • wind power generators installed on the ocean tend to be higher in construction costs than wind power generators installed on land, it is possible to improve power generation efficiency and improve profitability by increasing the size. Desired.
  • Patent Document 1 describes a wind power generator provided with a cooling system for cooling a converter, a transformer, and a control device.
  • This cooling system has a plurality of heat exchangers attached to the outer peripheral surface of the tower, in which heat is exchanged between the cooling medium after cooling the converter, the transformer, and the control device with the atmosphere. It has become.
  • Patent Document 2 discloses a cooling device for a wind power generator for cooling a plurality of devices (converters, transformers, bearing boxes, generators, etc.). This cooling device cools the cooling water after cooling a plurality of devices by a heat exchanger attached to the outer wall of the tower or nacelle.
  • Patent Documents 3 and 4 describe a wind power generator in which an air inlet and an air outlet for ventilating the nacelle containing a heat generation source such as a speed increaser and a generator are provided in the nacelle.
  • a heat generation source such as a speed increaser and a generator
  • the outside of the nacelle is ventilated by taking outside air from the intake port and exhausting this outside air from the exhaust port, thereby preventing the temperature inside the nacelle from rising.
  • This invention is made
  • a wind turbine generator includes a tower, at least one blade, a hub that supports the blade, and a duct portion that is supported by the tower and that has an intake port and an exhaust port, and is integrally formed on a wall surface. Cooling after cooling the heat generation source in at least one of the tower and the nacelle by heat exchange between the nacelle and the outside air provided in the duct portion and taken into the duct portion from the intake port A heat exchanger for cooling the medium.
  • the wall surface of the nacelle has a double structure composed of an inner wall surface and an outer wall surface in the region where the duct portion is provided.
  • the inner wall surface of the nacelle constituting the bottom surface of the duct portion has a curved portion that curves inward toward the center line of the nacelle as the distance from the hub increases.
  • the duct portion is formed so that a cross-sectional area increases from the intake port side toward the exhaust port side at least in a range where the curved portion is provided.
  • the cooling medium “cooling the heat generation source” means that the heat generation source is directly or indirectly cooled by the cooling medium, and only when the heat generation source and the cooling medium are directly subjected to heat exchange.
  • a case where the heat generation source is indirectly cooled by the cooling medium by interposing another refrigerant between the heat generation source and the cooling medium is also included.
  • center line of the nacelle is a substantially horizontal straight line extending in a direction from the hub side toward the nacelle rear end side, and means a straight line passing through a substantially central position in the height direction and the width direction of the nacelle.
  • the inner wall surface of the nacelle constituting the bottom surface of the duct portion is provided with a curved portion that curves inward toward the center line of the nacelle as the distance from the hub increases,
  • the cross-sectional area of the duct portion can be increased from the intake port side toward the exhaust port side while suppressing the above.
  • the force which a duct part receives from a wind becomes small, and the reinforcement of a duct part can be simplified.
  • the cross-sectional area of the duct portion increases from the intake port toward the exhaust port, more outside air is taken into the duct portion due to the diffuser effect.
  • the reason why the amount of intake air to the duct portion increases due to the diffuser effect is as follows. That is, the outside air flowing through the duct portion is discharged from the exhaust port after the speed is sufficiently reduced in the portion (diffuser portion) where the cross-sectional area of the duct portion increases. Therefore, the disturbance of the flow of the outside air around the exhaust port is suppressed and the flow becomes smooth, and the air flow rate in the duct portion can be improved.
  • the said wind power generator WHEREIN may be provided with two or more in the said duct part integrally formed in the upper surface and side surface of the said nacelle.
  • the surface area of the upper surface and side surface of the nacelle can be effectively utilized to generate a large amount of heat generated from the heat generation source. It can be effectively released to the atmosphere side.
  • the cooling medium is not cooled only by a single heat exchanger, but is divided into a plurality of heat exchangers, so that each heat exchanger can be configured compactly. Therefore, it becomes possible to hold
  • the said wind power generator WHEREIN It is preferable that the edge part by the side of the said inlet of the said duct part is provided along the centerline of the said nacelle.
  • the flow of outside air from the hub side toward the rear end side of the nacelle is basically along the nacelle center line, so the end of the air intake side of the duct portion is along the nacelle center line, so that outside air flows into the duct portion. Uptake is promoted. Therefore, the amount of heat exchange in the heat exchanger is further increased, and the heat generation source can be cooled more effectively.
  • the wind power generator further includes a fan that increases the amount of outside air taken into the duct portion, and a casing that houses both the fan and the heat exchanger, and at least the heat exchanger, the fan, and the casing
  • a plurality of modules may be provided.
  • the fan that increases the amount of outside air taken into the duct portion the heat exchange amount in the heat exchanger is further increased, and the heat generation source can be cooled more effectively.
  • a plurality of modules including at least a fan and a heat exchanger and a casing for housing the fan and the heat exchanger as components, production of a wind power generator (particularly, a heat generation source cooling system) is produced. And maintainability can be improved.
  • the modularization facilitates the assembly of the wind power generator and improves the productivity.
  • maintenance can be easily performed by replacing the module including the failed part.
  • the number of modules is changed according to the assumed heat generation amount from the heat generation source, it is possible to efficiently produce a plurality of types of wind power generators having different heat generation amounts from the heat generation source.
  • module means a common component unit, and the modules basically have the same shape and structure, but there may be some differences including manufacturing errors.
  • the plurality of modules may be provided in the duct portion formed integrally with the upper surface and the side surface of the nacelle.
  • the plurality of the modules may be provided in the duct part integrally formed on the upper surface and the side surface of the nacelle, while holding each module at a position close to the nacelle central axis, while enjoying the advantages in structural strength, A large amount of heat generated from the heat generation source can be effectively released to the atmosphere side.
  • the wind turbine generator when performing the modularization, further includes a controller that adjusts the amount of heat taken by the outside air from the cooling medium in the heat exchanger of each module by changing the number of operating fans. It may be.
  • the wind turbine generator further includes a shutter provided in the duct portion, and a controller that adjusts an amount of heat taken by the outside air from the cooling medium in the heat exchanger of each module by opening and closing the shutter. Also good.
  • the wind power generator may further include a controller that adjusts the amount of heat taken by the outside air from the cooling medium in the heat exchanger of each module by changing the rotation speed of the fan.
  • the heat exchanger exits the heat generation source.
  • the temperature of the cooling medium used again for the cooling of the heat source can be maintained in an appropriate range, and the heat generation source can be cooled appropriately.
  • the hydraulic fluid of the hydraulic transmission is cooled with a cooling medium, if the temperature of the cooling medium is too low, the hydraulic oil is excessively cooled, and the viscosity of the hydraulic oil exceeds the upper limit. It will exceed the value.
  • the outer side wall surface of the said nacelle which comprises the upper surface of the said duct part may be curving along the bottom face of the said duct part.
  • the nacelle wall surface (the nacelle outer wall surface) that constitutes the upper surface of the duct portion is made to follow the bottom surface of the duct portion, so that the expansion of the cross-sectional area is maintained and the vortex in the external flow of the nacelle is prevented while maintaining the diffuser effect. Can do.
  • the wind turbine generator is connected to a main shaft connected to the hub, a hydraulic pump driven by the main shaft, a hydraulic motor driven by high-pressure hydraulic oil supplied from the hydraulic pump, and the hydraulic motor.
  • a generator that is connected to the hydraulic pump and the hydraulic motor circulates the hydraulic oil between the hydraulic pump and the hydraulic motor, and an oil cooler that cools the hydraulic oil flowing through the oil line;
  • a generator cooler for cooling the generator, and the cooling medium cooled by the heat exchanger may be supplied to the oil cooler and the generator cooler.
  • the main heat generation sources are a hydraulic transmission (hydraulic oil circulating in the oil line) and a generator. Therefore, by supplying the cooling medium cooled by the above-described heat exchanger to the oil cooler and the generator cooler, the heat generated from these heat generation sources can be effectively removed.
  • the wind turbine generator when supplying a cooling medium to an oil cooler and a generator cooler in a wind turbine generator having a hydraulic transmission, the wind turbine generator is provided in the nacelle and cools the air in the nacelle.
  • a cooling device may be further provided, and the cooling medium cooled by the heat exchanger may be supplied to the nacelle cooler.
  • the wind power generator when supplying a cooling medium to an oil cooler, a generator cooler, and a nacelle cooler in a wind power generator equipped with a hydraulic transmission, is configured such that the temperature of the hydraulic oil in the oil line, the temperature of the generator The amount of heat exchange in at least one of the oil cooler, the generator cooler, the nacelle cooler, and the heat exchanger is adjusted based on at least one of an air temperature in the nacelle and a temperature of the cooling medium.
  • a controller may be further provided. This makes it possible to control the temperature of the hydraulic oil, the generator temperature, the air temperature in the nacelle, the cooling medium temperature, etc. by adjusting the heat exchange amount in the oil cooler, generator cooler, nacelle cooler, heat exchanger, etc. .
  • the wind turbine generator when supplying a cooling medium to an oil cooler, a generator cooler, and a nacelle cooler in a wind turbine generator having a hydraulic transmission, includes a fan that increases the amount of outside air taken into the duct portion, A casing that houses both the fan and the heat exchanger, and a plurality of modules including at least the heat exchanger, the fan, and the casing are provided, and the temperature of the hydraulic oil in the oil line,
  • the apparatus may further include a controller that controls the fan and the heat exchanger of each module based on at least one of a generator temperature, an air temperature in the nacelle, and a temperature of the cooling medium.
  • the temperature of the hydraulic oil, the generator temperature, and the nacelle can be controlled by controlling the fan and heat exchanger of each module (for example, controlling the number of operating fans, controlling the rotational speed of the fans, and controlling the flow rate of the cooling medium in the heat exchanger).
  • the internal air temperature, the cooling medium temperature, and the like can be adjusted.
  • the cooling medium may be water or air to which an antifreeze is added.
  • water having a specific heat higher than that of a general gas (such as air) as the cooling medium the required circulation amount of the cooling medium can be reduced and the cooling system can be made compact.
  • the addition of the antifreeze liquid can prevent a failure of the cooling system due to freezing of the cooling medium (water) even when the outside air temperature becomes below freezing point.
  • air air as a cooling medium
  • the outer wall surface of the nacelle constituting the upper surface of the duct portion is preferably bent or curved outward in the direction away from the center line of the nacelle on the exhaust port side.
  • the amount of outside air taken into the duct portion can be increased for the following reason. Increase. That is, the air flowing outside the duct portion along the outer wall surface of the nacelle is accelerated because the flow area is reduced at a portion bent or curved outside the outer wall surface of the nacelle, so that the dynamic pressure rises, and accordingly. Static pressure decreases.
  • the pressure (static pressure) on the wake side of the bent or curved portion of the outer wall surface of the nacelle becomes low.
  • the nacelle outer wall surface discontinuously expands outward in the bent or curved portion, a vortex is generated on the wake side of this portion, and this also reduces the pressure in that region. Therefore, in addition to the above-described diffuser effect, more outside air can be drawn into the duct portion by the low pressure on the wake side of the portion bent or curved outside the outer wall surface of the nacelle.
  • a curved portion that curves inward toward the center line of the nacelle as it gets farther from the hub is provided on the inner wall surface of the nacelle that constitutes the bottom surface of the duct portion, while suppressing the protrusion of the duct portion to the outside
  • the cross-sectional area of the duct part can be increased from the intake port toward the exhaust port.
  • the cross-sectional area of the duct portion increases from the intake port toward the exhaust port, a large amount of outside air is taken into the duct portion due to the diffuser effect. Accordingly, the amount of heat taken by the outside air from the cooling medium in the heat exchanger increases, and the heat generation source can be cooled effectively.
  • FIG. 1 It is a figure showing the whole wind power generator composition concerning a 1st embodiment. It is a figure which shows the structural example of the cooling-medium circulation path provided with two or more heat exchangers for cooling a cooling medium. It is a figure which shows the other structural example of the cooling-medium circulation path provided with two or more heat exchangers for cooling a cooling medium. It is a figure which shows an example of the detailed structure of the duct part of a nacelle, (A) is a partial cross section perspective view which shows the structural example of a nacelle, (B) is the nacelle along the YZ plane in FIG. 4 (A). It is sectional drawing.
  • FIG. 1 is a diagram illustrating an overall configuration of the wind turbine generator according to the first embodiment.
  • the wind power generator 1 shown in the figure mainly includes a tower 2, a nacelle 4 supported by the tower 2, and a rotor 6 that rotates by wind energy.
  • FIG. 1 illustrates an offshore wind power generator installed on the sea surface SL as the wind power generator 1, the wind power generator 1 may be installed on land.
  • the rotor 6 includes at least one (for example, three) blades 6A and a hub 6B that supports the blades 6A.
  • the hub 6B is connected to a main shaft 5 housed in the nacelle 4. As a result, when the blade 6A receives wind and the rotor 6 rotates, the main shaft 5 connected to the hub 6B also rotates.
  • the hydraulic transmission 10 includes a hydraulic pump 12 connected to the main shaft 5, a hydraulic motor 14 connected to the generator 20, and an oil line 16 provided between the hydraulic pump 12 and the hydraulic motor 14.
  • the oil line 16 includes a high-pressure oil line 16A that connects the discharge side of the hydraulic pump 12 and the suction side of the hydraulic motor 14, and a low-pressure oil line 16B that connects the suction side of the hydraulic pump 12 and the discharge side of the hydraulic motor 14. It is comprised by.
  • the hydraulic pump 12 is driven by the main shaft 5 to generate high-pressure hydraulic oil.
  • the high-pressure hydraulic oil is supplied to the hydraulic motor 14 via the high-pressure oil line 16A, and the hydraulic motor 14 is driven by the high-pressure hydraulic oil.
  • the generator 20 connected to the hydraulic motor 14 is driven, and electric power is generated in the generator 20.
  • the hydraulic oil discharged from the hydraulic motor 14 is supplied to the hydraulic pump 12 via the low-pressure oil line 16 ⁇ / b> B, and is boosted again by the hydraulic pump 12 and sent to the hydraulic motor 14.
  • the oil cooler 18 for cooling the hydraulic oil is connected to the low pressure oil line 16B in parallel with the low pressure oil line 16B. That is, the oil cooler 18 is provided in the parallel line 17 branched from the low pressure oil line 16B and joined again to the low pressure oil line 16B. In the oil cooler 18, the hydraulic oil flowing through the parallel line 17 is cooled by heat exchange with a cooling medium flowing through a cooling medium circulation path 30 described later. Note that the flow rate of the hydraulic oil in the parallel line 17 can be adjusted by the opening degree of the valve 19 in order to maintain the temperature of the hydraulic oil in an appropriate range.
  • the generator 20 is provided with a generator cooler 22 for cooling the generator 20.
  • the generator cooler 22 is configured as a cooling jacket provided around the generator 20, for example.
  • the generator cooler 22 cools the generator 20 by heat exchange with a cooling medium supplied from a cooling medium circulation path 30 described later.
  • the cooling medium circulation path 30 is a flow path for circulating a cooling medium for cooling the heat generation source of the wind turbine generator 1.
  • the hydraulic transmission 10 and the generator 20 housed in the nacelle 4 will be described as an example of the heat generation source of the wind power generator 1.
  • a refrigerant made of any liquid or gas can be used as the cooling medium circulating in the cooling medium circulation path 30, a refrigerant made of any liquid or gas can be used.
  • water or air to which an antifreeze liquid is added may be used.
  • the required circulation amount of the cooling medium can be reduced by using water having a large specific heat as compared with a general gas (such as air) as the cooling medium.
  • the addition of the antifreeze liquid can prevent a failure of the cooling system due to freezing of the cooling medium (water) even when the outside air temperature becomes below freezing point.
  • the cooling medium circulation path 30 that supplies the cooling medium to the oil cooler 18 and the generator cooler 22 is configured as a closed loop refrigerant circuit and is accommodated in the nacelle 4.
  • the cooling medium circulation path 30 is provided with a nacelle cooler 32 for cooling the air in the nacelle 4.
  • the nacelle cooler 32 is configured as a heat exchanger with a fan including a fan and a heat transfer tube group.
  • the air in the nacelle 4 sucked (or pushed) by the fan is cooled by heat exchange with the cooling medium supplied from the cooling medium circulation path 30 to the heat transfer tube group. .
  • the air in the nacelle 4 heated by the heat radiation from the heat generation source of the wind power generator 1 can be effectively cooled.
  • a heat exchanger 50 including a heat transfer tube group is provided on the downstream side of the oil cooler 18 and the generator cooler 22 in the cooling medium circulation path 30.
  • the heat exchanger 50 is disposed in the duct portion 40 of the nacelle 4.
  • the cooling medium after passing through the oil cooler 18 and the generator cooler 22 is cooled by heat exchange with the outside air flowing in the duct portion 40 of the nacelle 4.
  • FIG. 1 shows only one set of the duct portion 40 and the heat exchanger 50, but the duct portion 40 and the heat exchange are determined according to the heat generation amount from the heat generation source of the assumed wind power generator 1.
  • a plurality of sets of containers 50 may be provided.
  • a heat exchanger 50 may be provided in each of the duct portions 40A and 40B provided on the upper surface 4A and the side surface 4B of the nacelle 4.
  • the number of heat exchangers 50 provided for one duct part 40 is not particularly limited, and a plurality of heat exchangers 50 may be provided in each duct part 40.
  • FIG. 2 and 3 are diagrams showing a configuration example of the cooling medium circulation path 30 provided with a plurality of heat exchangers 50.
  • the plurality of heat exchangers 50 may be connected to the coolant circulation path 30 via headers (51A, 51B) as shown in FIG. 2, or as shown in FIG.
  • a plurality of heat exchangers 50 may be connected to the cooling medium circulation path 30 in series.
  • the cooling medium flowing into the inlet header 51A from the cooling medium circulation path 30 is supplied to each heat exchanger 50 and cooled, and then circulated through the outlet header 51B. Returned to the road 30.
  • the cooling medium flowing through the cooling medium circulation path 30 is cooled while sequentially passing through the plurality of heat exchangers 50 arranged in series.
  • FIG. 4 is a view showing an example of a detailed structure of the duct portion 40 of the nacelle 4,
  • FIG. 4A is a partial cross-sectional perspective view showing an example of the configuration of the nacelle 4, and FIG. It is sectional drawing of the nacelle 4 along the YZ plane in A).
  • 4A and 4B show a state in which the heat exchanger 50 is removed for convenience of explaining the detailed structure of the duct portion 40.
  • duct portions 40A and 40B are provided on the upper surface 4A and the side surface 4B of the nacelle 4, respectively.
  • FIG. 4A shows an example in which the duct portion 40B is provided only on one side surface 4B of the nacelle 4, the duct portion 40B may be provided on both side surfaces 4B of the nacelle 4.
  • Each duct portion 40 has an intake port 42 and an exhaust port 44, and is integrally formed on the wall surface of the nacelle 4. That is, the wall surface of the nacelle 4 has a double structure of the inner wall surface 46 and the outer wall surface 48 in the region where the duct portion 40 is provided.
  • the bottom surface of the duct portion 40 is constituted by the inner wall surface 46 of the nacelle 4, and the upper surface of the duct portion 40 is constituted by the outer wall surface 48 of the nacelle 4.
  • the bottom surface of the duct portion 40 means a surface closer to the central axis C of the nacelle 4 among the wall surfaces (46, 48) of the nacelle 4 constituting the duct portion 40, and the upper surface of the duct portion 40 means the duct.
  • reference numeral 46 is used to indicate both the inner wall surface of the nacelle 4 and the bottom surface of the duct part 40
  • reference numeral 48 is used to indicate both the outer wall surface of the nacelle 4 and the upper surface of the duct part 40.
  • each duct portion 40 (the inner wall surface 46 of the nacelle 4) has a curved portion 47 that curves inward toward the nacelle central axis C as the distance from the hub 6B increases.
  • the height H of the duct portion 40 (the distance between the bottom surface 46 and the top surface 48 of the duct portion 40) gradually increases from the intake port 42 side to the exhaust port 44 side in the range where the curved portion 47 is provided. Yes. Accordingly, the cross-sectional area of the duct portion 40 is reduced to the intake air while the outward protrusion of the upper surface 48 of the duct portion 40 is suppressed (protrusion of the upper surface 48 of the duct portion 40 away from the nacelle central axis C is suppressed).
  • the height H of the duct portion 40 means the distance between the bottom surface 46 and the top surface 48 of the duct portion 40.
  • the duct portion 40A provided on the upper surface 4A of the nacelle 4 it indicates the dimension of the duct portion 40A in the Z direction in FIG. 4A, and the duct portion 40B provided on the side surface 4B of the nacelle 4 In this case, the dimension of the duct part 40B in the X direction in FIG.
  • the width W of the duct portion 40 may be gradually increased from the intake port 42 side toward the exhaust port 44 side.
  • the cross-sectional area of the duct part 40 can be increased further.
  • 4A and 4B show how the width W of the duct portion 40B provided on the side surface 4B of the nacelle 4 is gradually increased from the intake port 42 side toward the exhaust port 44 side.
  • the width W of the duct part 40 means a dimension in a direction orthogonal to the height direction of the duct part 40.
  • the dimension of the duct portion 40A in the X direction in FIG. 4A indicates the dimension of the duct portion 40B provided on the side surface 4B of the nacelle 4.
  • the air inlet 42 of the duct portion 40 is preferably arranged on the rear end side (the side far from the hub 6B) from the center position in the longitudinal direction of the nacelle 4 (direction of the nacelle central axis C).
  • the air inlet 42 of the duct portion 40A provided on the upper surface 4A of the nacelle 4 is located on the rear end side (the side farther from the hub 6B) than the center position in the longitudinal direction of the nacelle 4.
  • each duct portion 40 on the inlet 42 side is provided along the nacelle central axis C.
  • the end portion on the inlet 42 side of the duct portion 40A is formed along the nacelle central axis C substantially parallel to the XY plane.
  • the end portion on the air inlet 42 side of the duct portion 40B is formed along the nacelle central axis C substantially parallel to the YZ plane.
  • the upper surface 48 of the duct portion 40 (the outer wall surface 48 of the nacelle 4) may be curved along the bottom surface 46 of the duct portion 40. In this way, by causing the upper surface 48 of the duct portion 40 to be along the bottom surface 46 of the duct portion 40, it is possible to prevent vortices in the external flow of the nacelle while maintaining the expansion of the cross-sectional area and maintaining the diffuser effect.
  • the curved portion that curves inward toward the center line C of the nacelle 4 on the bottom surface 46 (inner wall surface 46 of the nacelle 4) of the duct portions 40A and 40B as the distance from the hub 6B increases. Since 47 is provided, it is possible to increase the cross-sectional area of the duct portions 40A and 40B from the intake port 42 side toward the exhaust port 44 side while suppressing the outward protrusion of the duct portions 40A and 40B. Accordingly, since the outward extension of the duct portions 40A and 40B is suppressed, the force received by the duct portions 40A and 40B from the wind (flow of outside air) is reduced, and the reinforcement of the duct portions 40A and 40B can be simplified.
  • the cross-sectional areas of the duct portions 40A and 40B increase from the intake port 42 side toward the exhaust port 44 side, more outside air is taken into the duct portions 40A and 40B due to the diffuser effect. Therefore, the amount of heat taken by the outside air from the cooling medium in the heat exchanger 50 increases, and the heat generation source (hydraulic transmission 10 and generator 20) can be cooled effectively.
  • the example in which the hydraulic transmission 10 and the generator 20 that are cooling targets of the cooling medium flowing through the cooling medium circulation path 30 are housed in the nacelle 4 has been described. At least a portion and the generator 20 may be accommodated in the tower 2.
  • the hydraulic pump 12 is housed in the nacelle 4
  • the hydraulic motor 14 and the generator 20 connected thereto are housed in the tower 2, and the coolant flows through the coolant circulation path 30 extending to the tower 2.
  • the hydraulic oil flowing through the oil line 16 and the generator 20 may be cooled.
  • the heat generation source to be cooled by the cooling medium flowing through the cooling medium circulation path 30 is not only the hydraulic transmission 10 and the generator 20, but also lubricating oil for the main bearing that rotatably supports the main shaft 5 on the nacelle 4 side, Arbitrary heat sources such as a transformer and converter provided between the generator 20 and the power system, and a control panel configured with various devices for controlling each part of the wind power generator 1 may be used. Further, in the case of a wind turbine generator that transmits the rotation of the main shaft 5 to the generator 20 via the speed increaser instead of the hydraulic transmission 10, the lubricating oil of the speed increaser is cooled by the cooling medium flowing through the cooling medium circulation path 30. May be.
  • the wind power generator of the present embodiment has the same configuration as that of the wind power generator 1 of the first embodiment already described, except that a fan is additionally provided in the duct portion 40 of the nacelle 4. Therefore, here, the same reference numerals are given to members common to the first embodiment, and the description thereof is omitted, and the description will focus on parts different from the first embodiment.
  • FIG. 5 is a diagram showing a configuration around the duct portion 40 of the wind turbine generator according to the present embodiment.
  • a fan 52 is provided in the duct portion 40 of the nacelle 4 in addition to the heat exchanger 50.
  • the fan 52 may be arranged on either the upstream side or the downstream side of the heat exchanger 50.
  • a structure in which the fan 52 is arranged on the upstream side of the heat exchanger 50 push ventilation type: By adopting Forced Drive Type
  • the heat exchanger 50 can be protected to some extent from rain, snow, and the like by the fan 52.
  • FIG. 6 is a diagram illustrating a state in which the rotation speed of the fan 52 is controlled by the controller.
  • FIG. 7 is a diagram illustrating a state in which the operating state of the fan 52 is controlled by the controller.
  • the controller 60 determines the rotational speed of the fan 52 based on at least one of the temperature of the hydraulic oil in the oil line 16, the temperature of the generator 20, the air temperature in the nacelle 4, and the temperature of the cooling medium. And the amount of heat exchange in the heat exchanger 50 is adjusted.
  • the temperature of the hydraulic oil is measured by the temperature sensor T ⁇ b> 1 provided in the low-pressure oil line 16 ⁇ / b> B on the downstream side of the parallel line 17, and the temperature of the generator 20 is measured by the temperature sensor T ⁇ b> 2 attached to the generator 20.
  • the temperature of the cooling medium is measured by the temperature sensor T3 provided in the cooling medium circulation path 30 on the downstream side of the heat exchanger 50.
  • the air temperature in the nacelle 4 is measured by a temperature sensor (not shown) installed in the nacelle 4.
  • a temperature sensor not shown
  • the controller 60 reduces the rotational speed of the fan 52 (including making the rotational speed zero) and operates. Prevent overcooling of the oil.
  • the degree of opening of the valve 19 provided in the parallel line 17 may be adjusted together to reduce the flow rate of the hydraulic oil in the oil cooler 18 to prevent overcooling of the hydraulic oil more reliably.
  • the temperature of the generator 20 measured by the temperature sensor T2 the temperature of the cooling medium measured by the temperature sensor T3, the air temperature in the nacelle 4 measured by a temperature sensor (not shown), and the like fall within a desired range.
  • the rotation speed of the fan 52 may be controlled by the controller 60.
  • the number of operating fans 52 is controlled based on at least one of the temperature of hydraulic oil in the oil line 16, the temperature of the generator 20, the air temperature in the nacelle 4, and the temperature of the cooling medium.
  • a controller 62 may be provided. For example, when the hydraulic oil temperature of the low-pressure oil line 16B measured by the temperature sensor T1 is equal to or lower than the threshold, the controller 62 reduces the number of operating fans 52 to prevent overcooling of the hydraulic oil. At this time, the degree of opening of the valve 19 provided in the parallel line 17 may be adjusted together to reduce the flow rate of the hydraulic oil in the oil cooler 18 to prevent overcooling of the hydraulic oil more reliably.
  • the temperature of the generator 20 measured by the temperature sensor T2 the temperature of the cooling medium measured by the temperature sensor T3, the air temperature in the nacelle 4 measured by a temperature sensor (not shown), and the like fall within a desired range.
  • the operation number control of the fans 52 by the controller 62 may be performed.
  • FIG. 8 is a partial cross-sectional perspective view showing a module composed of a combination of the heat exchanger 50, the fan 52, and the casing.
  • the module M includes a heat exchanger 50, a fan 52, and a casing 53 that holds both the heat exchanger 50 and the fan 52. Then, by assembling an arbitrary number of modules M to the nacelle 4, it is possible to improve the productivity and maintainability of the wind turbine generator. That is, the modularization facilitates the assembly of the wind power generator and improves the productivity.
  • each duct part 40 40A, 40B
  • one module M may be installed in each duct part 40 (40A, 40B), or a plurality of modules M may be installed in each duct part 40 (40A, 40B).
  • the wind power generator according to the present embodiment has the same configuration as that of the wind power generator 1 according to the first embodiment described above except that a shutter is additionally provided in the duct portion 40 of the nacelle 4. Therefore, here, the same reference numerals are given to members common to the first embodiment, and the description thereof is omitted, and the description will focus on parts different from the first embodiment.
  • FIG. 9 is a diagram showing a configuration around the duct portion 40 of the wind turbine generator according to the present embodiment.
  • a shutter 54 is provided in the duct portion 40 of the nacelle 4 in addition to the heat exchanger 50.
  • the shutter 54 may be composed of a plurality of blades 55 arranged substantially parallel to each other and a frame body that supports the plurality of blades 55, and has various configurations other than this example. A damper can also be used.
  • the shutter 54 When the shutter 54 is opened and closed, the flow of outside air in the duct portion 40 can be blocked or allowed to pass. Thereby, the amount of heat exchange between the cooling medium and the outside air in the heat exchanger 50 can be adjusted.
  • the shutter 54 may be provided on either the upstream side or the downstream side of the heat exchanger 50. However, the shutter 54 is provided on the upstream side of the heat exchanger 50 as shown in FIG.
  • the heat exchanger 50 can be protected from snow and snow.
  • FIG. 10 is a diagram illustrating a state in which opening / closing control of the shutter 54 is performed by the controller.
  • the controller 64 opens and closes each shutter 54 based on at least one of the temperature of the hydraulic oil in the oil line 16, the temperature of the generator 20, the air temperature in the nacelle 4, and the temperature of the cooling medium. Are individually controlled to adjust the amount of heat exchange in each heat exchanger 50.
  • the controller 64 increases the closed shutter 54 to prevent overcooling of the hydraulic oil.
  • the degree of opening of the valve 19 provided in the parallel line 17 may be adjusted together to reduce the flow rate of the hydraulic oil in the oil cooler 18 to prevent overcooling of the hydraulic oil more reliably.
  • the temperature of the generator 20 measured by the temperature sensor T2 the temperature of the cooling medium measured by the temperature sensor T3, the air temperature in the nacelle 4 measured by a temperature sensor (not shown), and the like fall within a desired range.
  • the opening / closing control of the shutter 54 by the controller 64 may be performed.
  • the controller 64 may control the opening degree of each shutter 54 to finely adjust the heat exchange amount in the heat exchanger 50.
  • the wind power generator of the present embodiment has the same configuration as the wind power generator 1 of the first embodiment described above, except for the shape of the upper surface 48 of the duct portion 40. Therefore, here, the same reference numerals are given to members common to the first embodiment, and the description thereof is omitted, and the description will focus on parts different from the first embodiment.
  • FIG. 11 is a diagram showing a configuration around the duct portion 40 of the wind turbine generator according to the present embodiment.
  • the inner wall surface 46 of the nacelle 4 constituting the bottom surface of the duct portion 40 is curved inward.
  • an outer wall surface 48 of the nacelle 4 constituting the upper surface of the duct portion 40 is provided with a flange portion 49A at an end portion on the exhaust port 44 side, and the flange portion 49A is outward in a direction away from the nacelle central axis. It is bent.
  • the outer wall surface 48 of the nacelle 4 is provided with a curved portion 49B on the upstream side of the collar portion 49A, and is curved outward in a direction away from the nacelle central axis at the curved portion 49B.
  • the boundary between the curved portion 49B and the collar portion 49A is discontinuous, and abruptly transitions from the curved portion B that curves smoothly to the linear collar portion 49A that curves outward.
  • the air flowing outside the duct portion 40 along the outer wall surface 48 of the nacelle 4 is accelerated to reduce the flow path area in the region A around the flange portion 49A and the curved portion 49B.
  • the dynamic pressure increases and the static pressure decreases accordingly.
  • the pressure (static pressure) in the region B located on the downstream side of the collar portion 49A is low. Further, since the vortex is generated in the region B on the wake side of the collar portion 49A, the pressure in the region B also decreases due to this. Therefore, in addition to the diffuser effect due to the increase in the cross-sectional area of the duct portion 40 described above, more outside air can be drawn into the duct portion 40 from the air inlet 42 by the low pressure in the region B on the downstream side of the collar portion 49A. . Therefore, the amount of heat taken by the outside air from the cooling medium in the heat exchanger 50 increases, and the heat generation source of the wind power generator 1 can be effectively cooled.

Abstract

タワーやナセル内の熱発生源をより効果的に冷却しうる風力発電装置を提供することを目的とする。風力発電装置1は、タワー2と、少なくとも一枚のブレード6Aと、ブレード6Aを支持するハブ6Bと、タワー2によって支持されるナセル4とを備える。ナセル4の壁面には、吸気口42および排気口44を有するダクト部40が一体的に形成される。ダクト部40内には熱交換器50が設けられ、該熱交換器50では、吸気口42からダクト部40内に取り込まれた外気との熱交換によって、タワー2及びナセル4の少なくとも一方の内部における熱発生源を冷却媒体で冷却した後の冷却媒体を冷却する。ナセル4の壁面は、ダクト部40が設けられた領域において、内側壁面46と外側壁面48とからなる二重構造になっている。また、ダクト部40の底面を構成するナセル4の内側壁面46は、ハブ6Bから遠くなるにつれてナセル4の中心線に向かって内側に湾曲する湾曲部47を有する。そして、ダクト部40は、少なくとも湾曲部47が設けられた範囲において、吸気口42側から排気口44側に向かって断面積が増大するように形成されている。

Description

風力発電装置
 本発明は、タワーやナセル内における熱発生源(例えば、発電機、油圧トランスミッション、変圧器、コンバータ、制御盤等)の冷却機能を備えた風力発電装置に関する。
 近年、地球環境の保全の観点から、再生可能エネルギーの一つである風力を利用した風力発電装置の普及が進んでいる。風力発電装置は、発電効率を向上させるために大型化が進められている。特に、洋上に設置される風力発電装置は、陸上に設置される風力発電装置に比べて建設コストが高くなりがちであるから、大型化によって発電効率を向上させて、採算性を改善することが求められる。
 ところが、風力発電装置の大型化により発電機の出力が増加すると、発電機からの熱損失も大きくなる。また、油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションによってロータの回転を発電機に伝達するようにした風力発電装置では、発電機の熱損失に加えて、油圧トランスミッションからの熱損失も考慮しなければならない。そのため、発電機や油圧トランスミッション等の熱発生源の冷却機能を備えた風力発電装置の開発が望まれる。
 この点、特許文献1には、コンバータや、変圧器や、制御装置を冷却するための冷却システムを備えた風力発電装置が記載されている。この冷却システムは、タワー外周面に取り付けられた複数の熱交換器を有し、該熱交換器において、コンバータや、変圧器や、制御装置を冷却した後の冷却媒体を大気と熱交換させるようになっている。
 また、特許文献2には、複数のデバイス(コンバータ、変圧器、軸受箱、発電機等)を冷却するための風力発電装置用の冷却装置が記載されている。この冷却装置は、複数のデバイスを冷却した後の冷却水を、タワーやナセルの外壁に取り付けられた熱交換器によって冷却するようになっている。
 また、特許文献3及び4には、増速機や発電機等の熱発生源を収納したナセル内を換気するための吸気口及び排気口をナセルに設けた風力発電装置が記載されている。これらの風力発電装置では、吸気口から外気を取り入れ、この外気を排気口から排出することで、ナセル内が換気され、ナセル内の温度上昇を防止するようになっている。
欧州特許出願公開第1798414号明細書 欧州特許出願公開第2007184号明細書 特開2008-286115号公報 特開2010-31722号公報
 しかしながら、風力発電装置の大型化に伴い、熱発生源からの放熱量はますます増加する傾向にある。そのため、特許文献1~4に記載の風力発電装置では、冷却能力が十分に得られないことがある。
 本発明は、上述の事情に鑑みてなされたものであり、タワーやナセル内の熱発生源をより効果的に冷却しうる風力発電装置を提供することを目的とする。
 本発明に係る風力発電装置は、タワーと、少なくとも一枚のブレードと、前記ブレードを支持するハブと、前記タワーによって支持され、吸気口および排気口を有するダクト部が壁面に一体的に形成されたナセルと、前記ダクト部内に設けられて、前記吸気口から前記ダクト部内に取り込まれた外気との熱交換によって、前記タワー及び前記ナセルの少なくとも一方の内部における熱発生源を冷却した後の冷却媒体を冷却する熱交換器とを備える。前記ナセルの壁面は、前記ダクト部が設けられた領域において、内側壁面と外側壁面とからなる二重構造になっている。また、前記ダクト部の底面を構成する前記ナセルの内側壁面は、前記ハブから遠くなるにつれて前記ナセルの中心線に向かって内側に湾曲する湾曲部を有する。そして、前記ダクト部は、少なくとも前記湾曲部が設けられた範囲において、前記吸気口側から前記排気口側に向かって断面積が増大するように形成されている。
 なお、冷却媒体が「熱発生源を冷却」するとは、熱発生源を冷却媒体で直接又は間接的に冷却することを意味し、熱発生源と冷却媒体とを直接的に熱交換させる場合だけでなく、熱発生源と冷却媒体との間に他の冷媒を介在させて熱発生源を冷却媒体で間接的に冷却する場合も含む。
 また、「ナセルの中心線」とは、ハブ側からナセル後端側に向かう方向に沿った略水平な直線であり、ナセルの高さ方向及び幅方向の略中央の位置を通る直線をいう。
 上記風力発電装置によれば、ダクト部の底面を構成するナセル内側壁面に、ハブから遠くなるにつれてナセルの中心線に向かって内側に湾曲した湾曲部を設けたので、ダクト部の外側への張り出しを抑制しながら、ダクト部の断面積を吸気口側から排気口側に向かって増大させることができる。このようにダクト部の外側への張り出しが抑制されるため、ダクト部が風(外気の流れ)から受ける力が小さくなり、ダクト部の補強を簡素化できる。また、ダクト部の断面積が吸気口から排気口に向かって増大するので、ディフューザ効果によって、より多くの外気がダクト部に取り込まれるようになる。よって、熱交換器において冷却媒体から外気に移動する熱量が増えて、熱発生源の冷却を効果的に行うことができる。
 なお、ディフューザ効果によってダクト部への吸気量が増大する理由は以下のとおりである。すなわち、ダクト部を流れる外気は、ダクト部の断面積が増大する部分(ディフューザ部)において、速度が十分に低減された後に排気口から排出される。そのため、排気口周辺における外気の流れの乱れが抑制されてスムーズな流れになり、ダクト部内における空気流量を向上させることができる。
 上記風力発電装置において、前記熱交換器は、前記ナセルの上面および側面に一体的に形成された前記ダクト部内に複数設けられていてもよい。
 このように、ナセルの上面および側面に一体的に形成されたダクト部内に熱交換器を複数設けることで、ナセルの上面および側面の表面積を有効活用し、熱発生源から発熱した大量の熱を大気側に効果的に放出することができる。また、単一の熱交換器だけで冷却媒体の冷却を行うのではなく、複数の熱交換器に分割して設けることで、各熱交換器をコンパクトに構成することができる。そのため、各熱交換器をナセル中心軸に近い位置でダクト内に保持することが可能になり、構造強度上も有利になり、補強を最小限にできる。
 上記風力発電装置において、前記ダクト部の前記吸気口側の端部は、前記ナセルの中心線に沿って設けられていることが好ましい。
 ハブ側からナセル後端側に向かう外気の流れは、基本的にナセル中心線に沿っているため、ダクト部の吸気側の端部をナセル中心線に沿わせることで、ダクト部内への外気の取り込みが促進される。よって、熱交換器における熱交換量がさらに増加し、熱発生源の冷却をより効果的に行うことができる。
 上記風力発電装置は、前記ダクト部内への外気の取り込み量を増大させるファンと、前記ファンおよび前記熱交換器の両方を収納するケーシングとをさらに備え、少なくとも前記熱交換器、前記ファンおよび前記ケーシングからなるモジュールが複数設けられていてもよい。
 このように、ダクト部内への外気の取り込み量を増大させるファンを設けることで、熱交換器における熱交換量がさらに増加し、熱発生源の冷却をより効果的に行うことができる。
 また、少なくとも、ファン及び熱交換器と、該ファン及び熱交換器を収納するケーシングとを構成要素とした複数のモジュールを用いることで、風力発電装置(特に、熱発生源の冷却システム)の生産性及びメンテナンス性を向上させることができる。すなわち、モジュール化によって風力発電装置の組み立てが容易となり、生産性が向上する。しかも、万が一、熱交換器やファンが故障しても、故障部分を含むモジュールごと交換することで、メンテナンスを容易に行うことができる。さらに、想定される熱発生源からの発熱量に応じてモジュールの個数を変更すれば、熱発生源からの発熱量が異なる複数機種の風力発電装置の生産を効率的に行うことができる。
 なお、「モジュール」とは共通化された部品単位を意味し、モジュール同士は基本的に同一の形状及び構造を有するが、製作上の誤差を含めて多少の差異があってもよい。
 上記モジュール化を行う場合、複数の前記モジュールは、前記ナセルの上面および側面に一体的に形成された前記ダクト部内に設けられていてもよい。
 このように、ナセルの上面および側面に一体的に形成されたダクト部内に前記モジュールを複数設けることで、各モジュールをナセル中心軸に近い位置で保持して構造強度上のメリットを享受しつつ、熱発生源から発熱した大量の熱を大気側に効果的に放出することができる。
 また、上記モジュール化を行う場合、上記風力発電装置は、作動状態の前記ファンの個数を変化させて、各モジュールの前記熱交換器において外気が前記冷却媒体から奪う熱量を調節するコントローラをさらに備えていてもよい。
 あるいは、上記風力発電装置は、前記ダクト部に設けられたシャッターと、前記シャッターの開閉により、各モジュールの前記熱交換器において外気が前記冷却媒体から奪う熱量を調節するコントローラとをさらに備えていてもよい。
 あるいは、上記風力発電装置は、前記ファンの回転数を変化させて、各モジュールの前記熱交換器において外気が前記冷却媒体から奪う熱量を調節するコントローラをさらに備えていてもよい。
 このように、作動状態のファンの個数、シャッターの開閉状態、又はファンの回転数をコントローラにより変化させて、熱交換器における熱交換量を調節することで、熱交換器を出て熱発生源の冷却に再び用いられる冷却媒体の温度を適切な範囲に維持して、熱発生源の冷却を適度に行うことができる。
 特に、油圧トランスミッションを用いた風力発電装置において、油圧トランスミッションの作動油を冷却媒体で冷却する場合、冷却媒体の温度が低すぎると、作動油の冷却が過剰になって、作動油の粘度が上限値を超えてしまう。そして、作動油の粘度が上限値を超えると、油圧トランスミッションにおける損失が大きくなり、発電効率が著しく低下する。そのため、上述した手法のいずれかによって熱交換器における熱交換量を調節して、冷却媒体の温度を適切な範囲に維持すれば、作動油の粘度上昇による油圧トランスミッションの損失を抑制できる。
 また上記風力発電装置において、前記ダクト部の上面を構成する前記ナセルの外側壁面は、前記ダクト部の底面に沿って湾曲していてもよい。
 このように、ダクト部の上面を構成するナセル壁面(ナセル外側壁面)を、ダクト部の底面に沿わせることで、断面積拡大は維持してディフューザ効果を保ちながらナセル外部流れにおける渦を防ぐ事ができる。
 上記風力発電装置は、前記ハブに連結された主軸と、前記主軸によって駆動される油圧ポンプと、前記油圧ポンプから供給される高圧の作動油によって駆動される油圧モータと、前記油圧モータに連結される発電機と、前記油圧ポンプおよび前記油圧モータに接続され、前記油圧ポンプ及び前記油圧モータの間で前記作動油を循環させるオイルラインと、前記オイルラインを流れる前記作動油を冷却するオイルクーラと、前記発電機を冷却する発電機クーラとを備え、前記オイルクーラおよび前記発電機クーラに、前記熱交換器で冷却された前記冷却媒体を供給するようになっていてもよい。
 油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションを備えた風力発電装置の場合、主な熱発生源は油圧トランスミッション(オイルラインを循環する作動油)および発電機である。そこで、上述の熱交換器で冷却された冷却媒体をオイルクーラ及び発電機クーラに供給することで、これらの熱発生源から発生した熱を効果的に除去できる。
 このように、油圧トランスミッションを備えた風力発電装置においてオイルクーラ及び発電機クーラに冷却媒体を供給する場合、上記風力発電装置は、前記ナセル内に設けられ、前記ナセル内の空気を冷却するナセル冷却器をさらに備え、前記ナセル冷却器に、前記熱交換器で冷却された前記冷却媒体を供給するようになっていてもよい。
 これにより、オイルラインを循環する作動油および発電機から発生した熱を除去することに加えて、ナセル内の空気を効果的に冷却できる。
 さらに、油圧トランスミッションを備えた風力発電装置においてオイルクーラ、発電機クーラ及びナセル冷却器に冷却媒体を供給する場合、この風力発電装置は、前記オイルラインにおける前記作動油の温度、前記発電機の温度、前記ナセル内における空気温度および前記冷却媒体の温度の少なくとも一つに基づいて、前記オイルクーラ、前記発電機クーラ、前記ナセル冷却器および前記熱交換器の少なくとも一つにおける熱交換量を調節するコントローラをさらに備えていてもよい。
 これにより、オイルクーラ、発電機クーラ、ナセル冷却器、熱交換器等における熱交換量の調節によって、作動油の温度、発電機温度、ナセル内空気温度、冷却媒体温度等を制御することができる。
 あるいは、油圧トランスミッションを備えた風力発電装置においてオイルクーラ、発電機クーラ及びナセル冷却器に冷却媒体を供給する場合、この風力発電装置は、前記ダクト部内への外気の取り込み量を増大させるファンと、前記ファンおよび前記熱交換器の両方を収納するケーシングとをさらに備え、少なくとも前記熱交換器、前記ファンおよび前記ケーシングからなるモジュールが複数設けられており、前記オイルラインにおける前記作動油の温度、前記発電機の温度、前記ナセル内における空気温度および前記冷却媒体の温度の少なくとも一つに基づいて、各モジュールの前記ファン及び前記熱交換器を制御するコントローラをさらに備えていてもよい。
 これにより、各モジュールのファン及び熱交換器の制御(例えば、ファンの作動台数制御、ファンの回転数制御、熱交換器における冷却媒体の流量制御)によって、作動油の温度、発電機温度、ナセル内空気温度、冷却媒体温度等を調節することができる。
 上記風力発電装置において、前記冷却媒体は、不凍液が添加された水または空気であってもよい。
 冷却媒体として一般的な気体(空気など)よりも比熱の大きい水を用いることで、冷却媒体の必要循環量を少なくし、冷却システムのコンパクト化を図ることができる。また、不凍液の添加により、外気温が氷点下になっても、冷却媒体(水)の凍結による冷却システムの故障を防止できる。
 一方、冷却媒体として空気を用いることで、扱いが楽になり通常の環境で容易得る事ができる。
 また上記風力発電装置において、前記ダクト部の上面を構成する前記ナセルの外側壁面は、前記排気口側において、前記ナセルの中心線から遠ざかる方向に外側に屈曲または湾曲していることが好ましい。
 このように、ダクト部の上面を構成するナセルの外側壁面の吸気口側を外側に屈曲または湾曲させることで、上述のディフューザ効果に加えて、次の理由からダクト部への外気の取り込み量が増大する。
 すなわち、ナセルの外側壁面に沿ってダクト部の外側を流れる空気は、ナセル外側壁面の外側に屈曲または湾曲した部分において流路面積が縮小するために加速されて動圧が上昇し、その分だけ静圧が低下する。そのため、ナセル外側壁面の屈曲または湾曲した部分の後流側における圧力(静圧)は低くなる。しかも、上記屈曲または湾曲した部分においてナセル外側壁面が不連続に外側に拡大している場合、この部分の後流側に渦が発生するため、このことによってもその領域における圧力が低下する。したがって、上述のディフューザ効果に加えて、ナセル外側壁面の外側に屈曲または湾曲した部分の後流側の低い圧力によってより多くの外気をダクト部内に引き込むことができる。
 本発明では、ダクト部の底面を構成するナセル内側壁面に、ハブから遠くなるにつれてナセルの中心線に向かって内側に湾曲した湾曲部を設けたので、ダクト部の外側への張り出しを抑制しながら、ダクト部の断面積を吸気口から排気口に向かって増大させることができる。このようにダクト部の外側への張り出しが抑制されることから、風(外気の流れ)からダクト部が受ける力が小さくなり、ダクト部の補強を簡素化できる。また、ダクト部の断面積が吸気口から排気口に向かって増大するので、ディフューザ効果によって、ダクト部により多くの外気が取り込まれるようになる。よって、熱交換器において冷却媒体から外気が奪う熱量が増えて、熱発生源の冷却を効果的に行うことができる。
第1実施形態に係る風力発電装置の全体構成を示す図である。 冷却媒体を冷却するための熱交換器が複数設けられた冷却媒体循環路の構成例を示す図である。 冷却媒体を冷却するための熱交換器が複数設けられた冷却媒体循環路の他の構成例を示す図である。 ナセルのダクト部の詳細構造の一例を示す図であり、(A)はナセルの構成例を示す一部断面斜視図であり、(B)は図4(A)におけるYZ平面に沿ったナセルの断面図である。 第2実施形態に係る風力発電装置のダクト部周辺の構成を示す図である。 コントローラによりファンの回転数制御を行う様子を示す図である。 コントローラによりファンの稼働状態制御を行う様子を示す図である。 熱交換器、ファン及びケーシングの組み合わせからなるモジュールを示す一部断面斜視図である。 第3実施形態に係る風力発電装置のダクト部周辺の構成を示す図である。 コントローラによりシャッターの開閉制御を行う様子を示す図である。 第4実施形態に係る風力発電装置のダクト部周辺の構成を示す図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
 図1は、第1実施形態に係る風力発電装置の全体構成を示す図である。同図に示す風力発電装置1は、主として、タワー2と、タワー2に支持されるナセル4と、風のエネルギーによって回転するロータ6とを備える。
 なお、図1には、風力発電装置1として海面SL上に設置される洋上風力発電装置を例示しているが、風力発電装置1は陸上に設置されていてもよい。
 ロータ6は、少なくとも一枚(例えば3枚)のブレード6Aと、該ブレード6Aを支持するハブ6Bとで構成される。ハブ6Bは、ナセル4内に収納された主軸5に連結されている。これにより、ブレード6Aが風を受けてロータ6が回転すると、ハブ6Bに連結された主軸5も回転するようになっている。
 ナセル4内には油圧トランスミッション10及び発電機20が収納されている。油圧トランスミッション10は、主軸5に連結された油圧ポンプ12と、発電機20に連結された油圧モータ14と、油圧ポンプ12及び油圧モータ14間に設けられるオイルライン16とを有する。オイルライン16は、油圧ポンプ12の吐出側と油圧モータ14の吸込側とを接続する高圧油ライン16A、および、油圧ポンプ12の吸込側と油圧モータ14の吐出側とを接続する低圧油ライン16Bにより構成されている。
 油圧ポンプ12は、主軸5によって駆動されて高圧の作動油を生成する。この高圧の作動油は、高圧油ライン16Aを介して油圧モータ14に供給され、該高圧の作動油によって油圧モータ14が駆動される。このとき、油圧モータ14に連結された発電機20が駆動され、発電機20において電力が生成される。油圧モータ14から吐出された作動油は、低圧油ライン16Bを介して油圧ポンプ12に供給され、油圧ポンプ12において再び昇圧されて油圧モータ14に送られる。
 低圧油ライン16Bには、作動油を冷却するためのオイルクーラ18が低圧油ライン16Bと並列に接続されている。すなわち、低圧油ライン16Bから分岐し、再び低圧油ライン16Bに合流する並列ライン17にオイルクーラ18が設けられている。オイルクーラ18では、並列ライン17を流れる作動油が、後述の冷却媒体循環路30を流れる冷却媒体と熱交換されて冷却されるようになっている。なお、並列ライン17における作動油の流量は、作動油の温度を適切な範囲に維持するためにバルブ19の開度によって調節可能である。
 また、発電機20には、発電機20を冷却するための発電機クーラ22が設けられている。発電機クーラ22は、例えば発電機20の周囲に設けられた冷却ジャケットとして構成される。発電機クーラ22では、後述の冷却媒体循環路30から供給される冷却媒体との熱交換によって発電機20を冷却するようになっている。
 冷却媒体循環路30は、風力発電装置1の熱発生源の冷却を行うための冷却媒体を循環させる流路である。本実施形態では、風力発電装置1の熱発生源として、ナセル4内に収納された油圧トランスミッション10及び発電機20を例に挙げて説明する。
 冷却媒体循環路30を循環する冷却媒体には、任意の液体又は気体からなる冷媒を用いることができ、例えば不凍液を添加した水や空気を用いてもよい。中でも、冷却媒体として一般的な気体(空気など)に比べて比熱の大きい水を用いることで、冷却媒体の必要循環量を少なくできる。また、不凍液の添加により、外気温が氷点下になっても、冷却媒体(水)の凍結による冷却システムの故障を防止できる。
 オイルクーラ18及び発電機クーラ22に冷却媒体を供給する冷却媒体循環路30は、閉ループの冷媒回路として構成され、ナセル4内に収納されている。冷却媒体循環路30には、オイルクーラ18及び発電機クーラ22以外にも、ナセル4内の空気を冷却するためのナセル冷却器32が設けられている。
 ナセル冷却器32は、ファン及び伝熱管群を備えたファン付き熱交換器として構成される。ナセル冷却器32では、ファンにより吸い込んだ(あるいは押し込んだ)ナセル4内の空気が、冷却媒体循環路30から伝熱管群に供給された冷却媒体と熱交換されて冷却されるようになっている。これにより、風力発電装置1の熱発生源からの放熱によって昇温されたナセル4内の空気を効果的に冷却できる。
 冷却媒体循環路30のオイルクーラ18及び発電機クーラ22の下流側には、伝熱管群からなる熱交換器50が設けられている。この熱交換器50は、ナセル4のダクト部40内に配置されている。熱交換器50では、ナセル4のダクト部40内を流れる外気との熱交換により、オイルクーラ18及び発電機クーラ22を通過した後の冷却媒体が冷却される。
 なお、図1には、一組のダクト部40及び熱交換器50のみを示しているが、想定される風力発電装置1の熱発生源からの発熱量に応じて、ダクト部40及び熱交換器50を複数組設けてもよい。例えば、後で説明する図4(A)及び(B)に示すように、ナセル4の上面4A及び側面4Bに設けたダクト部40A,40Bのそれぞれに熱交換器50を設けてもよい。さらに、一のダクト部40に対して設ける熱交換器50の個数も特に限定されず、各ダクト部40に複数の熱交換器50を設けてもよい。
 図2及び3は、複数の熱交換器50が設けられた冷却媒体循環路30の構成例を示す図である。
 複数の熱交換器50を設ける際、図2に示すようにヘッダ(51A,51B)を介して複数の熱交換器50を冷却媒体循環路30に接続してもよいし、図3に示すように複数の熱交換器50を直列的に冷却媒体循環路30に接続してもよい。前者の場合(図2参照)、冷却媒体循環路30から入口側ヘッダ51Aに流入した冷却媒体が、各熱交換器50に供給されて冷却された後、出口側ヘッダ51Bを介して冷却媒体循環路30に戻される。後者の場合(図3参照)、冷却媒体循環路30を流れる冷却媒体は、直列に配置された複数の熱交換器50を順に通過しながら冷却される。
 次に、図4を用いて、ナセル4のダクト部40の構造について詳細に説明する。図4はナセル4のダクト部40の詳細構造の一例を示す図であり、図4(A)はナセル4の構成例を示す一部断面斜視図であり、図4(B)は図4(A)におけるYZ平面に沿ったナセル4の断面図である。
 なお、図4(A)及び(B)では、ダクト部40の詳細構造を説明する便宜上、熱交換器50を取り外した状態を示している。
 図4(A)及び(B)に示すように、ナセル4の上面4A及び側面4Bには、それぞれ、ダクト部40A,40Bが設けられている。なお、図4(A)にはナセル4の片方の側面4Bのみにダクト部40Bを設けた例を示したが、ナセル4の両方の側面4Bにダクト部40Bを設けてもよい。
 各ダクト部40は、吸気口42及び排気口44を有し、ナセル4の壁面に一体的に形成されている。すなわち、ナセル4の壁面は、ダクト部40が設けられた領域において、内側壁面46と外側壁面48との二重構造になっている。そして、ナセル4の内側壁面46によってダクト部40の底面が構成され、ナセル4の外側壁面48によってダクト部40の上面が構成されている。ここで、ダクト部40の底面とは、ダクト部40を構成するナセル4の壁面(46,48)のうちナセル4の中心軸Cに近いほうを意味し、ダクト部40の上面とは、ダクト部40を構成するナセル4の壁面(46,48)のうちナセル4の中心軸Cから遠いほうを意味する。
 以下、ナセル4の内側壁面およびダクト部40の底面の両方を指すものとして符号46を用い、ナセル4の外側壁面およびダクト部40の上面の両方を指すものとして符号48を用いる。
 各ダクト部40の底面46(ナセル4の内側壁面46)は、ハブ6Bから遠くなるにつれてナセル中心軸Cに向かって内側に湾曲する湾曲部47を有している。ダクト部40の高さH(ダクト部40の底面46と上面48との距離)は、湾曲部47が設けられた範囲において、吸気口42側から排気口44側に向かって徐々に大きくなっている。これにより、ダクト部40の上面48の外側への張り出しが抑制されつつ(ダクト部40の上面48のナセル中心軸Cから遠ざかる方向への突出が抑制されつつ)、ダクト部40の断面積は吸気口42側から排気口44側に向かって増加している。したがって、ダクト部40が風から受ける力を低減してダクト部40の補強を簡素化するとともに、ダクト部40への外気の取り込み量をディフューザ効果により増大させて熱交換器50における熱交換量を増加させることができる。
 なお、ダクト部40の高さHは、ダクト部40の底面46と上面48との距離を意味する。具体的には、ナセル4の上面4Aに設けられたダクト部40Aの場合、図4(A)中のZ方向におけるダクト部40Aの寸法を指し、ナセル4の側面4Bに設けられたダクト部40Bの場合、図4(A)中のX方向におけるダクト部40Bの寸法を指す。
 また、ダクト部40の高さHに加えて、ダクト部40の幅Wを、吸気口42側から排気口44側に向かって徐々に大きくしてもよい。これにより、ダクト部40の断面積をより一層増大させることができる。なお、図4(A)及び(B)には、ナセル4の側面4Bに設けたダクト部40Bの幅Wを吸気口42側から排気口44側に向かって徐々に大きくする様子を示した。
 なお、ダクト部40の幅Wは、ダクト部40の高さ方向に直交する方向における寸法を意味する。具体的には、ナセル4の上面4Aに設けられたダクト部40Aの場合、図4(A)中のX方向におけるダクト部40Aの寸法を指し、ナセル4の側面4Bに設けられたダクト部40Bの場合、図4(A)中のZ方向におけるダクト部40Bの寸法を指す。
 また、ダクト部40の吸気口42は、ナセル4の長手方向(ナセル中心軸Cの方向)における中央位置よりも後端側(ハブ6Bから遠い側)に配置することが好ましい。これにより、ブレード6Aを通過する際に発生した空気流(外気の流れ)の乱れの影響を受けずに、ダクト部40内に外気を安定的に取り込むことができる。なお、図4(A)及び(B)には、ナセル4の上面4Aに設けたダクト部40Aの吸気口42を、ナセル4の長手方向における中央位置よりも後端側(ハブ6Bから遠い側)に配置した例を示した。
 さらに、各ダクト部40の吸気口42側の端部は、ナセル中心軸Cに沿って設けられていることが好ましい。具体的には、ナセル4の上面4Aに設けたダクト部40Aの場合、ダクト部40Aの吸気口42側の端部をナセル中心軸Cに沿ってXY平面と略平行に形成する。一方、ナセル4の側面4Bに設けたダクト部40Bの場合、ダクト部40Bの吸気口42側の端部をナセル中心軸Cに沿ってYZ平面と略平行に形成する。ハブ6B側からナセル4の後端側に向かう外気の流れは、基本的にナセル中心線Cに沿っているため、上述のようにダクト部40の吸気口42側の端部をナセル中心線Cに沿わせることで、ダクト部40内への外気の取り込みが促進される。
 また、図4(A)及び(B)に示すように、ダクト部40の上面48(ナセル4の外側壁面48)は、ダクト部40の底面46に沿って湾曲していてもよい。このように、ダクト部40の上面48を、ダクト部40の底面46に沿わせることで、断面積拡大は維持してディフューザ効果を保ちながらナセル外部流れにおける渦を防ぐ事ができる。
 以上説明したように、本実施形態では、ダクト部40A,40Bの底面46(ナセル4の内側壁面46)に、ハブ6Bから遠くなるにつれてナセル4の中心線Cに向かって内側に湾曲した湾曲部47を設けたので、ダクト部40A,40Bの外側への張り出しを抑制しながら、ダクト部40A,40Bの断面積を吸気口42側から排気口44側に向かって増大させることができる。したがって、ダクト部40A,40Bの外側への張り出しが抑制されることから、ダクト部40A,40Bが風(外気の流れ)から受ける力が小さくなり、ダクト部40A,40Bの補強を簡素化できる。また、ダクト部40A,40Bの断面積が吸気口42側から排気口44側に向かって増大するので、ディフューザ効果によって、より多くの外気がダクト部40A,40Bに取り込まれるようになる。よって、熱交換器50において冷却媒体から外気が奪う熱量が増えて、熱発生源(油圧トランスミッション10及び発電機20)の冷却を効果的に行うことができる。
 なお、上述の第1実施形態では、冷却媒体循環路30を流れる冷却媒体の冷却対象である油圧トランスミッション10及び発電機20がナセル4内に収納されている例について説明したが、油圧トランスミッション10の少なくとも一部及び発電機20はタワー2内に収納されていてもよい。例えば、油圧ポンプ12をナセル4に収納する一方、油圧モータ14及びこれに連結される発電機20をタワー2内に収納し、タワー2内まで延設した冷却媒体循環路30を流れる冷却媒体によってオイルライン16を流れる作動油および発電機20を冷却してもよい。
 また、冷却媒体循環路30を流れる冷却媒体によって冷却されるべき熱発生源は、油圧トランスミッション10及び発電機20だけでなく、主軸5を回転自在にナセル4側に支持する主軸受の潤滑油、発電機20と電力系統との間に設けられる変圧器およびコンバータ、風力発電装置1の各部を制御する各種機器で構成された制御盤等の任意の発熱源であってもよい。また、油圧トランスミッション10に替えて、増速機を介して主軸5の回転を発電機20に伝える風力発電装置の場合、冷却媒体循環路30を流れる冷却媒体によって増速機の潤滑油を冷却してもよい。
[第2実施形態]
 次に第2実施形態に係る風力発電装置について説明する。本実施形態の風力発電装置は、ナセル4のダクト部40内にファンを追設したことを除けば、既に説明した第1実施形態の風力発電装置1と同様の構成である。したがって、ここでは、第1実施形態と共通する部材には同一の符号を付してその説明を省略し、第1実施形態と異なる部分を中心に説明する。
 図5は本実施形態に係る風力発電装置のダクト部40周辺の構成を示す図である。同図に示すように、ナセル4のダクト部40内には、熱交換器50に加えて、ファン52が設けられている。ファン52を設けることで、ダクト部40内への外気の取り込み量を増大させて、熱交換器50における外気と冷却媒体との熱交換量を増加させることができる。これにより、低風速時においてもダクト部40内への外気の取り込み量を確保できる。
 なお、ファン52は熱交換器50の上流側および下流側のいずれに配置してもよいが、図5に示すように熱交換器50の上流側にファン52を配置した構造(押込通風型:Forced Drive Type)とすることで、ファン52によって雨や雪等から熱交換器50をある程度保護することができる。
 さらに、ファン52の回転数又は稼働状態を制御して、熱交換器50における外気と冷却媒体との熱交換量を調節するコントローラを設けてもよい。
 図6は、コントローラによりファン52の回転数制御を行う様子を示す図である。図7は、コントローラによりファン52の稼働状態制御を行う様子を示す図である。
 図6に示すように、コントローラ60は、オイルライン16における作動油の温度、発電機20の温度、ナセル4内における空気温度および冷却媒体の温度の少なくとも一つに基づいて、ファン52の回転数を制御して、熱交換器50における熱交換量を調節する。
 図6に示す例では、並列ライン17の下流側の低圧油ライン16Bに設けた温度センサT1によって作動油の温度を計測し、発電機20に取り付けた温度センサT2によって発電機20の温度を計測し、熱交換器50の下流側の冷却媒体循環路30に設けた温度センサT3によって冷却媒体の温度を計測するようになっている。なお、ナセル4内における空気温度は、ナセル4に設置した温度センサ(不図示)にて計測される。
 コントローラ60は、例えば、温度センサT1で計測された低圧油ライン16Bの作動油温度が閾値以下になった場合、ファン52の回転数を低減し(回転数をゼロにすることも含む)、作動油の過冷却を防止する。このとき、並列ライン17に設けられたバルブ19の開度調整も併せて行って、オイルクーラ18における作動油の流量を減らして、作動油の過冷却をより確実に防止してもよい。
 同様に、温度センサT2で計測した発電機20の温度や、温度センサT3で計測した冷却媒体の温度や、不図示の温度センサで計測したナセル4内の空気温度等が所望の範囲内に収まるように、コントローラ60によるファン52の回転数制御を行ってもよい。
 あるいは、図7に示すように、オイルライン16における作動油の温度、発電機20の温度、ナセル4内における空気温度および冷却媒体の温度の少なくとも一つに基づいて、ファン52の稼働台数を制御するコントローラ62を設けてもよい。
 コントローラ62は、例えば、温度センサT1で計測された低圧油ライン16Bの作動油温度が閾値以下になった場合、ファン52の稼働台数を減らして、作動油の過冷却を防止する。このとき、並列ライン17に設けられたバルブ19の開度調整も併せて行って、オイルクーラ18における作動油の流量を減らして、作動油の過冷却をより確実に防止してもよい。
 同様に、温度センサT2で計測した発電機20の温度や、温度センサT3で計測した冷却媒体の温度や、不図示の温度センサで計測したナセル4内の空気温度等が所望の範囲内に収まるように、コントローラ62によるファン52の稼働台数制御を行ってもよい。
 また、熱交換器50、ファン52及びこれらを保持するケーシングの組み合わせてなるモジュールを用いて、風力発電装置の組み立てを行ってもよい。
 図8は、熱交換器50、ファン52及びケーシングの組み合わせからなるモジュールを示す一部断面斜視図である。同図に示すように、モジュールMは、熱交換器50と、ファン52と、熱交換器50及びファン52の両方を保持するケーシング53とで構成される。そして、任意の個数のモジュールMをナセル4に組み付けることで、風力発電装置の生産性及びメンテナンス性を向上させることができる。すなわち、モジュール化によって風力発電装置の組み立てが容易となり、生産性が向上する。しかも、万が一、熱交換器50やファン52が一部故障しても、故障原因である箇所をモジュールMごと交換することで、メンテナンスを容易に行うことができる。さらに、熱発生源からの発熱量に応じてモジュールMの個数を変更すれば、熱発生源からの発熱量が異なる複数機種の風力発電装置の生産を効率的に行うことができる。
 なお、各ダクト部40(40A,40B)に対して、任意の個数のモジュールMを設置してもよい。例えば、各ダクト部40(40A,40B)にモジュールMを一つずつ設置してもよいし、各ダクト部40(40A,40B)に複数のモジュールMを設置してもよい。
[第3実施形態]
 次に第3実施形態に係る風力発電装置について説明する。本実施形態の風力発電装置は、ナセル4のダクト部40内にシャッターを追設したことを除けば、既に説明した第1実施形態の風力発電装置1と同様の構成である。したがって、ここでは、第1実施形態と共通する部材には同一の符号を付してその説明を省略し、第1実施形態と異なる部分を中心に説明する。
 図9は本実施形態に係る風力発電装置のダクト部40周辺の構成を示す図である。同図に示すように、ナセル4のダクト部40内には、熱交換器50に加えて、シャッター54が設けられている。シャッター54は、図9に示すように、互いに略平行に配置された複数の羽板55及び複数の羽板55を支持する枠体で構成してもよく、またこの例以外の種々の構成のダンパを使用することもできる。シャッター54を開閉すると、ダクト部40内における外気の流れを遮断したり、通過させたりすることができる。これにより、熱交換器50における冷却媒体と外気との熱交換量を調節することができる。
 なお、シャッター54は、熱交換器50の上流側及び下流側のいずれに設けてもよいが、図9に示すように熱交換器50の上流側にシャッター54を設けることで、シャッター54によって雨や雪等から熱交換器50を保護することができる。
 また、シャッター54の開閉を制御して、熱交換器50における外気と冷却媒体との熱交換量を調節するコントローラを設けてもよい。
 図10は、コントローラによりシャッター54の開閉制御を行う様子を示す図である。同図に示すように、コントローラ64は、オイルライン16における作動油の温度、発電機20の温度、ナセル4内における空気温度および冷却媒体の温度の少なくとも一つに基づいて、各シャッター54の開閉を個別に制御して、各熱交換器50における熱交換量を調節する。
 例えば、温度センサT1で計測された低圧油ライン16Bの作動油温度が閾値以下になった場合、コントローラ64は閉状態のシャッター54を増やし、作動油の過冷却を防止する。このとき、並列ライン17に設けられたバルブ19の開度調整も併せて行って、オイルクーラ18における作動油の流量を減らして、作動油の過冷却をより確実に防止してもよい。
 同様に、温度センサT2で計測した発電機20の温度や、温度センサT3で計測した冷却媒体の温度や、不図示の温度センサで計測したナセル4内の空気温度等が所望の範囲内に収まるように、コントローラ64によるシャッター54の開閉制御を行ってもよい。
 なお、コントローラ64によって各シャッター54の開度を制御して、熱交換器50における熱交換量を微調節してもよい。
[第4実施形態]
 次に第4実施形態に係る風力発電装置について説明する。本実施形態の風力発電装置は、ダクト部40の上面48の形状を除けば、既に説明した第1実施形態の風力発電装置1と同様の構成である。したがって、ここでは、第1実施形態と共通する部材には同一の符号を付してその説明を省略し、第1実施形態と異なる部分を中心に説明する。
 図11は本実施形態に係る風力発電装置のダクト部40周辺の構成を示す図である。同図に示すように、ダクト部40の底面を構成するナセル4の内側壁面46が内側に湾曲している。一方、ダクト部40の上面を構成するナセル4の外側壁面48には、排気口44側の端部につば部49Aが設けられており、該つば部49Aにおいてナセル中心軸から離れる方向に外側に屈曲している。また、ナセル4の外側壁面48は、つば部49Aの上流側には湾曲部49Bが設けられており、該湾曲部49Bにおいてナセル中心軸から離れる方向に外側に湾曲している。なお、湾曲部49Bとつば部49Aとの境目は、不連続になっており、滑らかに湾曲する湾曲部Bから、外側に屈曲する直線状のつば部49Aに急激に移行している。
 図中の矢印で示すようにナセル4の外側壁面48に沿ってダクト部40の外部を流れる空気は、つば部49A及び湾曲部49B周辺の領域Aにおいて流路面積が縮小するために加速されて動圧が上昇し、その分だけ静圧が低下する。そのため、つば部49Aの後流側に位置する領域Bにおける圧力(静圧)は低くなる。また、つば部49Aの後流側の領域Bでは渦が発生するため、このことによっても領域Bの圧力が低下する。したがって、上述したダクト部40の断面積増大によるディフューザ効果に加えて、つば部49Aの後流側の領域Bにおける低い圧力によってより多くの外気を吸気口42からダクト部40内に引き込むことができる。したがって、熱交換器50において冷却媒体から外気が奪う熱量が増えて、風力発電装置1の熱発生源の冷却を効果的に行うことができる。
 なお、図11にはナセル4の外側壁面48に屈曲部49A及び湾曲部49Bの両方を設けた例を示したが、屈曲部49A及び湾曲部49Bのいずれかのみを設けても同様な効果を得ることができる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、上述の第1実施形態~第4実施形態を適宜組み合わせてもよいし、各種の改良や変形を行ってもよいのはいうまでもない。
 例えば、第2実施形態(図5参照)に係る風力発電装置のダクト部40内に、第3実施形態で説明したシャッター54を追加してもよい。すなわち、ダクト部40内にファン52及びシャッター54の両方を設けてもよい。あるいは、第4実施形態(図11参照)に係る風力発電装置のダクト部40内に、第2実施形態で説明したファン52および第3実施形態で説明したシャッター54の少なくとも一方を追設してもよい。
 1 風力発電装置
 2 タワー
 4 ナセル
 5 主軸
 6 ロータ
 6A ブレード
 6B ハブ
 10 油圧トランスミッション
 12 油圧ポンプ
 14 油圧モータ
 16 オイルライン
 16A 高圧油ライン
 16B 低圧油ライン
 17 並列ライン
 18 オイルクーラ
 19 バルブ
 20 発電機
 22 発電機クーラ
 30 冷却媒体循環路
 32 ナセル冷却器
 40 ダクト部
 42 吸気口
 44 排気口
 46 ナセル内側壁面(ダクト部底面)
 47 湾曲部
 48 ナセル外側壁面(ダクト部上面)
 49A つば部
 49B 湾曲部
 50 熱交換器
 52 ファン
 54 シャッター
 

Claims (15)

  1.  タワーと、
     少なくとも一枚のブレードと、
     前記ブレードを支持するハブと、
     前記タワーによって支持され、吸気口および排気口を有するダクト部が壁面に一体的に形成されたナセルと、
     前記ダクト部内に設けられて、前記吸気口から前記ダクト部内に取り込まれた外気との熱交換によって、前記タワー及び前記ナセルの少なくとも一方の内部における熱発生源を冷却した後の冷却媒体を冷却する熱交換器とを備え、
     前記ナセルの壁面は、前記ダクト部が設けられた領域において、内側壁面と外側壁面とからなる二重構造になっており、
     前記ダクト部の底面を構成する前記ナセルの内側壁面は、前記ハブから遠くなるにつれて前記ナセルの中心線に向かって内側に湾曲する湾曲部を有しており、
     前記ダクト部は、少なくとも前記湾曲部が設けられた範囲において、前記吸気口側から前記排気口側に向かって断面積が増大するように形成されていることを特徴とする風力発電装置。
  2.  前記熱交換器は、前記ナセルの上面および側面に一体的に形成された前記ダクト部内に複数設けられていることを特徴とする請求項1に記載の風力発電装置。
  3.  前記ダクト部の前記吸気口側の端部は、前記ナセルの中心線に沿って設けられていることを特徴とする請求項1に記載の風力発電装置。
  4.  前記ダクト部内への外気の取り込み量を増大させるファンと、
     前記ファンおよび前記熱交換器の両方を収納するケーシングとをさらに備え、
     少なくとも前記熱交換器、前記ファンおよび前記ケーシングからなるモジュールが複数設けられていることを特徴とする請求項1に記載の風力発電装置。
  5.  複数の前記モジュールは、前記ナセルの上面および側面に一体的に形成された前記ダクト部内に設けられていることを特徴とする請求項4に記載の風力発電装置。
  6.  作動状態の前記ファンの個数を変化させて、各モジュールの前記熱交換器において外気が前記冷却媒体から奪う熱量を調節するコントローラをさらに備えることを特徴とする請求項4に記載の風力発電装置。
  7.  前記ダクト部に設けられたシャッターと、
     前記シャッターの開閉により、各モジュールの前記熱交換器において外気が前記冷却媒体から奪う熱量を調節するコントローラとをさらに備えることを特徴とする請求項4に記載の風力発電装置。
  8.  前記ファンの回転数を変化させて、各モジュールの前記熱交換器において外気が前記冷却媒体から奪う熱量を調節するコントローラをさらに備えることを特徴とする請求項4に記載の風力発電装置。
  9.  前記ダクト部の上面を構成する前記ナセルの外側壁面は、前記ダクト部の底面に沿って湾曲していることを特徴とする請求項1に記載の風力発電装置。
  10.  前記ハブに連結された主軸と、
     前記主軸によって駆動される油圧ポンプと、
     前記油圧ポンプから供給される高圧の作動油によって駆動される油圧モータと、
     前記油圧モータに連結される発電機と、
     前記油圧ポンプおよび前記油圧モータに接続され、前記油圧ポンプ及び前記油圧モータの間で前記作動油を循環させるオイルラインと、
     前記オイルラインを流れる前記作動油を冷却するオイルクーラと、
     前記発電機を冷却する発電機クーラとを備え、
     前記オイルクーラおよび前記発電機クーラに、前記熱交換器で冷却された前記冷却媒体を供給するようにした請求項1に記載の風力発電装置。
  11.  前記ナセル内に設けられ、前記ナセル内の空気を冷却するナセル冷却器をさらに備え、
     前記ナセル冷却器に、前記熱交換器で冷却された前記冷却媒体を供給するようにしたことを特徴とする請求項10に記載の風力発電装置。
  12.  前記オイルラインにおける前記作動油の温度、前記発電機の温度、前記ナセル内における空気温度および前記冷却媒体の温度の少なくとも一つに基づいて、前記オイルクーラ、前記発電機クーラ、前記ナセル冷却器および前記熱交換器の少なくとも一つにおける熱交換量を調節するコントローラをさらに備えることを特徴とする請求項11に記載の風力発電装置。
  13.  前記ダクト部内への外気の取り込み量を増大させるファンと、
     前記ファンおよび前記熱交換器の両方を収納するケーシングとをさらに備え、
     少なくとも前記熱交換器、前記ファンおよび前記ケーシングからなるモジュールが複数設けられており、
     前記オイルラインにおける前記作動油の温度、前記発電機の温度、前記ナセル内における空気温度および前記冷却媒体の温度の少なくとも一つに基づいて、各モジュールの前記ファン及び前記熱交換器を制御するコントローラをさらに備えることを特徴とする請求項11に記載の風力発電装置。
  14.  前記冷却媒体は、不凍液が添加された水または空気であることを特徴とする請求項1に記載の風力発電装置。
  15.  前記ダクト部の上面を構成する前記ナセルの外側壁面は、前記排気口側において、前記ナセルの中心線から遠ざかる方向に外側に屈曲または湾曲していることを特徴とする請求項1に記載の風力発電装置。
     
PCT/JP2011/068283 2011-08-10 2011-08-10 風力発電装置 WO2013021487A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012503164A JP5449523B2 (ja) 2011-08-10 2011-08-10 風力発電装置
KR1020127034050A KR20130040947A (ko) 2011-08-10 2011-08-10 풍력 발전 장치
CN2011800316189A CN103052797A (zh) 2011-08-10 2011-08-10 风力发电装置
EP11817189.1A EP2584195B1 (en) 2011-08-10 2011-08-10 Wind power generation apparatus
PCT/JP2011/068283 WO2013021487A1 (ja) 2011-08-10 2011-08-10 風力発電装置
US13/291,662 US8632303B2 (en) 2011-08-10 2011-11-08 Wind turbine generator
PCT/JP2012/054770 WO2013021670A1 (ja) 2011-08-10 2012-02-27 再生エネルギー型発電装置
JP2013505002A JP5297568B1 (ja) 2011-08-10 2012-02-27 再生エネルギー型発電装置
EP12801794.4A EP2743502B1 (en) 2011-08-10 2012-02-27 Renewable energy type electric power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068283 WO2013021487A1 (ja) 2011-08-10 2011-08-10 風力発電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/291,662 Continuation US8632303B2 (en) 2011-08-10 2011-11-08 Wind turbine generator

Publications (1)

Publication Number Publication Date
WO2013021487A1 true WO2013021487A1 (ja) 2013-02-14

Family

ID=46199574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068283 WO2013021487A1 (ja) 2011-08-10 2011-08-10 風力発電装置

Country Status (6)

Country Link
US (1) US8632303B2 (ja)
EP (1) EP2584195B1 (ja)
JP (1) JP5449523B2 (ja)
KR (1) KR20130040947A (ja)
CN (1) CN103052797A (ja)
WO (1) WO2013021487A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068244A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
JP2015068243A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
CN105386945A (zh) * 2015-12-16 2016-03-09 东方电气风电有限公司 风电机舱罩隔热散热装置、风电机舱罩及风电机组
JP2018109412A (ja) * 2018-03-08 2018-07-12 株式会社日立製作所 風力発電設備
JP2018526567A (ja) * 2015-09-04 2018-09-13 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力エネルギー設備および風力エネルギー設備の冷却を制御するための方法
WO2019185448A1 (de) * 2018-03-26 2019-10-03 Wobben Properties Gmbh Windenergieanlage
JP7443555B2 (ja) 2020-03-10 2024-03-05 シーメンス ガメサ リニューアブル エナジー エー/エス 風力タービンサーマルアセンブリ

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143943A1 (en) * 2008-07-09 2010-01-13 Greenergy India Private Limited Wind turbine
US8541897B2 (en) * 2009-09-01 2013-09-24 University Of Southern California Generation of electric energy using cable-supported windmills
DK2309122T3 (da) * 2009-10-06 2012-03-26 Siemens Ag Fremgangsmåde til regulering af en vindturbine ved termiske overbelastninger
DE102010051675A1 (de) * 2010-11-17 2012-05-24 Repower Systems Ag Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage mit Temperaturüberwachung des Transformators
EP2466128B2 (en) * 2010-12-20 2017-06-28 Siemens Aktiengesellschaft Wind turbine and method of control of a wind turbine
DK2546515T3 (da) * 2011-07-14 2013-11-04 Siemens Ag Vindmøllekøleanordning
JP5449523B2 (ja) * 2011-08-10 2014-03-19 三菱重工業株式会社 風力発電装置
EP2882961A1 (en) * 2012-08-10 2015-06-17 youWINenergy GmbH Integrated cooling system for a nacelle of a wind turbine
US9528498B2 (en) * 2012-09-13 2016-12-27 Jaime Miguel Bardia On or off grid vertical axis wind turbine and self contained rapid deployment autonoous battlefield robot recharging and forward operating base horizontal axis wind turbine
TWI486523B (zh) 2012-11-30 2015-06-01 Ind Tech Res Inst 應用於一風力發電機之輪轂冷卻裝置
WO2014114295A1 (en) * 2013-01-25 2014-07-31 Vestas Wind Systems A/S Control of wind turbines
DE112013007125T5 (de) * 2013-05-30 2016-05-25 Hitachi, Ltd. Windkraftgenerator
US20150008677A1 (en) * 2013-07-03 2015-01-08 SkyWolf Wind Turbine Corp. Wind turbine with hydraulic motor power generation
US9856621B2 (en) 2013-09-09 2018-01-02 Dbd Systems, Llc Method of construction, installation, and deployment of an offshore wind turbine on a concrete tension leg platform
US9835139B2 (en) 2014-03-10 2017-12-05 X Development Llc Radiator and duct configuration on an airborne wind turbine for maximum effectiveness
EP2990644A1 (de) * 2014-08-29 2016-03-02 Siemens Aktiengesellschaft Windkraftanlage
CN105066733A (zh) * 2015-07-18 2015-11-18 无锡市翱宇特新科技发展有限公司 一种冷却水塔的供电装置
DE102015122855A1 (de) * 2015-12-28 2017-06-29 Wobben Properties Gmbh Windenergieanlage und Kühlvorrichtung für eine Windenergieanlage
JP2019103283A (ja) * 2017-12-04 2019-06-24 株式会社ジェイテクト インバータ装置
US10590916B2 (en) * 2018-01-22 2020-03-17 General Electric Company Multisiphon passive cooling system
EP3680481A1 (en) * 2019-01-10 2020-07-15 Siemens Gamesa Renewable Energy A/S Inclined heat exchanger for a wind turbine
EP3719313A1 (en) * 2019-04-05 2020-10-07 Siemens Gamesa Renewable Energy A/S Cooling arrangement for a wind turbine
CN111864994B (zh) * 2019-04-30 2023-01-24 新疆金风科技股份有限公司 换热系统及电机
EP3805559A1 (en) * 2019-10-09 2021-04-14 Nissens Cooling Solutions A/S A wind turbine cooling system
CN114599878A (zh) * 2019-08-09 2022-06-07 尼森冷却解决方案有限公司 风力涡轮机冷却系统
CN113453482B (zh) * 2020-03-26 2023-04-11 新疆金风科技股份有限公司 变流器模块、变流器模块的冷却系统及风力发电机组
CN116006423A (zh) * 2023-02-16 2023-04-25 华能新能源股份有限公司河北分公司 一种风力发电机散热装置及风力发电机组

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847181A (ja) * 1981-09-14 1983-03-18 Daikin Ind Ltd 風水力式ポンプ駆動装置
JP2003083635A (ja) * 2001-09-06 2003-03-19 Univ Waseda 風力タービン駆動による冷凍システム及びその運用方法
EP1798414A1 (en) 2005-12-14 2007-06-20 General Electric Company Wind energy turbine
JP2008286115A (ja) 2007-05-18 2008-11-27 Mitsubishi Heavy Ind Ltd 風力発電装置
EP2007184A2 (en) 2007-06-18 2008-12-24 General Electric Company System for integrated thermal management and method for the same
JP2009185641A (ja) * 2008-02-04 2009-08-20 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2010007649A (ja) * 2008-06-30 2010-01-14 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2010031722A (ja) 2008-07-28 2010-02-12 Mitsubishi Heavy Ind Ltd 風力発電装置
US20100061853A1 (en) * 2008-09-11 2010-03-11 General Electric Company System for heating and cooling wind turbine components
WO2011074395A1 (ja) * 2009-12-16 2011-06-23 三菱重工業株式会社 風力発電装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2138376C3 (de) 1971-07-31 1978-05-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kühlsystem für in Schränken untergebrachte elektronische Geräte
US20020117291A1 (en) 2000-05-25 2002-08-29 Kioan Cheon Computer having cooling apparatus and heat exchanging device of the cooling apparatus
US6926070B2 (en) 2002-03-22 2005-08-09 Intel Corporation System and method for providing cooling systems with heat exchangers
JP2003343417A (ja) 2002-05-27 2003-12-03 Fuji Heavy Ind Ltd 風 車
US20050174735A1 (en) 2003-08-26 2005-08-11 Nagui Mankaruse High performance cooling systems
JP4928749B2 (ja) 2005-06-30 2012-05-09 株式会社東芝 冷却装置
US7427814B2 (en) * 2006-03-22 2008-09-23 General Electric Company Wind turbine generators having wind assisted cooling systems and cooling methods
US7569943B2 (en) * 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
JP5002309B2 (ja) * 2007-04-06 2012-08-15 富士重工業株式会社 水平軸風車
JP4898621B2 (ja) 2007-10-05 2012-03-21 三菱重工業株式会社 風力発電装置
JP2009138555A (ja) 2007-12-04 2009-06-25 Mitsubishi Heavy Ind Ltd 風力発電装置
US20100032959A1 (en) * 2008-08-08 2010-02-11 General Electric Company Wind turbine system
KR101021333B1 (ko) * 2008-09-01 2011-03-14 두산중공업 주식회사 풍력터빈의 나셀 냉각 시스템
US7843080B2 (en) * 2009-05-11 2010-11-30 General Electric Company Cooling system and wind turbine incorporating same
WO2011004482A1 (ja) * 2009-07-09 2011-01-13 三菱重工業株式会社 風力発電装置
US20110204652A1 (en) * 2009-08-18 2011-08-25 Mitsubishi Heavy Industries, Ltd. Wind power generator
US20110211958A1 (en) * 2009-08-20 2011-09-01 Mitsubishi Heavy Industries, Ltd. Wind-power-generator fan unit and wind power generator
JP5072994B2 (ja) * 2010-03-17 2012-11-14 三菱重工業株式会社 風力発電装置
US8403638B2 (en) * 2010-06-30 2013-03-26 Mitsubishi Heavy Industries, Ltd. Wind power generator
US8308438B2 (en) * 2010-06-30 2012-11-13 Mitsubishi Heavy Industries, Ltd Wind power generator
WO2013021488A1 (ja) * 2011-08-10 2013-02-14 三菱重工業株式会社 再生エネルギー型発電装置
JP5449523B2 (ja) * 2011-08-10 2014-03-19 三菱重工業株式会社 風力発電装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847181A (ja) * 1981-09-14 1983-03-18 Daikin Ind Ltd 風水力式ポンプ駆動装置
JP2003083635A (ja) * 2001-09-06 2003-03-19 Univ Waseda 風力タービン駆動による冷凍システム及びその運用方法
EP1798414A1 (en) 2005-12-14 2007-06-20 General Electric Company Wind energy turbine
JP2008286115A (ja) 2007-05-18 2008-11-27 Mitsubishi Heavy Ind Ltd 風力発電装置
EP2007184A2 (en) 2007-06-18 2008-12-24 General Electric Company System for integrated thermal management and method for the same
JP2009185641A (ja) * 2008-02-04 2009-08-20 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2010007649A (ja) * 2008-06-30 2010-01-14 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2010031722A (ja) 2008-07-28 2010-02-12 Mitsubishi Heavy Ind Ltd 風力発電装置
US20100061853A1 (en) * 2008-09-11 2010-03-11 General Electric Company System for heating and cooling wind turbine components
WO2011074395A1 (ja) * 2009-12-16 2011-06-23 三菱重工業株式会社 風力発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2584195A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068244A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
JP2015068243A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 風力発電設備
US9926915B2 (en) 2013-09-30 2018-03-27 Hitachi, Ltd. Wind power generation system
JP2018526567A (ja) * 2015-09-04 2018-09-13 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力エネルギー設備および風力エネルギー設備の冷却を制御するための方法
CN105386945A (zh) * 2015-12-16 2016-03-09 东方电气风电有限公司 风电机舱罩隔热散热装置、风电机舱罩及风电机组
JP2018109412A (ja) * 2018-03-08 2018-07-12 株式会社日立製作所 風力発電設備
WO2019185448A1 (de) * 2018-03-26 2019-10-03 Wobben Properties Gmbh Windenergieanlage
JP7443555B2 (ja) 2020-03-10 2024-03-05 シーメンス ガメサ リニューアブル エナジー エー/エス 風力タービンサーマルアセンブリ

Also Published As

Publication number Publication date
JP5449523B2 (ja) 2014-03-19
US8632303B2 (en) 2014-01-21
JPWO2013021487A1 (ja) 2015-03-05
US20120148407A1 (en) 2012-06-14
EP2584195A1 (en) 2013-04-24
EP2584195A4 (en) 2014-02-12
KR20130040947A (ko) 2013-04-24
EP2584195B1 (en) 2016-09-28
CN103052797A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5449523B2 (ja) 風力発電装置
JP4950367B1 (ja) 再生エネルギー型発電装置
JP5072994B2 (ja) 風力発電装置
WO2011021270A1 (ja) 風力発電装置
US8360715B2 (en) Wind turbine generator
US8684682B2 (en) Power generating apparatus of renewable energy type
US20070116567A1 (en) Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub
WO2013021670A1 (ja) 再生エネルギー型発電装置
EP2802774B1 (en) Cooling system of a wind turbine
JP2007113518A (ja) 風車
JP4848398B2 (ja) 風力発電装置
JP6650318B2 (ja) 風力発電装置
EP3992454B1 (en) Method and system for cooling a wind turbine gearbox oil heat-exchanger
JP5297568B1 (ja) 再生エネルギー型発電装置
WO2014192112A1 (ja) 風力発電設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031618.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012503164

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011817189

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011817189

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127034050

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE