WO2013020311A1 - 电动机及其转子 - Google Patents

电动机及其转子 Download PDF

Info

Publication number
WO2013020311A1
WO2013020311A1 PCT/CN2011/079060 CN2011079060W WO2013020311A1 WO 2013020311 A1 WO2013020311 A1 WO 2013020311A1 CN 2011079060 W CN2011079060 W CN 2011079060W WO 2013020311 A1 WO2013020311 A1 WO 2013020311A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
motor
mounting
core
rotor
Prior art date
Application number
PCT/CN2011/079060
Other languages
English (en)
French (fr)
Inventor
黄辉
张文明
肖勇
曾学英
陈华杰
陈东锁
胡余生
Original Assignee
珠海格力电器股份有限公司
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47055533&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013020311(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 珠海格力电器股份有限公司, 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力电器股份有限公司
Priority to KR1020147005635A priority Critical patent/KR101545213B1/ko
Priority to EP11870716.5A priority patent/EP2741402B1/en
Priority to JP2014523163A priority patent/JP6203717B2/ja
Priority to US14/235,617 priority patent/US9515526B2/en
Publication of WO2013020311A1 publication Critical patent/WO2013020311A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • a permanent magnet synchronous motor is an electric motor in which a layer of permanent magnets is placed inside the rotor, mainly using permanent magnet torque and reluctance torque.
  • T is the output torque of the motor, increasing the value of ⁇ , can improve the performance of the motor;
  • the first term in the equation is the reluctance torque, the second term is the permanent magnet torque;
  • ⁇ ⁇ is the permanent magnet of the motor
  • i d , i q are the components of the armature current in the d-axis and q-axis directions, respectively.
  • the increase of the motor output torque T can be achieved by increasing the permanent magnet torque of the second term and by increasing the inductance difference between the d-axis and the q-axis of the motor.
  • the performance of the motor is improved mainly by improving the performance of the permanent magnet, that is, the value of the resultant torque is increased by increasing the permanent magnet torque, thereby improving the efficiency of the motor.
  • a common practice is to incorporate a rare earth permanent magnet.
  • An object of the present invention is to provide a motor rotor and an electric motor having the same that can improve the utilization ratio of a permanent magnet and thereby improve the performance of a rotor of a motor.
  • a motor rotor comprising a core and a permanent magnet disposed inside the core, the core being provided with a plurality of sets of mounting grooves in a circumferential direction of the core, each set of mounting slots comprising two or two More than one mounting groove intermittently arranged in the radial direction of the iron core;
  • the permanent magnets are a plurality of groups, and each of the permanent magnets in each group of permanent magnets is correspondingly embedded in each mounting groove of each set of mounting grooves; in the axial direction with the iron core Vertical forever
  • the distance between the ends of the side where the permanent magnet is away from the center of the core is the length L of the permanent magnet, and the line between the ends of the side of the permanent magnet away from the center of the core is close to the permanent magnet
  • the distance between the midpoints of one side of the center of the core is the permanent magnet width H, and ij ij : ⁇ ⁇ .
  • each set of mounting slots includes a first mounting slot and a second mounting slot
  • the permanent magnets embedded in the first mounting slot and the second mounting slot are respectively a first permanent magnet and a second permanent magnet
  • the first permanent magnet The permanent magnet length and the permanent magnet width are Lai and Hal, respectively, then ⁇ ⁇ ⁇ ⁇ 1 ⁇ ⁇ .
  • the permanent magnet length and the permanent magnet width of the second permanent magnet are La2 and Ha2, respectively, and then 3 z Ha2 z 7
  • each set of mounting slots includes a first mounting slot, a second mounting slot, and a third mounting slot
  • the permanent magnets embedded in the first mounting slot, the second mounting slot, and the third mounting slot are respectively a first permanent magnet
  • the second permanent magnet and the third permanent magnet, the permanent magnet length and the permanent magnet width of the first permanent magnet are Lbl and Hb1, respectively, and ⁇ .
  • the permanent magnet length and the permanent magnet width of the second permanent magnet are Lb2 and Hb2, respectively, and J_ ⁇ Hb2 ⁇ j_
  • the permanent magnet length and the permanent magnet width of the third permanent magnet are Lb3 and Hb3, respectively.
  • an electric motor comprising the aforementioned electric motor rotor.
  • the distance between the ends of the permanent magnet separated from the center of the core is the length L of the permanent magnet
  • the distance between the ends of the permanent magnet away from the center of the core is the width H of the permanent magnet.
  • FIG. 1 is a schematic structural view of an embodiment of a rotor of an electric motor according to the present invention
  • Figure 2 is a schematic illustration of a permanent magnet length L and a permanent magnet width H of one embodiment of a motor rotor in accordance with the present invention
  • Figure 3 is a schematic illustration of H/L versus motor efficiency for one embodiment of a motor rotor in accordance with the present invention
  • 4 is a schematic view showing the structure of another embodiment of the motor rotor according to the present invention, and the permanent magnet length L and the permanent magnet width H
  • FIG. 5 is a view showing the relationship between the H and the motor efficiency of another embodiment of the motor rotor according to the present invention.
  • FIG. 6 is a schematic view showing the relationship between the H/L and the air gap magnetic density of the rotor of the motor according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
  • the distance from the inner arc of the permanent magnet 20 placed in the rotor mounting groove 20 of the motor to the point between the two ends of the mounting groove is the same as the point from the d-axis direction to the inner end of the inner arc of the same permanent magnet 20 The distance relationship of the midpoint is discussed.
  • the present invention provides a motor rotor including a core 10 and a permanent magnet 20 disposed inside the core 10.
  • the core 10 is provided with a plurality of sets of mounting grooves 30 in the circumferential direction of the core 10, each set
  • the mounting groove 30 includes two or more mounting grooves 30 intermittently disposed in the radial direction of the core 10; the permanent magnets 20 are a plurality of groups, and each of the permanent magnets 20 in each of the sets of permanent magnets 20 is correspondingly embedded in each set of mounting grooves.
  • the motor rotor of the present invention includes at least a core 10 formed of a silicon steel sheet and a permanent magnet 20 embedded in the core 10.
  • the motor rotor core 10 includes a plurality of sets of mounting slots 30 penetrating the core 10, and each set of mounting slots 30 includes two or more mounting slots 30 separated by a core.
  • the permanent magnets 20 are embedded in the mounting groove 30, and the permanent magnets 20 in the same group are required to have the same polarity toward the outer circumferential direction of the motor rotor. For example, as shown in FIG.
  • the two permanent magnets in the d-axis direction all display the S pole; At the same time, the magnetic strength of the adjacent two sets of permanent magnets 20 is opposite, and the permanent magnets 20 of each group are alternately distributed along the circumferential direction according to the NS pole.
  • a certain gap may be left at both ends of the groove 30, and air or a non-magnetic medium may be filled therein.
  • a magnetic flux path composed of a silicon steel sheet having a certain width between two adjacent permanent magnets 20 of the same set of permanent magnets 20 of the motor rotor, and a width of the motor rotor adjacent to the two sets of mounting slots 30 is not constant by a silicon steel sheet. Connecting ribs.
  • a permanent magnet 20 is placed in the mounting groove 30, which is capable of providing reluctance torque. Since the multilayer permanent magnet 20 is placed in the d-axis direction, and the permanent magnet 20 itself has a large magnetic resistance, which is equivalent to the air permeability, the inductance L d in the d-axis direction is small, and the q-axis direction is due to the core. 10 itself has a high magnetic permeability, so the inductance L q in the q-axis direction is large, thereby increasing the reluctance torque of the motor rotor, thereby increasing the output torque of the motor and improving the efficiency of the motor.
  • the rotor can also provide permanent magnet torque.
  • the distance between the ends of the side of the permanent magnet 20 away from the center of the core 10 is the length L of the permanent magnet, and the line between the ends of the side of the permanent magnet 20 away from the center of the core 10 is close to the permanent magnet 20.
  • the distance between the midpoints of one side of the center of the core 10 is the permanent magnet width H.
  • the permanent magnet air gap magnetic density can be effectively increased (gas
  • the gap magnetic density refers to the strength of the magnetic intensity in the air.
  • the air gap magnetic density begins to enter a gentle increase phase.
  • each set of mounting slots 30 includes a first mounting slot 31a and a second mounting slot 32a, a first mounting slot 31a and a second mounting slot 32a.
  • the permanent magnets 20 embedded therein are a first permanent magnet 21 a and a second permanent magnet 22 a , respectively, and the permanent magnet length and the permanent magnet width of the first permanent magnet 21 a are respectively
  • the permanent magnet length and the permanent magnet width of the second permanent magnet 22a are identical to each other.
  • 21 and 22 are a first layer of permanent magnets and a second layer of permanent magnets which are inserted into the first mounting groove 31a and the second mounting groove 32a, respectively. Since each pole of the rotor occupies a certain fan-shaped area, the curvature and the arc depth of the inserted arc-shaped permanent magnet can be arbitrary from the structural point of view. However, according to the experimental results, it is found that the distance between the end points of the intersection of the permanent magnet inner arc 21al extending to the mounting groove 31a and the two ends of the permanent magnet outer arc 21a2 are along the d-axis direction to the inner arc 21al end point. Shang Shang ⁇ ⁇ 1 ⁇ H virtual straight line distance connection constituted satisfies the following relationship, in the volume of the permanent magnet 20 is fixed, the permanent magnet flux will increase. As shown in Figure 3
  • the motor can be further improved
  • each set of mounting slots 30 includes a first mounting slot 31b, a second mounting slot 32b and a third mounting slot 33b
  • the permanent magnets 20 embedded in the groove 32b and the third mounting groove 33b are a first permanent magnet 21b, a second permanent magnet 22b and a third permanent magnet 23b, respectively, and the permanent magnet length and the permanent magnet width of the first permanent magnet 21b are respectively Lbl And Hbl, then ⁇ ⁇ i ⁇ ⁇ i. excellent
  • the permanent magnet length and the permanent magnet width of the second permanent magnet 22b are Lb2 and Hb2, respectively, and ⁇ ⁇ ⁇ ⁇ .
  • the permanent magnet length and the permanent magnet width of the third permanent magnet 23b are Lb3 and Hb3, respectively.
  • each set of mounting slots 30 includes three mounting slots, which are respectively the first mounting slots.
  • the 10 Lb2 2 can further improve motor efficiency.
  • the relationship between the permanent magnet length Lb3 and the permanent magnet width Hb3 of the second permanent magnet 23b in the third mounting groove 33b satisfies ⁇ ⁇ ⁇ ⁇ , the motor efficiency can be further improved.
  • the relationship in this embodiment is preferably applied to the rotor scheme of the three-layer permanent magnet 20.
  • the number of sets of the permanent magnets 20 is not limited to the four poles as shown in FIG. 4, and the rotors of the six poles and eight poles are Be applicable.
  • the form of the permanent magnet and the through groove embedded in the rotor of the motor of the present invention may be designed to be an arc of equal thickness, or may be an unequal thickness curved with a thin thickness on both sides.
  • the present invention also provides an electric motor including the aforementioned electric motor rotor.
  • the motor of the present invention improves the magnetic flux utilization rate of the permanent magnet and the permanent magnet torque of the motor under the condition that the permanent magnet volume is constant by defining the relationship between the length of the permanent magnet and the width thereof, and finally achieves the purpose of improving the efficiency of the motor.
  • the electric motor of the present invention can be applied to an air conditioner compressor, an electric vehicle, and a fan system. From the above description, it can be seen that the above-described embodiments of the present invention achieve the following technical effects:
  • the motor rotor of the present invention and the motor having the same can improve the permanent magnet rotation of the rotor of the motor when the amount of permanent magnets used is constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种电动机及其转子。电动机转子永磁铁(20)远离铁心(10)的中心的一侧的两端点之间的距离为永磁体长度L,永磁铁远离铁心中心一侧的两端点之间的连线与永磁铁靠近铁心中线的一侧的中点之间的距离为永磁体宽度H,则:H/L≥1/10。通过调整永磁体长度L和宽度H的关系可以有效增加永磁体气隙磁密,即增加转子d轴和q轴方向的永磁磁通。从而在不增加永磁体用量的前提下提高永磁体利用率和提高转子性能。

Description

电动机及其转子 技术领域 本发明涉及电动机领域, 更具体地, 涉及一种电动机转子及具有其的电动机。 背景技术 永磁同步电动机(IPM)是一种在转子内侧放置一层永磁体、 主要利用永磁转矩、 磁阻转矩为辅助的电动机。 磁阻转矩与永磁转矩的合成公式如下: T = mp (Lq - Ld )diq + mp ψ PM iq。 其中, T为电动机输出转矩, 提高 Τ的值, 可以提高电动机性能; Τ后等式中的 第一项为磁阻转矩, 第二项为永磁转矩; ΨΡΜ为电动机永磁体产生的定转子耦合磁通 的最大值, m为定子导体的相数, Ld、 Lq分别为 d轴和 q轴电感, 其中 d轴指与主磁 极轴线重合的轴, q轴指与主磁极轴线垂直的轴, 其中的垂直指的是电角度; id、 iq分 别是电枢电流在 d轴、 q轴方向上的分量。 由上述合成公式可知, 通过增加第二项的 永磁转矩以及通过提高电动机 d轴和 q轴的电感差值都可以实现电动机输出转矩 T的 提高。 现有技术中主要通过提高永磁体的性能来提高电动机性能, 即通过提高永磁转矩 的做法来提高合成转矩的值, 进而提高电动机效率, 常见的做法就是内置稀土类永磁 体。 但是, 由于稀土是不可再生资源, 且价格昂贵, 因此该种电动机更广泛的应用受 到了限制。 另外, 由于受转子体积的限制, 转子每极下的永磁体的占有率存在极限值, 很难通过增加永磁体使用量的方式提高电动机输出转矩, 这同样限制了电动机效率的 提高。 发明内容 本发明目的在于提供一种能够提高永磁体利用率、 从而提高电动机转子性能的 电动机转子及具有其的电动机。
根据本发明的一个方面, 提供了一种电动机转子, 包括铁心和设于铁心内部的 永磁体, 铁心上沿铁心的周向方向上设置有多组安装槽, 每组安装槽包括两个或者 两个以上在铁心的径向方向上间断设置的安装槽; 永磁体为多组, 每组永磁体中的 各个永磁体对应地嵌入每组安装槽的各个安装槽中; 在与铁心的轴向方向垂直的永 磁体的截面上, 以永磁体远离铁心的中心的一侧的两端点之间的距离为永磁体长度 L, 以永磁体远离铁心的中心的一侧的两端点之间的连线与永磁体靠近铁心的中心 的一侧的中点之间的距离为永磁体宽度 H, 贝 ij : ≥丄。
L 10
进一步地, 每组安装槽中包括第一安装槽和第二安装槽, 第一安装槽和第二安 装槽中嵌入的永磁体分别为第一永磁体和第二永磁体, 第一永磁体的永磁体长度和 永磁体宽度分别为 Lai和 Hal, 则丄≤ ί≥1≤丄。
10 Lai 10
进一步地, 第二永磁体的永磁体长度和永磁体宽度分别为 La2 和 Ha2, 则 3 z Ha2 z 7
10― La2― 10 。
进一步地, 每组安装槽中包括第一安装槽、 第二安装槽和第三安装槽, 第一安 装槽、 第二安装槽和第三安装槽中嵌入的永磁体分别为第一永磁体、 第二永磁体和 第三永磁体, 第一永磁体的永磁体长度和永磁体宽度分别为 Lbl 和 Hbl, 则 丄< <丄。
10 Lbl 2
进一步地, 第二永磁体的永磁体长度和永磁体宽度分别为 Lb2 和 Hb2, 则 J_ < Hb2 < j_
10 Lb2— 2 °
进一步地, 第三永磁体的永磁体长度和永磁体宽度分别为 Lb3 和 Hb3, 则
J_ < Hb3 < J_
10— Lb3— 2 °
根据本发明的一个方面, 还提供了一种电动机, 包括前述的电动机转子。 采用本发明的电动机转子及具有其的电动机, 以永磁体远离铁心的中心的一侧的 两端点之间的距离为永磁体长度 L, 以永磁体远离铁心的中心的一侧的两端点之间的 连线与永磁体靠近铁心的中心的一侧的中点之间的距离为永磁体宽度 H, 根据实验结 果发现, 通过调整永磁体长度 L和 H之间的关系, 可以有效地增加永磁体周围空气中 的磁场强度, 增加永磁体的气隙磁密, 即有效地增加转子的 d轴和 q轴方向的永磁磁 通, 从而在不增加永磁体用量的前提下提高永磁体利用率和提高电动机转子性能。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明的电动机转子的一个实施例的结构示意图; 图 2是根据本发明的电动机转子的一个实施例的永磁体长度 L和永磁体宽度 H的 示意图; 图 3是根据本发明的电动机转子的一个实施例的 H/L与电机效率的关系示意图; 图 4是根据本发明的电动机转子的另一个实施例的结构以及永磁体长度 L和永磁 体宽度 H的示意图; 图 5 是根据本发明的电动机转子的另一个实施例的 H 与电机效率的关系示意 图; 以及 图 6是根据本发明的电动机转子的 H/L与气隙磁密的关系示意图。 具体实施方式 下面将参考附图并结合实施例来详细说明本发明。 本发明从电机转子安装槽 20中放置的永磁体 20的内弧所延伸至安装槽的两端点 之间的距离与同一永磁体 20外弧面中点沿 d轴方向至内弧两端点连线中点的距离关系 进行了探讨,提出了在永磁体 20使用量一定的情况下提高永磁转矩利用的方法, 即永 磁体尺寸的最优设计, 从而实现电动机合成转矩 T的最大化, 提高了电动机效率。 如图 1所示, 本发明提供了一种电动机转子, 包括铁心 10和设于铁心 10内部的 永磁体 20, 铁心 10上沿铁心 10的周向方向上设置有多组安装槽 30, 每组安装槽 30 包括两个或者两个以上在铁心 10的径向方向上间断设置的安装槽 30; 永磁体 20为多 组,每组永磁体 20中的各个永磁体 20对应地嵌入每组安装槽 30的各个安装槽 30中; 在与铁心 10的轴向方向垂直的永磁体 20的截面上, 以永磁体 20远离铁心 10的中心 的一侧的两端点之间的距离为永磁体长度 L, 以永磁体 20远离铁心 10的中心的一侧 的两端点之间的连线与永磁体 20靠近铁心 10的中心的一侧的中点之间的距离为永磁 体宽度 H, 贝 lj: ≥丄。
L 10 如图 1所示, 本发明的电动机转子至少包括由硅钢片叠成的铁心 10、 嵌入在铁心 10中的永磁体 20。 电动机转子铁心 10中包含多组贯穿铁心 10的安装槽 30, 每组安 装槽 30包含两层以上中间被铁心隔开的安装槽 30。 永磁体 20嵌入安装槽 30中, 放 置时要求同一组内的永磁体 20朝电动机转子的外周方向呈同一极性,例如图 1中所示, d轴方向上两层永磁体全部显示 S极; 同时要求相邻的两组永磁体 20的磁性相反, 各 组永磁体 20对外沿圆周方向按照 NS极交替分布。 在永磁体 30放入安装槽 30后, 安 装槽 30两端可以留有一定的空隙,其中可以填充空气或者非导磁性介质。 电动机转子 的同一组永磁体 20中相邻两片永磁体间由具有一定宽度的由硅钢片构成的磁通路径, 电动机转子相邻两组安装槽 30之间有宽度不恒定由硅钢片构成的连接筋。 在安装槽 30中放入永磁体 20, 该转子能够提供磁阻转矩。 由于 d轴方向上放置 了多层永磁体 20, 而永磁体 20本身的磁阻很大, 与空气磁导率相当, 因此在 d轴方 向上的电感 Ld较小, 而 q轴方向因为铁心 10本身具有较高的磁导率, 所以 q轴方向 上的电感 Lq较大, 因此提高了电动机转子的磁阻转矩, 从而提高了电机输出转矩, 也 就提高了电动机效率。 有了这种途径提高电动机效率, 可以替代通过增加稀土类永磁 体提高电动机效率的方法, 从而减少了稀土用量, 一方面节约了能源, 减轻了环境负 担, 另一方面降低了成本, 提升了产品竞争力。 另外, 由于插入了永磁体 20, 该转子也能提供永磁转矩。 以永磁体 20远离铁心 10的中心的一侧的两端点之间的距离为永磁体长度 L, 以永磁体 20远离铁心 10的中 心的一侧的两端点之间的连线与永磁体 20靠近铁心 10的中心的一侧的中点之间的距 离为永磁体宽度 H, 根据实验结果发现, 通过调整永磁体长度 L和 H之间的长度, 可 以有效地增加永磁体气隙磁密 (气隙磁密指空气中磁强的强度, 气隙磁密越大, 表示 磁场强度越大,永磁体的转矩越大),即有效地增加转子的 d轴和 q轴方向的永磁磁通, 从而在不增加永磁体用量的前提下提高永磁体利用率和提高电动机转子性能。 如图 5 所示, 当 ϋ丄时, 气隙磁密开始进入一个平缓的增加阶段。
L 10 根据本发明的第一实施例, 如图 2所示, 每组安装槽 30 中包括第一安装槽 31a 和第二安装槽 32 a, 第一安装槽 31 a和第二安装槽 32 a中嵌入的永磁体 20分别为第 一永磁体 21 a和第二永磁体 22 a,第一永磁体 21 a的永磁体长度和永磁体宽度分别为
Lai和 Hal, 则丄 丄。 优选地, 第二永磁体 22 a的永磁体长度和永磁体宽度
10 Lai 10
分别为 La2和 Ha2, 则丄≤ 丄。
10 La2 10 如图 2所示, 21和 22分别为插入第一安装槽 31 a和第二安装槽 32 a的第一层永 磁体和第二层永磁体。 由于转子的每个极都占有一定的扇形面积, 所以插入的弧形永 磁体的曲率和弧形深度从结构上来看可以是任意的。 但是, 根据实验结果发现, 通过 调整永磁体内弧 21al 向两侧延伸至安装槽 31 a的相交的两端点之间的距离与永磁体 外弧 21a2中点沿 d轴方向至内弧 21al两端点连线所构成虚拟直线的距离 H满足如下 的关系时丄ί≥1丄, 在永磁体 20体积一定的情况下, 会增加永磁磁通。 如图 3所
10 Lai 10 示的 H 与电机效率曲线, 其为区间内多组试验数据的平均值, 当 H 满足关系式 丄ί≥1丄时, 电动机效率比不满足关系式的情况要高, 该关系式所产生的效果在 10 Lai 10
电动机低速下运行时尤为显著。优选地, 当第二安装槽 32 a中的第二永磁体 22 a的永 磁体长度 La2和永磁体宽度 Ha2的关系满足丄≤ 丄时, 能够进一步提高电动机
10 La2 10
效率。 根据本发明的第二实施例,如图 4所示,当每组安装槽 30中包括第一安装槽 31b、 第二安装槽 32b和第三安装槽 33b, 第一安装槽 31b、 第二安装槽 32b和第三安装槽 33b中嵌入的永磁体 20分别为第一永磁体 21b、 第二永磁体 22b和第三永磁体 23b, 第一永磁体 21b的永磁体长度和永磁体宽度分别为 Lbl和 Hbl, 则丄≤i^i。 优
10 Lbl 2 选地,第二永磁体 22b的永磁体长度和永磁体宽度分别为 Lb2和 Hb2,则丄≤ ≤丄。
10 Lb2 2 优选地, 第三永磁体 23b 的永磁体长度和永磁体宽度分别为 Lb3 和 Hb3, 则
J_ < Hb3 < J_
10— Lb3— 2 ° 以上的关系式优选地适用于两层永磁体 20的转子方案, 其永磁体 20的组数并不 限制为如附图 2所示的 6极, 对于 4极、 8极的转子均适用。 如图 4所示, 在本实施例中, 每组安装槽 30包括三层安装槽, 分别为第一安装槽
31b、 第二安装槽 32b和第三安装槽 33b。 根据实验结果发现, 通过调整永磁体 21b内 弧向两侧延伸至安装槽 31b的相交的两端点之间的距离与永磁体 21b外弧中点沿 d轴 方向至内弧两端点连线所构成虚拟直线的距离 H满足如下的关系丄≤ί^丄时, 在
10 Lbl 2 永磁体体积一定的情况下, 会增加永磁磁通, 从而提高电机永磁转矩, 最终达到提高 电机效率的目的。 如图 5所示的 H/L与电机效率曲线, 其为区间内多组试验数据的平 均值, 当 H 满足关系式丄≤ί^≤丄时, 电动机效率比不满足关系式的情况要高,
10 Lbl 2
该关系式所产生的效果在电动机低速下运行时尤为显著。 优选地, 当第二安装槽 32b 中的第二永磁体 22b的永磁体长度 Lb2和永磁体宽度 Hb2的关系满足丄≤ ≤丄时,
10 Lb2 2 能够进一步提高电动机效率。 优选地, 当第三安装槽 33b中的第二永磁体 23b的永磁 体长度 Lb3和永磁体宽度 Hb3的关系满足丄≤ί 丄时, 能够进一步提高电动机效
10 Lb3 2
率。 本实施例中的关系式优选地适用于三层永磁体 20的转子方案, 其永磁体 20的组 数并不限制为如附图 4所示的 4极, 对于 6极、 8极的转子均适用。 本发明的电动机转子中所嵌入的永磁体与通槽的形式可以设计成等厚度的弧形, 也可以是中间厚两边薄的不等厚度弧形。 本发明还提供了一种电动机, 包括前述的电动机转子。 本发明的电动机, 通过限定永磁体长度与其宽度之间的关系, 在永磁体体积一定 的情况下提高了永磁体磁通利用率和电机永磁转矩, 最终达到提高电机效率的目的。 本发明的电动机可以应用在空调压缩机、 电动车以及风扇系统中。 从以上的描述中, 可以看出, 本发明上述的实施例实现了如下技术效果: 本发明的电动机转子及具有其的电动机, 在永磁体使用量一定的情况下, 能够提 高电机转子永磁转矩的利用率, 达到提高电机效率的目的; 或者在保持电机效率不变 的情况下, 能够减少永磁体的使用量, 达到节约材料降低电机成本的目的。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电动机转子, 包括铁心 (10) 和设于所述铁心 (10) 内部的永磁体 (20), 其特征在于,
所述铁心(10)上沿所述铁心(10)的周向方向上设置有多组安装槽(30), 每组所述安装槽 (30) 包括两个或者两个以上在所述铁心 (10) 的径向方向上 间断设置的安装槽 (30);
所述永磁体 (20) 为多组, 每组所述永磁体 (20) 中的各个永磁体 (20) 对应地嵌入每组安装槽 (30) 的各个所述安装槽 (30) 中;
在与所述铁心 (10) 的轴向方向垂直的永磁体 (20) 的截面上, 以所述永 磁体 (20) 远离所述铁心 (10) 的中心的一侧的两端点之间的距离为永磁体长 度 L, 以所述永磁体 (20) 远离所述铁心 (10 ) 的中心的一侧的两端点之间的 连线与所述永磁体 (20) 靠近所述铁心 (10) 的中心的一侧的中点之间的距离 为永磁体宽度 H, 贝 lj : ≥丄。
L 10
2. 根据权利要求 1所述的电动机转子, 其特征在于, 每组所述安装槽 (30) 中包 括第一安装槽 (31a) 和第二安装槽 (32a), 所述第一安装槽 (31a) 和所述第 二安装槽 (32a) 中嵌入的永磁体 (20) 分别为第一永磁体 (21a) 和第二永磁 体 (22a), 所述第一永磁体 (21a) 的永磁体长度和永磁体宽度分别为 Lai 和
Hal , 则丄 丄。
10 Lai 10
3. 根据权利要求 2所述的电动机转子, 其特征在于, 所述第二永磁体(22a) 的永 磁体长度和永磁体宽度分别为 La2和 Ha2, 则丄≤^≤丄。
10 La2 10
4. 根据权利要求 1所述的电动机转子, 其特征在于, 每组所述安装槽 (30) 中包 括第一安装槽(31b)、 第二安装槽(32b )和第三安装槽(33b), 所述第一安装 槽 (31b)、 所述第二安装槽 (32b) 和所述第三安装槽 (33b) 中嵌入的永磁体
(20)分别为第一永磁体(21b)、 第二永磁体(22b)和第三永磁体(23b), 所 述第一永磁体 (21b ) 的永磁体长度和永磁体宽度分别为 Lbl 和 Hbl, 则 丄< 〈丄。
10 Lbl 2
5. 根据权利要求 4所述的电动机转子, 其特征在于, 所述第二永磁体(22b )的永 磁体长度和永磁体宽度分别为 Lb2和 Hb2, 贝 1J±≤1 丄。
10 Lb2 2
6. 根据权利要求 4所述的电动机转子, 其特征在于, 所述第三永磁体(23b )的永 磁体长度和永磁体宽度分别为 Lb3和 Hb3, 则丄≤ 丄。
10 Lb3 2
7. 一种电动机, 包括权利要求 1至 6中任一项所述的电动机转子。
PCT/CN2011/079060 2011-08-05 2011-08-29 电动机及其转子 WO2013020311A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147005635A KR101545213B1 (ko) 2011-08-05 2011-08-29 모터 회전자 및 그 회전자를 포함한 모터
EP11870716.5A EP2741402B1 (en) 2011-08-05 2011-08-29 Motor and rotor thereof
JP2014523163A JP6203717B2 (ja) 2011-08-05 2011-08-29 モーター及びその回転子
US14/235,617 US9515526B2 (en) 2011-08-05 2011-08-29 Motor and rotor thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110224395.X 2011-08-05
CN201110224395XA CN102761182B (zh) 2011-08-05 2011-08-05 电动机转子及具有其的电动机

Publications (1)

Publication Number Publication Date
WO2013020311A1 true WO2013020311A1 (zh) 2013-02-14

Family

ID=47055533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079060 WO2013020311A1 (zh) 2011-08-05 2011-08-29 电动机及其转子

Country Status (6)

Country Link
US (1) US9515526B2 (zh)
EP (1) EP2741402B1 (zh)
JP (1) JP6203717B2 (zh)
KR (1) KR101545213B1 (zh)
CN (1) CN102761182B (zh)
WO (1) WO2013020311A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6215041B2 (ja) * 2013-12-20 2017-10-18 U−Mhiプラテック株式会社 モータ
JP5866074B1 (ja) * 2014-03-05 2016-02-17 三菱電機株式会社 シンクロナスリラクタンスモータ
ITUB20150729A1 (it) * 2015-05-22 2016-11-22 Enerdrive Ltd Motore sincrono a riluttanza assistito da magneti permanenti
US10211692B2 (en) * 2016-08-11 2019-02-19 Hiwin Mikrosystems Corp. Permanent magnet motor
US20180205276A1 (en) * 2017-01-13 2018-07-19 United Technologies Corporation Internal mount permanent magnet attachment for electric machine
TWM576750U (zh) 2017-07-25 2019-04-11 美商米沃奇電子工具公司 電氣組合物、電動化裝置系統、電池組、電馬達、馬達總成及電馬達總成
US11018567B2 (en) 2017-09-29 2021-05-25 Ford Global Technologies, Llc Permanent magnet rotor with enhanced demagnetization protection
KR102509696B1 (ko) * 2017-12-20 2023-03-15 삼성전자주식회사 Ipm bldc 전동기
JP2020096426A (ja) * 2018-12-11 2020-06-18 株式会社豊田中央研究所 回転電機
CN216398138U (zh) 2019-02-18 2022-04-29 米沃奇电动工具公司 冲击工具
DE102019107394A1 (de) * 2019-03-22 2020-09-24 Brusa Elektronik Ag Rotor mit gegossenen Magnetelementen mit Vorsprüngen
CN113410931B (zh) * 2020-03-16 2023-01-31 安徽威灵汽车部件有限公司 电机的转子、电机和车辆
CN112968549B (zh) * 2021-01-26 2022-05-17 珠海格力电器股份有限公司 转子组件和自起动永磁同步磁阻电机
WO2023007707A1 (ja) * 2021-07-30 2023-02-02 川崎重工業株式会社 ロータ及びモータ
CN113949183B (zh) * 2021-10-15 2023-12-29 浙江中车尚驰电气有限公司 一种转子冲片、转子及电机
CN118074389B (zh) * 2024-04-22 2024-07-09 广东美芝制冷设备有限公司 转子、电机和压缩机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2561053Y (zh) * 2002-06-28 2003-07-16 内蒙古华利达电子工程有限公司 一种传感报警电缆
JP2010226784A (ja) * 2009-03-19 2010-10-07 Minebea Co Ltd モーター用磁石組立体及びこれを用いたローター並びにモーター
CN102111051A (zh) * 2011-02-25 2011-06-29 华北电力大学 一种具有复合材料起动导条的自起动永磁电机

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358697A (en) 1981-08-19 1982-11-09 Siemens-Allis, Inc. Two-pole permanent magnet synchronous motor rotor
IT1219228B (it) * 1988-04-21 1990-05-03 Antonino Fratta Macchina elettrica sincrona a riluttanza dotata di mezzi di rifasamento intrinseco
DE69629419T2 (de) 1995-05-31 2004-04-01 Matsushita Electric Industrial Co., Ltd., Kadoma Motor mit eingebauten Permanentmagneten
IT1276487B1 (it) 1995-07-11 1997-10-31 Alfredo Vagati Motore elettrico sincrono a riluttanza con bassa ondulazione di coppia
JP3367304B2 (ja) * 1995-11-13 2003-01-14 松下電器産業株式会社 永久磁石モータ
JP3681459B2 (ja) 1996-02-23 2005-08-10 松下電器産業株式会社 同期電動機
JPH09308198A (ja) 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd 永久磁石モータ
JP3051340B2 (ja) 1996-06-18 2000-06-12 オークマ株式会社 同期電動機
JPH11275783A (ja) 1998-03-20 1999-10-08 Matsushita Electric Ind Co Ltd 永久磁石埋め込みロータ
DE19933009A1 (de) 1998-07-24 2000-02-10 Matsushita Electric Ind Co Ltd Motor mit interne Permanentmagneten enthaltendem Rotor und einen solchen Motor verwendende Antriebseinheit
US6452302B1 (en) 1998-09-28 2002-09-17 Hitachi, Ltd. Rotary electric machine and electric vehicle using the same
KR100371159B1 (ko) 1999-09-22 2003-02-05 엘지전자 주식회사 싱크로너스 리럭턴스 모터의 토오크 리플 저감구조
JP3602392B2 (ja) 1999-12-21 2004-12-15 アイチエレック株式会社 永久磁石埋め込みモータ
JP2002010547A (ja) 2000-06-16 2002-01-11 Yamaha Motor Co Ltd 永久磁石回転子及びその製造方法
JP2002078259A (ja) 2000-08-31 2002-03-15 Yamaha Motor Co Ltd 永久磁石回転子
WO2002031947A1 (fr) 2000-10-12 2002-04-18 Matsushita Electric Industrial Co., Ltd. Moteur electrique
US6815859B2 (en) 2001-03-07 2004-11-09 Aisin Seiki Kabushiki Kaisha Synchronous reluctance motor
JP2002272031A (ja) 2001-03-07 2002-09-20 Aisin Seiki Co Ltd シンクロナスリラクタンスモータ
JP2002320363A (ja) 2001-04-20 2002-10-31 Denso Corp 車両用発電電動機
JP2002354729A (ja) 2001-05-25 2002-12-06 Hitachi Ltd 永久磁石式回転電機およびそれを用いた空気調和機
JP4680442B2 (ja) 2001-08-10 2011-05-11 ヤマハ発動機株式会社 モータの回転子
US6867526B2 (en) 2001-09-05 2005-03-15 Koyo Seiko Co., Ltd. Brushless DC motor
JP2003264947A (ja) * 2002-03-08 2003-09-19 Fujitsu General Ltd 永久磁石電動機
JP4139608B2 (ja) 2002-03-11 2008-08-27 株式会社タムラ製作所 精密加工用ステージ装置
CN2560153Y (zh) 2002-08-09 2003-07-09 张金铎 永磁同步高速电机
JP4016341B2 (ja) 2003-06-19 2007-12-05 アイシン精機株式会社 三相シンクロナスリラクタンスモータ
WO2005101614A1 (ja) 2004-04-06 2005-10-27 Hitachi Metals, Ltd. 回転子及びその製造方法
US20060103254A1 (en) * 2004-11-16 2006-05-18 Horst Gary E Permanent magnet rotor
US7436095B2 (en) 2005-10-31 2008-10-14 Caterpillar Inc. Rotary electric machine
US20070159021A1 (en) 2005-12-19 2007-07-12 Emerson Electric Co. Composite magnet structure for rotor
JP2008136298A (ja) * 2006-11-28 2008-06-12 Toyota Industries Corp 回転電機の回転子及び回転電機
JP5221057B2 (ja) 2007-05-08 2013-06-26 アイチエレック株式会社 永久磁石回転機
JP4900132B2 (ja) 2007-08-08 2012-03-21 株式会社豊田自動織機 回転子及び回転電機
JP5506151B2 (ja) 2007-12-21 2014-05-28 アイチエレック株式会社 永久磁石回転機
CN201204529Y (zh) 2008-08-28 2009-03-04 无锡东元电机有限公司 永磁同步电机
CN101359847A (zh) 2008-09-27 2009-02-04 沈阳工业大学 永磁风力发电机的组合转子结构
US7902710B2 (en) 2008-10-01 2011-03-08 Caterpillar Inc. Electric machine
US7939982B2 (en) 2008-10-02 2011-05-10 Nidec Motor Corporation Motor with lobed rotor having uniform and non-uniform air gaps
US7902711B2 (en) 2008-12-09 2011-03-08 GM Global Technology Operations LLC Methods and apparatus for a permanent magnet machine with segmented ferrite magnets
JP2010213553A (ja) 2009-03-12 2010-09-24 Panasonic Corp 電動機及び電気機器
JP2011083066A (ja) 2009-10-02 2011-04-21 Osaka Prefecture Univ 永久磁石補助形同期リラクタンスモータ
CN102769365A (zh) 2011-07-28 2012-11-07 珠海格力电器股份有限公司 永磁同步电机
CN202260714U (zh) * 2011-08-05 2012-05-30 珠海格力电器股份有限公司 电动机转子及具有其的电动机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2561053Y (zh) * 2002-06-28 2003-07-16 内蒙古华利达电子工程有限公司 一种传感报警电缆
JP2010226784A (ja) * 2009-03-19 2010-10-07 Minebea Co Ltd モーター用磁石組立体及びこれを用いたローター並びにモーター
CN102111051A (zh) * 2011-02-25 2011-06-29 华北电力大学 一种具有复合材料起动导条的自起动永磁电机

Also Published As

Publication number Publication date
EP2741402B1 (en) 2016-08-17
CN102761182B (zh) 2013-03-27
CN102761182A (zh) 2012-10-31
US9515526B2 (en) 2016-12-06
EP2741402A1 (en) 2014-06-11
JP6203717B2 (ja) 2017-09-27
US20140175932A1 (en) 2014-06-26
KR101545213B1 (ko) 2015-08-18
EP2741402A4 (en) 2015-09-09
JP2014525232A (ja) 2014-09-25
KR20140097111A (ko) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2013020311A1 (zh) 电动机及其转子
CN101820238B (zh) 用于具有不对称转子磁体的永磁电机的方法和设备
JP6425542B2 (ja) モーター回転子及びそれを備えるモーター
WO2013020313A1 (zh) 电动机转子及具有其的电动机
CN106712425A (zh) 一种用于压缩机的永磁式同步电动机
WO2019214225A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2020253194A1 (zh) 直接起动同步磁阻电机转子结构及具有其的电机
JP3428234B2 (ja) 磁石埋込形モータ
WO2024078113A1 (zh) 永磁辅助同步磁阻电机及压缩机
WO2024078117A1 (zh) 具有磁障的电机转子、电机及压缩机
CN110601481A (zh) 一种双转子永磁同步磁阻电机及配置方法
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
JP2003284274A (ja) 永久磁石同期モータのロータ
CN105337434A (zh) 电动汽车用组合励磁永磁无刷电机
WO2024078131A1 (zh) 具有磁障的转子、电机及压缩机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
Xiao et al. A novel asymmetric rotor interior PM machine with hybrid-layer PMs
CN218633493U (zh) 一种电机转子、电机和压缩机
CN109873511B (zh) 反凸极式切向充磁型多相永磁容错电机
CN218386999U (zh) 永磁辅助同步磁阻电机及压缩机
CN103904855A (zh) 一种具有初始自启动能力的无刷谐波励磁电动机
JP2002369422A (ja) 永久磁石式回転電機
JP2010045872A (ja) 永久磁石式回転機
JP2007288838A (ja) 埋込磁石型電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14235617

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014523163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005635

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011870716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011870716

Country of ref document: EP