WO2013021478A1 - ガイドローラ及びその製造方法 - Google Patents
ガイドローラ及びその製造方法 Download PDFInfo
- Publication number
- WO2013021478A1 WO2013021478A1 PCT/JP2011/068244 JP2011068244W WO2013021478A1 WO 2013021478 A1 WO2013021478 A1 WO 2013021478A1 JP 2011068244 W JP2011068244 W JP 2011068244W WO 2013021478 A1 WO2013021478 A1 WO 2013021478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber reinforced
- reinforced resin
- resin layer
- guide roller
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 145
- 239000011347 resin Substances 0.000 claims abstract description 145
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 48
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 26
- 239000004917 carbon fiber Substances 0.000 claims abstract description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000003746 surface roughness Effects 0.000 claims abstract description 13
- 238000005468 ion implantation Methods 0.000 claims abstract description 12
- 239000003822 epoxy resin Substances 0.000 claims abstract description 11
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 145
- 239000000835 fiber Substances 0.000 claims description 130
- 238000005498 polishing Methods 0.000 claims description 33
- 238000004804 winding Methods 0.000 claims description 17
- 229920001187 thermosetting polymer Polymers 0.000 claims description 16
- 239000002344 surface layer Substances 0.000 claims description 4
- 238000007517 polishing process Methods 0.000 claims 1
- 238000000227 grinding Methods 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 59
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 238000007747 plating Methods 0.000 description 23
- 239000011162 core material Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 5
- 239000011151 fibre-reinforced plastic Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 102220471767 Fructose-bisphosphate aldolase B_E35A_mutation Human genes 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- -1 ethylene, propylene Chemical group 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/12—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H27/00—Special constructions, e.g. surface features, of feed or guide rollers for webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2401/00—Materials used for the handling apparatus or parts thereof; Properties thereof
- B65H2401/10—Materials
- B65H2401/11—Polymer compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2401/00—Materials used for the handling apparatus or parts thereof; Properties thereof
- B65H2401/10—Materials
- B65H2401/11—Polymer compositions
- B65H2401/112—Fibre reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2402/00—Constructional details of the handling apparatus
- B65H2402/80—Constructional details of the handling apparatus characterised by the manufacturing process
Definitions
- the present invention relates to a guide roller employed when, for example, a belt-shaped plastic film, a paper sheet, a ceramic green sheet or the like is conveyed, and a method for manufacturing the guide roller.
- rollers used when transporting belt-shaped plastic films, paper sheets, etc. require weight reduction, mechanical strength, wear resistance of the roller surface due to friction with carrier film or sheet, etc. Therefore, in recent years, a roller body made of carbon fiber reinforced resin having a metal film having excellent wear resistance, metal plating, or the like is used on the outer surface.
- Patent Document 1 there is a first carbon fiber layer in which each carbon fiber has a first predetermined angle with respect to the axial direction of the roller, and each carbon fiber of the first carbon fiber layer.
- the surface of the carbon fiber layer composed of the second carbon fiber layer where each carbon fiber intersects at a second predetermined angle is integrated with a resin cured layer in order to smooth the unevenness caused by each carbon fiber.
- a roller having a plated layer has been proposed.
- the rigidity can be increased without impeding weight reduction by intersecting carbon fibers at a predetermined angle (paragraph numbers 0028, 0029, etc.).
- Patent Document 2 Japanese Patent Laid-Open No. 2002-60922
- a carbon fiber sheet impregnated with a thermosetting resin into a prepreg is wound around the mold so as to form a number of layers, heat-cured, and the surface is further fixed with an epoxy adhesive.
- Patent Document 3 discloses a guide roller that does not require a base treatment during chrome plating, and an inner layer made of fiber-reinforced plastic having a resin content of less than 50% by weight, and a resin content of A roller having an outer layer made of 50 to 95% by weight of a fiber reinforced plastic and having a metal plating layer on the surface is disclosed.
- the prepregs A and B in which the carbon fibers are aligned in one direction and impregnated with the epoxy resin are laminated so that the alignment directions of the carbon fibers are orthogonal (paragraph number 0053, Table 1)
- the outer layer a resin cured product of a prepreg sheet in which a polyester fiber nonwoven fabric is impregnated with a resin so that the resin content is 50% by weight is used (Table 2).
- the metal plating layer a metal plating layer formed by electroless plating having a thickness of 10 to 100 ⁇ m or a chromium plating having a thickness of 55 to 150 ⁇ m has been proposed.
- the fiber reinforced plastic tube By making the fiber reinforced plastic tube a fiber reinforced plastic having a resin content of less than 50% by weight, mechanical properties such as strength and rigidity are ensured, while the outer layer is a fiber reinforced plastic having a resin content of 50 to 95% by weight. By doing so, the surface accuracy is improved.
- the predetermined surface smoothness is ensured by grinding and polishing the outer layer, and there is no influence of waviness of the inner layer, and in order to obtain a uniform surface, the outer layer thickness is 0.2 to 1.5 mm. It has been proposed to do.
- the thickness of the electroless plating layer is most preferably 30 to 60 ⁇ m. Preferred is described.
- the epoxy resin is further fixed to the polished surface of the fiber reinforced resin layer to smooth the unevenness of the polished surface, or the fiber reinforced with high resin content (low fiber content). A resin layer is formed and the fiber reinforced resin layer is polished. In these methods, the thickness of the resin layer is increased as a precondition for thinning the metal plating layer and the metal sprayed layer, and it is difficult to further reduce the weight.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a guide roller that can be further reduced in weight compared to the conventional one and a manufacturing method thereof.
- the present inventor tried to adopt a diamond-like carbon film instead of metal plating or metal spraying in order to further reduce the weight while ensuring mechanical strength such as wear resistance.
- diamond-like carbon thin film it has been found that it is necessary to solve a new problem that the surface roughness of the underlying fiber reinforced resin layer is more easily reflected than metal plating or metal spraying. .
- the inventor completed the present invention as a result of various further studies.
- the guide roller of the present invention includes a first fiber reinforced resin layer; a second fiber reinforced resin layer provided on the first fiber reinforced resin layer; and a diamond shape provided on the second fiber reinforced resin layer.
- a cylindrical guide roller provided with a carbon film, wherein the orientation direction of the reinforcing fibers in the first fiber reinforced resin layer is not aligned in the axial direction of the guide roller, and in the second fiber reinforced resin layer The orientation direction of the reinforcing fibers is the axial direction of the guide roller.
- the second fiber reinforced resin layer is formed by winding a prepreg sheet in which reinforcing fibers are aligned in one direction so that the orientation direction of the reinforcing fibers is the axial direction, and then thermosetting.
- the first fiber reinforced resin layer is wound so as to include at least one winding step in which the orientation direction of the reinforcing fibers of the prepreg sheet is not the axial direction. It is preferably formed by thermosetting.
- the prepreg sheet used for forming the second fiber reinforced resin layer is preferably a carbon fiber sheet in which carbon fibers are aligned in one direction, impregnated with an epoxy resin.
- the surface roughness of the second fiber reinforced resin layer is preferably 1.0 ⁇ m or less as an average roughness (Ra), and the thickness of the diamond-like resin film is preferably 1 to 10 ⁇ m.
- the second reinforcing fibers are aligned in one direction on the wound body of the first prepreg sheet in which the orientation direction of the first reinforcing fibers is not aligned with the longitudinal direction of the cylindrical body.
- a wound body obtained by winding 2 prepreg sheets so that the orientation direction of the second reinforcing fibers is the longitudinal direction of the cylindrical body was heat-cured, and the reinforcing fibers were oriented in the longitudinal direction of the cylindrical body.
- the polishing step is preferably performed by advancing an abrasive along the longitudinal direction of the fiber reinforced resin cylindrical body while rotating the fiber reinforced resin cylindrical body, and the diamond-like carbon film forming step Is preferably performed by an ion implantation method.
- the fiber reinforced resin is oriented in one direction in the fiber reinforced resin layer that becomes the lower ground of the diamond-like carbon film that is the sliding surface, the fiber reinforced resin layer is polished at the time of polishing. , The reinforcing fiber does not flicker with the resin. Accordingly, a smooth base surface can be secured even after polishing, and as a result, a sliding surface made of a thin and smooth diamond-like carbon film can be provided.
- FIG. Fig.1 (a) is a longitudinal direction (axial direction) sectional drawing of the guide roller of this invention, (b) is a side view.
- the roller body 1 of the guide roller is a cylindrical body composed of a first fiber reinforced resin layer 3 and a second fiber reinforced resin layer 4 provided on the outer surface thereof.
- the outer surface of the roller body 1 (the outer surface of the second fiber reinforced resin layer 4) may be abbreviated as a diamond-like carbon film (hereinafter referred to as “DLC film”). ) 5 covered.
- DLC film diamond-like carbon film
- thermoset of a prepreg sheet in which a fiber sheet made of reinforcing fibers is impregnated with a thermosetting resin to be in a semi-cured state is preferably used.
- CFRP Carbon fiber, glass fiber, an alumina fiber, polyester fiber, nylon fiber etc.
- carbon fiber excellent in specific strength and specific rigidity is used preferably.
- the reinforcing fiber one having a diameter of 5 to 13 ⁇ m is usually used.
- the fiber sheet a nonwoven fabric of reinforcing fibers; a woven fabric such as plain weave, twill weave and satin weave; a fiber sheet arranged in parallel in one direction can be used.
- thermosetting resin an epoxy resin, unsaturated polyester resin, a phenol resin etc. are used, Of these, an epoxy resin is preferably used from the point that the thermal contraction rate at the time of thermosetting is small.
- the thickness per sheet of the prepreg sheet having the above configuration is not particularly limited, but it is usually preferable to use a thickness of about 0.1 to 0.3 mm, more preferably 0.1 to 0.2 mm. Use things.
- the first fiber reinforced resin layer 3 is formed by winding the prepreg sheet as described above around a columnar or cylindrical core and then thermosetting it.
- the winding is preferably performed so that the orientation direction of the reinforcing fibers included in the prepreg sheet does not coincide with the longitudinal direction of the core material, that is, the axial direction of the guide roller to be manufactured. .
- the guide roller in which the orientation direction of the reinforcing fibers coincides with the longitudinal direction of the cylindrical body is likely to be twisted as a cylindrical shape.
- the alignment direction of the reinforcing fibers is the longitudinal direction of the roller (axial direction), the circumferential direction, and a direction oblique to the axis, It is preferable to change for each layer. More preferably, the orientation direction of the reinforcing fiber is intersecting with the axial direction of the core material (corresponding to the axial direction of the roller body to be formed). In order to prevent this, the predetermined angle is shifted. In the case of using a prepreg sheet in which reinforcing fibers are aligned in one direction, it is most preferable to stack them while shifting by 90 ° (that is, orthogonal).
- the thickness of the first fiber reinforced resin layer 3 is not particularly limited, but is usually 0.4 to 2 mm, preferably 0.5 to 1.5 mm because the prepreg sheet having the above thickness is wound so as to be laminated. . Therefore, when the prepreg sheet having the above thickness is used, it is preferably wound and used so that about 2 to 15 layers, preferably about 5 to 10 layers are laminated.
- thermosetting treatment of the prepreg sheet constituting the first fiber reinforced resin layer 3 is performed using the second fiber reinforced resin layer 4. It is preferable to perform simultaneously with the heat treatment performed after winding the prepreg sheet to be formed.
- the second fiber reinforced resin layer 4 is a cured product of a prepreg sheet obtained by impregnating a thermosetting resin into a fiber sheet in which reinforcing fibers are aligned in the longitudinal direction (axial direction) of the roller body 1.
- the same reinforcing fibers and thermosetting resin as those used for the first fiber reinforced resin layer 3 can be used. That is, carbon fibers having a diameter of 5 to 13 ⁇ m are preferably used as reinforcing fibers, and epoxy resins are preferably used as thermosetting resins.
- the prepreg sheet used for the second fiber reinforced resin layer 4 differs from the prepreg sheet used for the first fiber reinforced resin layer 3 in the following points. That is, the second fiber reinforced resin layer 4 is limited to a fiber sheet type prepreg sheet in which the reinforcing fibers are aligned in one direction (hereinafter referred to as “one-way type prepreg sheet”), and this
- the unidirectional type prepreg sheet is that the orientation direction of the reinforcing fibers of the prepreg sheet is provided so as to be the axial direction of the roller body (longitudinal direction of the cylindrical body).
- the thickness of the second fiber reinforced resin layer 4 is equal to the thickness of the first fiber reinforced resin layer 3 or the prepreg sheet having the above thickness is laminated and wound so as to be thinner than the first fiber reinforced resin layer 3. .
- the thickness is preferably about 0.4 to 1.5 mm, more preferably 0.5 to 1 mm. Therefore, when using the prepreg sheet having the above normal thickness, it is wound so as to be laminated in about 2 to 10 layers, preferably about 5 to 8 layers.
- the fiber content in the second fiber reinforced resin layer 4 is usually 40 to 95% by mass, preferably 50 to 95% by mass, depending on the basis weight of the prepreg sheet.
- the second fiber reinforced resin layer 4 is formed by winding a prepreg sheet for the first fiber reinforced resin, and then converting the unidirectional type prepreg sheet into the reinforcing fiber direction of the prepreg sheet and the longitudinal direction of the core (corresponding to the axial direction of the roller). ) And then, by heating and thermosetting the thermosetting resin of these prepreg sheets, it is formed together with the first fiber reinforced resin layer.
- the surface roughness of the second fiber reinforced resin layer is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably about 0.7 ⁇ m, as an average roughness (Ra). Such smoothness is achieved by polishing the surface after curing.
- Ra average roughness
- the carbon fibers of the fiber sheet used in the second fiber reinforced resin layer are aligned in the longitudinal direction of the roller, a plurality of prepreg sheets are laminated.
- the polishing direction and the alignment direction for adjusting the roundness can be made constant. Accordingly, it is possible to minimize the unevenness of the surface of the second fiber reinforced resin layer caused by polishing, removal, dropout, breakage of the reinforcing fiber due to polishing, and to obtain a mirror surface.
- a diamond-like carbon film (DLC film) is laminated on the second fiber reinforced resin layer 4 having the above-described configuration.
- a diamond-like carbon film is a carbon thin film with high hardness, electrical insulation, infrared transmission, etc. similar to diamond. It contains some hydrogen, has an amorphous structure, diamond bond, graphite bond, etc.
- Such a DLC film can be formed by a CVD method, a plasma CVD method, a PVD method, an ion implantation method, or the like, but is preferably formed by an ion implantation method.
- the thickness of the DLC film 5 is not particularly limited, but is about 1 to 10 ⁇ m, preferably about 3 to 5 ⁇ m. Even with this thickness, wear resistance and slidability can be secured. Since the outer surface of the second fiber reinforced resin layer 4 has achieved high smoothness (preferably, an average roughness (Ra) of 1.0 ⁇ or less) over the entire length in the longitudinal direction of the roller, the thickness described above. However, the DLC film can be uniformly formed on the entire outer surface of the guide roller.
- Ra average roughness
- the DLC film 5 is a thin film, a film reflecting the surface state of the base surface is formed. Moreover, since the DLC film 5 is a thin film, it is difficult to adjust the smoothness and roundness by polishing the DLC film 5 itself. For these reasons, there is a significance that the roundness is sufficiently increased and the smoothness of the substrate surface is increased before the DLC film 5 is formed.
- the DLC film 5 constituting the outer surface of the guide roller is formed of a thin film having a thickness of about 1 to 10 ⁇ m or less, and therefore satisfies the requirements for weight reduction and wear resistance. Can do.
- the conventional metal sprayed film requires a thickness of about 200 ⁇ m, and even in the case of a metal plating layer, it is necessary to form a plating layer of 50 ⁇ m or more in order to form a stable plating layer. .
- a DLC film having a thickness of about 1 to 10 ⁇ m and having a high hardness and excellent wear resistance can be formed.
- the guide roller as described above may be used by inserting a bearing or the like at both ends of the roller body 1 and inserting the shaft.
- the manufacturing method of the guide roller of this invention is not specifically limited, It can manufacture suitably with the manufacturing method of this invention demonstrated below.
- the second reinforcing fibers are aligned in one direction on the wound body of the first prepreg sheet in which the orientation direction of the first reinforcing fibers is not aligned with the longitudinal direction of the cylindrical body.
- a wound body obtained by winding 2 prepreg sheets so that the orientation direction of the second reinforcing fibers is the longitudinal direction of the cylindrical body was heat-cured, and the reinforcing fibers were oriented in the longitudinal direction of the cylindrical body.
- a metal column such as an iron core or a cylindrical core material is used, and the prepreg sheet is wound around the core material.
- a fiber-reinforced resin cylindrical body produced by winding can be made close to a perfect circle.
- a wound body of the first prepreg sheet is formed by winding the first prepreg sheet constituting the first fiber reinforced resin layer on the core, and then the prepreg constituting the second fiber reinforced resin layer What is necessary is just to wind a sheet
- the second prepreg sheet may be wound at least twice or more. Preferably, it is preferably about 5 to 10 turns from the viewpoint of sufficiently dealing with the adjustment of roundness.
- first and second prepreg sheets those mentioned in the guide roller of the present invention can be used. That is, carbon fibers, glass fibers, alumina fibers, polyester fibers, nylon fibers, etc. having a diameter of about 5 to 13 ⁇ m are usually used as reinforcing fibers, and epoxy resins, unsaturated polyester resins, phenol resins are used as thermosetting resins. Etc. are used.
- the first prepreg sheet is not particularly limited, but a unidirectional type prepreg sheet is used as the second prepreg sheet.
- This unidirectional type prepreg sheet is wound so that the orientation direction of the reinforcing fibers is the longitudinal direction of the cylindrical body (the axial direction of the roller body).
- the resin of the first and second prepreg sheets is cured by heating.
- a wound body is formed in which the first fiber reinforced resin layer, which is the cured body of the first prepreg sheet, is laminated and integrated with the second fiber reinforced resin layer, which is the cured body of the second prepreg sheet.
- the core is extracted after curing, a fiber-reinforced resin cylindrical body is obtained.
- the surface of the obtained fiber reinforced resin cylindrical body that is, the second fiber reinforced resin layer is polished.
- the thickness with respect to the axis may vary, it is required to be close to a perfect circle by polishing.
- the DLC film formed on the second fiber reinforced layer is a thin film, and the surface roughness of the second fiber reinforced resin layer as a base is easily reflected, so that the smooth surface has few irregularities. It is necessary to keep.
- a bearing is internally fitted in the both ends of the fiber reinforced resin cylindrical body 10, and the axis
- the reinforcing fiber is oriented in the axial direction while rotating the fiber reinforced resin cylindrical body 10 of the first fiber reinforced resin layer and the second fiber reinforced resin layer.
- the second fiber reinforced resin layer is preferably moved by being moved along the longitudinal direction (axial direction) of the fiber reinforced resin cylindrical body 10 as an outer layer.
- the surface layer part of the hardening body of the 2nd prepreg sheet laminated body which comprises the 2nd fiber reinforced resin layer is grind
- the average surface roughness (Ra) is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably about 0.7 ⁇ m. In this respect, when a prepreg sheet using a woven fabric type fiber sheet is used as the outermost layer or a unidirectional prepreg sheet is provided so as to intersect the axial direction of the roller, polishing is performed in the same manner.
- a DLC film is formed.
- a plasma CVD method, a sputtering method, an ion plating method, and the like can be used as a method for forming the film in the temperature range so as not to cause thermal damage to the roller body 10.
- the ion implantation method is particularly preferable.
- the ion implantation method is a method in which a plasma is generated by applying a high-frequency voltage around a substrate, and a high voltage pulse is further applied to implant and form a film of ions around the substrate. Specifically, plasma is formed around the base roller (roller on which the second fiber reinforced resin layer is formed), and a negative pulse voltage is applied to the roller to extract ions from the plasma and accelerate it. Then, ion implantation is performed on the second fiber reinforced resin layer.
- a DLC film is formed.
- a carbon compound As a plasma raw material to be used, a carbon compound is used.
- saturated hydrocarbons such as methane, ethane, propane and butane, unsaturated hydrocarbons such as ethylene, propylene and butadiene, and aromatic hydrocarbons such as benzene and toluene can be used.
- hydrogen is contained in the DLC film.
- the hydrogen content in the DLC film depends on the manufacturing method and film forming conditions.
- the plasma forming method is not particularly limited, and examples thereof include a high frequency discharge method, a microwave discharge method, and a hot filament discharge method.
- the film formation using ion implantation has a feature that a film having excellent adhesion can be formed because a mixing layer is formed at the interface between the second fiber reinforced resin layer and the thin film. Further, the ion implantation method can form a film at a lower temperature than the CVD method, the plasma CVD method, and the like, and can form a dense film similar to the CVD method with high adhesion to the substrate. There is a feature.
- the second fiber reinforced resin layer may be exposed to a pretreatment gas such as a plasma containing a fluorine-containing gas, a hydrogen-containing gas, or an oxygen-containing gas.
- a pretreatment gas such as a plasma containing a fluorine-containing gas, a hydrogen-containing gas, or an oxygen-containing gas.
- the pretreatment may be performed a plurality of times.
- the DLC film is formed to a thickness of about 1 to 10 ⁇ m, preferably 3 to 5 ⁇ m. Even with this thickness, the conditions required for the guide roller can be satisfied from the inherent wear resistance and sliding properties of the DLC film. Furthermore, as described above, the polished surface of the second fiber reinforced resin layer serving as the base achieves an average surface roughness (Ra) of 1.0 ⁇ m or less, preferably 0.8 ⁇ m or less, and more preferably about 0.7 ⁇ m. Therefore, even with a DLC film having such a thickness, the reinforcing fibers in the underlying second fiber reinforced resin layer are not broken and exposed together with the resin.
- Ra average surface roughness
- the method of the present invention after polishing the second fiber reinforced resin layer to ensure roundness, it is not necessary to fix the resin for smoothing the uneven surface. Since there is no need for treatment or polishing after the formation of a wear-resistant film like a metal sprayed film, the number of work steps can be reduced as compared with the conventional method, and productivity can be improved.
- Example 1 As a prepreg sheet as a constituent material of the first fiber reinforced resin layer and the second fiber reinforced resin layer, a fiber sheet in which carbon fibers (diameter 5 to 7 ⁇ m) are aligned in one direction is impregnated with an epoxy resin. Used. The thickness of each prepreg sheet is 0.1 to 0.17 mm.
- the above-mentioned prepreg sheet was wound around an iron pipe having an outer diameter of 57 mm so as to be inclined with respect to the axial direction of the iron pipe, and was wound so as to have eight layers in a reciprocating manner.
- the resin was heat-cured at 120 ° C. after winding 6 times (six layers) so that the orientation direction of the carbon fibers was the axial direction of the iron pipe. After curing, the pipe was pulled out to obtain a fiber reinforced resin cylindrical body.
- bearings are attached to both ends of the fiber reinforced resin cylindrical body 10 and the shaft 12 is inserted.
- the surface of the second fiber reinforced resin layer was polished by moving the polishing member 11 along the axial direction while rotating the shaft 12 in the arrow direction.
- the surface roughness after polishing was measured using a surface roughness measuring instrument E35A manufactured by Tokyo Seimitsu Co., Ltd., the average roughness (Ra) was 0.7.
- a DLC film was formed on this polished surface by ion implantation.
- the thickness of the formed DLC film was 3 to 5 ⁇ m.
- the DLC film (thickness average 4 ⁇ m) was formed on the outer surface of the cylindrical body composed of the first fiber reinforced resin layer (about 0.85 mm) and the second fiber reinforced resin layer (thickness 0.65 mm).
- a guide roller was produced.
- the surface after the DLC film was formed was observed with an electron microscope. An electron micrograph is shown in FIG. In FIG. 3, it can be seen that the white lines that serve as the reinforcing fibers are oriented in one direction.
- the guide roller of the present invention is lightweight and has excellent wear resistance and sliding properties, it can be used as various conveying rollers such as plastic sheets, paper sheets, and ceramic green sheets.
- it is not necessary to perform a base treatment for plating or smooth the uneven surface after polishing, so that the number of work steps can be reduced as compared with the conventional method.
- the guide roller is highly productive.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolls And Other Rotary Bodies (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
ここでは、カーボン繊維を所定角度で交差させることにより、軽量化を阻害しないで、剛性を上げることができると説明されている(段落番号0028、0029など)。
炭素繊維シートに熱硬化性樹脂を含浸させてプリプレグ(半硬化状態)にしたものを、金型に多数の層をなすように巻きつけ、熱硬化した後、さらにエポキシ接着剤で表面を固着して平面度を確保して形成したローラ本体の表面に、研磨加工を施し(段落番号0044)、次いで、研磨面に、低融点金属をフレーム溶射により吹きつけて、厚さ300μmからなる金属溶射層を形成、この後、金属溶射層の厚さが200μmとなるように研磨する(段落番号0045)。
ここでは、金属溶射層の厚さを所定範囲とすることで、下地処理が不要となり、生産性の向上を図ることができると説明している(段落番号0010)。
ここで、内層については、炭素繊維を一方向に引き揃えてエポキシ樹脂を含浸させたプリプレグA、Bを、炭素繊維の引き揃え方向が直交するように積層し(段落番号0053、表1)、外層としては、樹脂含量が50重量%となるように、ポリエステル繊維不織布に樹脂を含浸したプリプレグシートの樹脂硬化物が用いられている(表2)。
また、金属メッキ層としては、厚み10~100μmの無電解メッキにより形成される金属メッキ層、または厚み55~150μmのクロムメッキが提案されている。
繊維強化プラスチック管を、樹脂含有量50重量%未満の繊維強化プラスチックとすることで、強度、剛性などの機械的性質を確保し、一方、外層を樹脂含有量50~95重量%の繊維強化プラスチックとすることで、表面精度の向上を図っている。また、所定の表面平滑性は、外層を研削、研磨することにより確保しており、内層のうねりの影響がなく、均一な表面を得るためには、外層厚みを0.2~1.5mmとすることが提案されている。
さらに、メッキ前に行った円筒研磨の精度(円筒度、真円度)が低下し、再度円筒研磨が必要になる場合があるので、無電解メッキ層の厚みは30~60μmとすることが最も好ましいと説明されている。
また、薄膜で、平滑性に優れた金属メッキ層、金属溶射層を得るために、下地となる繊維強化樹脂層の鏡面化が必要となる。しかしながら、従来の方法では、繊維強化樹脂層の研磨面に、更にエポキシ樹脂を固着することで、研磨面の凹凸の平滑化を図ったり、樹脂含有率が高い(繊維含有率が低い)繊維強化樹脂層を形成し、その繊維強化樹脂層を研磨している。
これらの方法では、金属メッキ層や金属溶射層を薄くするための前提として、樹脂層の厚みを分厚くすることになり、更なる軽量化が困難となっている。
はじめに、本発明一実施形態のガイドローラについて、図1に基づいて説明する。
図1(a)は、本発明のガイドローラの長手方向(軸方向)断面図であり、(b)は、側面図である。
上記強化繊維としては、特に限定しないが、炭素繊維、ガラス繊維、アルミナ繊維、ポリエステル繊維、ナイロン繊維などが挙げられ、これらのうち、比強度、比剛性に優れた炭素繊維が好ましく用いられる。強化繊維としては、径5~13μmのものが通常用いられる。
上記繊維シートとしては、強化繊維の不織布;平織り、綾織り、朱子織等の織布;一方向に並行に引き揃えた繊維シートなどを用いることができる。
また、上記熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂などが用いられ、これらのうち、熱硬化時の熱収縮率が小さいという点から、エポキシ樹脂が好ましく用いられる。
第2繊維強化樹脂層4の構成に用いるプリプレグシートにおいて、強化繊維及び熱硬化性樹脂は、第1繊維強化樹脂層3に用いたものと同様のものを用いることができる。すなわち、強化繊維としては、径5~13μmの炭素繊維が好ましく用いられ、熱硬化性樹脂としてはエポキシ樹脂が好ましく用いられる。
このようなDLC膜は、CVD法、プラズマCVD法、PVD法、イオン注入法などにより作製できるが、好ましくはイオン注入法により形成する。
この程度の厚みでも、耐摩耗性、摺動性を確保することができる。第2繊維強化樹脂層4の外表面は、ローラの長手方向長さ全体にわたって、高い平滑度(好ましくは、平均粗さ(Ra)として、1.0μ以下)が達成されているので、上記厚みでも、ガイドローラ外表面全体に満遍なくDLC膜を形成できる。
この点、従来の金属溶射膜では、200μm程度の厚みが必要であり、また金属メッキ層の場合でも、安定的なメッキ層を形成するためには、50μm以上のメッキ層を形成する必要がある。しかしながら、DLC膜では、1~10μm程度の厚みで、高硬度、耐摩耗性に優れた膜を形成できる。
本発明のガイドローラの製造方法は、第1強化繊維の配向方向が円筒体の長手方向に引き揃っていない第1プリプレグシートの巻回体上に、第2強化繊維が一方向に並列した第2プリプレグシートを、該第2強化繊維の配向方向が前記円筒体の長手方向となるように巻回してなる巻回体を加熱硬化して、前記円筒体の長手方向に強化繊維が配向された繊維強化樹脂層が表層となっている繊維強化樹脂製円筒体を形成する工程;
前記繊維強化樹脂製円筒体の表面を研磨する工程;及び
前記研磨工程により得られた研磨面に、ダイヤモンド状炭素膜を形成する工程
を含む。
DLC膜の形成方法としては、ローラ本体10に熱的損傷を与えないように温度範囲で膜形成できる方法として、プラズマCVD法、スパッタリング法、イオンプレーティング法等を挙げることができる。こらのうち、特にイオン注入法が好ましい。
イオン注入法とは、基材周囲に、高周波電圧をかけてプラズマを発生させ、更に高電圧パルスを印加し、基材の周囲にあるイオンを注入及び成膜する方法である。具体的には、基材となるローラ(第2繊維強化樹脂層が形成されたローラ)の周囲にプラズマを形成し、ローラに負のパルス電圧を印加することにより、プラズマからイオンを引き出し、加速して、第2繊維強化樹脂層にイオン注入を行う。カーボンを含有するガスを使用してプラズマを形成すると、DLC膜が形成される。
さらに、前述のとおり、下地となる第2繊維強化樹脂層の研磨面は、平均表面粗さ(Ra)として、1.0μm以下、好ましくは0.8μm以下、さらに好ましくは0.7μm程度を達成できているので、この程度の厚みのDLC膜でも、下地の第2繊維強化樹脂層における強化繊維が樹脂とともに破断して露出することもない。
第1繊維強化樹脂層、第2繊維強化樹脂層の構成材料となるプリプレグシートとして、炭素繊維(径5~7μm)を一方向に引き揃えた繊維シートにエポキシ樹脂が含浸されたものを用いた。このプリプレグシートの1枚あたりの厚みは、0.1~0.17mmである。
研磨後の表面粗さを、株式会社東京精密製表面粗さ測定器E35Aを用いて測定したところ、平均粗さ(Ra)0.7であった。
DLC膜形成後の表面を、電子顕微鏡により観察した。電子顕微鏡写真を図3に示す。図3において、強化繊維となる白線が一方向に配向されていることがわかる。
実施例で用いたものと同種類のプリプレグシートを用いた。
鉄製パイプ上に、第1繊維強化樹脂層として、プリプレグシートを8層となるように巻回した後、第2繊維強化樹脂層として、1層目と2層目で強化繊維の配向方向が直交するように順に、6層積層巻回した。
樹脂を加熱硬化した後、実施例と同様の条件で、第2繊維強化樹脂層を研磨した。この研磨面に、実施例と同様にして、イオン注入法により、DLC膜を形成した。このようにして、第1繊維強化樹脂層(約0.85mm)、第2繊維強化樹脂層(厚み0.65mm)からなる円筒体の外表面に、DLC膜(厚み平均4μm)が形成されたガイドローラを作製した。
従って、炭素繊維の配向を特定方向としていない繊維強化樹脂層を用いたガイドローラにおいて、平滑度の高いDLC膜を達成するためには、DLC膜形成後、さらにDLC膜表面の加工処理が必要となる。
また、本発明のガイドローラの製造方法によれば、メッキの下地処理や、研磨後の凹凸面を平滑化するといった作業が不要となるにで、従来の方法よりも作業工程数を減らすことができ、ガイドローラの生産性に優れる。
3 第1繊維強化樹脂層
4 第2繊維強化樹脂層
5 DLC膜
10 繊維強化樹脂製円筒体
11 研磨部材
Claims (8)
- 第1繊維強化樹脂層;該第1繊維強化樹脂層上に設けられた第2繊維強化樹脂層;及び該第2繊維強化樹脂層上に設けられたダイヤモンド状炭素膜を備えた円筒状のガイドローラであって、
前記第1繊維強化樹脂層における強化繊維の配向方向が前記ガイドローラの軸方向に引き揃っておらず、且つ前記第2繊維強化樹脂層における強化繊維の配向方向は、前記ガイドローラの軸方向となっているガイドローラ。 - 前記第2繊維強化樹脂層は、強化繊維が一方向に引き揃えられているプリプレグシートを、該強化繊維の配向方向が前記軸方向となるように巻回した後、熱硬化することにより形成されたものである請求項1に記載のガイドローラ。
- 前記第1繊維強化樹脂層は、プリプレグシートの強化繊維の配向方向が前記ガイドローラの軸方向となっていない巻回工程を少なくとも1回含んでなるように巻回した後、熱硬化することにより形成されたものである請求項1又は2に記載のガイドローラ。
- 前記第2繊維強化樹脂層の形成に用いるプリプレグシートは、炭素繊維が一方向に引き揃えられた炭素繊維シートにエポキシ樹脂を含浸したものである請求項2又は3に記載のガイドローラ。
- 前記第2繊維強化樹脂層の表面粗さは、平均粗さ(Ra)として1.0μm以下であり、前記ダイヤモンド状樹脂膜の厚みは1~10μmである請求項1~4のいずれかに記載のガイドローラ。
- 第1強化繊維の配向方向が円筒体の長手方向に引き揃っていない第1プリプレグシートの巻回体上に、第2強化繊維が一方向に並列した第2プリプレグシートを、該第2強化繊維の配向方向が前記円筒体の長手方向となるように巻回してなる巻回体を加熱硬化して、前記円筒体の長手方向に強化繊維が配向された繊維強化樹脂層が表層となっている繊維強化樹脂製円筒体を形成する工程;
前記繊維強化樹脂製円筒体の表面を研磨する工程;及び
前記研磨工程により得られた研磨面に、ダイヤモンド状炭素膜を形成する工程
を含む、ガイドローラの製造方法。 - 前記研磨工程は前記繊維強化樹脂製円筒体を回転しつつ、研磨材を、該繊維強化樹脂製円筒体の長手方向に沿って進行させることにより行われる請求項6に記載のガイドローラの製造方法。
- 前記ダイヤモンド状炭素膜形成工程は、イオン注入法により行う請求項6または7に記載のガイドローラの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/068244 WO2013021478A1 (ja) | 2011-08-10 | 2011-08-10 | ガイドローラ及びその製造方法 |
KR1020147003278A KR20140037949A (ko) | 2011-08-10 | 2011-08-10 | 가이드 롤러 및 그 제조방법 |
CN201180072725.6A CN103717518A (zh) | 2011-08-10 | 2011-08-10 | 导辊及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/068244 WO2013021478A1 (ja) | 2011-08-10 | 2011-08-10 | ガイドローラ及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013021478A1 true WO2013021478A1 (ja) | 2013-02-14 |
Family
ID=47668029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068244 WO2013021478A1 (ja) | 2011-08-10 | 2011-08-10 | ガイドローラ及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20140037949A (ja) |
CN (1) | CN103717518A (ja) |
WO (1) | WO2013021478A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103878985A (zh) * | 2014-04-04 | 2014-06-25 | 常州神鹰碳塑复合材料有限公司 | 一种用于切割硅片的碳纤维导轮制备方法及碳纤维导轮 |
GB2565186A (en) * | 2017-05-25 | 2019-02-06 | Hexcel Composties Ltd | Improvements in or relating to slitting |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105216378A (zh) * | 2015-10-08 | 2016-01-06 | 淄博朗达复合材料有限公司 | 一种高刚度碳纤维辊轴及其制备方法 |
JP6935733B2 (ja) * | 2017-11-24 | 2021-09-15 | トヨタ自動車株式会社 | 電極積層体の製造装置及び方法 |
CN108046026A (zh) * | 2017-12-01 | 2018-05-18 | 常德金德新材料科技股份有限公司 | 一种导辊 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310135A (ja) * | 2001-04-10 | 2002-10-23 | Nippon Oil Corp | 搬送用ロール素管および該素管を備えた搬送用ロール |
JP2008024467A (ja) * | 2006-07-24 | 2008-02-07 | Miyako Roller Industry Co | ガイド用、搬送用ロール |
JP2010275114A (ja) * | 2010-09-14 | 2010-12-09 | Miyako Roller Industry Co | ロール製造方法、被膜形成ロール、被膜形成装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10218418A (ja) * | 1997-02-14 | 1998-08-18 | Noritsu Koki Co Ltd | 搬送用ローラおよびその製造方法 |
JP4285299B2 (ja) * | 2004-03-30 | 2009-06-24 | 住友ゴム工業株式会社 | 紙送りローラ |
-
2011
- 2011-08-10 KR KR1020147003278A patent/KR20140037949A/ko not_active Application Discontinuation
- 2011-08-10 CN CN201180072725.6A patent/CN103717518A/zh active Pending
- 2011-08-10 WO PCT/JP2011/068244 patent/WO2013021478A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002310135A (ja) * | 2001-04-10 | 2002-10-23 | Nippon Oil Corp | 搬送用ロール素管および該素管を備えた搬送用ロール |
JP2008024467A (ja) * | 2006-07-24 | 2008-02-07 | Miyako Roller Industry Co | ガイド用、搬送用ロール |
JP2010275114A (ja) * | 2010-09-14 | 2010-12-09 | Miyako Roller Industry Co | ロール製造方法、被膜形成ロール、被膜形成装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103878985A (zh) * | 2014-04-04 | 2014-06-25 | 常州神鹰碳塑复合材料有限公司 | 一种用于切割硅片的碳纤维导轮制备方法及碳纤维导轮 |
GB2565186A (en) * | 2017-05-25 | 2019-02-06 | Hexcel Composties Ltd | Improvements in or relating to slitting |
Also Published As
Publication number | Publication date |
---|---|
KR20140037949A (ko) | 2014-03-27 |
CN103717518A (zh) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013021478A1 (ja) | ガイドローラ及びその製造方法 | |
JP5738567B2 (ja) | 耐摩耗性の繊維強化複合材及びその製造方法 | |
JP5501033B2 (ja) | ガイドローラ及びその製造方法 | |
WO2013099040A1 (ja) | 耐摩耗性の繊維強化複合材及びその製造方法 | |
US20050153821A1 (en) | Method of making a metal outer surface about a composite or polymer cylindrical core | |
EP3279510B1 (en) | Screw shaft, manufacturing method thereof, and ball screw device | |
JP2011179580A5 (ja) | ||
WO2018235547A1 (ja) | コンタクトロール | |
JP2005040963A (ja) | 巻き取りコア | |
JP6253957B2 (ja) | セラミックコーティングローラの製造方法 | |
JP6312491B2 (ja) | ウェブ製造用ロール | |
JPH068354A (ja) | 繊維強化樹脂製ロールおよびその製造方法 | |
JP5287200B2 (ja) | ゴルフクラブ用シャフトの製造方法 | |
JP2014219066A (ja) | 複合容器、複合容器の製造方法、及び複合容器の製造システム | |
JP7169105B2 (ja) | 接圧ロール | |
JP6193431B2 (ja) | 耐熱用繊維強化プラスチックロール | |
JPH10252742A (ja) | 炭素繊維強化樹脂製ロール | |
JP2002363855A (ja) | 繊維束の開繊装置および開繊方法ならびにプリプレグの製造方法 | |
CN104943190A (zh) | 输送辊及输送辊的制造方法 | |
EP0736369A1 (en) | Metallized fiber-reinforced resin roll and production thereof | |
JP4390114B2 (ja) | 印刷原版支持用のドラム | |
JP2014005580A (ja) | 炭素繊維束の開繊・搬送方法、および炭素繊維一方向性プリプレグの製造方法 | |
JP2005089161A (ja) | 繊維強化複合材料の製造装置、同製造方法及び圧力容器 | |
JPH0587123A (ja) | 繊維強化樹脂製ロール | |
JPH06210797A (ja) | 金属被覆繊維強化プラスチック製ロール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11870747 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147003278 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11870747 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |