WO2012155785A1 - 上行传输开环功率控制方法及装置 - Google Patents

上行传输开环功率控制方法及装置 Download PDF

Info

Publication number
WO2012155785A1
WO2012155785A1 PCT/CN2012/074831 CN2012074831W WO2012155785A1 WO 2012155785 A1 WO2012155785 A1 WO 2012155785A1 CN 2012074831 W CN2012074831 W CN 2012074831W WO 2012155785 A1 WO2012155785 A1 WO 2012155785A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap
sta
uplink transmission
transmit power
transmission
Prior art date
Application number
PCT/CN2012/074831
Other languages
English (en)
French (fr)
Inventor
鲍东山
潘立军
姚惠娟
周玉宝
于晓燕
雷俊
王竞
刘慎发
闫志刚
Original Assignee
北京新岸线无线技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新岸线无线技术有限公司 filed Critical 北京新岸线无线技术有限公司
Priority to CN201280013155.8A priority Critical patent/CN103563458B/zh
Publication of WO2012155785A1 publication Critical patent/WO2012155785A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the invention belongs to the field of wireless communications, and in particular relates to an uplink transmission open loop power control method and device. Background technique
  • wireless communication systems have developed rapidly, such as 802.11-based wireless LAN technology WiFi, 802.15-based Bluetooth (Bluetooth) system, and Femto technology for indoor applications generated by mobile communication systems. A wide range of applications.
  • 802.11-based WiFi technology is one of the most widely used wireless network transmission technologies. Since the WiFi system uses the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism, the system efficiency is higher than [ ⁇ , for wireless resources - waste.
  • the root cause of this problem is that the CSMA/CA mechanism is a contention-based random multiple access mechanism between an access point (AP, Access Point) and a station (STA, Station), or between different STAs.
  • the CSMA/CA mechanism will compete for the right to use wireless resources, and at the same time compete for the wireless channel. At this time, collision occurs, resulting in waste of wireless resources.
  • the CSMA/CA mechanism requires the AP or STA to randomly retreat when competing for the wireless channel.
  • 802.11 systems are less efficient. For example: 802. l lg system physical layer peak rate can reach 54Mbps, but the TCP layer can reach no more than 30Mbps under the big packet download service. Despite the above shortcomings, the 802.11 system is flexible and does not rely on a centralized control mechanism, so it can achieve lower equipment costs.
  • the Femto technology based on the 3GPP standard is a new technology for indoor coverage that has evolved from a mobile communication system. Based on the statistics of 3G systems, about 70% of data services occur indoors, so indoor high-speed data access solutions are especially important.
  • Femto base station called pico Base station, small size and flexible deployment. Due to the evolution from mobile communication systems, Femto base stations have inherited almost all the characteristics of mobile communication systems. The Femto device only combines its limited coverage, fewer access users and other application scenarios, and reduces the processing power of the device, thereby reducing the cost of the device. Considering the duplex mode, the Femto base station can be divided into two types of duplex mechanisms: Frequency Division Duplexing (FDD) and Time Division Duplexing (TDDD).
  • FDD Frequency Division Duplexing
  • TDDD Time Division Duplexing
  • the uplink and downlink carrier resources of the FDD are symmetric, and the asymmetric service characteristics of the uplink and downlink data traffic of the data service cause a certain waste of resources when the FDD system faces the data service.
  • the uplink and downlink of the TDD system work on the same carrier, and the time-resource resources are allocated to allocate different radio resources to the uplink and downlink. Therefore, the FDD can better adapt to the asymmetric data service of the uplink and downlink services.
  • the TDD duplex mode of the mobile communication system including the Femto system
  • the static allocation of uplink and downlink resources, and the various types of data services with different needs, such as: browsing web pages, mobile video, mobile games, etc. it is difficult to achieve business needs and resources. Dynamic adaptation of the partition. Compared with Wi-Fi, since Femto uses a scheduling-based centralized control mechanism, there is no waste of radio resources due to competition conflict and random backoff between the base station or the CAP and the terminal or the terminal, so the link efficiency is high.
  • Another object of the present invention is to provide two uplink transmission open loop power control methods. Another object of the present invention is to provide two uplink transmission open loop power control devices.
  • An uplink transmission open loop power control method comprising:
  • « is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation noise and the interference at the receiving end.
  • the central access point CAP is a parameter for the relationship between the transmission bandwidth allocated by the uplink transmission and the basic effective bandwidth
  • the offset CAP is the offset adjustment of the CAP
  • the offset STA is the offset adjustment of the STA.
  • the offset adjustment of the CAP is obtained by parsing the message broadcast by the CAP.
  • the STA when the STA does not receive the feedback that the CAP correctly receives after an uplink transmission, the value of the offset adjustment of the STA is increased, and the target value of the STA transmit power is calculated next time.
  • the STA receives the feedback that the CAP correctly receives after continuously setting the secondary uplink transmission, the value of the offset adjustment of the STA is decreased, and is used to calculate the target value of the STA transmit power for the next time.
  • An uplink transmission open loop power control method comprising:
  • P STA vm, ⁇ P STA MAX , PL 0L + C/N +
  • ⁇ — is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation and coding mode, relative to the noise of the receiving end and the interference
  • BW is the indication that the CAP is the uplink transmission.
  • the uplink transmission path loss is estimated according to the STA received signal power and the transmit power of the CAP.
  • the transmit power of the CAP is obtained by parsing the message broadcast by the CAP.
  • the control channel CCH of the physical frame sent by the CAP is parsed, the transmission bandwidth allocated by the CAP for the uplink transmission is obtained, and then the CAP is allocated for the uplink transmission.
  • the CCH of the physical frame sent by the CAP is parsed, and a multiple of the transmission bandwidth allocated by the CAP for the uplink transmission is compared with the basic effective bandwidth, as the indication.
  • the CAP is a parameter for the relationship between the transmission bandwidth allocated by the uplink transmission and the basic effective bandwidth.
  • An uplink transmission open loop power control device by analyzing the CCH of the physical frame sent by the CAP, determining a modulation and coding mode, and then searching for a correspondence between the preset modulation and coding modes and the maximum received power. , determining the minimum received power corresponding to the current modulation and coding mode.
  • a first unit configured to calculate a target value of a station STA transmit power
  • a second unit configured to adjust a transmit power of the STA according to the target value
  • the calculation of the first unit is performed based on the following formula:
  • « is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation noise and the interference with the receiver
  • the CAP is allocated for the uplink transmission.
  • the offset CAP is the offset adjustment of the CAP
  • the offset STA is the offset adjustment of the L STA.
  • the apparatus further includes: a third unit, configured to obtain a deviation adjustment of the CAP by parsing the message broadcast by the CAP.
  • the device further includes: a fourth unit, configured to: when the STA does not receive the feedback that the CAP correctly receives after an uplink transmission, increase a value of the offset adjustment of the STA, where Calculating the target value of the STA transmit power next time; when the STA receives the feedback correctly received by the CAP after continuously setting the secondary uplink transmission, reducing the value of the STA offset adjustment, for the next time A target value of the STA transmit power is calculated.
  • a fourth unit configured to: when the STA does not receive the feedback that the CAP correctly receives after an uplink transmission, increase a value of the offset adjustment of the STA, where Calculating the target value of the STA transmit power next time; when the STA receives the feedback correctly received by the CAP after continuously setting the secondary uplink transmission, reducing the value of the STA offset adjustment, for the next time A target value of the STA transmit power is calculated.
  • An uplink transmission open loop power control device comprising:
  • a first unit configured to calculate a target value of a station STA transmit power
  • a second unit configured to adjust a transmit power of the STA according to the target value
  • the calculation of the first unit is performed based on the following formula:
  • P STA vm, ⁇ P STA MAX , PL 0L + C/N + l0 g L0
  • ⁇ — is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation and coding mode, relative to the noise of the receiving end and the interference
  • BW is the indication that the CAP is the uplink transmission.
  • the device further includes: a calculating unit, configured to estimate an uplink transmission path loss according to the STA received signal power and the transmit power of the CAP.
  • the computing unit parses the transmit power of the CAP from the message broadcast by the CAP.
  • the device further includes: a first determining unit, configured to determine, by using the CCH of the physical frame sent by the CAP, that the CAP is uplinked Transmitting the allocated transmission bandwidth, calculating a multiple of the transmission bandwidth allocated by the CAP for the uplink transmission compared with the basic effective bandwidth, as a parameter indicating the relationship between the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth.
  • a first determining unit configured to determine, by using the CCH of the physical frame sent by the CAP, that the CAP is uplinked Transmitting the allocated transmission bandwidth, calculating a multiple of the transmission bandwidth allocated by the CAP for the uplink transmission compared with the basic effective bandwidth, as a parameter indicating the relationship between the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth.
  • the device further includes: a first determining unit, configured to obtain, by parsing a CCH of a physical frame sent by the CAP, a transmission bandwidth allocated by the CAP for uplink transmission A multiple of the basic effective bandwidth as a parameter indicating the relationship between the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth.
  • a first determining unit configured to obtain, by parsing a CCH of a physical frame sent by the CAP, a transmission bandwidth allocated by the CAP for uplink transmission A multiple of the basic effective bandwidth as a parameter indicating the relationship between the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth.
  • the device further includes: a second determining unit, configured to determine a modulation and coding mode by parsing a CCH of the physical frame sent by the CAP, by searching for a preset modulation code
  • the correspondence table between the mode and the maximum received power determines the minimum received power corresponding to the modulation and coding mode.
  • FIG. 1 is a flowchart of a first uplink transmission open loop power control method according to an embodiment of the present invention
  • FIG. 2 is a reference model of an EUHT system
  • Figure 3 shows the composition of the access system of the EUHT system
  • FIG. 4 is a schematic diagram of a process of transmitting and receiving protocol data between a STA and a CAP;
  • FIG. 5 is a schematic structural diagram of a first uplink transmission open-loop power control apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a first uplink transmission open loop power control device in an optional implementation manner of an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a second uplink transmission open loop power control apparatus in an optional implementation manner of an embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a first uplink transmission open loop power control method according to an embodiment of the present invention, where the process includes:
  • Step 11 Calculate the target value of the STA transmit power.
  • Step 12 Adjust the transmit power of the STA according to the target value.
  • step 11 the calculation in step 11 is based on the following formula:
  • « is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation and coding mode, relative to the noise at the receiving end and the interference, indicating that the central access point CAP is The parameter of the relationship between the transmission bandwidth allocated by the uplink transmission and the basic effective bandwidth
  • the offset CAP is the offset adjustment of the CAP
  • the offset STA is the offset adjustment of the STA.
  • the second uplink transmission open loop power control method in the embodiment of the present invention is similar to the steps 11 to 12 shown in FIG. 1 except that the target value of adjusting the STA transmit power is calculated in the following formula:
  • PSTA min fe- dead ⁇ + C / N + 101o gl .
  • S the maximum transmit power of the STA
  • the uplink transmission path loss
  • C/N the minimum received power corresponding to the modulation noise and the interference with the receiver
  • the parameter of the relationship between the transmission bandwidth and the basic effective bandwidth, min refers to the minimum transmission power of the STA and the minimum value of the addition result of the second part.
  • the unit of the formula is dBm
  • FIG. 2 shows the reference model of the EUHT system mainly refers to the air interface reference model, including: media access control (MAC) layer and physical (PHY) layer.
  • the main functions of each layer are as follows: 1 MAC layer includes adaptation sublayer And the MAC sublayer.
  • Adaptation sublayer Mainly provides the function of mapping and conversion between external network data and MAC layer protocol unit (MSDU). MSDU refers to information delivered as a unit between MAC Service Access Points (SAPs).
  • SAPs MAC Service Access Points
  • MAC Sublayer In addition to acting as a media access control function, it also includes management and control of the system and support for specific functions of the PHY layer.
  • MPDU refers to the data unit exchanged between two peer MAC entities using PHY layer services.
  • FIG 3 shows the access system of the EUHT system, including the central access point (CAP) and the station (STA), where the STA can be used for various data devices, such as: PDA, notebook, camera, camera, mobile phone, tablet Computer, pad, etc.
  • STA1 and STA2 access the CAP through the air interface protocol.
  • the CAP establishes communication with existing external networks (such as IP backbone network, Ethernet) through wired or wireless.
  • the protocol component of the CAP includes a MAC layer and a PHY layer.
  • the STA protocol consists of an Application layer, a Transmission Control (TCP) layer, a Network (IP) layer, a MAC layer, and a PHY layer.
  • Figure 4 shows the process of transmitting and receiving protocol data between the STA and the CAP.
  • the STA wants to send data to the CAP, and the STA first passes the application data (such as VoIP, video, etc.).
  • the application layer and the TCP/IP layer process and package, and send it to the IP adaptation sublayer in the form of IP packets, which are converted and mapped by the IP adaptation sublayer, and sent to the MAC sublayer.
  • the MAC sublayer is fragmented, encrypted, and Operations such as framing, aggregation, etc. are sent to the PHY layer, which is ultimately mapped by the PHY to the wireless channel for data transmission.
  • the execution body of the open loop power control is directly written as an STA.
  • the execution entity may also be an independent entity on the same side as the STA, or integrated. An entity inside the STA.
  • the STA when the STA has an uplink transmission request, the STA requests the CAP to allocate a transmission bandwidth for the uplink transmission, and determines other parameters that are needed in the formula for calculating the target value of the transmission power, and then according to the calculation.
  • the formula calculates the target value of the transmission power, and then adjusts the transmission power based on the calculated target value.
  • the uplink transmission path loss is estimated according to the received signal power of the STA and the transmit power of the CAP. For example, in the case where the uplink and downlink are symmetric, the measurement may be performed. The received power of the current preamble or data part, and the downlink transmission path loss is estimated with reference to the CAP transmission power, and then the uplink transmission path loss is obtained according to the reciprocity of the uplink and downlink.
  • the STA can obtain the transmit power of the CAP to be used when estimating the uplink transmission path loss through the message broadcast by the CAP.
  • the broadcast information frame (BCF) is a frame of the CAP broadcast, and the CAP periodically broadcasts the BCF, and the STA can obtain the transmit power of the CAP every time the BCF is detected.
  • the transmit power is w dBm. It can be seen that the BCF carries the CAP transmit power, and the STA can obtain the CAP transmit power from the BCF after receiving the BCF.
  • the STA may determine parameters indicating the relationship between the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth in two ways.
  • the STA In the first mode, the STA first parses the control channel (CCH) of the physical frame sent by the CAP, obtains the resource indication for the current uplink transmission, determines the transmission bandwidth allocated by the CAP for the uplink transmission, and then the STA calculates the transmission bandwidth allocated by the CAP for the uplink transmission.
  • the parameter is obtained by a multiple of the basic effective bandwidth. It can be seen that, in the first mode, after obtaining the transmission bandwidth allocated by the CAP for the uplink transmission, the STA needs to obtain the parameter by calculation.
  • Manner 2 The STA obtains the parameter by parsing the CCH of the physical frame sent by the CAP to obtain a multiple of the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth. It can be seen that in the second method, the STA directly obtains the parameter.
  • the multiple may be an integer multiple or a fractional multiple based on a difference in the effective basic bandwidth predetermined by the system.
  • the STA obtains a modulation and coding mode indication by parsing the CCH of the physical frame sent by the CAP, and determines a modulation and coding mode, and then checks a correspondence table between the modulation coding mode and the lowest received power according to a preset manner, and checks The manner of the table determines the lowest received power corresponding to the current modulation and coding mode.
  • the STA may consider adding the fixed offset adjustment values of the STA side and the CAP side when calculating the target value of the adjusted transmit power.
  • the fixed deviation adjustment value of the STA side and the CAP side is PL 0L + C/N + 101o gl .
  • the calculation results of ( ) are added.
  • determining a transmit power of the CAP, estimating an uplink transmission path loss, and determining that the indication CAP is an uplink The parameter for transmitting the relationship between the allocated transmission bandwidth and the basic effective bandwidth, and the method for determining the minimum received power corresponding to the modulation and coding mode are the same as those in the alternative embodiment of the second uplink transmission power control method.
  • the STA needs to determine the offset adjustment of the CAP in the calculation formula by using a CAP broadcast message, such as the foregoing BCF frame.
  • the STA needs to determine the offset adjustment of the STA in the calculation formula, for example, when the STA does not receive after an uplink transmission.
  • the value of the STA's offset adjustment may be increased for use in the next calculation of the target value of the STA transmit power.
  • the value of the offset adjustment of the STA can be reduced, and is used for the next calculation of the target value of the STA transmit power.
  • the above setting is an integer greater than or equal to 2.
  • an initial value can be set for the deviation adjustment of the STA.
  • the step value of the current STA is increased based on the deviation adjustment of the current STA.
  • the setting of the offset of the current STA is decreased. Step value.
  • FIG. 5 is a schematic structural diagram of a first uplink transmission open loop power control apparatus according to an embodiment of the present invention, the apparatus comprising: a first unit 51 and a second unit 52.
  • the first unit 51 is configured to calculate a target value of the STA transmit power.
  • the second unit 52 is configured to adjust a transmit power of the STA according to the target value.
  • the calculation performed by the first unit 51 is based on the following formula:
  • « is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation noise and the interference with the receiver
  • the CAP is allocated for the uplink transmission.
  • the offset CAP is the offset adjustment of the CAP
  • the offset STA is the offset adjustment of the L STA.
  • the second uplink transmission open-loop power control apparatus in the embodiment of the present invention has the same structure as that shown in FIG. 5, except that the first unit 51 in the apparatus calculates the station STA transmit power tone by the following formula.
  • P STA vm, ⁇ P STA MAX , PL 0L + C/N + l0 g L0 ; where is the maximum transmit power of the associated STA, ⁇ is the uplink transmission path loss, C/N is the modulation coding mode, and is relative to the reception The minimum received power of the terminal noise and the interference, and the BW is a parameter indicating the relationship between the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth.
  • FIG. 6 is a schematic structural diagram of a first uplink transmission open-loop power control apparatus according to an alternative embodiment of the present invention.
  • the apparatus includes: a first unit 61, a second unit 62, a calculation unit 63, and a first determining unit 64.
  • the first unit 61 is configured to calculate a target value of the STA transmit power. The calculation performed by the first unit 61 is based on the following formula:
  • « is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation noise and the interference with the receiver
  • the CAP is allocated for the uplink transmission.
  • the offset CAP is the offset adjustment of the CAP
  • the offset STA is the offset adjustment of the L STA.
  • the second unit 62 is configured to adjust the transmit power of the STA according to the target value obtained by the first unit 61.
  • the calculating unit 63 is configured to parse the transmit power of the CAP from the message broadcast by the CAP, and estimate an estimated value of the uplink transmission path loss according to the received signal power of the STA and the transmit power of the CAP.
  • the first determining unit 64 has two modes of operation.
  • the first determining unit 64 determines the transmission bandwidth allocated by the CAP for the uplink transmission by parsing the CCH of the physical frame sent by the CAP, and calculates a multiple of the transmission bandwidth allocated by the CAP for the uplink transmission compared with the basic effective bandwidth, and obtains the indication CAP as A parameter of the relationship between the transmission bandwidth allocated by the uplink transmission and the basic effective bandwidth.
  • the first determining unit 64 obtains a multiple of the transmission bandwidth allocated by the CAP for the uplink transmission and the basic effective bandwidth by parsing the CCH of the physical frame sent by the CAP, and obtains a transmission bandwidth indicating that the CAP is allocated for the uplink transmission and is basically effective.
  • the parameter of the relationship between bandwidths is not limited.
  • the multiple may be an integer multiple or a fractional multiple.
  • the second determining unit 65 is configured to determine a modulation and coding mode by parsing a CCH of a physical frame sent by the CAP, and determine a maximum of four corresponding to the modulation and coding mode by searching a correspondence table between a preset modulation and coding mode and a maximum received power. Receive power.
  • the third unit 66 is configured to obtain a deviation adjustment of the CAP by parsing the message broadcast by the CAP.
  • the fourth unit 67 is configured to: when the STA does not receive the feedback that the CAP correctly receives after an uplink transmission, increase the offset adjustment of the STA, and use the STA to calculate the target value of the STA transmit power for the next time.
  • the value of the STA's offset adjustment is reduced, and is used to calculate the target value of the STA transmit power for the next time.
  • FIG. 7 is a schematic structural diagram of a second uplink transmission open-loop power control apparatus according to an alternative embodiment of the present invention, where the apparatus includes: a first unit 71, a second unit 72, a calculation unit 73, a first determining unit 74, and Second determining unit 75
  • the functions of the second unit 72, the calculating unit 73, the first determining unit 74, and the second determining unit 75 are respectively associated with the second unit 62, the calculating unit 63, the first determining unit 64, and the second determination shown in FIG. Unit 65 has the same function and will not be mentioned here.
  • the first unit 71 is configured to calculate a target value of the STA transmit power. The calculation performed by the first unit 71 is based on the following formula:
  • P STA vm, ⁇ P STA MAX , PL 0L + C/N +
  • ⁇ — is the maximum transmit power of the STA
  • is the uplink transmission path loss
  • C/N is the minimum received power corresponding to the modulation and coding mode, relative to the noise of the receiving end and the interference
  • BW is the indication that the CAP is the uplink transmission.
  • the uplink transmission open-loop power control apparatus provided by the embodiment of the present invention may be located in the STA or may be a separate entity on the same side as the STA.

Abstract

一种上行传输开环功率控制方法,包括:计算站点STA发射功率的目标值;根据所述目标值调整所述STA的发射功率;其中,所述计算依据STA的最大发射功率、上行传输路径损耗、指示中心接入点CAP为上行传输分配的传输带宽与基本有效带宽之间的关系的参数、CAP的偏差调整、STA的偏差调整、及调制编码方式对应的、相对于接收端噪声和干扰的最低接收功率进行。本发明还公开一种上行传输开环功率控制装置。

Description

上行传输开环功率控制方法及装置 本申请要求申请日为 2011年 5月 19 日, 申请号为 201110130194.3, 发 明名称为"一种通信系统"的中国专利申请的优先权, 该在先申请的全部内容 均已在本申请中体现。
本申请要求申请日为 2012年 2月 7 日, 申请号为 201210026860.3, 发明 名称为 "上行接入开环功率控制的方法及装置"的中国专利申请的优先权, 该在 先申请的全部内容均已在本申请中体现。 技术领域
本发明属于无线通信领域,尤其涉及上行传输开环功率控制方法及装置。 背景技术
近年来, 无线通信系统迅速发展, 诸如基于 802.11标准的无线局域网技 术 WiFi、 基于 802.15 的蓝牙 (Bluetooth ) 系统以及由移动通信系统^ "生而 来的面向室内应用的 Femto技术等等, 都得到了广泛的应用。
基于 802.11的 WiFi技术是当今使用最广的一种无线网络传输技术。 由 于 WiFi系统釆用了载波侦听 /冲突避免 (CSMA/CA, Carrier Sense Multiple Access with Collision Avoidance )机制, 系统效率较 ^ [氐,对无线资源 -浪费较大。 导致这一问题的根本原因是 CSMA/CA机制是一种基于竟争的随机多址接入 机制, 接入点 (AP, Access Point ) 和站点 ( STA, Station )之间, 或者不同 STA之间, 会通过 CSMA/CA机制竟争无线资源的使用权, 同时竟争无线信 道, 此时就发生碰撞, 导致无线资源的浪费。 为了避免碰撞, CSMA/CA机 制要求 AP或 STA在竟争无线信道时需要随机退避, 在所有 AP和 STA都退 避时, 无线信道虽有空闲, 但并未被使用, 这也是对无线信道的极大浪费。 由于上述原因, 802.11 系统效率较低。 例如: 802. l lg系统物理层峰值速率可 达 54Mbps, 但 TCP层在大数据包下载业务下可达速率不高于 30Mbps。 虽然 存在上述缺点, 但 802.11系统灵活, 不依赖集中控制机制, 因此也能够实现 较低的设备成本。
基于 3GPP标准的 Femto技术是从移动通信系统演进而来的一种面向室 内覆盖的新技术。 基于对 3G系统的数据统计, 大约 70%的数据业务都发生 在室内, 因此室内高速率数据接入方案就尤为重要。 Femto基站, 称为微微 基站, 体积小巧, 部署灵活。 由于从移动通信系统演进而来, Femto基站几 乎继承了移动通信系统的所有特点。 Femto设备只是结合其有限的覆盖范围, 较少的接入用户等应用场景特征,将设备处理能力降低,进而降低设备成本。 从双工方式考虑, 与移动通信系统相同, Femto基站可分为频分双工(FDD, Frequency Division Duplexing )与时分双工 ( TDD, Time Division Duplexing ) 两类双工机制。 FDD上下行载波资源对称, 而数据业务上下行数据流量非对 称的业务特征使得 FDD系统面对数据业务时存在一定的资源浪费。 TDD系 统上下行链路工作在同一载波上, 通过划分时间资源为上下行链路分配不同 的无线资源, 因此较 FDD 能够更好的适配上下行业务需求非对称的数据业 务。 然而, 移动通信系统 (包括 Femto 系统) 的 TDD双工方式, 上下行资 源静态分配, 面对需求不同的各类数据业务, 例如: 浏览网页, 移动视频, 移动游戏等, 难以实现业务需求与资源划分的动态适配。 与 Wi-Fi相比, 由 于 Femto釆用了基于调度的集中控制机制, 基站或 CAP和终端或者终端之 间不存在由于竟争冲突和随机退避导致的无线资源浪费,因此链路效率较高。
针对 TDD 的无线通信系统, 出于克服路径损耗等因素的考虑, 存在进 行上行传输开环功率控制的需求。 发明内容
有鉴于此, 本发明的一个目的是提供两种上行传输开环功率控制方法。 本发明的另一个目的是提供两种上行传输开环功率控制装置。
为了对披露的实施例的一些方面有一个基本的理解, 下面给出了筒单的 概括。 该概括部分不是泛泛评述, 也不是要确定关键 /重要组成元素或描绘 这些实施例的保护范围。 其唯一目的是用筒单的形式呈现一些概念, 以此作 为后面的评细说明的序言。
本发明技术方案是这样实现的:
一种上行传输开环功率控制方法, 该方法包括:
计算站点 STA发射功率的目标值;
才艮据所述目标值调整所述 STA的发射功率;
其中, 所述计算基于如下公式进行:
PSTA =
Figure imgf000004_0001
; 其 中 «为所述 STA的最大发射功率, 为上行传输路径损耗, C/ N为调 制编码方式对应的、 相对于接收端噪声和千扰的最低接收功率, 为指示 中心接入点 CAP 为上行传输分配的传输带宽与基本有效带宽之间的关系的 参数, offsetCAP为所述 CAP的偏差调整, offset STA为所述 STA的偏差调整。
作为可选的实施方式, 通过解析所述 CAP广播的消息, 得到所述 CAP 的偏差调整。
作为可选的实施方式,当所述 STA在一次上行传输后未接收到所述 CAP 正确接收的反馈时, 增加 STA的偏差调整的取值, 用于下一次计算所述 STA 发射功率的目标值;当所述 STA在连续设定次上行传输后都接收到所述 CAP 正确接收的反馈时, 减小 STA的偏差调整的取值, 用于下一次计算所述 STA 发射功率的目标值。
一种上行传输开环功率控制方法, 该方法包括:
计算站点 STA发射功率的目标值;
才艮据所述目标值调整所述 STA的发射功率;
其中, 所述计算基于如下公式进行:
PSTA = vm, {PSTA MAX ,PL0L + C/N +
Figure imgf000005_0001
; 其中 ^— 为所述 STA的 最大发射功率, 为上行传输路径损耗, C/ N为调制编码方式对应的、 相 对于接收端噪声和千扰的最低接收功率, BW为指示 CAP为上行传输分配的 传输带宽与基本有效带宽之间的关系的参数。
在上述两种方法中, 作为可选的实施方式, 依据所述 STA接收信号功率 及所述 CAP的发射功率估算所述上行传输路径损耗。
可选的, 通过解析所述 CAP广播的消息, 得到所述 CAP的发射功率。 在上述两种方法中,作为可选的实施方式, 通过解析所述 CAP发送的物 理帧的控制信道 CCH, 获取所述 CAP为上行传输分配的传输带宽, 然后计 算所述 CAP为上行传输分配的传输带宽与基本有效带宽相比的倍数,作为所 述指示 CAP为上行传输分配的传输带宽与基本有效带宽之间的关系的参数。
在上述两种方法中,作为可选的实施方式, 通过解析所述 CAP发送的物 理帧的 CCH, 获取所述 CAP为上行传输分配的传输带宽与基本有效带宽相 比的倍数,作为所述指示 CAP为上行传输分配的传输带宽与基本有效带宽之 间的关系的参数。
在上述两种方法中,作为可选的实施方式, 通过解析所述 CAP发送的物 理帧的 CCH, 确定调制编码方式, 然后通过查找预设的调制编码方式与最 4氐 接收功率的对应关系表, 确定当前调制编码方式对应的最低接收功率。 一种上行传输开环功率控制装置, 该装置包括:
第一单元, 用于计算站点 STA发射功率的目标值;
第二单元, 用于根据所述目标值调整所述 STA的发射功率;
其中, 所述第一单元的计算基于如下公式进行:
PSTA =
Figure imgf000006_0001
; 其 中 «为所述 STA的最大发射功率, 为上行传输路径损耗, C/ N为调 制编码方式对应的、 相对于接收端噪声和千扰的最低接收功率, 为指示 CAP为上行传输分配的传输带宽与基本有效带宽之间的关系的参数, offsetCAP 为所述 CAP的偏差调整, offset STA为所^ L STA的偏差调整。
作为可选的实施方式,该装置还包括:第三单元,用于通过解析所述 CAP 广播的消息, 得到所述 CAP的偏差调整。
作为可选的实施方式, 该装置还包括: 第四单元, 用于当所述 STA在一 次上行传输后未接收到所述 CAP正确接收的反馈时, 增加 STA的偏差调整 的取值, 用于下一次计算所述 STA发射功率的目标值; 当所述 STA在连续 设定次上行传输后都接收到所述 CAP正确接收的反馈时, 减小 STA的偏差 调整的取值, 用于下一次计算所述 STA发射功率的目标值。
一种上行传输开环功率控制装置, 该装置包括:
第一单元, 用于计算站点 STA发射功率的目标值;
第二单元, 用于根据所述目标值调整所述 STA的发射功率;
其中, 所述第一单元的计算基于如下公式进行:
PSTA = vm, {PSTA MAX , PL0L + C/N + l0 gL0
Figure imgf000006_0002
; 其中 ^— 为所述 STA的 最大发射功率, 为上行传输路径损耗, C/ N为调制编码方式对应的、 相 对于接收端噪声和千扰的最低接收功率, BW为指示 CAP为上行传输分配的 传输带宽与基本有效带宽之间的关系的参数。
在上述两种装置中, 作为可选的实施方式, 该装置还包括: 计算单元, 用于依据所述 STA接收信号功率及所述 CAP的发射功率估算上行传输路径 损耗。
可选的, 所述计算单元从 CAP广播的消息中解析出所述 CAP的发射功 率。
在上述两种装置中, 作为可选的实施方式, 该装置还包括: 第一确定单 元, 用于通过解析所述 CAP发送的物理帧的 CCH, 确定所述 CAP为上行传 输分配的传输带宽,计算所述 CAP为上行传输分配的传输带宽与基本有效带 宽相比的倍数,作为所述指示 CAP为上行传输分配的传输带宽与基本有效带 宽之间的关系的参数。
在上述两种装置中, 作为可选的实施方式, 该装置还包括: 第一确定单 元, 用于通过解析所述 CAP发送的物理帧的 CCH, 获取所述 CAP为上行传 输分配的传输带宽与基本有效带宽相比的倍数,作为所述指示 CAP为上行传 输分配的传输带宽与基本有效带宽之间的关系的参数。
在上述两种装置中, 作为可选的实施方式, 该装置还包括: 第二确定单 元, 用于通过解析所述 CAP发送的物理帧的 CCH, 确定调制编码方式, 通 过查找预设的调制编码方式与最 4氏接收功率的对应关系表, 确定调制编码方 式对应的最低接收功率。
为了上述以及相关的目的, 一个或多个实施例包括后面将详细说明并在 权利要求中特别指出的特征。下面的说明以及附图评细说明某些示例性方面, 并且其指示的仅仅是各个实施例的原则可以利用的各种方式中的一些方式。 其它的益处和新颖性特征将随着下面的详细说明结合附图考虑而变得明显, 所公开的实施例是要包括所有这些方面以及它们的等同。 附图说明
图 1是本发明实施例中第一种上行传输开环功率控制方法流程图; 图 2是 EUHT系统的参考模型;
图 3是 EUHT系统的接入系统组成;
图 4是 STA和 CAP之间协议数据的发送和接收的过程示意图; 图 5 是本发明实施例中第一种上行传输开环功率控制装置的结构示意 图;
图 6是本发明实施例的可选实施方式中第一种上行传输开环功率控制装 置的结构示意图;
图 7是本发明实施例的可选实施方式中第二种上行传输开环功率控制装 置的结构示意图。 具体实施方式
以下描述和附图充分地表示出本发明的具体实施方案, 以使本领域的技 术人员能够实现它们。 其他实施方案可以包括结构的、 逻辑的、 电气的、 过 程的以及其他的改变。 实施例仅代表可能的变化。 除非明确要求, 否则单独 的组件和功能是可选的, 并且操作的顺序可以变化。 一些实施方案的部分和 特征可以被包括在或替换其他实施方案的部分和特征。 本发明的实施方案的 范围包括权利要求书的整个范围, 以及权利要求书的所有可获得的等同物。 在本文中, 本发明的这些实施方案可以被单独地或总地用术语 "发明" 来表 示, 这仅仅是为了方便, 并且如果事实上公开了超过一个的发明, 不是要自 动地限制该应用的范围为任何单个发明或发明构思。
图 1是本发明实施例中第一种上行传输开环功率控制方法流程图, 该流 程包括:
步骤 11 : 计算 STA发射功率的目标值。
步骤 12: 艮据所述目标值调整所述 STA的发射功率。
其中, 步骤 11中的计算基于如下公式进行:
PSTA =
Figure imgf000008_0001
; 其 中 «为所述 STA的最大发射功率, 为上行传输路径损耗, C/ N为调 制编码方式对应的、 相对于接收端噪声和千扰的最低接收功率, 为指示 中心接入点 CAP 为上行传输分配的传输带宽与基本有效带宽之间的关系的 参数, offsetCAP为所述 CAP的偏差调整, offset STA为所述 STA的偏差调整。
本发明实施例中第二种上行传输开环功率控制方法, 其流程与图 1所示 的步骤 11〜步骤 12相似, 只是在步骤 11 中使用如下公式计算调整 STA发射 功率的目标值:
PSTA = min fe— 尸 + C/N + 101ogl。(S ;其中 为所述 STA的最 大发射功率, 为上行传输路径损耗, C/ N为调制编码方式对应的、 相对 于接收端噪声和千扰的最低接收功率, 为指示 CAP为上行传输分配的传 输带宽与基本有效带宽之间的关系的参数, min指取 STA的最大发射功率和 第二部分相加结果的最小值。 该公式的单位是 dBm
下面给出本发明实施例的可选实施方式, 这些实施方式均以新定义的增 强型超高速无线局 i或网 (EUHT ) 系统为应用场景, 但这种应用场景仅为具 体的举例。
图 2为 EUHT系统的参考模型 主要是指空中接口参考模型, 包括: 媒 体接入控制 ( MAC ) 层和物理 (PHY ) 层, 各层的主要功能筒述如下: ① MAC层包括适配子层和 MAC子层。 适配子层: 主要提供外部网络数据和 MAC层艮务协议单元 (MSDU ) 之间的映射和转换的功能。 MSDU指 MAC服务访问点 (SAP )之间作为单 元而交付的信息。
MAC 子层: 除了担当媒体接入控制功能外, 还包括对系统的管理和控 制以及对 PHY层的特定功能的支持。
② PHY层: 主要提供将 MAC层协议数据单元( MPDU )映射到相应的 物理信道的 PHY传输机制,例如正交频分复用( OFDM )和多入多出( MIMO ) 技术。 MPDU指两个对等 MAC实体之间利用 PHY层服务所交换的数据单元。
图 3 为 EUHT 系统的接入系统组成, 包括中心接入点 (CAP ) 和站点 ( STA ), 其中 STA可以为各种数据设备, 例如: PDA、 笔记本、 照相机、 才聂像机、 手机、 平板电脑、 pad等。 如图 3所示, STA1和 STA2 通过空中接 口协议接入 CAP, CAP通过有线或者无线与现有的外部网络 (如 IP骨千网、 以太网)建立通信。 其中 CAP的协议组成包括 MAC层和 PHY层。 STA协 议组成包括应用 (Application ) 层、 传输控制 (TCP ) 层、 网络 (IP ) 层、 MAC层和 PHY层。
基于图 3所示的协议组成, 图 4给出了 STA和 CAP之间协议数据的发 送和接收的过程, 例如: STA想发送数据给 CAP, STA首先将应用数据(如 VoIP, 视频等) 经过应用层、 TCP/IP层处理并打包, 以 IP分组的形式发送 给 IP适配子层, 由 IP适配子层进行转换和映射, 发送给 MAC子层, MAC 子层经过分片、 加密、 成帧、 聚合等操作, 发给 PHY层, 最终由 PHY映射 到无线信道上进行数据传输。
在以下针对本发明实施例的方法举出的实施方式中, 均将开环功率控制 的执行主体直接写为 STA,实际上该执行主体也可以是与 STA位于同侧的独 立实体, 或者是集成在 STA内部的实体。
4十对本发明实施例中第二种上行传输功率控制方法举出以下可选的实施 方式。 以下可选的实施方式中, STA在有上行传输需求时, 请求 CAP为本 次上行传输分配传输带宽、 并确定计算发射功率的目标值的公式中需要用到 的其他各项参数, 再根据计算公式计算发射功率的目标值, 然后根据计算出 的目标值调整发射功率。
在一些可选的实施方式中, 依据 STA接收信号功率及 CAP的发射功率 估算上行传输路径损耗, 例如, 在上下行链路对称的情况下, 可以通过测量 当前前导或数据部分的接收功率,并参考 CAP发射功率估计下行传输路径损 耗, 然后根据上下行链路的互易性, 得到上行传输路径损耗。
STA可以通过 CAP 广播的消息得到估算上行传输路径损耗时要用到的 CAP的发射功率。 在 EUHT系统中, 广播信息帧 (BCF ) 是 CAP广播的一 种帧, CAP将周期性广播 BCF, STA每检测到一次 BCF, 就可以获得 CAP 的发射功率。 BCF的帧体中可以具有 8比特的 CAP发射功率字段,指示 CAP 的当前发射功率, 该字段对应带符号的十进制数为 n, n=-128〜127 (负数部 分以补码形式表示): CAP发射功率为 w dBm。 可以看出, BCF中携带了 CAP 发射功率, STA在接收到 BCF后, 可以从中获取 CAP发射功率。
在一些可选的实施方式中, STA可以通过两种方式确定指示 CAP为上 行传输分配的传输带宽与基本有效带宽之间的关系的参数。
方式一, STA先解析 CAP发送的物理帧的控制信道( CCH ), 以获取针 对当前上行传输的资源指示, 确定 CAP 为上行传输分配的传输带宽, 然后 STA计算 CAP为上行传输分配的传输带宽与基本有效带宽相比的倍数, 得 到所述参数。 可见, 在方式一中, STA在获得 CAP为上行传输分配的传输 带宽后, 需通过计算得到所述参数。
方式二, STA通过解析 CAP发送的物理帧的 CCH, 获取 CAP为上行传 输分配的传输带宽与基本有效带宽相比的倍数, 得到所述参数。 可见, 在方 式二中, STA直接获得所述参数。
在上述方式一和方式二中, 基于系统预定的有效基本带宽的不同, 所述 倍数可能是整数倍, 也可能是分数倍。
在一些可选的实施方式中, STA通过解析 CAP发送的物理帧的 CCH获 取调制编码方式指示, 以确定调制编码方式, 然后 艮据预先设置调制编码方 式与最低接收功率的对应关系表, 通过查表的方式确定当前调制编码方式对 应的最低接收功率。
在一些可选的实施方式中, 如果 STA侧和 CAP侧各自具有规定的固定 偏差调整值, 则 STA在计算调整发射功率的目标值时, 可以考虑将 STA侧 和 CAP侧的固定偏差调整值加入计算公式中, 即将 STA侧和 CAP侧的固定 偏差调整值与 PL0L + C/N + 101ogl。( )的计算结果相加。
针对本发明实施例中第一种上行传输功率控制方法, 在可选的实施方式 中, 确定 CAP的发射功率、 估算上行传输路径损耗、 确定指示 CAP为上行 传输分配的传输带宽与基本有效带宽之间的关系的参数、 及确定调制编码方 式对应的最低接收功率的方法, 与前述第二种上行传输功率控制方法的可选 实施方式中的相同。
进一步, 针对本发明实施例中第一种上行传输开环功率控制方法, 在可 选的实施方式中, STA需通过 CAP广播的消息, 例如前述 BCF帧, 来确定 计算公式中 CAP的偏差调整。
进一步, 针对本发明实施例中第一种上行传输开环功率控制方法, 在可 选的实施方式中, STA需确定计算公式中 STA的偏差调整, 例如, 当 STA 在一次上行传输后未接收到 CAP正确接收的反馈时, 则可以增加 STA的偏 差调整的取值, 供下一次计算 STA发射功率的目标值时使用, 当 STA在连 续设定次上行传输后都接收到 CAP正确接收的反馈时, 则可以减小 STA的 偏差调整的取值, 供下一次计算 STA发射功率的目标值时使用。 上述设定次 为大于等于 2的整数。
可选的, 可以为 STA的偏差调整设置初始值。 在增加 STA的偏差调整 的取值时, 在当前 STA 的偏差调整基础上增加设置的步长值, 在减小 STA 的偏差调整的取值时, 在当前 STA的偏差调整基础上减小设置的步长值。 作 为一种可选的实施方式,假如 STA在连续设定次上行传输后都接收到了 CAP 正确接收的反馈, 但当前 STA 的偏差调整已经是初始值, 则不再减小 STA 的偏差调整的取值。
图 5 为本发明实施例中第一种上行传输开环功率控制装置的结构示意 图, 该装置包括: 第一单元 51和第二单元 52。
第一单元 51, 用于计算 STA发射功率的目标值。
第二单元 52, 用于根据所述目标值调整所述 STA的发射功率。
其中, 第一单元 51执行的计算基于如下公式进行:
PSTA =
Figure imgf000011_0001
; 其 中 «为所述 STA的最大发射功率, 为上行传输路径损耗, C/ N为调 制编码方式对应的、 相对于接收端噪声和千扰的最低接收功率, 为指示 CAP为上行传输分配的传输带宽与基本有效带宽之间的关系的参数, offsetCAP 为所述 CAP的偏差调整, offset STA为所^ L STA的偏差调整。
本发明实施例中第二种上行传输开环功率控制装置, 结构与图 5所示的 相同, 只是该装置中的第一单元 51通过如下公式计算站点 STA发射功率调 整的目标值:
PSTA = vm, {PSTA MAX , PL0L + C/N + l0 gL0 ; 其中 为所属 STA的 最大发射功率, 为上行传输路径损耗, C/ N为调制编码方式对应的、 相 对于接收端噪声和千扰的最低接收功率, BW为指示 CAP为上行传输分配的 传输带宽与基本有效带宽之间的关系的参数。
下面给出本发明实施例中两种上行传输开环功率控制装置的可选实施方 式。
图 6为本发明实施例的可选实施方式中第一种上行传输开环功率控制装 置的结构示意图, 该装置包括: 第一单元 61、 第二单元 62、 计算单元 63、 第一确定单元 64、 第二确定单元 65、 第三单元 66和第四单元 67。
第一单元 61, 用于计算 STA发射功率的目标值。 第一单元 61执行的计 算基于如下公式进行:
PSTA =
Figure imgf000012_0001
; 其 中 «为所述 STA的最大发射功率, 为上行传输路径损耗, C/ N为调 制编码方式对应的、 相对于接收端噪声和千扰的最低接收功率, 为指示 CAP为上行传输分配的传输带宽与基本有效带宽之间的关系的参数, offsetCAP 为所述 CAP的偏差调整, offset STA为所^ L STA的偏差调整。
第二单元 62, 用于才艮据第一单元 61得出的目标值, 调整 STA的发射功 率。
计算单元 63, 用于从 CAP广播的消息中解析出所述 CAP的发射功率, 并依据 STA接收信号功率及所述 CAP的发射功率估算上行传输路径损耗的 估计值。
第一确定单元 64有两种工作方式。
方式一, 第一确定单元 64通过解析 CAP发送的物理帧的 CCH, 确定 CAP为上行传输分配的传输带宽, 计算 CAP为上行传输分配的传输带宽与 基本有效带宽相比的倍数,得到指示 CAP为上行传输分配的传输带宽与基本 有效带宽之间的关系的参数。
方式二, 第一确定单元 64通过解析 CAP发送的物理帧的 CCH, 获取指 示 CAP 为上行传输分配的传输带宽与基本有效带宽相比的倍数, 得到指示 CAP为上行传输分配的传输带宽与基本有效带宽之间的关系的参数。
在上述方式一和方式二中, 基于系统预定的有效基本带宽的不同, 所述 倍数可能是整数倍, 也可能是分数倍。
第二确定单元 65 ,用于通过解析 CAP发送的物理帧的 CCH确定调制编 码方式, 通过查找预设的调制编码方式与最 4氏接收功率的对应关系表, 确定 调制编码方式对应的最 4氏接收功率。
第三单元 66, 用于通过解析所述 CAP广播的消息, 得到 CAP的偏差调 整。
第四单元 67, 用于当 STA在一次上行传输后未接收到 CAP正确接收的 反馈时, 增加 STA的偏差调整, 用于下一次计算 STA发射功率的目标值, 当 STA在连续设定次上行传输后都接收到 CAP正确接收的反馈时,减小 STA 的偏差调整的取值, 用于下一次计算 STA发射功率的目标值。
图 7为本发明实施例的可选实施方式中第二种上行传输开环功率控制装 置的结构示意图, 该装置包括: 第一单元 71、 第二单元 72、 计算单元 73 第一确定单元 74和第二确定单元 75
第二单元 72、 计算单元 73、 第一确定单元 74、 及第二确定单元 75的功 能, 分别与图 6所示的第二单元 62、 计算单元 63、 第一确定单元 64、 及第 二确定单元 65的功能相同, 这里不再赞述。
第一单元 71, 用于计算 STA发射功率的目标值。 第一单元 71执行的计 算基于如下公式进行:
PSTA = vm, {PSTA MAX ,PL0L + C/N +
Figure imgf000013_0001
; 其中 ^— 为所述 STA的 最大发射功率, 为上行传输路径损耗, C/ N为调制编码方式对应的、 相 对于接收端噪声和千扰的最低接收功率, BW为指示 CAP为上行传输分配的 传输带宽与基本有效带宽之间的关系的参数。
本发明实施例提供的上行传输开环功率控制装置, 可以位于 STA中, 也 可以是与 STA同侧的单独实体。
应该明白,公开的过程中的步骤的特定顺序或层次是示例性方法的实例。 基于设计偏好, 应该理解, 过程中的步骤的特定顺序或层次可以在不脱离本 公开的保护范围的情况下得到重新安排。 所附的方法权利要求以示例性的顺 序给出了各种步骤的要素, 并且不是要限于所述的特定顺序或层次。
在上述的详细描述中, 各种特征一起组合在单个的实施方案中 以筒化 本公开。 不应该将这种公开方法解释为反映了这样的意图, 即, 所要求保护 的主题的实施方案需要清楚地在每个权利要求中所陈述的特征更多的特征。 相反, 如所附的权利要求书所反映的那样, 本发明处于比所公开的单个实施 方案的全部特征少的状态。 因此, 所附的权利要求书特此清楚地被并入详细 描述中, 其中每项权利要求独自作为本发明单独的优选实施方案。
上文的描述包括一个或多个实施例的举例。 当然, 为了描述上述实施例 而描述部件或方法的所有可能的结合是不可能的, 但是本领域普通技术人员 应该认识到, 各个实施例可以做进一步的组合和排列。 因此, 本文中描述的 实施例旨在涵盖落入所附权利要求书的保护范围内的所有这样的改变、 修改 和变型。 此外, 就说明书或权利要求书中使用的术语 "包含", 该词的涵盖方 式类似于术语 "包括", 就如同 "包括," 在权利要求中用作 #†接词所解释的 那样。 此外, 使用在权利要求书的说明书中的任何一个术语 "或者" 是要表 示 "非排它性的或者"。

Claims

权 利 要 求 书
1. 一种上行传输开环功率控制方法, 其特征在于, 该方法包括: 计算站点 STA发射功率的目标值;
才艮据所述目标值调整所述 STA的发射功率;
其中, 所述计算基于如下公式进行:
PSTA =
Figure imgf000015_0001
; 其 中 «为所述 STA的最大发射功率, 为上行传输路径损耗, C/ N为调 制编码方式对应的、 相对于接收端噪声和千扰的最低接收功率, 为指示 中心接入点 CAP 为上行传输分配的传输带宽与基本有效带宽之间的关系的 参数, offsetCAP为所述 CAP的偏差调整, offset STA为所述 STA的偏差调整。
2. 如权利要求 1所述的方法, 其特征在于, 通过解析所述 CAP广播的 消息, 得到所述 CAP的偏差调整。
3. 如权利要求 1 所述的方法, 其特征在于, 当所述 STA在一次上行传 输后未接收到所述 CAP正确接收的反馈时, 增加 STA的偏差调整的取值, 用于下一次计算所述 STA发射功率的目标值;
当所述 STA在连续设定次上行传输后都接收到所述 CAP正确接收的反 馈时, 减小 STA的偏差调整的取值, 用于下一次计算所述 STA发射功率的 目标值。
4. 一种上行传输开环功率控制方法, 其特征在于, 该方法包括: 计算站点 STA发射功率的目标值;
才艮据所述目标值调整所述 STA的发射功率;
其中, 所述计算基于如下公式进行:
PSTA = vm, {PSTA MAX , PL0L + C/N + l0 gL0
Figure imgf000015_0002
; 其中 ^— 为所述 STA的 最大发射功率, 为上行传输路径损耗, C/ N为调制编码方式对应的、 相 对于接收端噪声和千扰的最低接收功率, BW为指示 CAP为上行传输分配的 传输带宽与基本有效带宽之间的关系的参数。
5. 如权利要求 1或 4所述的方法, 其特征在于, 依据所述 STA接收信 号功率及所述 CAP的发射功率估算所述上行传输路径损耗。
6. 如权利要求 5所述的方法, 其特征在于, 通过解析所述 CAP广播的 消息, 得到所述 CAP的发射功率。
7. 如权利要求 1或 4所述的方法, 其特征在于, 通过解析所述 CAP发 送的物理帧的控制信道 CCH, 获取所述 CAP为上行传输分配的传输带宽, 然后计算所述 CAP为上行传输分配的传输带宽与基本有效带宽相比的倍数, 作为所述指示 CAP 为上行传输分配的传输带宽与基本有效带宽之间的关系 的参数。
8. 如权利要求 1或 4所述的方法, 其特征在于, 通过解析所述 CAP发 送的物理帧的 CCH, 获取所述 CAP为上行传输分配的传输带宽与基本有效 带宽相比的倍数,作为所述指示 CAP为上行传输分配的传输带宽与基本有效 带宽之间的关系的参数。
9. 如权利要求 1或 4所述的方法, 其特征在于, 通过解析所述 CAP发 送的物理帧的 CCH, 确定调制编码方式, 然后通过查找预设的调制编码方式 与最低接收功率的对应关系表,确定当前调制编码方式对应的最低接收功率。
10. 一种上行传输开环功率控制装置, 其特征在于, 该装置包括: 第一单元, 用于计算站点 STA发射功率的目标值;
第二单元, 用于根据所述目标值调整所述 STA的发射功率;
其中, 所述第一单元的计算基于如下公式进行:
PSTA =
Figure imgf000016_0001
; 其 中 «为所述 STA的最大发射功率, 为上行传输路径损耗, C/ N为调 制编码方式对应的、 相对于接收端噪声和千扰的最低接收功率, 为指示 CAP为上行传输分配的传输带宽与基本有效带宽之间的关系的参数, offsetCAP 为所述 CAP的偏差调整, offset STA为所^ L STA的偏差调整。
11. 如权利要求 10所述的装置, 其特征在于, 该装置还包括: 第三单元, 用于通过解析所述 CAP广播的消息, 得到所述 CAP的偏差调整。
12. 如权利要求 10所述的装置, 其特征在于,该装置还包括: 第四单元, 用于当 STA在一次上行传输后未接收到 CAP正确接收的反馈时, 增加 STA 的偏差调整, 用于下一次计算 STA发射功率的目标值, 当 STA在连续设定 次上行传输后都接收到 CAP正确接收的反馈时, 减小 STA的偏差调整的取 值, 用于下一次计算 STA发射功率的目标值。
13. 一种上行传输开环功率控制装置, 其特征在于, 该装置包括: 第一单元, 用于计算站点 STA发射功率的目标值;
第二单元, 用于根据所述目标值调整所述 STA的发射功率; 其中, 所述第一单元的计算基于如下公式进行:
PSTA = vm, {PSTA MAX ,PL0L + C/N +
Figure imgf000017_0001
; 其中 ^— 为所述 STA的 最大发射功率, 为上行传输路径损耗, C/ N为调制编码方式对应的、 相 对于接收端噪声和千扰的最低接收功率, BW为指示 CAP为上行传输分配的 传输带宽与基本有效带宽之间的关系的参数。
14. 如权利要求 10或 13所述的装置, 其特征在于, 该装置还包括: 计 算单元, 用于依据所述 STA接收信号功率及所述 CAP的发射功率估算上行 传输路径损耗。
15. 如权利要求 14所述的装置, 其特征在于, 所述计算单元从 CAP广 播的消息中解析出所述 CAP的发射功率。
16. 如权利要求 10或 13所述的装置, 其特征在于, 该装置还包括: 第 一确定单元, 用于通过解析所述 CAP发送的物理帧的 CCH, 确定所述 CAP 为上行传输分配的传输带宽,计算所述 CAP为上行传输分配的传输带宽与基 本有效带宽相比的倍数,作为所述指示 CAP为上行传输分配的传输带宽与基 本有效带宽之间的关系的参数。
17. 如权利要求 10或 13所述的装置, 其特征在于, 该装置还包括: 第 一确定单元, 用于通过解析所述 CAP发送的物理帧的 CCH, 获取所述 CAP 为上行传输分配的传输带宽与基本有效带宽相比的倍数, 作为所述指示 CAP 为上行传输分配的传输带宽与基本有效带宽之间的关系的参数。
18. 如权利要求 10或 13所述的装置, 其特征在于, 该装置还包括: 第 二确定单元, 用于通过解析所述 CAP发送的物理帧的 CCH, 确定调制编码 方式, 通过查找预设的调制编码方式与最 4氏接收功率的对应关系表, 确定调 制编码方式对应的最 4氏接收功率。
PCT/CN2012/074831 2011-05-19 2012-04-27 上行传输开环功率控制方法及装置 WO2012155785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280013155.8A CN103563458B (zh) 2011-05-19 2012-04-27 上行传输开环功率控制方法及装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110130194 2011-05-19
CN201110130194.3 2011-05-19
CN201210026860 2012-02-07
CN201210026860.3 2012-02-07

Publications (1)

Publication Number Publication Date
WO2012155785A1 true WO2012155785A1 (zh) 2012-11-22

Family

ID=47176304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074831 WO2012155785A1 (zh) 2011-05-19 2012-04-27 上行传输开环功率控制方法及装置

Country Status (2)

Country Link
CN (2) CN102883421A (zh)
WO (1) WO2012155785A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451748B1 (en) * 2013-08-13 2021-04-14 Huawei Technologies Co., Ltd. Method for sending preamble sequence and user equipment
WO2016058155A1 (zh) * 2014-10-16 2016-04-21 华为技术有限公司 一种无线局域网的通信方法、站点和通信系统
CN108260195B (zh) * 2016-12-28 2021-06-25 上海朗帛通信技术有限公司 一种ue、基站中的发射功率调整的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008921A1 (ja) * 2003-07-18 2005-01-27 Nec Corporation 送信電力制御の追従性を向上させた移動通信システム
WO2005048491A1 (en) * 2003-11-14 2005-05-26 Samsung Electronics Co., Ltd. Method for supporting pilot boost in e-dch of wcdma
EP1873935A1 (en) * 2005-03-29 2008-01-02 NTT DoCoMo Inc. Transmission power control method and mobile station
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
CN101778465A (zh) * 2010-03-09 2010-07-14 山东大学 Cdma蜂窝系统中基于误差估计的比例功率控制方法
CN101977431A (zh) * 2010-10-22 2011-02-16 上海华为技术有限公司 基于hsupa的终端功率控制方法及设备、系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388699A (zh) * 2007-09-12 2009-03-18 夏普株式会社 基于空时频域的信息反馈方法和系统、用户设备及基站
US8971299B2 (en) * 2009-03-17 2015-03-03 Samsung Electronics Co., Ltd Uplink transmission power control in multi-carrier communication systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008921A1 (ja) * 2003-07-18 2005-01-27 Nec Corporation 送信電力制御の追従性を向上させた移動通信システム
WO2005048491A1 (en) * 2003-11-14 2005-05-26 Samsung Electronics Co., Ltd. Method for supporting pilot boost in e-dch of wcdma
EP1873935A1 (en) * 2005-03-29 2008-01-02 NTT DoCoMo Inc. Transmission power control method and mobile station
CN101741437A (zh) * 2008-11-19 2010-06-16 中国移动通信集团公司 一种上行功率控制方法、系统及设备
CN101778465A (zh) * 2010-03-09 2010-07-14 山东大学 Cdma蜂窝系统中基于误差估计的比例功率控制方法
CN101977431A (zh) * 2010-10-22 2011-02-16 上海华为技术有限公司 基于hsupa的终端功率控制方法及设备、系统

Also Published As

Publication number Publication date
CN103563458B (zh) 2017-06-16
CN103563458A (zh) 2014-02-05
CN102883421A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP7130807B2 (ja) 高効率wlan用の同時リンクセットアップおよびダウンリンクデータ取得のための方法
US10200115B2 (en) Methods and systems for frequency multiplexed communication in dense wireless environments
JP6643383B2 (ja) 無線ローカルエリアネットワークにおける省電力のための方法および装置
TWI710272B (zh) 無線區域網路(wlan)多使用者同時隨機存取方法及裝置
TWI706688B (zh) 在WLANs中上鏈多使用者傳輸分類及消除
TWI750048B (zh) 無線區域網路中控制及操作的方法
JP6014246B2 (ja) 効率的な媒体アクセス制御(mac)ヘッダ
JP2017118580A (ja) スモールデータパケットの転送に関連付けられたオーバヘッドの低減
US20160353357A1 (en) Methods and systems for multiplexed communication in dense wireless environments
KR20130122000A (ko) 채널 통합 및 매체 접근 제어 재전송을 수행하는 방법 및 장치
JP2016528795A (ja) チャネルアクセスまたは送信パラメータの動的な適応のためのシステムおよび方法
WO2012130021A1 (zh) 业务流删除方法及装置
WO2012130027A1 (zh) 用于接入无线网络的方法及装置
WO2012130025A1 (zh) 用于接入无线网络的方法及装置
WO2012130017A1 (zh) 上行接入开环功率控制的方法及装置
WO2012155785A1 (zh) 上行传输开环功率控制方法及装置
US20230354098A1 (en) Method for transmitting/receiving data in wireless communication system, and wireless communication terminal
WO2012130024A1 (zh) 用于数据传输的方法及装置
EP1859572A1 (en) Quality of service provisioning using periodic channel time allocation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12784968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12784968

Country of ref document: EP

Kind code of ref document: A1