WO2013020512A1 - 资源调度方法及无线接入设备和通信系统 - Google Patents

资源调度方法及无线接入设备和通信系统 Download PDF

Info

Publication number
WO2013020512A1
WO2013020512A1 PCT/CN2012/079861 CN2012079861W WO2013020512A1 WO 2013020512 A1 WO2013020512 A1 WO 2013020512A1 CN 2012079861 W CN2012079861 W CN 2012079861W WO 2013020512 A1 WO2013020512 A1 WO 2013020512A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
uplink
terminal
downlink
communication system
Prior art date
Application number
PCT/CN2012/079861
Other languages
English (en)
French (fr)
Inventor
周蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12821985.4A priority Critical patent/EP2728956B1/en
Publication of WO2013020512A1 publication Critical patent/WO2013020512A1/zh
Priority to US14/176,661 priority patent/US9392611B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • downlink maximum transmission path loss base station overhead power - base station feeder loss + base station antenna gain + terminal antenna gain - terminal feeder loss - terminal reception sensitivity - human loss - power surplus the amount.
  • the downlink coverage mainly depends on the terminal receiving sensitivity.
  • the uplink coverage mainly depends on the terminal transmission power. Limiting the terminal transmit power creates a certain contradiction between the uplink coverage and the downlink coverage.
  • Embodiments of the present invention provide a resource scheduling method, a wireless access device, and a communication system, so as to improve communication coverage quality while controlling equipment costs as much as possible.
  • the embodiment of the present invention provides the following technical solutions:
  • a resource scheduling method includes:
  • the channel condition parameter value of the uplink channel of the first terminal is measured, where the channel condition parameter value is used to represent the first terminal.
  • the uplink resource block that satisfies the first scheduling condition is preferentially allocated to the first terminal to transmit uplink data, if The current channel condition parameter value of the uplink channel of the first terminal is smaller than the preset first channel condition parameter threshold, and the uplink resource block that satisfies the second scheduling condition is preferentially allocated to the first terminal to transmit uplink data, where The uplink resource block that meets the first scheduling condition is an uplink resource block of the first communication system whose interference parameter value is greater than a preset first interference threshold; and the uplink resource block that meets the second scheduling condition has an interference parameter value that is smaller than the The first communication system uplink resource block of the first interference threshold.
  • a resource scheduling method includes:
  • the corresponding downlink resource block whose interference parameter value interfered by the uplink transmission nonlinear product of the second terminal is smaller than the second interference threshold is preferentially allocated for the The second terminal transmits downlink data.
  • a resource scheduling method includes:
  • the uplink resource block of the downlink resource block is allocated as far as possible, and the uplink data is preferentially allocated to the third terminal.
  • a resource scheduling method includes:
  • the downlink resource block is preferentially allocated for transmitting downlink data to the fourth terminal.
  • a wireless access device includes:
  • a first measurement module configured to calculate an interference parameter value corresponding to each uplink resource block of the first communication system, where the interference parameter value is used to represent that the terminal of the first communication system transmits data on the corresponding uplink resource block The extent of interference caused by the receiving end of the communication system;
  • a second measurement module configured to: when a first terminal that accesses the first communication system needs to transmit uplink data, calculate a channel condition parameter value of an uplink channel of the first terminal, where the channel condition parameter value is used by Characterizing the current channel condition of the uplink channel of the first terminal;
  • a first resource scheduling module configured to: when the second measurement module calculates that a channel condition parameter value of an uplink channel of the first terminal is greater than a first channel condition threshold, prioritize uplink resource blocks that meet the first scheduling condition Transmitting the uplink data to the first terminal, when the current channel condition parameter value of the uplink channel of the first terminal is smaller than the first channel condition threshold, assigning the uplink resource block that satisfies the second scheduling condition to the The first terminal transmits the uplink data, where the uplink resource block that meets the first scheduling condition is an uplink resource block of the first communication system whose interference parameter value calculated by the first measurement module is greater than the first interference threshold; The uplink resource block that satisfies the second scheduling condition is an uplink resource block of the first communication system whose interference parameter value measured by the first measurement module is smaller than the first interference threshold.
  • a wireless access device includes:
  • a third calculating module configured to measure an interference parameter value of an uplink transmitting nonlinear product that is connected to the second terminal of the first communication system, and causing interference to a downlink frequency band of the first communication system;
  • a second resource scheduling module configured to: if the downlink data is to be transmitted to the second terminal, the interference in the downlink frequency band measured by the third measurement module is interfered by the uplink transmission nonlinear product of the second terminal The corresponding downlink resource block whose parameter value is smaller than the second interference threshold is used for priority allocation. Transmitting downlink data to the second terminal
  • a wireless access device includes:
  • a third resource scheduling module configured to allocate, by the third terminal accessing the first communications system, a downlink resource block of the first communications system
  • a fourth resource scheduling module configured to: when the third terminal further needs to transmit uplink data, move the frequency in the uplink frequency band of the first communication system as far as possible from the downlink resource allocated by the third resource scheduling module
  • the uplink resource block of the block is preferentially allocated to the third terminal for transmitting uplink data.
  • a wireless access device includes:
  • a fifth resource scheduling module configured to allocate a first resource system uplink resource block to a fourth terminal accessing the first communication system
  • a sixth resource scheduling module configured to: when the downlink data is still to be transmitted to the fourth terminal, move the downlink frequency band of the first communication system as far as possible from the uplink resource block allocated by the fifth resource scheduling module.
  • the downlink resource block is preferentially allocated for transmitting downlink data to the fourth terminal.
  • a communication system comprising: the wireless access device as described in the above embodiments.
  • the radio access device first calculates an interference parameter value of each uplink resource block of the first communication system, where the interference parameter value is used to perform transmission on the corresponding uplink resource block.
  • the degree of interference caused by the data to the receiving end of the second communication system and when the first terminal accessing the first communication system needs to transmit uplink data, the channel condition parameter value of the uplink channel of the first terminal is measured, and the channel condition parameter The value is used to represent the current channel condition of the uplink channel of the first terminal; if the current channel condition of the uplink channel of the first terminal is relatively good, the uplink resource of the first communication system with the interference parameter value greater than the preset first interference threshold is used.
  • the block is allocated to the first terminal to transmit the uplink data; if the current channel condition of the uplink channel of the first terminal is relatively poor, the uplink resource block of the first communication system with the interference parameter value less than the preset first interference threshold is allocated to the first The terminal transmits uplink data.
  • the radio access device allocates the uplink resource block to the terminal, the channel condition of the uplink channel of the terminal and the interference condition corresponding to different uplink resource blocks are comprehensively considered, so that adjusting the resource scheduling manner is beneficial to improving the communication coverage quality, and does not Affects equipment costs.
  • FIG. 1 is a schematic flowchart of a resource scheduling method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a frequency band of a neighboring system according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a resource scheduling method according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic diagram of an uplink intermodulation product falling into a downlink frequency band according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of an output spectrum according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic flowchart of a resource scheduling method according to Embodiment 3 of the present invention
  • FIG. 7 is a schematic flowchart of a resource scheduling method according to Embodiment 4 of the present invention
  • FIG. 8 is a schematic diagram of a wireless device according to an embodiment of the present invention. Schematic diagram of the access device;
  • FIG. 9 is a schematic diagram of another wireless access device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another wireless access device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another wireless access device according to an embodiment of the present invention.
  • the embodiments of the present invention provide a resource scheduling method, a wireless access device, and a communication system, so as to improve the communication coverage quality while controlling the equipment cost as much as possible.
  • the wireless access device refers to an access network entity that can implement the terminal radio access management function, and the wireless access device and the mobility management network element may have different networks in different networks.
  • the wireless access device mentioned in the following embodiments of the present invention may be referred to as: Universal Mobile Telecommunications System (UMTS), Terrestrial Radio Access Network (E-UTRAN, Evolved UMTS Territorial Radio Access) Evolved Base Station (eNodeB) in Network), Home Base Station (HeNB) or other type of base station; or UMTS Territorial Radio Access Network (UTRAN) / GSM EDGE Radio Access Network (GERAN, GSM EDGE Radio) Base station controller in Access Network), or Radio Network Controller (RNC); or high-rate packet data access in Wideband Code Division Multiple Access (CDMA) networks HRPD-AN (High Rate Packet Data Access Network) access network logic function entity, wireless local area network (WLAN, Wireless Local Area Network) with Evolved Packet Data Gateway (EPDG) access network logic function Entity; ⁇ Wave access to global interoperability (WiMAX, Worldwide Interop Erability for Microwave Access) An entity that implements wireless access management of terminals in an access service
  • This embodiment is mainly for solving the problem of mutual interference between different systems. For example, two communication systems deployed in the same geographical area, if the operating frequencies are adjacent, due to the imperfections of the transmitter and receiver filters, the two communication systems coexisting with each other, so that This may result in reduced link quality and reduced system capacity.
  • An embodiment of the resource scheduling method of the present invention may include: measuring an interference parameter value of each uplink resource block of the first communication system, where the interference parameter value is used to represent that the terminal of the first communication system transmits on the corresponding uplink resource block The degree of interference caused by the data to the receiving end of the second communication system; if the first terminal accessing the first communication system needs to transmit uplink data, the channel condition parameter value of the uplink channel of the first terminal is measured, wherein the channel condition The parameter value is used to represent the current channel condition of the uplink channel of the first terminal; if the channel condition parameter of the uplink channel of the first terminal If the value is greater than the preset first channel condition parameter threshold, the uplink resource block that satisfies the first scheduling condition is preferentially allocated to the first terminal to transmit uplink data, if the current channel condition parameter value of the uplink channel of the first terminal is less than the preset value.
  • the uplink resource block that satisfies the second scheduling condition is preferentially allocated to the first terminal to transmit the uplink data, where the uplink resource block that satisfies the first scheduling condition is the first that the interference parameter value is greater than the first interference threshold.
  • the uplink resource block of the communication system is an uplink resource block that satisfies the second scheduling condition, and is an uplink resource block of the first communication system whose interference parameter value is smaller than the first interference threshold.
  • the specific steps may include:
  • the wireless access device calculates an interference parameter value of each uplink resource block of the first communication system, where the interference parameter value is used to represent the same condition (like equal transmission power), and the first communication system is on the corresponding uplink resource block.
  • the degree of interference caused to the receiving end of the second communication system when transmitting data For example, the larger the interference parameter value is, the stronger the interference caused to the receiving end of the second communication system is, and the smaller the interference parameter value is, the weaker the interference caused to the receiving end of the second communication system is.
  • the first communication system and the second communication system in the embodiment of the present invention refer to two communication systems adjacent to the spectrum, where the first communication system includes several wireless access devices and several attached to the wireless access device.
  • the systems of the first communication system and the second communication system may be the same or different, and the first communication system and the second communication system may belong to the same operator or may belong to different operators.
  • the uplink resource block mentioned in the embodiment of the present invention refers to a resource block that the terminal can use to transmit uplink data.
  • each uplink resource block of the first communication system refers to each resource that the terminal of the first communication system can use to transmit uplink data.
  • a downlink resource block refers to a resource block in which a radio access device transmits downlink data to a terminal (for example, a downlink resource block of the first communication system, which refers to a resource block in which the radio access device of the first communication system transmits downlink data to the terminal) .
  • the wireless access device measures the receiving end of the second communication system when transmitting data on each uplink resource block of the first communication system (
  • the receiving end may refer to interference caused by a device that receives a wireless signal in the second communication system, such as a terminal, a wireless access device, etc. (it may be understood that when data is transmitted on each uplink resource block of the first communication system, Terminal and wireless access device in the second communication system
  • the manner in which the interference parameter values are received by the receiving wireless signal to cause certain interference may be varied.
  • the radio access device may measure an additional maximum power backoff _ ⁇ 1 value corresponding to each uplink resource block of the first communication system (the interference in the resource block area with a larger A_MPR value is greater to the neighboring system, The smaller the A_MPR value or the smaller the resource block area, the smaller the interference of the data transmitted to the neighbor system.
  • the wireless access device may measure an interference parameter value generated by the uplink transmission nonlinear product generated when transmitting data on each uplink resource block of the first communication system, and causing interference to the receiving end of the second communication system (at this time,
  • the interference parameter value may include an interference power value, or an interference signal to noise ratio (SNR, Signal/Noise), and the like.
  • the uplink emission nonlinear product mentioned in the embodiment of the present invention may include, for example, one or more of nonlinear products such as spurs, harmonics, and intermodulation products.
  • the wireless access device calculates a channel condition parameter value of the uplink channel of the first terminal.
  • the channel condition parameter value is used to represent a current channel condition of the uplink channel of the first terminal, and the channel condition parameter value is, for example, a channel signal to noise ratio SNR.
  • the channel condition parameter value is, for example, a channel signal to noise ratio SNR.
  • SNR channel signal to noise ratio
  • the wireless access device may calculate a current channel condition parameter value of the uplink channel of the first terminal according to the measurement report reported by the first terminal, or the wireless access device may measure the uplink channel of the first terminal.
  • the noise ratio is used to obtain the current channel condition parameter value of the uplink channel of the first terminal, or the wireless access device may calculate the current channel condition parameter value of the uplink channel of the first terminal by using other methods.
  • the test finds that the transmission power required by the terminal with relatively good channel conditions is relatively low, and it is not limited to the maximum configured transmission power requirement, so the adjacent channel interference caused by the neighboring system is relatively low; Poor terminals require relatively high transmit power, so adjacent channel interference caused by neighboring systems may be relatively high; and, under the same conditions (like equal transmit power), when transmitting data on different uplink resource blocks The degree of the interference caused by the receiving end of the neighboring system is also different. Therefore, when the radio access device allocates the uplink resource block to the terminal, the radio access device comprehensively considers the interference situation corresponding to different uplink resource blocks and the channel condition of the uplink channel of the terminal. In order to improve the quality of communication coverage.
  • the wireless access device preferentially allocates the uplink resource block that satisfies the first scheduling condition to the first terminal to transmit uplink data, if the current channel condition parameter value of the uplink channel of the first terminal is smaller than the preset first channel condition.
  • the parameter threshold the wireless access device preferentially allocates the uplink resource block to the first terminal to transmit the uplink data.
  • the uplink resource block that satisfies the first scheduling condition is, for example, the first communication system uplink resource block whose interference parameter value is greater than the preset first interference threshold.
  • the uplink resource block that meets the first scheduling condition is, for example, the interference parameter value is greater than a first communication system uplink resource block with a preset first interference threshold and less than a fifth interference threshold (where the fifth interference threshold may be infinite or greater than the first interference threshold); an uplink that satisfies the second scheduling condition
  • the resource block is an uplink resource block of the first communication system whose interference parameter value is smaller than the first interference threshold.
  • the uplink resource block that meets the second scheduling condition is that the interference parameter value is smaller than the first interference threshold and greater than the sixth interference threshold (where
  • the first communication system uplink resource block may have a six interference threshold that may be zero or less than other values of the first interference threshold.
  • the wireless access device measures the extra maximum power backoff value of each resource block region in the uplink frequency band of the first communication system, if the current channel condition parameter value of the uplink channel of the first terminal is The uplink access resource block that satisfies the first scheduling condition is preferentially allocated to the first terminal to transmit the uplink data, and the uplink resource block that meets the first scheduling condition is the largest.
  • the first communication system uplink resource block whose power backoff A_MPR value is greater than the first A_MPR threshold that is, the first interference threshold is the first A_MPR threshold
  • the uplink resource block that satisfies the first scheduling condition is greater than the maximum power backoff A_MPR value is greater than a first A_MPR threshold and less than a fifth _ ⁇ 1 threshold (wherein the fifth _ ⁇ 1 threshold may be infinite or greater than other values of the first A_MPR threshold) of the first communication system uplink resource block
  • the current channel condition parameter value of the uplink channel is smaller than the first channel condition parameter threshold, and the radio access device may preferentially allocate the uplink resource block that satisfies the second scheduling condition to
  • the first terminal transmits the uplink data, and at this time, the uplink resource block that satisfies the second scheduling condition is the uplink resource block of the first communication system whose maximum power backoff A_MPR value is smaller than the first A_MPR threshold (for example, the uplink that meets the
  • the wireless access device calculates, if the uplink resource of the first terminal causes interference, such as an interference signal to noise ratio, if the current channel condition parameter value of the uplink channel of the first terminal is greater than the first channel condition parameter.
  • the radio access device may preferentially allocate the uplink resource block that satisfies the first scheduling condition to the first terminal to transmit the uplink data, and at this time, the uplink resource block that satisfies the first scheduling condition is the interference caused by the receiving end of the second communication system.
  • the first communication system uplink resource block (for example, the uplink resource that satisfies the first scheduling condition), where the interference signal to noise ratio is greater than the preset first interference signal to noise ratio threshold (ie, the first interference threshold is the first interference signal to noise ratio threshold)
  • the interference signal to noise ratio of the block to the interference caused by the receiving end of the second communication system is greater than a preset first interference signal to noise ratio threshold and less than the fifth interference signal to noise ratio threshold (wherein the fifth interference signal to noise ratio threshold may be infinite Or the first communication system uplink resource block that is greater than the other value of the first interference signal to noise ratio threshold); if the current channel condition of the uplink channel of the first terminal The value is smaller than the first channel condition parameter threshold, and the radio access device may preferentially allocate the uplink resource block that satisfies the second scheduling condition to the first terminal to transmit the uplink data, and at this time, the uplink resource block that satisfies the second scheduling condition is the pair.
  • the first communication system uplink resource block whose interference signal to noise ratio is smaller than the preset first interference signal to noise ratio threshold (for example, the uplink resource block satisfying the second scheduling condition is the second communication) If the interference caused by the receiving end of the system is less than the preset first interference signal to noise ratio threshold and greater than the sixth interference signal to noise ratio threshold (where the sixth interference signal to noise ratio threshold may be zero or less than the first interference)
  • the first communication system uplink resource block of the signal to noise ratio threshold If the interference caused by the receiving end of the system is less than the preset first interference signal to noise ratio threshold and greater than the sixth interference signal to noise ratio threshold (where the sixth interference signal to noise ratio threshold may be zero or less than the first interference)
  • the first communication system uplink resource block of the signal to noise ratio threshold If the interference caused by the receiving end of the system is less than the preset first interference signal to noise ratio threshold and greater than the sixth interference signal to noise ratio threshold (where the sixth interference signal to noise ratio threshold may be zero or less than the first interference)
  • the threshold values of the first channel condition parameter threshold, the first interference threshold, the fifth interference threshold, and the sixth interference threshold may be set according to the scenario requirements.
  • a specific application scenario is taken as an example for description.
  • a system to be an interference system (such as the LTE FDD system), and the B system to be the interfered system.
  • the A system performs scheduling in the uplink scheduling with the resource block as the granularity, and "1, 2, 3" in Fig. 2 indicates the index number of the resource block (RB).
  • the A system will cause interference to the B system, and the closer the spectrum is to the B system A system resource block, the interference to the B system may be The stronger the energy is; away from the A system resource block of the B system, the degree of interference to the B system is relatively weakened due to the increase in filter suppression.
  • the wireless access device of the system A may use the A system resource block adjacent to the B system resource block (such as the resource block with index numbers 1, 2, 3, ... in FIG. 2).
  • the B system resource block such as the resource block with index numbers 1, 2, 3, ... in FIG. 2.
  • Priority is given to terminals with relatively good channel conditions, because the required transmit power of such terminals is relatively low, and is not limited to the maximum configured transmit power requirement, and the adjacent channel interference caused to the B system is also low.
  • the A system resource block far from the B system it can be allocated to the terminal with relatively poor channel conditions. Because of the large interval between the terminal and the B system, the degree of interference to the B system is relatively weak, so it can be full power or Higher power transmission to ensure uplink coverage.
  • the maximum transmit power that can be used in the actual network is determined by its maximum configured transmit power (Pcmax), and its calculation formula is:
  • P c ⁇ min ⁇ P E - - AT c , P PowerClass - MPR - A_ MPR - AT C ⁇ PCMAX H _ ⁇ il
  • the maximum configured transmit power of the terminal is mainly composed of P EMAX , A_MPR (extra maximum power backoff) value, and terminal power level P P .
  • P . dried ci ass is the maximum power that the terminal can output independently.
  • P EMAX is a high-level configuration parameter, which is generally set to Pp. Class is the same; MPR is the maximum power backoff value required for carrier power to meet the out-of-band emission requirements in different modulation modes and different resource block configurations. This parameter is consistent for all application frequency bands.
  • A_MPR means that under different network signaling, in order to meet the coexistence requirements or the system receiving sensitivity requirements between different systems, the carrier power needs to be further regressed on the basis of MPR. This parameter is related to the application frequency band, and different application frequency bands. The extra power backlash required is not the same. In the TS36.101 protocol, the entire uplink channel is divided into several consecutive resource block regions. To meet the needs of system coexistence, the A_MPR value has different requirements in different resource block regions. In actual network applications, the maximum transmit power of the terminal will be largely limited by the A_MPR value.
  • the radio access device of the interference system may determine the scheduling of the uplink resource block according to the size of the A_MPR value, that is, for the uplink resource block area with a large A_MPR value, That is, for a resource block area with a large interference to the neighboring system, the radio access device may preferentially allocate the uplink resource block of the area to the terminal with a relatively good channel condition; and for the uplink resource block area with a small or unrestricted A_MPR value, The radio access device may preferentially allocate uplink resource blocks in the area to terminals with relatively poor channel conditions, thereby ensuring uplink coverage.
  • the resource block with large interference to the neighboring system may adopt a max (C/I) method, and allocate the resource block to the user with the best channel condition.
  • Max (C/I) scheduling algorithm is to allocate limited radio resources to users with the best channel conditions to maximize spectral efficiency, that is, when the transmission time interval ( ⁇ , Transmit Time Interval) is t, A resource block is assigned to user i that satisfies formula (1):
  • the parameters in the proportional fair scheduling algorithm are adjusted so that the scheduling is inclined to allocate resource blocks to users with relatively good channel conditions. That is: according to the proportional fair scheduling algorithm, when ⁇ is t, a resource block is allocated to the user who satisfies formula (2):
  • Equation (2) where ( C/I )k denotes the channel condition (such as channel signal-to-noise ratio) when user k is ⁇ , and (t _1 ) denotes the fixed time length T pf of user k before the end of t-1 The average data transfer rate within. After the transmission time interval t is over, all users' ⁇ _ will be updated as follows:
  • Uk (t ) indicates the data rate of the scheduled user k at time t; e 0 ' 1 ),
  • T pf is the time window. It can be seen that if the user channel condition is better (that is, the channel signal-to-noise ratio is larger), it will be because the ⁇ 0 ⁇ 1 ⁇ value is higher. Larger and higher priority, and if the user does not get a scheduling opportunity for a long time, it will get a higher priority because the historical average data rate ⁇ (t- 1 ) drops. By adjusting the time window T pf , the scheduling priority of the user can be changed.
  • the time window is longer, it means that the historical average data rate has less influence on the scheduling priority, and the terminal with relatively better channel condition is more likely to obtain a higher priority; Conversely, if the time window is shorter, it means that the influence of ( C / I )k on the scheduling priority is smaller, and the terminal with relatively poor channel conditions is more likely to obtain higher priority. Therefore, for a resource block with relatively large interference to the neighboring system, the parameter T pf in the proportional fair scheduling algorithm can be set to a larger value (the value can be specifically set according to a specific scenario), so that the terminal with relatively better channel conditions is more Easy to get higher priority.
  • the resource block with relatively small interference to the neighboring system can maintain the original scheduling mode of the system, or set the parameter T pf in the proportional fair scheduling algorithm to a relatively small value, so that the scheduling tends to allocate the resource block to the channel condition relative to the channel condition. Poor terminals to ensure upstream coverage and throughput of edge users.
  • the radio access device first calculates an interference parameter value of each uplink resource block of the first communication system, where the interference parameter value is used to represent the second communication system when transmitting data on the corresponding uplink resource block.
  • the degree of the interference caused by the receiving end and when the first terminal accessing the first communication system needs to transmit the uplink data, the channel condition parameter value of the uplink channel of the first terminal is measured, and the channel condition parameter value is used to represent the first terminal.
  • the current channel condition of the uplink channel if the current channel condition of the uplink channel of the first terminal is relatively good, the uplink resource block of the first communication system with the interference parameter value greater than the preset first interference threshold is allocated to the first terminal for transmission.
  • a resource scheduling method may include: measuring an interference parameter value of an uplink uplink nonlinear product that is connected to a second terminal of the first communication system, and causing interference to a downlink frequency band of the first communication system; For the data, the downlink resource block in the downlink frequency band that is interfered by the uplink transmission nonlinear product of the second terminal is less than the second interference threshold, and is preferentially allocated for transmitting the downlink data to the second terminal.
  • specific steps may include: 301.
  • the wireless access device measures an interference parameter value of an uplink uplink nonlinear product that is connected to the second terminal of the first communication system, and causes interference to a downlink frequency band of the first communication system;
  • the interference parameter value is used to characterize the degree of interference caused to the receiving end of the second communication system when the data is transmitted on the corresponding uplink resource block. For example, the larger the interference parameter value is, the stronger the interference caused by some downlink resource blocks in the downlink frequency band is. The smaller the interference parameter value is, the weaker the interference caused to some downlink resource blocks is.
  • the radio access device preferentially allocates the downlink resource block in the downlink frequency band that is interfered by the uplink transmission nonlinear product of the second terminal by using the second interference threshold.
  • the second terminal transmits downlink data.
  • the radio access device compares an interference parameter value of the downlink frequency band that is interfered by the uplink transmission nonlinear product of the second terminal, and is greater than a second interference threshold (the seventh interference threshold may be zero or less than the second
  • the downlink resource block of the other value of the interference threshold is preferentially allocated for transmitting downlink data to the second terminal.
  • the receiving sensitivity may be greatly affected by the self-transmitted residual signal, which may cause the downlink coverage to deteriorate.
  • it can also be implemented through joint scheduling of uplink and downlink resources.
  • the experimental test found that when the uplink transmission is a small bandwidth, the strength of the intermodulation products falling into the downlink receiving frequency band shows obvious fluctuations, that is, the intermodulation products are strong on some downlink receiving resource blocks, and in other downlinks.
  • the receiving resource block is weak.
  • Figure 4 the 5th-order intermodulation products of the uplink transmission fall into the downlink receiving frequency band, and the strength of the intermodulation products falling on some downlink resource blocks is relatively large, thereby causing strong interference on these resource blocks. interference.
  • the downlink resource block is selected to be scheduled by a downlink resource block with less interference from the uplink transmission nonlinear product, thereby ensuring system coverage and throughput.
  • the input excitation signal includes two frequency components: f 2 , due to the nonlinearity of the transmitted RF link, causing the output signal to be in addition to the fundamental signal and There may be nonlinear components such as (p+q) subharmonic components, DC components, and Nth harmonic Nf Nfi (N>2) with frequency -, r 1 - ".
  • nonlinear components such as (p+q) subharmonic components, DC components, and Nth harmonic Nf Nfi (N>2) with frequency -, r 1 - ".
  • third-order mutual The frequency position of the tone is: ( 2f ⁇ ), ( 2f2 ⁇ f , the frequency position of the fifth-order intermodulation is ( 3f i ⁇ 2f 2), ( 3f 2 ⁇ 2f i), and so on.
  • the radio access device calculates the uplink non-linear product of the second terminal, and allocates the downlink resource block whose interference parameter value of the uplink transmission nonlinear product interfered by the second terminal in the downlink frequency band is smaller than the second interference threshold, and preferentially allocates Used to transmit downlink data to the second terminal.
  • the radio access device may preferentially allocate a downlink resource block whose interference parameter value in the downlink frequency band that is interfered by the uplink transmission nonlinear product of the second terminal is smaller than the second interference threshold and is greater than the seventh interference threshold.
  • the second terminal transmits downlink data.
  • the threshold values of the second interference threshold and the seventh interference threshold may be set according to scene requirements.
  • the radio access device first calculates the interference parameter value of the uplink non-linear product of the second terminal of the access system, and causes interference to the downlink frequency band of the system; when the downlink data needs to be transmitted to the second terminal, The radio access device preferentially allocates downlink data blocks whose interference parameter values in the downlink frequency band that are interfered by the uplink transmission nonlinear products of the second terminal are smaller than the second interference threshold, and allocates the downlink data to the second terminal.
  • the radio access device allocates the downlink resource block to the terminal, the interference condition of the terminal uplink non-linear product to each downlink resource block is comprehensively considered, and the same terminal is allocated a resource block with relatively small uplink and downlink mutual interference, such that Adjusting the resource scheduling mode is beneficial to improving the uplink and downlink mutual interference of the same terminal, thereby improving the uplink and downlink coverage quality of the communication without affecting the equipment cost.
  • a resource scheduling method provided by this embodiment includes: allocating a downlink resource block of a first communication system to a third terminal that accesses the first communication system; and if the third terminal further needs to transmit uplink data, uplinking the first communication system
  • the frequency in the frequency band is as far as possible from the uplink resource block of the downlink resource block, and is preferentially allocated to the third terminal to transmit uplink data.
  • specific steps may include:
  • the wireless access device allocates a downlink resource block of the first communication system to the third terminal that accesses the first communications system.
  • the radio access device allocates the uplink resource in the uplink frequency band of the first communication system as far as possible from the uplink resource block of the downlink resource block, and preferentially allocates the uplink data to the third terminal.
  • the radio access device may allocate the uplink resource block in the uplink frequency band of the first communication system as far as possible from the uplink resource block of the downlink resource block by using a plurality of methods, such as a resource scheduling algorithm, and preferentially allocate the uplink resource block to the third terminal for uplink transmission. data.
  • the radio access device may start from the available uplink resource block with the highest frequency interval between the frequency value and the frequency corresponding to the downlink resource block, and sequentially determine whether the uplink resource block satisfies the first SNR decision condition, and the first signal to noise The ratio of the signal to noise ratio of the uplink resource block is greater than the preset first signal to noise ratio threshold.
  • the first signal to noise ratio decision condition is that the signal to noise ratio of the uplink resource block is greater than a preset first signal to noise ratio threshold. And less than the eighth signal to noise ratio threshold (wherein the eighth signal to noise ratio threshold may be infinity or other value greater than the first signal to noise ratio threshold)); selecting one or more that first satisfy the first signal to noise ratio decision condition
  • the uplink resource block allocates the selected uplink resource block to the third terminal to transmit uplink data.
  • the wireless access device may select one of the available uplink resource blocks whose frequency value is greater than the preset first frequency interval threshold by the frequency corresponding to the frequency of the downlink resource block, and select one or the first SNR decision condition.
  • the plurality of uplink resource blocks allocate the selected uplink resource block to the third terminal to transmit the uplink data.
  • the radio access device in the first communication system allocates the uplink resource block in the uplink frequency band of the first communication system as far as possible from the uplink resource block of the downlink resource block of the third terminal, and preferentially allocates the third to the third resource block.
  • the terminal transmits uplink data.
  • the radio access device allocates the downlink resource block to the terminal, and comprehensively considers the mutual interference between the uplink resource block and the downlink resource block of the terminal, and allocates the uplink and downlink resource blocks whose frequencies are far away as far as possible for the same terminal, thus adjusting the resource scheduling.
  • the method is beneficial to improve the uplink and downlink mutual interference problem of the same terminal, thereby improving the uplink and downlink coverage quality of the communication without affecting the equipment cost.
  • a resource scheduling method provided in this embodiment includes: The fourth terminal that is connected to the first communication system allocates the uplink resource block of the first communication system; if the downlink data needs to be transmitted to the fourth terminal, the downlink resource block of the first communication system is kept away from the downlink resource block of the uplink resource block as much as possible. The allocation is for transmitting downlink data to the fourth terminal.
  • steps may include:
  • the wireless access device allocates a first communication system uplink resource block to a fourth terminal that accesses the first communications system.
  • the radio access device allocates the downlink resource block in the downlink frequency band of the first communication system as far as possible from the downlink resource block, and preferentially allocates the downlink data to the fourth terminal.
  • the radio access device may allocate the downlink resource block of the first communication system as far as possible from the downlink resource block of the uplink resource block by using a plurality of methods, such as adjusting the resource scheduling algorithm, and preferentially allocate the downlink resource block to the fourth terminal. data.
  • the radio access device may start from the available downlink resource block with the largest frequency interval between the frequency value and the frequency corresponding to the uplink resource block, and sequentially determine whether the downlink resource block satisfies the second SNR decision condition, and the second SNR.
  • the decision condition is that the signal to noise ratio of the downlink resource block is greater than a preset second signal to noise ratio threshold (for example, the second signal to noise ratio decision condition is that the signal to noise ratio of the downlink resource block is greater than a preset second signal to noise ratio threshold and is less than a ninth signal to noise ratio threshold (wherein the ninth signal to noise ratio threshold may be infinity or other value greater than a second signal to noise ratio threshold)); selecting one or more downlinks that first satisfy the second signal to noise ratio decision condition And the resource block, the selected downlink resource block is allocated to transmit the downlink data to the fourth terminal; or, the frequency interval between the frequency value and the frequency corresponding to the uplink resource block is greater than a preset second frequency interval threshold.
  • the available downlink resource blocks one or more downlink resource blocks satisfying the second SNR decision condition are selected, and the selected downlink resource block is allocated for the fourth Terminal transmitting downlink data.
  • the radio access device needs to allocate downlink data to the terminal uplink resource block as far as possible, and allocate the downlink data block as far as possible to the downlink resource block of the terminal uplink resource block.
  • the radio access device allocates the downlink resource block to the terminal, and comprehensively considers the mutual interference between the uplink resource block and the downlink resource block of the terminal, and allocates the uplink and downlink resource blocks whose frequencies are far away as far as possible for the same terminal, thus adjusting the resource scheduling.
  • the method is beneficial to improve the uplink and downlink mutual interference problem of the same terminal, thereby improving the uplink and downlink coverage quality of the communication without affecting the equipment cost.
  • the solution of the embodiment of the present invention can be applied to multiple types of FDD communication systems, such as LTE, GSM, WCDMA, etc., multi-carrier, single-carrier or carrier aggregation systems.
  • a wireless access device 800 may include: a first measurement module 810, a second measurement module 820, and a first resource scheduling module 830.
  • the first measurement module 810 is configured to calculate an interference parameter value corresponding to each uplink resource block of the first communication system, where the interference parameter value is used to represent that the terminal of the first communication system transmits data on the corresponding uplink resource block.
  • the degree of interference caused by the receiving end of the second communication system (which may refer to a device receiving a wireless signal in the second communication system, such as a terminal, a wireless access device, etc.).
  • the interference parameter value is used to characterize the extent to which the terminal of the first communication system interferes with the receiving end of the second communication system when transmitting data on the corresponding uplink resource block under the same condition (like the equal transmission power). For example, the larger the interference parameter value is, the stronger the interference caused by the receiving end of the second communication system is, and the smaller the interference parameter value is, the weaker the interference caused to the receiving end of the second communication system is.
  • the first measurement module 810 (the wireless access device 800 is a wireless access device in the first communication system) measures the second communication system when transmitting data on each uplink resource block of the terminal of the first communication system.
  • the manner in which the interference parameter values of the interference caused by the receiving end can be varied.
  • the first measurement module 810 can calculate an additional maximum power backoff A_MPR value corresponding to each uplink resource block of the first communication system (wherein, the resource block area with a larger value of _ ⁇ 1 transmits data to the neighboring system. The larger, the smaller the interference of the transmitted data to the neighbor system in the resource block area where the A_MPR value is smaller or unlimited.
  • the first measurement module 810 can also measure the interference parameter value of the first communication non-linear product and the interference caused by the receiving end of the second communication system (at this time,
  • the interference parameter value may include, for example, an interference power value, an interference signal to noise ratio (SNR), and the like.
  • the second measurement module 820 is configured to: when the first terminal accessing the first communication system needs to transmit uplink data, calculate a channel condition parameter value of the uplink channel of the first terminal, where the channel condition parameter value is used to represent the first The current channel condition of the uplink channel of the terminal.
  • the channel condition parameter values are, for example, channel signal to noise ratio SNR and the like. For example, the larger the channel condition parameter value is, the better the channel condition is. The smaller the channel condition parameter value is, the worse the channel condition is.
  • the second measurement module 820 can calculate the current channel condition parameter value of the uplink channel of the first terminal, for example, according to the measurement report reported by the first terminal, or the second measurement module 820 can measure the uplink channel of the first terminal.
  • the signal-to-noise ratio is used to obtain the current channel condition parameter value of the uplink channel of the first terminal, or the second measurement module 820 can calculate the current channel condition parameter value of the uplink channel of the first terminal by other methods.
  • the first resource scheduling module 830 is configured to: when the second measurement module 820 calculates that the channel condition parameter value of the uplink channel of the first terminal is greater than the first channel condition threshold, preferentially allocate the uplink resource block that meets the first scheduling condition to the first When the terminal transmits the uplink data, when the current channel condition parameter value of the uplink channel of the first terminal is smaller than the first channel condition threshold, the uplink resource block that satisfies the second scheduling condition is preferentially allocated to the first terminal to transmit the uplink data.
  • the uplink resource block that meets the first scheduling condition is, for example, the uplink resource block of the first communication system whose interference parameter value measured by the first measurement module 810 is greater than the preset first interference threshold (for example, the uplink that meets the first scheduling condition)
  • the resource block is, for example, a first communication system uplink resource block whose interference parameter value is greater than a preset first interference threshold and less than a fifth interference threshold (where the fifth interference threshold may be infinity or other value greater than the first interference threshold)
  • the uplink resource block first measurement module 810 that satisfies the second scheduling condition calculates the uplink resource block of the first communication system whose interference parameter value is smaller than the first interference threshold (for example, the uplink resource block that satisfies the second scheduling condition is the interference parameter)
  • the first communication system uplink resource block whose value is less than the first interference threshold and greater than the sixth interference threshold (where the sixth interference threshold may be zero or other value less than the first interference threshold).
  • the first measurement module 810 measures an extra maximum power backoff value of each resource block region in the uplink frequency band of the first communication system, and if the current channel condition parameter of the uplink channel of the first terminal is used, The value is greater than the preset first channel condition parameter threshold, and the first resource scheduling module 830 may preferentially allocate the uplink resource block that meets the first scheduling condition to the first terminal to transmit the uplink.
  • the uplink resource block that satisfies the first scheduling condition is a first communication system uplink resource block whose maximum power backoff A_MPR value is greater than the first A_MPR threshold (that is, the first interference threshold is the first A_MPR threshold) (for example, The uplink resource block that satisfies the first scheduling condition is that the maximum power backoff A_MPR value is greater than the first A_MPR threshold and less than the fifth threshold (where the fifth A_MPR threshold may be, for example, infinity or greater than the first A_MPR threshold).
  • the first communication system uplink resource block of the value)); if the current channel condition parameter value of the uplink channel of the first terminal is smaller than the first channel condition parameter threshold, the first resource scheduling module 830 may use the uplink resource block that satisfies the second scheduling condition.
  • the uplink resource block that satisfies the second scheduling condition is the first communication system uplink resource block whose maximum power backoff A_MPR value is smaller than the first A_MPR threshold (for example, the second scheduling is satisfied)
  • the conditional uplink resource block is that the maximum power backoff A_MPR value is smaller than the first A_MPR threshold and greater than the sixth _ ⁇ 1 threshold (where the sixth _ ⁇ 1 threshold
  • the first communication system uplink resource block may be zero or less than the first A_MPR threshold and other values).
  • the first measurement module 810 measures, for example, an interference signal to noise ratio caused by each uplink resource of the first communication system, if the current channel condition parameter value of the uplink channel of the first terminal is greater than the first channel.
  • the conditional parameter threshold, the first resource scheduling module 830 may preferentially allocate the uplink resource block that satisfies the first scheduling condition to the first terminal to transmit uplink data, and at this time, the uplink resource block that satisfies the first scheduling condition is received by the second communication system.
  • the first communication system uplink resource block is greater than the preset first interference signal to noise ratio threshold (ie, the first interference threshold is the first interference signal to noise ratio threshold) (eg, the first scheduling is satisfied)
  • the conditional uplink resource block is, for example, an interference signal to noise ratio of the interference caused by the receiving end of the second communication system is greater than a preset first interference signal to noise ratio threshold and less than a fifth interference signal to noise ratio threshold (wherein the fifth interference signal to noise ratio)
  • the first communication system uplink resource block whose ratio threshold may be infinity or other value greater than the first interference signal to noise ratio threshold); if the uplink channel of the first terminal
  • the first channel condition parameter value is smaller than the first channel condition parameter threshold, and the first resource scheduling module 830 may preferentially allocate the uplink resource block that satisfies the second scheduling condition to the first terminal to transmit uplink data, and at this time, the second scheduling condition is met.
  • the uplink resource block is an uplink resource block of the first communication system whose interference signal to noise ratio is less than a preset first interference signal to noise ratio threshold caused by interference to the receiving end of the second communication system (for example, an uplink that satisfies the second scheduling condition)
  • the resource block is interference to the receiving end of the second communication system, such as the interference signal to noise ratio is less than the preset first interference.
  • a first communication system uplink resource block having a signal to noise ratio threshold and greater than a sixth interference signal to noise ratio threshold (where the sixth interference signal to noise ratio threshold may be zero or less than other values of the first interference signal to noise ratio threshold).
  • wireless access device 800 of the present embodiment may be implemented by the method in the foregoing method embodiment, and the specific implementation process may refer to the foregoing embodiment. Related descriptions are not described here.
  • the radio access device 800 first calculates an interference parameter value of each uplink resource block of the first communication system, where the interference parameter value is used to represent the terminal of the first communication system on the corresponding uplink resource block.
  • a wireless access device 900 may include: a third measurement module 910 and a second resource scheduling module 920.
  • the third measurement module 910 is configured to measure an interference parameter value of an uplink uplink nonlinear product that is connected to the second terminal of the first communication system, and cause interference to a downlink frequency band of the first communication system, where the interference parameter value is used by The degree of interference caused to the receiving end of the second communication system when the data is transmitted on the corresponding uplink resource block. For example, the larger the interference parameter value is, the stronger the interference caused by some downlink resource blocks in the downlink frequency band is. The smaller the interference parameter value is, the weaker the interference caused to some downlink resource blocks is.
  • the second resource scheduling module 920 is configured to: if the downlink data is to be transmitted to the second terminal, calculate, by the third measurement module, the uplink transmission nonlinear product of the second terminal in the downlink frequency band The corresponding downlink resource block whose interference parameter value is smaller than the second interference threshold is preferentially allocated for transmitting downlink data to the second terminal.
  • the second resource scheduling module 920 may be specifically configured to: if the downlink data is to be transmitted to the second terminal, the third measurement module 910 calculates the uplink frequency band of the second terminal that is interfered by the second terminal.
  • the downlink resource block whose interference parameter value is smaller than the second interference threshold and greater than the seventh interference threshold (the seventh interference threshold may be zero or other value smaller than the second interference threshold) is preferentially allocated for transmitting downlink data to the second terminal.
  • the function of the wireless access device 900 of the present embodiment may be specifically implemented according to the method in the foregoing method embodiment, and the specific implementation process may refer to the foregoing embodiment. Related descriptions are not described here.
  • the radio access device 900 in this embodiment first measures the interference component value of the uplink transmission non-linear product of the second terminal of the access system, and causes interference to the downlink frequency band of the system; when the downlink data needs to be transmitted to the second terminal.
  • the radio access device preferentially allocates downlink data blocks whose interference parameter values in the downlink frequency band that are interfered by the uplink transmission nonlinear products of the second terminal are smaller than the second interference threshold, and are preferentially allocated for transmitting downlink data to the second terminal.
  • the radio access device allocates the downlink resource block to the terminal, the interference condition of the terminal uplink non-linear product to each downlink resource block is comprehensively considered, and the same terminal is allocated a resource block with relatively small uplink and downlink mutual interference, such that Adjusting the resource scheduling mode is beneficial to improving the uplink and downlink mutual interference of the same terminal, thereby improving the uplink and downlink coverage quality of the communication, and does not affect the cost of the device.
  • a wireless access device 1000 may include: a third resource scheduling module 1010 and a fourth resource scheduling module 1020.
  • the third resource scheduling module 1010 is configured to allocate, by the third terminal accessing the first communications system, a downlink resource block of the first communications system;
  • the fourth resource scheduling module 1020 is configured to: when the third terminal further needs to transmit the uplink data, move the frequency in the uplink frequency band of the first communication system as far as possible from the uplink resource block of the downlink resource block allocated by the third resource scheduling module 1010. , preferentially allocated to the third terminal to transmit uplink data.
  • the radio access device 1000 can adjust the frequency of the uplink frequency band of the first communication system as far as possible from the downlink resource block by adjusting a resource scheduling algorithm.
  • the uplink resource block is preferentially allocated to the third terminal to transmit uplink data.
  • the fourth resource scheduling module 1020 may be specifically configured to: when the third terminal further needs to transmit uplink data, the frequency uplink is the maximum available uplink with the frequency interval corresponding to the frequency corresponding to the downlink resource block allocated by the third resource scheduling module 1010.
  • the first signal to noise ratio decision condition is that the signal to noise ratio of the uplink resource block is greater than a preset first signal to noise ratio threshold (eg, the The first signal to noise ratio decision condition is, for example, that the signal to noise ratio of the uplink resource block is greater than a preset first signal to noise ratio threshold and less than the eighth signal to noise ratio threshold (where the eighth signal to noise ratio threshold is infinity or greater than the first letter) Other values of the noise ratio threshold)); selecting one or more uplink resource blocks that first satisfy the first signal to noise ratio decision condition, and allocating the selected uplink resource block to the third terminal to transmit the uplink data.
  • a preset first signal to noise ratio threshold eg, the The first signal to noise ratio decision condition is, for example, that the signal to noise ratio of the uplink resource block is greater than a preset first signal to noise ratio threshold and less than the eighth signal to noise ratio threshold (where the eighth signal to noise ratio threshold is infinity or greater than the first letter) Other values of the noise ratio threshold
  • the fourth resource scheduling module 1020 is specifically configured to: when the third terminal further needs to transmit the uplink data, the frequency interval between the frequency value and the frequency corresponding to the downlink resource block allocated by the third resource scheduling module 1010 is greater than a preset One or more uplink resource blocks that satisfy the first signal to noise ratio decision condition are selected from the available uplink resource blocks of the first frequency interval threshold, and the selected uplink resource block is allocated to the third terminal to transmit uplink data.
  • the wireless access device 1000 of this embodiment may be the third embodiment of the foregoing method.
  • the radio access device 1000 of the first embodiment allocates the uplink resource block of the downlink resource block of the first communication system as far as possible from the uplink resource block of the third terminal to the uplink resource block of the third terminal.
  • the third terminal transmits uplink data.
  • the radio access device allocates the downlink resource block to the terminal, the inter-interference situation of the uplink resource block and the downlink resource block of the terminal is comprehensively considered, and the uplink and downlink resource blocks whose frequencies are far away as far as possible are allocated to the same terminal, thereby adjusting the resource scheduling manner.
  • a radio access device 1100 may include: a fifth resource scheduling module 1110 and a sixth resource scheduling module 1120.
  • the fifth resource scheduling module 1110 is configured to allocate, by the fourth terminal accessing the first communications system, the uplink resource block of the first communications system;
  • the sixth resource scheduling module 1120 is configured to preferentially allocate the downlink resource blocks of the uplink resource block allocated by the fifth resource scheduling module 1110 in the downlink frequency band of the first communication system when the downlink data needs to be transmitted to the fourth terminal. Used to transmit downlink data to the fourth terminal.
  • the radio access device 1100 can preferentially allocate the downlink resource block of the first communication system in the downlink frequency band as far as possible to the fourth terminal by adjusting the resource scheduling algorithm. Transfer downlink data.
  • the sixth resource scheduling module 1120 may be specifically configured to: when the downlink data needs to be transmitted to the fourth terminal, the frequency interval is the maximum frequency interval of the frequency corresponding to the uplink resource block allocated by the fifth resource scheduling module 1110. Starting from the downlink resource block, determining whether the downlink resource block satisfies the second SNR decision condition, where the second SNR decision condition is that the SNR of the downlink resource block is greater than a preset second SNR threshold (for example, The second signal to noise ratio decision condition is that the signal to noise ratio of the downlink resource block is greater than a preset second signal to noise ratio threshold and less than a ninth signal to noise ratio threshold (where the ninth signal to noise ratio threshold is infinite or greater than the second signal to noise ratio) Other values of the threshold)); selecting one or more downlink resource blocks that satisfy the second SNR decision condition first, and allocating the selected downlink resource block for transmitting downlink data to the fourth terminal; or, the sixth resource The scheduling module 1120 is specifically configured to: when the downlink data needs to be transmitted to the second
  • the wireless access device 1100 of this embodiment may be the fourth embodiment of the foregoing method.
  • the radio access device needs to allocate downlink data to the terminal uplink resource block as far as possible, and allocate the downlink data block as far as possible to the downlink resource block of the terminal uplink resource block.
  • the radio access device allocates the downlink resource block to the terminal, and comprehensively considers the mutual interference between the uplink resource block and the downlink resource block of the terminal, and allocates the uplink and downlink resource blocks whose frequencies are far away as far as possible for the same terminal, thus adjusting the resource scheduling.
  • the method is beneficial to improve the uplink and downlink mutual interference problem of the same terminal, thereby improving the uplink and downlink coverage quality of the communication, and does not affect the video. Respond to equipment costs.
  • the wireless access device is as described in the above embodiment.
  • the radio access device first calculates an interference parameter value of each uplink resource block of the first communication system, where the interference parameter value is used to represent the terminal of the first communication system.
  • the interference parameter value is used to represent the terminal of the first communication system.
  • the channel condition parameter value is used to represent the current channel condition of the uplink channel of the first terminal; if the current channel condition of the uplink channel of the first terminal is relatively good, the interference parameter value is greater than the preset first interference threshold.
  • the first communication system uplink resource block is allocated to the first terminal to transmit uplink data; if the current channel condition of the uplink channel of the first terminal is relatively poor, the first communication system with the interference parameter value smaller than the preset first interference threshold is uplinked.
  • the resource block is allocated to the first terminal to transmit uplink data.
  • the radio access device first calculates an interference parameter value of the uplink non-linear product of the second terminal of the access system, and causes interference to the downlink frequency band of the system;
  • the radio access device preferentially allocates downlink data blocks whose interference parameter values in the downlink frequency band that are interfered by the uplink transmission nonlinear products of the second terminal are smaller than the second interference threshold, and allocates the downlink data to the second terminal.
  • the radio access device allocates the downlink resource block to the terminal, the interference condition of the terminal uplink non-linear product to each downlink resource block is comprehensively considered, and the same terminal is allocated a resource block with relatively small uplink and downlink mutual interference, such that Adjusting the resource scheduling mode is beneficial to improving the uplink and downlink mutual interference of the same terminal, thereby improving the uplink and downlink coverage quality of the communication without affecting the equipment cost.
  • the radio access device selects the frequency in the uplink frequency band of the first communication system as far as possible from the downlink of the third terminal.
  • the uplink resource block of the resource block is preferentially allocated to the third terminal for transmitting uplink data.
  • the radio access device allocates the downlink resource block to the terminal, and comprehensively considers the mutual interference between the uplink resource block and the downlink resource block of the terminal, and allocates the uplink and downlink resource blocks whose frequencies are far away as far as possible for the same terminal, thus adjusting the resource scheduling.
  • the method is beneficial to improve the uplink and downlink mutual interference problem of the same terminal, thereby improving the uplink and downlink coverage quality of the communication without affecting the equipment cost.
  • the radio access device when the downlink access data is still to be transmitted to the terminal, preferentially allocates the downlink resource block in the downlink frequency band of the system to the terminal uplink resource block, and preferentially allocates the data to the terminal. Downstream data.
  • the radio access device allocates the downlink resource block to the terminal, and comprehensively considers the mutual interference between the uplink resource block and the downlink resource block of the terminal, and allocates the uplink and downlink resource blocks whose frequencies are far away as far as possible for the same terminal, thus adjusting the resource scheduling.
  • the method is beneficial to improve the uplink and downlink mutual interference problem of the same terminal, thereby improving the uplink and downlink coverage quality of the communication without affecting the equipment cost.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can include: Read-only memory, random access memory, disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了资源调度方法及无线接入设备和通信系统。本发明实施例提供的一种方案中,无线接入设备先测算第一通信系统各上行资源块的干扰参数值;当接入第一通信系统的第一终端需传输上行数据时,测算其上行信道的信道条件参数值,若第一终端的上行信道的当前信道条件相对较好,则将干扰参数值大于第一干扰阈值的第一通信系统上行资源块分配给第一终端;若相对较差,则将干扰参数值小于第一干扰阈值的第一通信系统上行资源块分配给第一终端。由于无线接入设备在为终端分配上行资源块时,综合考虑了终端上行信道的信道条件和不同上行资源块对应的干扰情况,这样调整资源调度方式有利于提升通信覆盖质量,且不会影响到设备成本。

Description

资源调度方法及无线接入设备和通信系统 本申请要求于 2011 年 8 月 10 日提交中国专利局、 申请号为 201110228677.7、发明名称为"资源调度方法及无线接入设备和通信系统 "的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明实施例涉及通信技术领域, 特别涉及一种小区重选方法和装置。 背景技术 在通信系统中, 小区容量(吞吐量)和上行 /下行覆盖是评估通信系统 性能的两个重要指标。 其中, 小区覆盖通常可由链路预算进行前期评估; 上行 /下行覆盖受到诸多硬件性能的影响。
对于下行覆盖, 其链路预算的计算公式可为: 下行最大传输路径损耗 =基站机顶功率 -基站馈线损耗 +基站天线增益 +终端天线增益 -终端馈 线损耗 -终端接收灵敏度 -人体损耗 -功率余量。
对于上行覆盖, 其链路预算计算公式可为: 上行最大传输路径损耗= 终端功率 -终端馈线损耗 +终端天线增益 -人体损耗 +基站天线增益 -基 站馈线损耗 -基站接收灵敏度 -功率余量。
由上可知, 在基站发射功率、 基站与终端的天线增益和馈线损耗确定 的情况下, 下行覆盖主要取决于终端接收灵敏度, 为满足灵敏度要求, 可 能需要限制终端的最大发射功率; 而在基站发射接收灵敏度及基站和终端 的天线增益和馈线损耗确定的情况下, 上行覆盖主要取决于终端发射功率。 限制终端发射功率使得上行覆盖和下行覆盖之间产生了一定的矛盾。
而目前主要通过增加基站发射功率、 增加塔放、 增加天线增益、 减少 馈线损耗、 改进器件性能以提高终端接收灵敏度等手段来增强小区的下行 / 上行覆盖。 而这些手段无一例外的都需要增加硬件设备部署或对硬件设备 进行性能改进, 这将较大增加设备成本。 发明内容 本发明实施例提供资源调度方法及无线接入设备和通信系统, 以期在 尽量控制设备成本的同时, 提升通信覆盖质量。
为解决上述技术问题, 本发明实施例提供以下技术方案:
一种资源调度方法, 包括:
测算第一通信系统的各上行资源块对应的干扰参数值, 其中, 所述干 扰参数值用于表征第一通信系统的终端在对应上行资源块上传输数据时对 第二通信系统接收端所造成干扰的程度;
若接入所述第一通信系统的第一终端需传输上行数据, 则测算所述第 一终端的上行信道的信道条件参数值, 其中, 所述信道条件参数值用于表 征所述第一终端的上行信道当前的信道条件;
若所述第一终端的上行信道的信道条件参数值大于预设的第一信道条 件参数阈值, 则将满足第一调度条件的上行资源块优先分配给所述第一终 端传输上行数据, 若所述第一终端的上行信道当前的信道条件参数值小于 预设的所述第一信道条件参数阈值, 则将满足第二调度条件上行资源块优 先分配给所述第一终端传输上行数据, 其中, 所述满足第一调度条件的上 行资源块为干扰参数值大于预设的第一干扰阈值的第一通信系统上行资源 块; 所述满足第二调度条件的上行资源块为干扰参数值小于所述第一干扰 阈值的第一通信系统上行资源块。
一种资源调度方法, 包括:
测算接入第一通信系统的第二终端的上行发射非线性产物, 对第一通 信系统下行频段所造成干扰的干扰参数值;
若需向所述第二终端传输下行数据, 将所述下行频段中受第二终端的 上行发射非线性产物干扰的干扰参数值小于第二干扰阈值的对应下行资源 块, 优先分配用于向所述第二终端传输下行数据。
一种资源调度方法, 包括:
为接入第一通信系统的第三终端分配第一通信系统下行资源块; 若所述第三终端还需传输上行数据, 则将第一通信系统上行频段中频 率上尽量远离所述下行资源块的上行资源块, 优先分配给所述第三终端传 输上行数据。
一种资源调度方法, 包括:
为接入第一通信系统的第四终端分配第一通信系统上行资源块; 若还需向所述第四终端传输下行数据, 则将第一通信系统下行频段中 尽量远离所述上行资源块的下行资源块, 优先分配用于向所述第四终端传 输下行数据。
一种无线接入设备, 包括:
第一测算模块, 用于测算第一通信系统的各上行资源块对应的干扰参 数值, 其中, 所述干扰参数值用于表征第一通信系统的终端在对应上行资 源块上传输数据时对第二通信系统接收端所造成干扰的程度;
第二测算模块, 用于当接入所述第一通信系统的第一终端需传输上行 数据时, 测算所述第一终端的上行信道的信道条件参数值, 其中, 所述信 道条件参数值用于表征所述第一终端的上行信道当前的信道条件;
第一资源调度模块, 用于在所述第二测算模块测算出所述第一终端的 上行信道的信道条件参数值大于第一信道条件阈值时, 将满足第一调度条 件的上行资源块优先分配给所述第一终端传输上行数据, 在所述第一终端 的上行信道当前的信道条件参数值小于所述第一信道条件阈值时, 则将满 足第二调度条件上行资源块优先分配给所述第一终端传输上行数据, 其中, 所述满足第一调度条件的上行资源块为所述第一测算模块测算出的干扰参 数值大于所述第一干扰阈值的第一通信系统上行资源块; 所述满足第二调 度条件的上行资源块为所述第一测算模块测算出的干扰参数值小于所述第 一干扰阈值的第一通信系统上行资源块。
一种无线接入设备, 包括:
第三测算模块, 用于测算接入第一通信系统的第二终端的上行发射非 线性产物, 对第一通信系统下行频段所造成干扰的干扰参数值;
第二资源调度模块, 用于若需向所述第二终端传输下行数据, 将所述 第三测算模块测算出的所述下行频段中受所述第二终端的上行发射非线性 产物干扰的干扰参数值小于第二干扰阈值的对应下行资源块, 优先分配用 于向所述第二终端传输下行数据
一种无线接入设备, 包括:
第三资源调度模块, 用于为接入第一通信系统的第三终端分配第一通 信系统下行资源块;
第四资源调度模块, 用于当所述第三终端还需传输上行数据时, 则将 所述第一通信系统的上行频段中频率上尽量远离所述第三资源调度模块分 配的所述下行资源块的上行资源块, 优先分配给所述第三终端传输上行数 据。
一种无线接入设备, 包括:
第五资源调度模块, 用于为接入第一通信系统的第四终端分配第一通 信系统上行资源块;
第六资源调度模块, 用于当还需向所述第四终端传输下行数据时, 将 所述第一通信系统的下行频段中尽量远离所述第五资源调度模块分配的所 述上行资源块的下行资源块, 优先分配用于向所述第四终端传输下行数据。
一种通信系统, 包括: 如上述实施例所述的无线接入设备。
由上可见, 本发明实施例提供一种方案中, 无线接入设备先测算第一 通信系统的各上行资源块的干扰参数值, 其中, 该干扰参数值用于表征在 对应上行资源块上传输数据时对第二通信系统接收端所造成干扰的程度; 并当接入第一通信系统的第一终端需传输上行数据时, 测算第一终端的上 行信道的信道条件参数值, 该信道条件参数值用于表征第一终端的上行信 道当前的信道条件; 若第一终端的上行信道的当前信道条件相对较好, 则 将干扰参数值大于预设的第一干扰阈值的第一通信系统上行资源块分配给 第一终端传输上行数据; 若第一终端的上行信道当前的信道条件相对较差, 则将干扰参数值小于预设的第一干扰阈值的第一通信系统上行资源块分配 给第一终端传输上行数据。 如此, 由于无线接入设备在为终端分配上行资 源块时, 综合考虑了终端上行信道的信道条件和不同上行资源块对应的干 扰情况, 这样调整资源调度方式有利于提升通信覆盖质量, 且不会影响到 设备成本。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1是本发明实施例一提供的一种资源调度方法的流程示意图; 图 2是本发明实施例一提供的一种相邻系统频段示意图;
图 3是本发明实施例二提供的一种资源调度方法的流程示意图; 图 4是本发明实施例二提供的一种上行互调产物落入下行频段的示意 图;
图 5是本发明实施例二提供的一种输出频谱示意图;
图 6是本发明实施例三提供的一种资源调度方法的流程示意图; 图 7是本发明实施例四提供的一种资源调度方法的流程示意图; 图 8是本发明实施例提供的一种无线接入设备示意图;
图 9是本发明实施例提供的另一种无线接入设备示意图;
图 10是本发明实施例提供的另一种无线接入设备示意图;
图 11是本发明实施例提供的另一种无线接入设备示意图。 具体实施方式 本发明实施例提供资源调度方法及无线接入设备和通信系统, 以期在 尽量控制设备成本的同时, 提升通信覆盖质量。
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面 将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 下面所描述的实施例仅仅是本发明一部分实施例, 而 非全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
下面通过具体实施例分别进行详细说明。 首先说明的是, 本发明实施例所指无线接入设备是指可实现终端无线 接入管理功能的接入网实体, 而无线接入设备和移动性管理网元在不同的 网络中可能具有不同的名称、 位置和产品形态。
举例来说, 本发明下述实施例中提及的无线接入设备例如可指: 演进 通用移动通信系统 ( UMTS , Universal Mobile Telecommunications System ) 陆地无线接入网 ( E-UTRAN , Evolved UMTS Territorial Radio Access Network )中的演进基站( eNodeB )、 家庭基站( HeNB )或其它类型的基站; 或 UMTS陆地无线接入网( UTRAN, UMTS Territorial Radio Access Network ) / GSM EDGE无线接入网 (GERAN, GSM EDGE Radio Access Network ) 中 的基站控制器、 或无线网络控制器(RNC, Radio Network Controller ); 或 者也可指宽带码分多址接入 ( CDMA, Code Division Multiple Access ) 网络 中具有高速率分组数据接入网 (HRPD-AN, High Rate Packet Data Access Network )接入网逻辑功能的实体、无线局域网( WLAN , Wireless Local Area Network )中具有演进分组数据网关( EPDG, Evolved Packet Data Gateway ) 接入网逻辑功能的实体; 敖波存取全球互通 ( WiMAX , Worldwide Interoperability for Microwave Access ) 网络中的接入服务网络基站 ( ASN-BS, Access Service Network Base Station )或其它网络中实现终端无 线接入管理的实体。 实施例一
本实施例主要为了解决异系统间相互干扰的问题。 例如部署在同一地 理区域的两个通信系统, 若且工作频率相邻, 由于发射机和接收机滤波器 的不完善性等限制, 共存的这两个通信系统之间会产生相互干扰, 这样就 可能造成链路质量下降和系统容量降低。
本发明资源调度方法的一个实施例, 可以包括: 测算第一通信系统的 各上行资源块的干扰参数值, 其中, 该干扰参数值用于表征第一通信系统 的终端在对应上行资源块上传输数据时对第二通信系统接收端所造成干扰 的程度; 若接入第一通信系统的第一终端需传输上行数据, 则测算第一终 端的上行信道的信道条件参数值, 其中, 该信道条件参数值用于表征第一 终端的上行信道当前的信道条件; 若第一终端的上行信道的信道条件参数 值大于预设的第一信道条件参数阈值, 则将满足第一调度条件的上行资源 块优先分配给第一终端传输上行数据, 若第一终端的上行信道当前的信道 条件参数值小于预设的第一信道条件参数阈值, 则将满足第二调度条件上 行资源块优先分配给第一终端传输上行数据, 其中, 满足第一调度条件的 上行资源块为干扰参数值大于第一干扰阈值的第一通信系统上行资源块; 满足第二调度条件的上行资源块为干扰参数值小于第一干扰阈值的第一通 信系统上行资源块。
参见图 1 , 具体步骤可包括:
101、 无线接入设备测算第一通信系统的各上行资源块的干扰参数值; 其中, 该干扰参数值用于表征同等条件下(如同等发射功率), 第一通 信系统在对应上行资源块上传输数据时对第二通信系统接收端所造成干扰 的程度。 例如该干扰参数值越大, 表示对第二通信系统接收端所造成干扰 越强, 干扰参数值越小表示对第二通信系统接收端所造成干扰越弱。
其中, 本发明实施例中的第一通信系统和第二通信系统是指频谱相邻 的两个通信系统, 第一通信系统中包括若干个无线接入设备及附着到无线 接入设备的若干个终端等, 类似的, 第二通信系统中包括若干个无线接入 设备以及附着到无线接入设备的若干个终端等。 第一通信系统和第二通信 系统的制式可能相同也可能不同, 第一通信系统和第二通信系统可能归属 于同一个运营商, 也可能归属于不同的运营商。
其中, 本发明实施例提及的上行资源块指终端可用于传输上行数据的 资源块(例如第一通信系统的各上行资源块, 是指第一通信系统的终端可 用于传输上行数据的各资源块 ), 下行资源块指无线接入设备向终端传输下 行数据的资源块(例如第一通信系统的下行资源块, 是指第一通信系统的 无线接入设备向终端传输下行数据的资源块)。
在实际应用中, 无线接入设备(该无线接入设备为第一通信系统中的 无线接入设备 ) 测算在第一通信系统的各上行资源块上传输数据时对第二 通信系统接收端 (该接收端可指第二通信系统中接收无线信号的设备, 例 如终端、 无线接入设备等)所造成干扰(可以理解, 在第一通信系统的各 上行资源块上传输数据时, 可能会对第二通信系统中的终端、 无线接入设 备等接收无线信号造成一定的干扰) 的干扰参数值的方式可能是多种多样 的。 例如, 无线接入设备可测算第一通信系统各上行资源块对应的额外最 大功率回退 _^^1值 (在 A_MPR值越大的资源块区域传输数据对邻系统的 干扰就越大, 在 A_MPR值越小或无限制的资源块区域传输数据对邻系统的 干扰就越小)。 或者, 无线接入设备可测算在第一通信系统的各上行资源块 上传输数据时所产生的上行发射非线性产物, 对第二通信系统接收端所造 成干扰的干扰参数值(此时, 该干扰参数值可以包括干扰功率值、 或干扰 信噪比( SNR, Signal/Noise )等)。
其中, 本发明实施例提及的上行发射非线性产物例如可包括: 杂散、 谐波和互调产物等非线性产物的其中一种或多种。
102、 若接入第一通信系统的第一终端需传输上行数据, 则无线接入设 备测算第一终端的上行信道的信道条件参数值;
其中, 信道条件参数值用于表征第一终端的上行信道当前的信道条件, 该信道条件参数值例如为信道信噪比 SNR等。 例如信道条件参数值越大表 示信道条件越好, 信道条件参数值越小表示信道条件越差。
在实际应用中, 无线接入设备例如可根据第一终端上报的测量报告测 算出第一终端的上行信道当前的信道条件参数值, 或者, 无线接入设备可 通过测量第一终端上行信道的信噪比, 获知该第一终端的上行信道当前的 信道条件参数值, 或, 无线接入设备可通过其它方式测算出第一终端的上 行信道当前的信道条件参数值。
测试发现, 信道条件相对较好的终端所需的发射功率相对较低, 其不 受限于最大配置发射功率的要求, 故其对邻系统造成的邻道干扰也相对较 低; 而信道条件相对较差的终端所需的发射功率相对较高, 故其对邻系统 造成的邻道干扰可能相对较高; 并且, 同等条件下 (如同等发射功率下), 在不同上行资源块上传输数据时对邻系统接收端所造成干扰的程度也不尽 相同, 因此, 本实施例无线接入设备为终端分配上行资源块时, 综合考虑 不同上行资源块对应的干扰情况及终端上行信道的信道条件, 以期提升通 信覆盖质量。
103、 若第一终端的上行信道的信道条件参数值大于预设的第一信道条 件参数阈值, 则无线接入设备将满足第一调度条件的上行资源块优先分配 给第一终端传输上行数据, 若第一终端的上行信道当前的信道条件参数值 小于预设的第一信道条件参数阈值, 则无线接入设备将满足第二调度条件 上行资源块优先分配给第一终端传输上行数据。
其中, 满足第一调度条件的上行资源块例如为干扰参数值大于预设的 第一干扰阈值的第一通信系统上行资源块(例如, 满足第一调度条件的上 行资源块例如为干扰参数值大于预设的第一干扰阈值且小于第五干扰阈值 (其中, 第五干扰阈值可为无穷大或大于第一干扰阈值的其它值) 的第一 通信系统上行资源块); 满足第二调度条件的上行资源块为干扰参数值小于 第一干扰阈值的第一通信系统上行资源块(例如, 满足第二调度条件的上 行资源块为干扰参数值小于第一干扰阈值且大于第六干扰阈值(其中, 第 六干扰阈值可为零或小于第一干扰阈值的其它值) 的第一通信系统上行资 源块)。
举例来说, 假设无线接入设备测算的是, 第一通信系统上行频段中各 资源块区域的额外最大功率回退 _^^1值, 则若第一终端的上行信道当前 的信道条件参数值大于预设的第一信道条件参数阈值, 无线接入设备可将 满足第一调度条件的上行资源块优先分配给第一终端传输上行数据, 此时, 满足第一调度条件的上行资源块为最大功率回退 A_MPR值大于第一 A_MPR阈值(即第一干扰阈值为第一A_MPR阈值)的第一通信系统上行资 源块(例如, 满足第一调度条件的上行资源块为最大功率回退 A_MPR值大 于第一 A_MPR阈值且小于第五 _^^1阈值(其中, 第五 _^^1阈值可为 无穷大或大于第一 A_MPR阈值的其它值)的第一通信系统上行资源块); 若 第一终端的上行信道当前的信道条件参数值小于第一信道条件参数阈值, 无线接入设备可将满足第二调度条件的上行资源块优先分配给第一终端传 输上行数据, 而此时, 满足第二调度条件的上行资源块为最大功率回退 A_MPR值小于第一 A_MPR阈值的第一通信系统上行资源块(例如, 满足第 二调度条件的上行资源块为最大功率回退 A_MPR值小于第一 A_MPR阈值 且大于第六 A_MPR阈值(其中,第六 _^^1阈值可为零或小于第一 A_MPR 阈值的其它值) 的第一通信系统上行资源块)。 又例如, 假设无线接入设备测算的是, 在第一通信系统的各上行资源 造成干扰的如干扰信噪比, 则若第一终端的上行信道当前的信道条件参数 值大于第一信道条件参数阈值 , 无线接入设备可将满足第一调度条件的上 行资源块优先分配给第一终端传输上行数据, 此时, 满足第一调度条件的 上行资源块为对第二通信系统接收端所造成干扰的干扰信噪比大于预设的 第一干扰信噪比阈值(即第一干扰阈值为第一干扰信噪比阈值) 的第一通 信系统上行资源块(例如, 满足第一调度条件的上行资源块为对第二通信 系统接收端所造成干扰的干扰信噪比大于预设的第一干扰信噪比阈值且小 于第五干扰信噪比阈值(其中, 第五干扰信噪比阈值可为无穷大或大于第 一干扰信噪比阈值的其它值)的第一通信系统上行资源块); 若第一终端的 上行信道当前的信道条件参数值小于第一信道条件参数阈值, 无线接入设 备可将满足第二调度条件的上行资源块优先分配给第一终端传输上行数 据, 而此时, 满足第二调度条件的上行资源块为对第二通信系统接收端所 造成干扰的如干扰信噪比小于预设的第一干扰信噪比阈值的第一通信系统 上行资源块(例如, 满足第二调度条件的上行资源块为对第二通信系统接 收端所造成干扰的如干扰信噪比小于预设的第一干扰信噪比阈值且大于第 六干扰信噪比阈值(其中, 第六干扰信噪比阈值可为零或小于第一干扰信 噪比阈值的其它值) 的第一通信系统上行资源块)。
在实际应用中, 可根据场景需要来设定第一信道条件参数阈值、 第一 干扰阈值、 第五干扰阈值、 第六干扰阈值等门限值的大小。 为便于更好的理解和实施本实施例的技术方案, 下面以一个具体应用 场景为例进行举例描述。
4叚设 A系统为干扰系统(如 LTE FDD系统), B系统为被干扰系统。 例如图 2所示, 假设两个通信系统部署在同一地区, A系统的上行频段 与 B系统(上行 /下行)频段相邻。 其中, A系统上行调度时以资源块为颗粒 度进行调度, 图 2中的 " 1、 2、 3.. ." 表示资源块(RB ) 的索引号。
由于 A系统终端发射机和 B系统接收机滤波器的不完善性, A系统将对 B 系统产生干扰, 并且频谱上越靠近 B系统的 A系统资源块对 B系统的干扰可 能就越强; 远离 B系统的 A系统资源块, 由于滤波器抑制度增大而对 B系统 的干扰程度相对减弱。
因此, 在一种实施方式下, A系统的无线接入设备可将与 B系统资源块 相邻的 A系统资源块(如图 2中索引号为 1、 2、 3...的资源块)优先分配给信 道条件相对较好的终端, 因为此类终端所需的发射功率相对较低, 不受限 于最大配置发射功率的要求, 且对 B系统造成的邻道干扰也较低。 对于远离 B系统的 A系统资源块, 可分配给信道条件相对较差的终端, 此类终端由于 频率上与 B系统间隔较大, 其对 B系统的干扰程度也相对减弱, 因此可以满 功率或较高功率发射, 从而保证上行覆盖。
此外, 以 LTE终端为例, 其在实际网络中可使用的最大发射功率由其最 大配置发射功率(Pcmax ) 决定, 其计算公式为:
p < p < p
A CMAX _ L ― A CMAX ― A CMAX _ H
其中: Pc丽 = min{PE匿 - ATc , PPowerClass - MPR - A_ MPR - ATC } PCMAX H _ ^ il | PEMAX , Pp。暫 ciass }
由上可见, 终端最大配置发射功率主要由 PEMAX、 A_MPR (额外最大功 率回退)值、 终端功率等级 PPwerClass、 最大功率回退(MPR )等参数来决定。 其中, PPwerciass为终端独立可输出的最大功率, 该值一般是协议明确定义的 (例如 LTE终端的 PPwerClass为 23dBm ), PEMAX为高层配置参数, 一般设为与 Pp。 Class一样; MPR是在不同调制方式、 不同资源块配置的情况下, 为满足 带外辐射要求而需要对载波功率进行的最大的功率回退值, 该参数对所有 的应用频带要求都是一致的; A_MPR指在不同网络信令下, 为满足不同系 统之间的共存要求或自系统接收灵敏度要求, 需要在 MPR基础上对载波功 率进一步回退, 该参数与应用频带有关, 不同的应用频段, 需要的额外功 率回退是不一样的。 TS36.101协议中将整个上行频道划分为若干个连续的 资源块区域, 为满足系统共存的需要, A_MPR值在不同资源块区域有不同 要求。在实际网络应用时,终端的最大发射功率将很大程度地受限于 A_MPR 值。
在另一种实施方式中, 干扰系统的无线接入设备可根据 A_MPR值的大 小来确定上行资源块的调度, 即, 对于 A_MPR值较大的上行资源块区域, 即对邻系统干扰较大的资源块区域, 无线接入设备可将该区域的上行资源 块优先分配给信道条件相对较好的终端; 而对于 A_MPR值较小或者无限制 的上行资源块区域, 无线接入设备则可将该区域的上行资源块优先分配给 信道条件相对较差的终端, 从而保证上行覆盖。
无线接入设备在进行上行资源块调度时, 对邻系统干扰较大的资源块 可采用 max (C/I)方法, 将该类资源块分配给信道条件最好的用户。
其中, Max (C/I)调度算法的目的是将有限的无线资源分配给信道条 件最好的用户,以最大化频谱效率, 即在传输时间间隔(ΤΉ, Transmit Time Interval ) 为 t时, 将某一资源块分配给满足式公式(一) 的用户 i:
i = argmax(C/l)k 公式(一) 其中 (C/I)k表示用户 k在 ΤΉ为 t时的信道条件, 如信道的信噪比。 另一种可行的方式是:
调整比例公平调度算法中的参数, 使调度时倾向于将资源块分配给信 道条件相对较好的用户。 即: 按照比例公平调度算法, 在 ΤΉ为 t时将某一资 源块分配给满足公式(二) 的用户 i:
. (c/i)k
l = arg max -^— ~
公式 (二) 其中 (C/I)k表示用户 k在 ΤΉ为 t时的信道条件 (如信道信噪比), (t _1)表示用户 k在 t-1结束时刻之前, 固定时间长度 Tpf内的平均数据传 输速率。 传输时间间隔 t结束后, 所有用户的 ^ _ 将按下式更新:
其中, Uk(t
Figure imgf000014_0001
)表示被调度用户 k在 t时刻的数据速率; e 0'1),
Tpf是时间窗口。 可见若用户信道条件越好(即信道信噪比越大), 会因为 ^0^1^值较 大而得到较高优先级, 同时如果用户长时间得不到调度机会, 会因为历史 平均数据速率 ^ (t— 1)下降而得到较高的优先级。 通过调整时间窗口 Tpf 可以改变用户的调度优先级, 若时间窗口越长, 意味着历史平均数据速率 对调度优先级的影响越小, 信道条件相对较好的终端更容易获得较高优先 级; 反之, 若时间窗口越短, 意味着 (C / I )k对调度优先级的影响越小, 信 道条件相对较差的终端更容易获得较高优先级。 因此, 对邻系统干扰相对 较大的资源块, 可将比例公平调度算法中的参数 Tpf设置为较大值(该值可 根据具体场景具体设置), 使的信道条件相对较好的终端更容易获得较高优 先级。 对邻系统干扰相对较小的资源块可保持系统原有调度方式, 或, 将 比例公平调度算法中的参数 Tpf设置为相对较小值, 使调度时倾向于将资源 块分配给信道条件相对较差的终端, 以保证边缘用户的上行覆盖和吞吐量。
由上可见, 本实施例无线接入设备先测算第一通信系统的各上行资源 块的干扰参数值, 其中, 该干扰参数值用于表征在对应上行资源块上传输 数据时对第二通信系统接收端所造成干扰的程度; 并当接入第一通信系统 的第一终端需传输上行数据时, 测算第一终端的上行信道的信道条件参数 值, 该信道条件参数值用于表征第一终端的上行信道当前的信道条件; 若 第一终端的上行信道的当前信道条件相对较好, 则将干扰参数值大于预设 的第一干扰阈值的第一通信系统上行资源块分配给第一终端传输上行数 据; 若第一终端的上行信道当前的信道条件相对较差, 则将干扰参数值小 于预设的第一干扰阈值的第一通信系统上行资源块分配给第一终端传输上 行数据。 如此, 由于无线接入设备在为终端分配上行资源块时, 综合考虑 了终端上行信道的信道条件和不同上行资源块对应的干扰情况, 这样调整 资源调度方式有利于提升通信覆盖质量, 且不会影响到设备成本。 实施例二
本发明资源调度方法的另一个实施例, 本实施例方案主要解决同一终 端的上下行互干扰问题。 一种资源调度方法, 可包括: 测算接入第一通信 系统的第二终端的上行发射非线性产物, 对第一通信系统下行频段所造成 干扰的干扰参数值; 若需向第二终端传输下行数据, 则将下行频段中受第 二终端的上行发射非线性产物干扰的干扰参数值小于第二干扰阈值的下行 资源块, 优先分配用于向第二终端传输下行数据。
参见图 3, 具体步骤可包括: 301、 无线接入设备测算接入第一通信系统的第二终端的上行发射非线 性产物, 对第一通信系统下行频段所造成干扰的干扰参数值;
其中, 该干扰参数值用于表征在对应上行资源块上传输数据时对第二 通信系统接收端所造成干扰的程度。 例如该干扰参数值越大, 表示对下行 频段的某些下行资源块所造成干扰越强, 该干扰参数值越小表示对某些下 行资源块所造成干扰越弱。
302、 若需向第二终端传输下行数据, 无线接入设备将下行频段中受第 二终端的上行发射非线性产物干扰的干扰参数值小于第二干扰阈值的下行 资源块, 优先分配用于向第二终端传输下行数据。
举例来说, 无线接入设备将下行频段中受第二终端的上行发射非线性 产物干扰的干扰参数值小于第二干扰阈值且大于第七干扰阈值(第七干扰 阈值可为零或小于第二干扰阈值的其它值) 的下行资源块, 优先分配用于 向第二终端传输下行数据。
为便于更好的理解和实施本实施例的技术方案, 下面以一个具体应用 场景为例进行举例描述。
在实际场景下, 对于一些受限于双工器性能的终端, 其接收灵敏度受 自身发射残留信号的影响可能很大, 从而导致下行覆盖恶化。 为保证系统 覆盖, 除了改进上行资源的调度, 还可以通过上下行资源联合调度来实现。
实验测试发现, 当上行发射为小带宽时, 其落入下行接收频带内的互 调产物的强度呈现明显的起伏, 即互调产物在某些下行接收资源块上很强, 而在另一些下行接收资源块上比较弱。 以图 4为例, 上行发射的 5阶互调产 物恰好落入下行接收频段内, 并且落入到某些下行资源块上互调产物的强 度较大, 从而在这些资源块上造成较强的干扰。 因此, 可以通过实际测量 或理论计算出终端上行发射非线性产物 (例如互调或谐波等) 落入下行接 收频段的资源块位置, 在下行调度时避开受上行发射非线性产物干扰较强 的下行资源块, 选择受上行发射非线性产物干扰较小的下行资源块进行调 度, 从而保证系统覆盖和吞吐量。
举例来说, 假设输入的激励信号包括两个频率成分: f2, 由于发射 射频链路的非线性, 造成输出信号中除了基波信号 和 之外, 可能还有频率为—、 r 1 — "的 (p+q)次互调成分、 直流成分、 N 次谐波 Nf Nfi ( N>2 )等非线性分量。 如图 5所示, 三阶互调的频点位置是: (2f 士 ^), (2f2f ,五阶 互调的频点位置是, (3fi±2f2), (3f2±2fi), 以此类推。
因此, 无线接入设备通过测算出第二终端的上行发射非线性产物, 对 下行频段中受第二终端的上行发射非线性产物干扰的干扰参数值小于第二 干扰阈值的下行资源块, 优先分配用于向第二终端传输下行数据。 举例来 说, 无线接入设备可将将下行频段中受第二终端的上行发射非线性产物干 扰的干扰参数值小于第二干扰阈值且大于第七干扰阈值的下行资源块, 优 先分配用于向第二终端传输下行数据。
在实际应用中, 可根据场景需要来设定第二干扰阈值、 第七干扰阈值 等门限值的大小。
由上可见, 本实施例无线接入设备先测算接入系统的第二终端的上行 发射非线性产物, 对系统下行频段所造成干扰的干扰参数值; 在需向第二 终端传输下行数据时, 无线接入设备将下行频段中受第二终端的上行发射 非线性产物干扰的干扰参数值小于第二干扰阈值的下行资源块, 优先分配 用于向第二终端传输下行数据。 如此, 由于无线接入设备在为终端分配下 行资源块时, 综合考虑了终端上行发射非线性产物对各下行资源块的干扰 情况, 为同一终端分配上下行互干扰相对较小的资源块, 这样调整资源调 度方式有利于改善同一终端的上下行互干扰问题, 进而提升通信上下行覆 盖质量, 且不会影响到设备成本。 实施例三
本发明资源调度方法的另一个实施例, 本实施例方案主要解决同一终 端的上下行互干扰问题。 本实施例提供的一种资源调度方法, 包括: 为接 入第一通信系统的第三终端分配第一通信系统下行资源块; 若第三终端还 需传输上行数据, 则将第一通信系统上行频段中频率尽量远离下行资源块 的上行资源块, 优先分配给第三终端传输上行数据。 参见图 6、 具体步骤可包括:
601、 无线接入设备为接入第一通信系统的第三终端分配第一通信系统 下行资源块;
602、 若第三终端还需传输上行数据, 无线接入设备则将第一通信系统 上行频段中频率尽量远离下行资源块的上行资源块, 优先分配给第三终端 传输上行数据。
在实际应用中, 无线接入设备可通过调整资源调度算法等多种方式, 来将第一通信系统上行频段中频率上尽量远离上述下行资源块的上行资源 块, 优先分配给第三终端传输上行数据。 例如, 无线接入设备可从频率值 与上述下行资源块所对应频率的频率间隔最大的可用上行资源块开始, 依 次判断该上行资源块是否满足第一信噪比判决条件, 该第一信噪比判决条 件为上行资源块的信噪比大于预设的第一信噪比阈值(例如, 该第一信噪 比判决条件为上行资源块的信噪比大于预设的第一信噪比阈值且小于第八 信噪比阈值(其中, 第八信噪比阈值可为无穷大或大于第一信噪比阈值的 其它值 ) ); 选择最先满足第一信噪比判决条件的一个或多个上行资源块, 将选择的上行资源块分配给第三终端传输上行数据。 或, 无线接入设备可 从频率值与上述下行资源块所对应频率的频率间隔大于预设的第一频率间 隔阈值的可用上行资源块中, 选择满足该第一信噪比判决条件的一个或多 个上行资源块, 将选择的上行资源块分配给第三终端传输上行数据。
由上可见, 本实施例无线接入设备在第三终端还需传输上行数据时, 将第一通信系统上行频段中频率尽量远离第三终端的下行资源块的上行资 源块, 优先分配给第三终端传输上行数据。 如此, 由于无线接入设备在为 终端分配下行资源块时, 综合考虑了终端上行资源块和下行资源块的互干 扰情况, 为同一终端分配频率上尽量远离的上下行资源块, 这样调整资源 调度方式有利于改善同一终端的上下行互干扰问题, 进而提升通信上下行 覆盖质量, 且不会影响到设备成本。
实施例四
本发明资源调度方法的另一个实施例, 本实施例方案主要解决同一终 端的上下行互干扰问题。 本实施例提供的一种资源调度方法, 包括: 为接 入第一通信系统的第四终端分配第一通信系统上行资源块; 若还需向第四 终端传输下行数据, 则将第一通信系统下行频段中尽量远离该上行资源块 的下行资源块, 优先分配用于向第四终端传输下行数据。
参见图 7、 具体步骤可包括:
701、 无线接入设备为接入第一通信系统的第四终端分配第一通信系统 上行资源块;
702、 若还需向第四终端传输下行数据, 则无线接入设备将第一通信系 统下行频段中尽量远离该上行资源块的下行资源块, 优先分配用于向第四 终端传输下行数据。
在实际应用中, 无线接入设备可通过调整资源调度算法等多种方式, 来将第一通信系统下行频段中尽量远离该上行资源块的下行资源块, 优先 分配用于向第四终端传输下行数据。 例如, 无线接入设备可从频率值与上 述上行资源块所对应频率的频率间隔最大的可用下行资源块开始, 依次判 断该下行资源块是否满足第二信噪比判决条件, 第二信噪比判决条件为下 行资源块的信噪比大于预设的第二信噪比阈值(例如, 第二信噪比判决条 件为下行资源块的信噪比大于预设的第二信噪比阈值且小于第九信噪比阈 值(其中, 第九信噪比阈值可为无穷大或大于第二信噪比阈值的其它值)); 选择最先满足该第二信噪比判决条件的一个或多个下行资源块, 将选择的 下行资源块分配用于向第四终端传输下行数据; 或, 无线接入设备可从频 率值与上述上行资源块所对应频率的频率间隔大于预设的第二频率间隔阈 值的可用下行资源块中, 选择满足第二信噪比判决条件的一个或多个下行 资源块, 将选择的下行资源块分配用于向第四终端传输下行数据。
由上可见, 本实施例无线接入设备在还需向终端传输下行数据时, 将 系统下行频段中尽量远离终端上行资源块的下行资源块, 优先分配用于向 该终端传输下行数据。 如此, 由于无线接入设备在为终端分配下行资源块 时, 综合考虑了终端上行资源块和下行资源块的互干扰情况, 为同一终端 分配频率上尽量远离的上下行资源块, 这样调整资源调度方式有利于改善 同一终端的上下行互干扰问题, 进而提升通信上下行覆盖质量, 且不会影 响到设备成本。 可以理解的是,本发明实施例方案可适用于多类 FDD通信系统,如 LTE, GSM, WCDMA等多载波、 单载波或载波聚合系统。
需要说明的是, 对于前述的各方法实施例, 为了筒单描述, 故将其都 表述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受 所描述的动作顺序的限制, 因为依据本发明, 某些步骤可以采用其他顺 序或者同时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述 的实施例均属于优选实施例, 所涉及的动作和模块并不一定是本发明所 必须的。
为便于更好实施本发明实施例的上述方案, 下面还提供用于实施上 述方案的相关设备。
参见图 8、 本发明实施例提供的一种无线接入设备 800, 可包括: 第 一测算模块 810、 第二测算模块 820和第一资源调度模块 830。
其中, 第一测算模块 810, 用于测算第一通信系统的各上行资源块对应 的干扰参数值, 其中, 该干扰参数值用于表征第一通信系统的终端在对应 上行资源块上传输数据时对第二通信系统接收端 (该接收端可指第二通信 系统中接收无线信号的设备, 例如终端、 无线接入设备等) 所造成干扰的 程度。
其中, 该干扰参数值用于表征同等条件下(如同等发射功率), 第一通 信系统的终端在对应上行资源块上传输数据时对第二通信系统接收端所造 成干扰的程度。 例如该干扰参数值越大, 表示对第二通信系统接收端所造 成干扰越强, 干扰参数值越小表示对第二通信系统接收端所造成干扰越弱。
在实际应用中, 第一测算模块 810 (无线接入设备 800为第一通信系统 中的无线接入设备 ) 测算在第一通信系统的终端的各上行资源块上传输数 据时对第二通信系统接收端所造成干扰的干扰参数值的方式可能是多种多 样的。 举例来说, 第一测算模块 810可测算第一通信系统各上行资源块对应 的额外最大功率回退 A_MPR值(其中, 在 _^^1值越大的资源块区域传输 数据对邻系统的干扰就越大, 在 A_MPR值越小或无限制的资源块区域传输 数据对邻系统的干扰就越小)。 或者, 第一测算模块 810也可测算第一通信 射非线性产物, 对第二通信系统接收端所造成干扰的干扰参数值(此时, 该干扰参数值例如可包括干扰功率值、 干扰信噪比 (SNR )等)。
第二测算模块 820, 用于当接入第一通信系统的第一终端需传输上行数 据时, 测算第一终端的上行信道的信道条件参数值, 其中, 该信道条件参 数值用于表征第一终端的上行信道当前的信道条件。
信道条件参数值例如为信道信噪比 SNR等。 例如信道条件参数值越大 表示信道条件越好, 信道条件参数值越小表示信道条件越差。
在实际应用中, 第二测算模块 820例如可根据第一终端上报的测量报告 测算出第一终端的上行信道当前的信道条件参数值, 或者, 第二测算模块 820可通过测量第一终端上行信道的信噪比, 获知该第一终端的上行信道当 前的信道条件参数值, 或, 第二测算模块 820可通过其它方式测算出第一终 端的上行信道当前的信道条件参数值。
第一资源调度模块 830, 用于在第二测算模块 820测算出第一终端的上 行信道的信道条件参数值大于第一信道条件阈值时, 将满足第一调度条件 的上行资源块优先分配给第一终端传输上行数据, 在第一终端的上行信道 当前的信道条件参数值小于第一信道条件阈值时, 则将满足第二调度条件 上行资源块优先分配给第一终端传输上行数据。
其中, 满足第一调度条件的上行资源块例如为第一测算模块 810测算出 的干扰参数值大于预设的第一干扰阈值的第一通信系统上行资源块(例如, 满足第一调度条件的上行资源块例如为干扰参数值大于预设的第一干扰阈 值且小于第五干扰阈值(其中, 第五干扰阈值可为无穷大或大于第一干扰 阈值的其它值)的第一通信系统上行资源块); 满足第二调度条件的上行资 源块第一测算模块测 810算出的为干扰参数值小于第一干扰阈值的第一通 信系统上行资源块(例如, 满足第二调度条件的上行资源块为干扰参数值 小于第一干扰阈值且大于第六干扰阈值(其中, 第六干扰阈值可为零或小 于第一干扰阈值的其它值) 的第一通信系统上行资源块)。
举例来说, 假设第一测算模块 810测算的是, 第一通信系统上行频段中 各资源块区域的额外最大功率回退 _^^1值, 则若第一终端的上行信道当 前的信道条件参数值大于预设的第一信道条件参数阈值, 第一资源调度模 块 830可将满足第一调度条件的上行资源块优先分配给第一终端传输上行 数据, 此时, 满足第一调度条件的上行资源块为最大功率回退 A_MPR值大 于第一 A_MPR阈值(即第一干扰阈值为第一A_MPR阈值)的第一通信系统 上行资源块(举例来说, 满足第一调度条件的上行资源块为最大功率回退 A_MPR值大于第一 A_MPR阈值且小于第五 _^^1阈值(其中,第五 A_MPR 阈值例如可为无穷大或大于第一 A_MPR阈值的其它值) 的第一通信系统上 行资源块); 若第一终端的上行信道当前的信道条件参数值小于第一信道条 件参数阈值, 第一资源调度模块 830可将满足第二调度条件的上行资源块优 先分配给第一终端传输上行数据, 而此时, 满足第二调度条件的上行资源 块为最大功率回退 A_MPR值小于第一 A_MPR阈值的第一通信系统上行资 源块(例如, 满足第二调度条件的上行资源块为最大功率回退 A_MPR值小 于第一 A_MPR阈值且大于第六 _^^1阈值(其中, 第六 _^^1阈值可为 零或小于第一A_MPR阈值且的其它值) 的第一通信系统上行资源块)。
又例如, 假设第一测算模块 810测算的是, 在第一通信系统的各上行资 所造成干扰的如干扰信噪比, 则若第一终端的上行信道当前的信道条件参 数值大于第一信道条件参数阈值, 第一资源调度模块 830可将满足第一调度 条件的上行资源块优先分配给第一终端传输上行数据, 此时, 满足第一调 度条件的上行资源块为对第二通信系统接收端所造成干扰的干扰信噪比大 于预设的第一干扰信噪比阈值(即第一干扰阈值为第一干扰信噪比阈值) 的第一通信系统上行资源块(例如, 满足第一调度条件的上行资源块例如 为对第二通信系统接收端所造成干扰的干扰信噪比大于预设的第一干扰信 噪比阈值且小于第五干扰信噪比阈值(其中, 第五干扰信噪比阈值可为无 穷大或大于第一干扰信噪比阈值的其它值) 的第一通信系统上行资源块); 若第一终端的上行信道当前的信道条件参数值小于第一信道条件参数阈 值, 第一资源调度模块 830可将满足第二调度条件的上行资源块优先分配给 第一终端传输上行数据, 而此时, 满足第二调度条件的上行资源块为对第 二通信系统接收端所造成干扰的如干扰信噪比小于预设的第一干扰信噪比 阈值的第一通信系统上行资源块(例如, 满足第二调度条件的上行资源块 为对第二通信系统接收端所造成干扰的如干扰信噪比小于预设的第一干扰 信噪比阈值且大于第六干扰信噪比阈值(其中, 第六干扰信噪比阈值可为 零或小于第一干扰信噪比阈值的其它值 ) 的第一通信系统上行资源块)。
可以理解, 本实施例的无线接入设备 800可以是如上述方法实施例一中 其各个功能模块的功能可以根据上述方法实施例中的方法具体实现, 其具 体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本实施例无线接入设备 800先测算第一通信系统的各上行资 源块的干扰参数值, 其中, 该干扰参数值用于表征第一通信系统的终端的 在对应上行资源块上传输数据时对第二通信系统接收端所造成干扰的程 度; 并当接入第一通信系统的第一终端需传输上行数据时, 测算第一终端 的上行信道的信道条件参数值, 该信道条件参数值用于表征第一终端的上 行信道当前的信道条件; 若第一终端的上行信道的当前信道条件相对较好, 则将干扰参数值大于预设的第一干扰阈值的第一通信系统上行资源块分配 给第一终端传输上行数据; 若第一终端的上行信道当前的信道条件相对较 差, 则将干扰参数值小于预设的第一干扰阈值的第一通信系统上行资源块 分配给第一终端传输上行数据。 如此, 由于无线接入设备在为终端分配上 行资源块时, 综合考虑了终端上行信道的信道条件和不同上行资源块对应 的干扰情况, 这样调整资源调度方式有利于提升通信覆盖质量, 且不会影 响到设备成本。 参见图 9、 本发明实施例提供的一种无线接入设备 900, 可包括: 第三 测算模块 910和第二资源调度模块 920。
其中, 第三测算模块 910, 用于测算接入第一通信系统的第二终端的上 行发射非线性产物, 对第一通信系统下行频段所造成干扰的干扰参数值; 其中, 该干扰参数值用于表征在对应上行资源块上传输数据时对第二 通信系统接收端所造成干扰的程度。 例如该干扰参数值越大, 表示对下行 频段的某些下行资源块所造成干扰越强, 该干扰参数值越小表示对某些下 行资源块所造成干扰越弱。
第二资源调度模块 920, 用于若需向第二终端传输下行数据, 将所述第 三测算模块测算出的上述下行频段中受第二终端的上行发射非线性产物干 扰的干扰参数值小于第二干扰阈值的对应下行资源块, 优先分配用于向第 二终端传输下行数据。
举例来说, 第二资源调度模块 920可具体用于, 若需向第二终端传输下 行数据, 将第三测算模块 910测算出的上述下行频段中受第二终端的上行发 射非线性产物干扰的干扰参数值小于第二干扰阈值且大于第七干扰阈值 (第七干扰阈值可为零或小于第二干扰阈值的其它值) 的下行资源块, 优 先分配用于向第二终端传输下行数据。
可以理解, 本实施例的无线接入设备 900可以是如上述方法实施例二中 其各个功能模块的功能可以根据上述方法实施例中的方法具体实现, 其具 体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本实施例无线接入设备 900先测算接入系统的第二终端的上 行发射非线性产物, 对系统下行频段所造成干扰的干扰参数值; 在需向第 二终端传输下行数据时, 无线接入设备将下行频段中受第二终端的上行发 射非线性产物干扰的干扰参数值小于第二干扰阈值的下行资源块, 优先分 配用于向第二终端传输下行数据。 如此, 由于无线接入设备在为终端分配 下行资源块时, 综合考虑了终端上行发射非线性产物对各下行资源块的干 扰情况, 为同一终端分配上下行互干扰相对较小的资源块, 这样调整资源 调度方式有利于改善同一终端的上下行互干扰问题, 进而提升通信上下行 覆盖质量, 并且不会影响到设备的成本。
参见图 10、 本发明实施例提供的一种无线接入设备 1000, 可包括: 第 三资源调度模块 1010和第四资源调度模块 1020。
第三资源调度模块 1010, 用于为接入第一通信系统的第三终端分配第 一通信系统下行资源块;
第四资源调度模块 1020, 用于当第三终端还需传输上行数据时, 则将 第一通信系统的上行频段中频率上尽量远离第三资源调度模块 1010分配的 上述下行资源块的上行资源块, 优先分配给第三终端传输上行数据。
在实际应用中, 无线接入设备 1000例如可通过调整资源调度算法等多 种方式, 来将第一通信系统上行频段中频率上尽量远离上述下行资源块的 上行资源块, 优先分配给第三终端传输上行数据。 例如, 第四资源调度模 块 1020可具体用于, 当第三终端还需传输上行数据时, 从频率值与第三资 源调度模块 1010分配的上述下行资源块所对应频率的频率间隔最大的可用 上行资源块开始, 依次判断该上行资源块是否满足第一信噪比判决条件, 该第一信噪比判决条件为上行资源块的信噪比大于预设的第一信噪比阈值 (例如, 该第一信噪比判决条件例如为上行资源块的信噪比大于预设的第 一信噪比阈值且小于第八信噪比阈值(其中, 第八信噪比阈值为无穷大或 大于第一信噪比阈值的其它值)); 选择最先满足第一信噪比判决条件的一 个或多个上行资源块, 将选择的上行资源块分配给第三终端传输上行数据。 或, 第四资源调度模块 1020可具体用于, 当第三终端还需传输上行数据时, 从频率值与第三资源调度模块 1010分配的上述下行资源块所对应频率的频 率间隔大于预设的第一频率间隔阈值的可用上行资源块中, 选择满足该第 一信噪比判决条件的一个或多个上行资源块, 将选择的上行资源块分配给 第三终端传输上行数据。
可以理解, 本实施例的无线接入设备 1000可以是如上述方法实施例三
其具体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本实施例的无线接入设备 1000在第三终端还需传输上行数 据时, 将第一通信系统上行频段中频率尽量远离第三终端的下行资源块的 上行资源块, 优先分配给第三终端传输上行数据。 如此, 由于无线接入设 备在为终端分配下行资源块时, 综合考虑终端上行资源块和下行资源块的 互干扰情况, 为同一终端分配频率上尽量远离的上下行资源块, 这样调整 资源调度方式有利于改善同一终端的上下行互干扰问题, 进而提升通信上 下行覆盖质量, 且不会影响到设备成本。 参见图 11 , 本发明实施例提供的一种无线接入设备 1100, 可包括: 第 五资源调度模块 1110和第六资源调度模块 1120。
其中, 第五资源调度模块 1110, 用于为接入第一通信系统的第四终端 分配第一通信系统上行资源块; 第六资源调度模块 1120, 用于当还需向第四终端传输下行数据时, 将 第一通信系统下行频段中尽量远离第五资源调度模块 1110分配的上述上行 资源块的下行资源块, 优先分配用于向第四终端传输下行数据。
在实际应用中, 无线接入设备 1100例如可通过调整资源调度算法等多 种方式, 来将第一通信系统下行频段中尽量远离该上行资源块的下行资源 块, 优先分配用于向第四终端传输下行数据。
例如, 第六资源调度模块 1120可具体用于, 当还需向第四终端传输下 行数据时, 从频率值与第五资源调度模块 1110分配的上述上行资源块所对 应频率的频率间隔最大的可用下行资源块开始, 依次判断该下行资源块是 否满足第二信噪比判决条件, 第二信噪比判决条件为下行资源块的信噪比 大于预设的第二信噪比阈值(例如, 第二信噪比判决条件为下行资源块的 信噪比大于预设的第二信噪比阈值且小于第九信噪比阈值(其中, 第九信 噪比阈值为无穷大或大于第二信噪比阈值的其它值)); 选择最先满足该第 二信噪比判决条件的一个或多个下行资源块, 将选择的下行资源块分配用 于向第四终端传输下行数据; 或, 第六资源调度模块 1120可具体用于, 当 还需向第四终端传输下行数据时, 从频率值与第五资源调度模块 1110分配 的上述上行资源块所对应频率的频率间隔大于预设的第二频率间隔阈值的 可用下行资源块中, 选择满足第二信噪比判决条件的一个或多个下行资源 块, 将选择的下行资源块分配用于向第四终端传输下行数据。
可以理解, 本实施例的无线接入设备 1100可以是如上述方法实施例四
其具体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本实施例无线接入设备在还需向终端传输下行数据时, 将 系统下行频段中尽量远离终端上行资源块的下行资源块, 优先分配用于向 该终端传输下行数据。 如此, 由于无线接入设备在为终端分配下行资源块 时, 综合考虑了终端上行资源块和下行资源块的互干扰情况, 为同一终端 分配频率上尽量远离的上下行资源块, 这样调整资源调度方式有利于改善 同一终端的上下行互干扰问题, 进而提升通信上下行覆盖质量, 且不会影 响到设备成本。
本发明实施例提供的一种通信系统, 包括:
如上述实施例所述无线接入设备。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中 没有详述的部分, 可以参见其他实施例的相关描述。
综上, 本发明实施例提供的一种方案中, 无线接入设备先测算第一通 信系统的各上行资源块的干扰参数值, 其中, 该干扰参数值用于表征第一 通信系统的终端在对应上行资源块上传输数据时对第二通信系统接收端所 造成干扰的程度; 并当接入第一通信系统的第一终端需传输上行数据时, 测算第一终端的上行信道的信道条件参数值, 该信道条件参数值用于表征 第一终端的上行信道当前的信道条件; 若第一终端的上行信道的当前信道 条件相对较好, 则将干扰参数值大于预设的第一干扰阈值的第一通信系统 上行资源块分配给第一终端传输上行数据; 若第一终端的上行信道当前的 信道条件相对较差, 则将干扰参数值小于预设的第一干扰阈值的第一通信 系统上行资源块分配给第一终端传输上行数据。 如此, 由于无线接入设备 在为终端分配上行资源块时, 综合考虑了终端上行信道的信道条件和不同 上行资源块对应的干扰情况, 这样调整资源调度方式有利于提升通信覆盖 质量, 且不会影响到设备成本。
本发明实施例提供的另一种方案中, 无线接入设备先测算接入系统的 第二终端的上行发射非线性产物, 对系统下行频段所造成干扰的干扰参数 值; 在需向第二终端传输下行数据时, 无线接入设备将下行频段中受第二 终端的上行发射非线性产物干扰的干扰参数值小于第二干扰阈值的下行资 源块, 优先分配用于向第二终端传输下行数据。 如此, 由于无线接入设备 在为终端分配下行资源块时, 综合考虑了终端上行发射非线性产物对各下 行资源块的干扰情况, 为同一终端分配上下行互干扰相对较小的资源块, 这样调整资源调度方式有利于改善同一终端的上下行互干扰问题, 进而提 升通信上下行覆盖质量, 且不会影响到设备成本。
本发明实施例提供的又一种方案中, 无线接入设备在第三终端还需传 输上行数据时, 将第一通信系统上行频段中频率尽量远萬第三终端的下行 资源块的上行资源块, 优先分配给第三终端传输上行数据。 如此, 由于无 线接入设备在为终端分配下行资源块时, 综合考虑了终端上行资源块和下 行资源块的互干扰情况, 为同一终端分配频率上尽量远离的上下行资源块, 这样调整资源调度方式有利于改善同一终端的上下行互干扰问题, 进而有 利于提升通信上下行覆盖质量, 且不会影响到设备成本。
本发明实施例提供的再一种方案中, 无线接入设备在还需向终端传输 下行数据时, 将系统下行频段中尽量远离终端上行资源块的下行资源块, 优先分配用于向该终端传输下行数据。 如此, 由于无线接入设备在为终端 分配下行资源块时, 综合考虑了终端上行资源块和下行资源块的互干扰情 况, 为同一终端分配频率上尽量远离的上下行资源块, 这样调整资源调度 方式有利于改善同一终端的上下行互干扰问题, 进而提升通信上下行覆盖 质量, 且不会影响到设备成本
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算 机可读存储介质中, 存储介质可以包括: 只读存储器、 随机存储器、 磁盘 或光盘等。
以上对本发明实施例所提供的资源调度方法及无线接入设备和通信
进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心 思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实 施方式及应用范围上均会有改变之处, 综上, 本说明书内容不应理解为对 本发明的限制。

Claims

权利要求
1、 一种资源调度方法, 其特征在于, 包括:
测算第一通信系统的各上行资源块对应的干扰参数值, 其中, 所述干 扰参数值用于表征所述第一通信系统的终端在对应上行资源块上传输数据 时对第二通信系统接收端所造成干扰的程度;
若接入所述第一通信系统的第一终端需传输上行数据, 则测算所述第 一终端的上行信道的信道条件参数值, 其中, 所述信道条件参数值用于表 征所述第一终端的上行信道当前的信道条件;
若所述第一终端的上行信道的信道条件参数值大于预设的第一信道条 件参数阈值, 则将满足第一调度条件的上行资源块优先分配给所述第一终 端传输上行数据, 若所述第一终端的上行信道当前的信道条件参数值小于 预设的所述第一信道条件参数阈值, 则将满足第二调度条件上行资源块优 先分配给所述第一终端传输上行数据, 其中, 所述满足第一调度条件的上 行资源块为干扰参数值大于预设的第一干扰阈值的第一通信系统上行资源 块; 所述满足第二调度条件的上行资源块为干扰参数值小于所述第一干扰 阈值的第一通信系统上行资源块。
2、 根据权利要求 1所述的方法, 其特征在于, 所述测算第一通信系统 的各上行资源块的干扰参数值, 包括:
测算第一通信系统各上行资源块的额外最大功率回退 _^^1值; 其中, 所述满足第一调度条件的上行资源块为最大功率回退 A_MPR值 大于第一A_MPR阈值的第一通信系统上行资源块; 满足第二调度条件的上 行资源块为最大功率回退 A_MPR值小于所述第一 A_MPR阈值的第一通信 系统上行资源块。
3、 根据权利要求 1所述的方法, 其特征在于, 所述干扰参数值用于表 发射非线性产物, 对第二通信系统接收端所造成干扰的程度。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于,
满足第一调度条件的上行资源块为干扰参数值大于预设的第一干扰阈 值且小于第五干扰阈值的第一通信系统上行资源块, 其中, 所述第五干扰 阈值大于所述第一干扰阈值;
和 /或,
满足第二调度条件的上行资源块为干扰参数值小于第一干扰阈值且大 于第六干扰阈值的第一通信系统上行资源块, 其中, 所述第一干扰阈值大 于所述第六干扰阈值。
5、 一种资源调度方法, 其特征在于, 包括:
测算接入第一通信系统的第二终端的上行发射非线性产物, 对第一通 信系统下行频段所造成干扰的干扰参数值;
若需向所述第二终端传输下行数据, 将所述下行频段中受所述第二终 端的上行发射非线性产物干扰的干扰参数值小于第二干扰阈值的对应下行 资源块, 优先分配用于向所述第二终端传输下行数据。
6、 根据权利要求 5所述的方法, 其特征在于,
所述将所述下行频段中受第二终端的上行发射非线性产物干扰的干扰 参数值小于第二干扰阈值的对应下行资源块, 优先分配用于向所述第二终 端传输下行数据, 包括: 将所述下行频段中受第二终端的上行发射非线性 产物干扰的干扰参数值小于第二干扰阈值且大于第七干扰阈值的对应下行 资源块, 优先分配用于向所述第二终端传输下行数据, 其中, 所述第七干 扰阈值小于所述第二干扰阈值。
7、 一种资源调度方法, 其特征在于, 包括:
为接入第一通信系统的第三终端分配第一通信系统下行资源块; 若所述第三终端还需传输上行数据, 则将第一通信系统上行频段中频 率上尽量远离所述下行资源块的上行资源块, 优先分配给所述第三终端传 输上行数据。
8、 根据权利要求 7所述的方法, 其特征在于, 所述将第一通信系统上 行频段中频率上尽量远离所述下行资源块的上行资源块, 优先分配给所述 第三终端传输上行数据, 包括:
从频率值与所述下行资源块所对应频率的频率间隔最大的可用上行资 源块开始, 依次判断该上行资源块是否满足第一信噪比判决条件; 选择最 先满足所述第一信噪比判决条件的一个或多个上行资源块, 将选择的上行 资源块分配给所述第三终端传输上行数据;
或,
从频率值与所述下行资源块所对应频率的频率间隔大于预设的第一频 率间隔阈值的可用上行资源块中, 选择满足所述第一信噪比判决条件的一 个或多个上行资源块, 将选择的上行资源块分配给所述第三终端传输上行 数据;
其中, 所述第一信噪比判决条件为上行资源块的信噪比大于预设的第 一信噪比阈值。
9、 一种资源调度方法, 其特征在于, 包括:
为接入第一通信系统的第四终端分配第一通信系统上行资源块; 若还需向所述第四终端传输下行数据, 则将第一通信系统下行频段中 尽量远离所述上行资源块的下行资源块, 优先分配用于向所述第四终端传 输下行数据。
10、 根据根据权利要求 9所述的方法, 其特征在于, 所述将第一通信系 统下行频段中尽量远离所述上行资源块的下行资源块, 优先分配用于向所 述第四终端传输下行数据, 包括:
从频率值与所述上行资源块所对应频率的频率间隔最大的可用上行资 源块开始, 依次判断该上行资源块是否满足第二信噪比判决条件; 选择最 先满足所述第二信噪比判决条件的一个或多个下行资源块, 将选择的下行 资源块分配用于向所述第四终端传输下行数据;
或,
从频率值与所述上行资源块所对应频率的频率间隔大于预设的第二频 率间隔阈值的可用下行资源块中, 选择满足所述第二信噪比判决条件的一 个或多个下行资源块, 将选择的下行资源块分配用于向所述第四终端传输 下行数据;
其中, 所述第二信噪比判决条件为下行资源块的信噪比大于预设的第 二信噪比阈值。
11、 一种无线接入设备, 其特征在于, 包括:
第一测算模块, 用于测算第一通信系统的各上行资源块对应的干扰参 数值, 其中, 所述干扰参数值用于表征所述第一通信系统的终端在对应上 行资源块上传输数据时对第二通信系统接收端所造成干扰的程度;
第二测算模块, 用于当接入所述第一通信系统的第一终端需传输上行 数据时, 测算所述第一终端的上行信道的信道条件参数值, 其中, 所述信 道条件参数值用于表征所述第一终端的上行信道当前的信道条件;
第一资源调度模块, 用于在所述第二测算模块测算出所述第一终端的 上行信道的信道条件参数值大于第一信道条件阈值时, 将满足第一调度条 件的上行资源块优先分配给所述第一终端传输上行数据, 在所述第一终端 的上行信道当前的信道条件参数值小于所述第一信道条件阈值时, 则将满 足第二调度条件上行资源块优先分配给所述第一终端传输上行数据, 其中, 所述满足第一调度条件的上行资源块为所述第一测算模块测算出的干扰参 数值大于所述第一干扰阈值的第一通信系统上行资源块; 所述满足第二调 度条件的上行资源块为所述第一测算模块测算出的干扰参数值小于所述第 一干扰阈值的第一通信系统上行资源块。
12、 根据权利要求 11所述的无线接入设备, 其特征在于,
所述第一测算模块具体用于, 测算第一通信系统的各上行资源块的额 外最大功率回退 _^^1值; 其中, 所述满足第一调度条件的上行资源块为 最大功率回退 A_MPR值大于第一 A_MPR阈值的第一通信系统上行资源块; 满足第二调度条件的上行资源块为最大功率回退 A_MPR值小于所述第一 A_MPR阈值的第一通信系统上行资源块;
或者,
所述第一测算模块具体用于, 测算第一通信系统的各上行资源块对应 的干扰参数值, 其中, 所述干扰参数值用于表征第一通信系统的终端在对 统接收端所造成干扰的程度。
13、 一种无线接入设备, 其特征在于, 包括:
第三测算模块, 用于测算接入第一通信系统的第二终端的上行发射非 线性产物, 对第一通信系统下行频段所造成干扰的干扰参数值;
第二资源调度模块, 用于若需向所述第二终端传输下行数据, 将所述 第三测算模块测算出的所述下行频段中受所述第二终端的上行发射非线性 产物干扰的干扰参数值小于第二干扰阈值的对应下行资源块, 优先分配用 于向所述第二终端传输下行数据。
14、 根据权利要求 13所述的无线接入设备, 其特征在于,
第二资源调度模块具体用于, 若需向所述第二终端传输下行数据, 将 所述第三测算模块测算出的所述下行频段中受第二终端的上行发射非线性 产物干扰的干扰参数值小于第二干扰阈值且大于第七干扰阈值的对应下行 资源块, 优先分配用于向所述第二终端传输下行数据, 其中, 所述第七干 扰阈值小于所述第二干扰阈值。
15、 一种无线接入设备, 其特征在于, 包括:
第三资源调度模块, 用于为接入第一通信系统的第三终端分配第一通 信系统下行资源块;
第四资源调度模块, 用于当所述第三终端还需传输上行数据时, 则将 所述第一通信系统的上行频段中频率上尽量远离所述第三资源调度模块分 配的所述下行资源块的上行资源块, 优先分配给所述第三终端传输上行数 据。
16、 根据权利要求 15所述的无线接入设备, 其特征在于,
所述第四资源调度模块具体用于, 当所述第三终端还需传输上行数据 时, 则从频率值与所述第三资源调度模块分配的所述下行资源块所对应频 率的频率间隔最大的可用上行资源块开始, 依次判断该上行资源块是否满 足第一信噪比判决条件; 选择最先满足所述第一信噪比判决条件的一个或 多个上行资源块, 将选择的上行资源块分配给所述第三终端传输上行数据; 或, 从频率值与所述第三资源调度模块分配的所述下行资源块所对应频率 的频率间隔大于预设的第一频率间隔阈值的可用上行资源块中, 选择满足 所述第一信噪比判决条件的一个或多个上行资源块, 将选择的上行资源块 分配给所述第三终端传输上行数据; 其中, 所述第一信噪比判决条件为上 行资源块的信噪比大于预设的第一信噪比阈值。
17、 一种无线接入设备, 其特征在于, 包括:
第五资源调度模块, 用于为接入第一通信系统的第四终端分配第一通 信系统上行资源块;
第六资源调度模块, 用于当还需向所述第四终端传输下行数据时, 将 所述第一通信系统的下行频段中尽量远离所述第五资源调度模块分配的所 述上行资源块的下行资源块, 优先分配用于向所述第四终端传输下行数据。
18、 根据权利要求 17所述的无线接入设备, 其特征在于,
所述第六资源调度模块具体用于, 当还需向所述第四终端传输下行数 据时, 从频率值与所述第五资源调度模块分配的所述上行资源块所对应频 率的频率间隔最大的可用上行资源块开始, 依次判断该上行资源块是否满 足第二信噪比判决条件; 选择最先满足所述第二信噪比判决条件的一个或 多个下行资源块, 将选择的下行资源块分配用于向所述第四终端传输下行 数据; 或, 从频率值与所述第五资源调度模块分配的所述上行资源块所对 应频率的频率间隔大于预设的第二频率间隔阈值的可用下行资源块中, 选 择满足所述第二信噪比判决条件的一个或多个下行资源块, 将选择的下行 资源块分配用于向所述第四终端传输下行数据; 其中, 所述第二信噪比判 决条件为下行资源块的信噪比大于预设的第二信噪比阈值。
19、 一种通信系统, 其特征在于, 包括:
如权利要求 11至 18任一项所述的无线接入设备。
PCT/CN2012/079861 2011-08-10 2012-08-09 资源调度方法及无线接入设备和通信系统 WO2013020512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12821985.4A EP2728956B1 (en) 2011-08-10 2012-08-09 Resource scheduling method, wireless access equipment and communication system
US14/176,661 US9392611B2 (en) 2011-08-10 2014-02-10 Resource scheduling method, radio access device, and communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110228677.7A CN102932930B (zh) 2011-08-10 2011-08-10 资源调度方法及无线接入设备和通信系统
CN201110228677.7 2011-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/176,661 Continuation US9392611B2 (en) 2011-08-10 2014-02-10 Resource scheduling method, radio access device, and communications system

Publications (1)

Publication Number Publication Date
WO2013020512A1 true WO2013020512A1 (zh) 2013-02-14

Family

ID=47647587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079861 WO2013020512A1 (zh) 2011-08-10 2012-08-09 资源调度方法及无线接入设备和通信系统

Country Status (4)

Country Link
US (1) US9392611B2 (zh)
EP (1) EP2728956B1 (zh)
CN (1) CN102932930B (zh)
WO (1) WO2013020512A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553680B1 (en) 2012-04-02 2017-01-24 Sprint Communications Company L.P. Uplink interference mitigation
US10039116B1 (en) * 2012-04-02 2018-07-31 Sprint Communications Company L.P. Long term evolution scheduler to mitigate interference

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385483B2 (en) 2008-11-11 2013-02-26 Isco International, Llc Self-adaptive digital RF bandpass and bandstop filter architecture
CN103167547A (zh) * 2013-03-13 2013-06-19 大连大学 一种超短波电台电波覆盖范围的计算方法
US9319916B2 (en) 2013-03-15 2016-04-19 Isco International, Llc Method and appartus for signal interference processing
US9794888B2 (en) 2014-05-05 2017-10-17 Isco International, Llc Method and apparatus for increasing performance of a communication link of a communication node
CN105323050B (zh) * 2014-07-11 2018-12-11 普天信息技术有限公司 缓解上行干扰的方法及装置
CN105338558B (zh) * 2014-07-30 2019-06-18 上海诺基亚贝尔股份有限公司 一种用于lte通信系统干扰处理的方法、设备与系统
JP6613239B2 (ja) * 2014-09-26 2019-11-27 株式会社Nttドコモ 基地局及び処理方法
KR20160048360A (ko) * 2014-10-24 2016-05-04 삼성전자주식회사 이동 통신 시스템에서 간섭 측정에 기반한 신호 수신 방법 및 장치
CN107210776B (zh) * 2015-02-03 2019-07-12 株式会社村田制作所 频率信道设定方法以及基站装置
CN106162681B (zh) * 2015-03-24 2019-10-01 中国移动通信集团公司 一种gsm900二次谐波干扰的检测方法及装置
WO2016178778A1 (en) 2015-05-04 2016-11-10 Isco International, Llc Method and apparatus for increasing performance of communication paths for communication nodes
US10085218B2 (en) * 2015-05-13 2018-09-25 Lg Electronics Inc. Method and apparatus for controlling uplink transmission power in wireless communication system supporting machine-type communication
CN105406894B (zh) * 2015-11-28 2017-12-15 广东欧珀移动通信有限公司 一种通信终端的载波聚合模式设定方法及通信终端
US10652835B2 (en) 2016-06-01 2020-05-12 Isco International, Llc Signal conditioning to mitigate interference impacting wireless communication links in radio access networks
US10298279B2 (en) 2017-04-05 2019-05-21 Isco International, Llc Method and apparatus for increasing performance of communication paths for communication nodes
CN108990139B (zh) * 2017-06-02 2021-01-12 维沃移动通信有限公司 一种发射功率计算方法、相关设备和系统
US10812121B2 (en) 2017-08-09 2020-10-20 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system
US10284313B2 (en) 2017-08-09 2019-05-07 Isco International, Llc Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system
CN109756317B (zh) * 2017-11-07 2022-02-18 华为技术有限公司 干扰确定方法及网络设备
CN108833049B (zh) * 2018-06-12 2020-03-24 北京邮电大学 一种无人机网络中基于认知的欺骗式抗干扰方法及装置
CN109041197B (zh) * 2018-06-28 2021-06-25 努比亚技术有限公司 终端的通信方法、终端及计算机可读存储介质
CN111491376B (zh) * 2019-01-28 2023-06-13 海能达通信股份有限公司 一种空口资源调度方法及设备
CN111800793B (zh) * 2019-04-08 2023-01-31 大唐移动通信设备有限公司 一种干扰的优化方法、装置
CN111800850B (zh) * 2019-08-07 2021-12-21 维沃移动通信有限公司 上行满功率传输方法及设备
CN113015173B (zh) * 2019-12-19 2023-09-22 北京新岸线移动多媒体技术有限公司 一种无线通信系统的自适应频率选择方法及系统
CN117241293A (zh) * 2020-08-26 2023-12-15 深圳市锐尔觅移动通信有限公司 一种配置方法、基站及计算机存储介质
CN115549880B (zh) * 2022-09-15 2024-04-12 中国联合网络通信集团有限公司 干扰抑制方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253703A (zh) * 1997-04-22 2000-05-17 诺基亚网络有限公司 基于gsm/dcs的蜂窝无线电网络中的信道选择方法
CN101494476A (zh) * 2008-01-24 2009-07-29 中兴通讯股份有限公司 资源块调度方法及系统
CN101779509A (zh) * 2007-08-14 2010-07-14 松下电器产业株式会社 无线通信系统、调度方法、无线基站装置以及无线终端装置
CN102118758A (zh) * 2011-01-28 2011-07-06 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658257B1 (en) * 1998-05-08 2003-12-02 Ntt Docomo, Inc. Radio communication system, frequency allocation method and frequency allocation device
JP3107048B2 (ja) * 1998-06-09 2000-11-06 日本電気株式会社 Cdma通信システムおよびcdma通信システムおける周波数割り当て方法
JP2000022712A (ja) * 1998-07-06 2000-01-21 Nec Corp チャネル選択方法
JP2001238251A (ja) * 2000-02-23 2001-08-31 Nec Corp セルラシステムの隣接キャリア周波数干渉回避方法、移動局、及び基地局制御装置
US8279887B2 (en) 2005-11-09 2012-10-02 Telefonaktiebolaget Lm Ericsson (Publ) Selection of radio resources in a radio communications network
CN101453736B (zh) * 2007-12-04 2011-01-05 华为技术有限公司 资源调度方法及设备
US9191925B2 (en) * 2009-03-31 2015-11-17 Nokia Solutions And Networks Oy Controlling UE emissions for avoiding self-interference and for demanding coexistence situations
US8331254B2 (en) * 2009-07-29 2012-12-11 Telefonaktiebolaget L M Ericsson (Publ) Interference-aware resource assignment in communication systems
CN102056174B (zh) * 2010-12-16 2014-03-12 大唐移动通信设备有限公司 一种资源调度的方法、装置和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253703A (zh) * 1997-04-22 2000-05-17 诺基亚网络有限公司 基于gsm/dcs的蜂窝无线电网络中的信道选择方法
CN101779509A (zh) * 2007-08-14 2010-07-14 松下电器产业株式会社 无线通信系统、调度方法、无线基站装置以及无线终端装置
CN101494476A (zh) * 2008-01-24 2009-07-29 中兴通讯股份有限公司 资源块调度方法及系统
CN102118758A (zh) * 2011-01-28 2011-07-06 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728956A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553680B1 (en) 2012-04-02 2017-01-24 Sprint Communications Company L.P. Uplink interference mitigation
US9907077B1 (en) 2012-04-02 2018-02-27 Sprint Communications Company L.P. Uplink interference mitigation
US10039116B1 (en) * 2012-04-02 2018-07-31 Sprint Communications Company L.P. Long term evolution scheduler to mitigate interference

Also Published As

Publication number Publication date
EP2728956B1 (en) 2017-10-11
US20140153433A1 (en) 2014-06-05
CN102932930A (zh) 2013-02-13
EP2728956A4 (en) 2015-05-13
US9392611B2 (en) 2016-07-12
CN102932930B (zh) 2015-03-18
EP2728956A1 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2013020512A1 (zh) 资源调度方法及无线接入设备和通信系统
JP6014246B2 (ja) 効率的な媒体アクセス制御(mac)ヘッダ
EP3300419A1 (en) Channel quality measurement and transmit power allocation in a dynamic spectrum management system
Jing et al. Reactive cognitive radio algorithms for co-existence between IEEE 802.11 b and 802.16 a networks
WO2017028440A1 (zh) 一种不同通信网络共存使用免授权频段的方法
US20150281980A1 (en) Edca adjustment for poor performance nodes
Elsherif et al. Adaptive small cell access of licensed and unlicensed bands
WO2016155292A1 (zh) 一种获取接入技术网络间传输时延的方法及装置
KR101513830B1 (ko) 무선 통신 시스템에서 단일 지점 송신기로부터 단일 지점 수신기로의 적어도 하나의 제1 전송 및 다지점 송신기로부터의 또는 다지점 수신기로의 적어도 하나의 제2 전송을 조정하기 위한 방법, 그것에 관한 네트워크 노드 및 이동국
US11665678B2 (en) Antenna configuration in a communication network
WO2009151355A1 (en) Method and arrangement for performing handover in a wireless communication system
WO2012129935A1 (zh) 设备内共存干扰的处理方法及装置
Song et al. A spectrum etiquette protocol and interference coordination for LTE in unlicensed bands (LTE-U)
KR20220092451A (ko) 셀 상태의 관리 방법, 장치, 단말 디바이스 및 네트워크 디바이스
WO2011060713A1 (zh) 资源分配方法、接入网设备及通信系统
Yang et al. A novel load balancing scheme in LTE and WiFi coexisted network for OFDMA system
Jin et al. QoE-aware resource allocation for D2D communications in unlicensed spectrum
US20230128949A1 (en) Maximum power reduction based on power headroom
US20220095321A1 (en) Wireless communications system, scheduling method, wireless communications method, and apparatus
WO2016190789A1 (en) Radio access nodes and methods performed therein
WO2012155785A1 (zh) 上行传输开环功率控制方法及装置
Slalmi et al. Improving call admission control in 5G for smart cities applications
Araniti et al. Power consumption model using green policies in heterogeneous networks
WO2015062025A1 (zh) 一种控制方法、设备及系统
Lee et al. Traffic-aware Resource allocation with aggregation in Heterogeneous Networks with WLANs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821985

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012821985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012821985

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE