WO2013020303A1 - 一种羟基脂肪酸甘油酯的制备方法 - Google Patents

一种羟基脂肪酸甘油酯的制备方法 Download PDF

Info

Publication number
WO2013020303A1
WO2013020303A1 PCT/CN2011/078631 CN2011078631W WO2013020303A1 WO 2013020303 A1 WO2013020303 A1 WO 2013020303A1 CN 2011078631 W CN2011078631 W CN 2011078631W WO 2013020303 A1 WO2013020303 A1 WO 2013020303A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactone
fatty acid
reaction
hydroxy fatty
solvent
Prior art date
Application number
PCT/CN2011/078631
Other languages
English (en)
French (fr)
Inventor
姜兴涛
邹慧
余汉谋
李锐
李庆廷
李庆龙
Original Assignee
深圳波顿香料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳波顿香料有限公司 filed Critical 深圳波顿香料有限公司
Publication of WO2013020303A1 publication Critical patent/WO2013020303A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to the preparation of esters, and in particular to a process for the preparation of hydroxy fatty acid glycerides.
  • the lower (lower ring) lactone is a scented liquid that can be used as a flavoring agent (as shown) and is readily soluble in water, ethanol and diethyl ether.
  • the lactone is similar in nature to an open chain carboxylic acid ester and reacts with water (in the presence of an acid or a base), an alcohol or ammonia to form the corresponding hydroxy fatty acid, hydroxy fatty acid ester or hydroxy amide.
  • the lactone reacts with glycerol to form a corresponding Hydroxy acid oil esters (including monoesters, diesters and triesters).
  • Hydroxy acid oil ester can be used as a flavoring agent instead of the corresponding lactone in food flavoring, and the corresponding lactone is produced when heated or baked at a high temperature, the temperature resistance of the flavor is improved, the thick and realistic feeling of the essence is enhanced, the mouthfeel is improved, and the hydroxy fatty acid is improved. Oil esters also act as surfactants to improve the physical and chemical properties of the essence.
  • 5-hydroxydecanoic acid esters and 5-hydroxydodesuccinates formed by ⁇ -decalactone and ⁇ -dodecanolide and i oil are as follows:
  • Glycetyl 5-hydroxydecanoate and Glyceryl 5-hydroxydodecanoate are two of the most recently found edible flavors. April 11, 2007 The No. 8 announcement was just listed as a list of spices for food. Internationally, in the year 2000, the World Health Organization and the FAO Joint Committee of Experts on Food Additives (JECFA) have been used as a spice after safety assessment and are gradually being used by the American Food Flavor and Extractors Association (FEMA) and the international food and fragrance industry. Organization (K) F1:), EU Food and Flavor Commission (FLAVIS) and other related structures.
  • FEMA American Food Flavor and Extractors Association
  • FLAVIS EU Food and Flavor Commission
  • 5-hydroxycapric glyceride is a light yellow viscous liquid, soluble in ethanol, -1 eucalyptus oil, vegetable oil, insoluble in water, weak at room temperature, but ⁇ -decalactone is produced when heated or baked at high temperature. A sweet, milky aroma.
  • 5-hydroxydodecanic acid ester is a yellowish viscous liquid, soluble in ethanol, glycerin, vegetable oil, insoluble in water, weak at room temperature T, but ⁇ -dodecanolactone is produced when heated or baked at high temperature. A creamy aroma and fruity aroma.
  • 5-hydroxycapric glyceride and 5-hydroxydodedecyl glyceride can be used as a fragrance in milk flavors, replacing ⁇ -lactone and ⁇ -dodecanolide, which are currently widely used in milk flavors, The temperature resistance of the essence, the thick and realistic feeling of the essence, and the improvement of the taste.
  • the synthesis of esters at home and abroad mainly includes two methods of chemical synthesis and biocatalytic synthesis, and with the development of modern biocatalytic technology, especially non-aqueous enzymes, at the same time, the petrochemical resources are increasingly exhausted and environmental pollution is increasing. Situation, mild reaction conditions (normal temperature and pressure, neutral ⁇ ), environmentally friendly and specific students The catalytic process has a tendency to gradually replace the traditional ester synthesis processes with harsh reaction conditions (high temperature and high pressure, strong acid and alkali), heavy pollution and no selectivity.
  • the substrate includes five acids (acetic acid, C Acid, butyric acid, valeric acid, caproic acid) and 7 kinds of alcohols (methanol, ethanol, butanol, pentanol, hexanol, citronellol, geraniol), which prove that the aromatic catalyzed synthesis of aromatic esters in organic systems is a A proven method.
  • the research on the synthesis of esters by non-aqueous fat oxime is also increasing.
  • non-aqueous systems the use of lipase to catalyze the synthesis of ester flavors has become a research hotspot in the fragrance industry.
  • the non-aqueous medium is an ideal system for the ester synthesis.
  • the diol and the carboxylic acid are the substrates
  • the alcohol and the anhydride are the substrates or the transesterification reaction
  • the specific lipase can be used as the catalyst. Synthesis of esters.
  • the technical problem to be solved by the present invention is to provide a preparation method of a hydroxy fatty acid glyco-oleyl ester.
  • a preparation method of a hydroxy fatty acid i oil ester comprising the following steps:
  • Mixing step adding a lactone, an amount of 0.5 to 10 times lactone substance, glycerin of 0.05 to 10 times lactone substance, and a main solvent of 0-200 times lactone substance in the enzyme reactor, 0 ⁇ 20 times the amount of lactone material in the auxiliary solvent, and 0,01% 5.0% lactone weight of the lipase;
  • Reaction step The reaction is carried out at 30 to 80 ° C, and after reaching an equilibrium state, a reaction liquid containing a hydroxy fatty acid glyceride is obtained.
  • the amount of the amount of lactone is 0. ⁇ 2 times.
  • the auxiliary solvent is used in an amount of from 0 to 1 times the amount of the lactone material.
  • the main solvent comprises at least one selected from the group consisting of t-butanol, tert-amyl alcohol, acetone, and an ionic liquid.
  • the auxiliary solvent is from 0 to 10% by weight of the main solvent, and includes at least one selected from the group consisting of methyl t-butyl ether, dimethyl sulfoxide and tetrahydrofuran.
  • the lactone comprises one selected from the group consisting of butyrolactone, valerolactone, ⁇ -caprolactone, ⁇ - Gheptone, ⁇ -octanolactone, ⁇ -decalactone, ⁇ -decalactone, ⁇ -undecalactone, ⁇ -dodecanolactone, ⁇ -caprolactone, ⁇ -octanolactone, ⁇ - Azlactone, ⁇ -decalactone, ⁇ -undecalactone, ⁇ -dodecanolactone, ⁇ -deca lactone, ⁇ -tetradecanolactone and ⁇ -hexadecanolide.
  • the lipase comprises one selected from the group consisting of free or immobilized lipase derived from one of porcine pancreas, Candida, Rhizopus, Mucor, Penicillium and Monascus.
  • the method further comprises the following steps: separating the reaction step: deactivating the enzyme solution, filtering, removing a part of the volatile solvent component and a part of the reaction substrate by atmospheric or vacuum distillation, and then performing molecular distillation to collect the hydroxy fatty acid.
  • a molecular distillation component of an oil ester is separating the reaction step: deactivating the enzyme solution, filtering, removing a part of the volatile solvent component and a part of the reaction substrate by atmospheric or vacuum distillation, and then performing molecular distillation to collect the hydroxy fatty acid.
  • a molecular distillation component of an oil ester is separating the reaction step: deactivating the enzyme solution, filtering, removing a part of the volatile solvent component and a part of the reaction substrate by atmospheric or vacuum distillation, and then performing molecular distillation to collect the hydroxy fatty acid.
  • a molecular distillation component of an oil ester is separating the reaction step: deactivating the enzyme solution, filtering, removing a part of the volatile solvent component and
  • the method further comprises the following steps: a purification step: purifying the molecular distillation component containing the hydroxy fatty acid eucalyptate by extraction or column chromatography, and subjecting the extract or column chromatography eluent to atmospheric pressure or Distillation under reduced pressure to remove the extraction solvent or elution solvent to obtain a product containing a hydroxy fatty acid glyceride.
  • the extraction solvent comprises at least one selected from the group consisting of water, methanol, ethanol, ethyl acetate, acetone, chloroform, dichloromethane, cyclohexane, n-hexane, petroleum ether and methyl Tert-butyl ether;
  • the elution solvent comprises at least one selected from the group consisting of water, methanol, ethanol, ethyl acetate, acetone, chloroform, dichloromethane, cyclohexane, n-hexane, and n-heptane.
  • the present invention makes the reaction in the proper moisture by selecting a suitable reaction solvent system and an enzyme having specific catalytic properties, and maintaining a proper molar ratio of lactone and glycerin.
  • the enzyme has the maximum catalytic activity, while avoiding the adsorption of glycerol on the surface of the enzyme carrier or forming a hydrophilic layer on the surface of the enzyme, affecting the water activity of the enzyme microenvironment, and ensuring the hydrolysis of the lactone and the transesterification reaction.
  • the solubility and polarity of different reaction solvent systems are different, and the equilibrium point of the reaction is changed, so that the hydrolysate (hydroxy acid) of lactone tends to be esterified with glycerol to reduce its own lactonization.
  • the reaction tendency is to increase the transesterification rate of the lactone and the yield of the hydroxy fatty acid glyceride.
  • the hydroxy fatty acid oil ester can be prepared.
  • the above technical solution has the advantages of mild reaction conditions, energy saving, high reaction efficiency, and the like; in addition, the synthesis reaction of the present invention is lipase.
  • the reaction has strong specificity, no by-products, high safety, and the reaction does not pass through strong acid and alkali and high temperature and high pressure processes, and the quality of the product is relatively high.
  • Figure 1 is a gas chromatogram of Product I of Example 1 of the present invention.
  • Figure 2 is a gas chromatogram of the product U of Example 2 of the present invention.
  • Fig. 3 is a gas chromatogram of the product m of Example 3 of the present invention.
  • the invention discloses a method for preparing a hydroxy fatty acid glyceride by reacting a biocatalytic head oil and a lactone, firstly, Glycerol has a high hydrophilicity.
  • the reaction system In order to dissolve glycerin, the reaction system must be a hydrophilic solvent, but hydrophilic solvents tend to cause enzyme deactivation, in order to maintain the stability of the enzyme and the solubility of the substrate.
  • an organic solvent-free or mixed solvent reaction system is used to make the enzyme have a long-lasting catalytic activity.
  • the water activity has a great influence on the catalytic activity of the enzyme and the yield of the hydroxy fatty acid glyceride, because the reaction involves Hydrolysis of lactone, water is indispensable as a reaction substrate, but at the same time, water is the product of esterification reaction and is an inhibitor of esterification reaction. Although the final reaction will not produce water, it will not consume water, but In the process of dynamic reaction, how to maintain the proper water content directly determines the yield of hydroxy fatty acid glycerides.
  • the conformation of the enzyme molecule is mainly composed of electrostatic force, van der Waals force, hydrophobic work and hydrogen bond.
  • the substrate glycerol which contains polyhydroxyl groups, has the characteristics of competing with water for enzyme proteins, and is easily adsorbed on the surface of the enzyme carrier or forms a hydrophilic layer on the surface of the ruthenium, which affects the enzyme microenvironment.
  • the present invention makes it possible to maintain an optimum molar ratio by selecting a suitable reactive organic solvent system and an enzyme having specific catalytic properties, and to maintain an appropriate molar ratio of lactone and gan's oil.
  • the reaction is carried out under the conditions of appropriate water activity, so that the enzyme has the maximum catalytic activity, while avoiding the absorption of glycerol on the surface of the enzyme carrier or forming a hydrophilic layer on the surface of the enzyme, affecting the water activity of the enzyme microenvironment, and ensuring hydrolysis of the lactone.
  • the method for preparing a hydroxy fatty acid glyceryl ester comprises the following steps: a mixing step: adding a lactone, 0.5-10% lactone substance amount of glycerin to the enzyme reactor, ().05 ⁇ 0 The amount of the belactone substance, the amount of the main solvent of the 0-200 times lactone substance, the auxiliary solvent of the amount of the 0-20 delactone substance, and the lipase of 0.01% to 5.0% of the lactone weight;
  • the reaction step the reaction is carried out under conditions of 30 to 80 Torr, and after reaching an equilibrium state, a reaction liquid containing a hydroxy fatty acid glyceride is obtained.
  • the main solvent means an organic solvent capable of dissolving at least one of a lactone and an oil, generally a hydrophilic solvent, and may be one of t-butanol, tert-decyl alcohol, acetone and an ionic liquid or a plurality of kinds of mixing
  • the auxiliary solvent is an organic solvent which can promote the solubility of the reaction substrate in the main solvent and reduce the toxicity to the lipase. It may be methyl tert-butyl ether or dimethyl group.
  • reaction liquid can be dynamically tested by GC-MS after a reaction for a certain period of time to determine whether Achieve the reaction balance.
  • the amount of water used is 0 J to 2 times the amount of the lactone substance.
  • the auxiliary solvent is used in an amount of from 0 to 1 times the amount of the lactone material.
  • the present invention is selected as a lactone of a perfume as a raw material, a product obtained by esterification with glycerin can be used as a perfume, and a lactone includes one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - caprolactone, ⁇ -heptanolactone, ⁇ -octanolactone, ⁇ -decalactone, ⁇ -decalactone, ⁇ -undecalactone, ⁇ -dodecanolactone, ⁇ -caprolactone, ⁇ -octanolide, ⁇ -decalactone, ⁇ -decalactone, ⁇ -undecalactone, ⁇ -dodecanolactone, ⁇ -tridecanolide, ⁇ -tetradecanolactone and ⁇ -16 ester.
  • the fat mash comprises one selected from the group consisting of: free or immobilized lipase from one of the dried pig pancreas, Candida, Rhizopus, Mucor, Penicillium and Monascus.
  • the method further comprises the steps of: separating the reaction solution, filtering, removing a part of the volatile solvent component and a part of the reaction substrate by normal pressure or decompression, and then performing molecular distillation to collect molecular distillation containing the hydroxy fatty acid glyceride. Component.
  • a purification step extracting the molecular distillation component containing the hydroxy fatty acid i oil ester by extraction or column chromatography, and subjecting the extract or the column chromatography eluate to atmospheric or vacuum distillation to remove the extraction solvent Or eluting the solvent to obtain a product containing a hydroxy fatty acid glyceride.
  • the extraction solvent includes at least one selected from the group consisting of water, methanol, ethanol, ethyl acetate, acetone, chloroform, dichloromethane, cyclohexane, n-hexane, petroleum ether, and methyl tert-butyl ether.
  • the column chromatography packing is one of silica gel, gel, macroporous adsorption resin, ion exchange cellulose, alumina, and polyamide.
  • the S solvent comprises at least one selected from the group consisting of T columns: water, methanol, ethanol, ethyl acetate, acetone, chloroform, dichloromethane, cyclohexane, n-hexane, and n-heptane.
  • the molecular distillation can increase the yield of the product, and the molecular distillation conditions can be a temperature of 30-100' Torr and a vacuum of 1-1000 Pa.
  • the reaction is terminated, the enzyme is removed, the lipase is removed by filtration, and the reaction solution is distilled under reduced pressure to remove t-butanol, water, and Most of the dimethyl ferrous and glycerin, the distillation residue is subjected to molecular distillation at a temperature of 50 Torr and a vacuum of 200 Pa. Glycerin, dimethyl sulfoxide and a part of ⁇ -decalactone are distilled off, and molecular distillation remains. Part of the extraction is carried out with cyclohexanone. Most of the ⁇ -decalactone is extracted into the cyclohexyl phase, and the layer is allowed to stand.
  • the ruthenium layer is distilled to remove a small amount of cyclohexane to obtain the final product ⁇ .
  • the product was analyzed by GC and GC-MS.
  • the gas chromatogram is shown in Figure 1.
  • the content of 5-hydroxy decanoic acid monoester (peak 2) reached 73, 25%, and the content of diester (peak 3) was reached. 25,29% (total content of 5-hydroxyindoleic acid ester 98.54%), and the content of ⁇ -decalactone (peak 1) was i.36%.
  • the reaction is terminated, the enzyme is removed, the lipase is removed by filtration, and the reaction solution is subjected to distillation under normal pressure and reduced pressure to remove acetone, water, a portion of ⁇ -caprolactone and the first oil, and the remaining portion of the distillation is at a temperature of 80 Torr, and the degree of vacuum is 2013 ⁇ 4.
  • the molecular distillation was carried out, and the oil, ⁇ -caprolactone and 4-ethylhexanoic acid first oil ester were distilled off, and the distilled portion was subjected to silica gel column chromatography using different ratios of n-hexane-ethyl acetate-ethanol-water.
  • the mixed solvent was subjected to stepwise elution, and an eluate containing glyceryl 4-hydroxyhexanoate was selected, and the eluted solvent was distilled off to obtain a final product II.
  • the product was analyzed by GC and GC-MS.
  • the gas chromatogram of the product is shown in Figure 2.
  • the content of the 4-hydroxyhexanoic acid monoester (peak 2) reached 71,13%, and the diester (peak 3).
  • the content of the triester reached 20.91%
  • the content of the triester (peak 4) reached 7.32% (the total content of the first oil ester of 4-hydroxyhexanoic acid was 99.36%), and the content of ⁇ -caprolactone (peak 1) was 0,59%. .
  • the reaction is terminated, the limulus is removed, the lipase is removed by filtration, the reaction solution is evaporated under reduced pressure to remove water and most of the glycerin, and the distillation residue is subjected to molecular distillation at a temperature of 90 Torr and a vacuum of 2:3 ⁇ 4, glycerol, ⁇ -
  • the dodecanolactone and 5-hydroxydodecyl glyceride were distilled off, and the distilled portion was subjected to silica gel column chromatography using a different ratio of n-hexane-acetone-chloroform-ethyl acetate-ethanol-water mixed solvent.
  • Step-by-step elution choose to contain 5-hydroxydodecanoate
  • the eluent was distilled off to remove the elution solvent to give the final product III.
  • the product was analyzed by GC and GC-MS.
  • the gas chromatogram of the product is shown in Fig. 3.
  • the content of bismuth 5-hydroxydodecanoate (peak 2) reached 81.83%, and the content of diester (peak 3) was reached. 16.74% (9-octahydroxyl-dodecanoate content), and the content of ⁇ -dodecanolide (peak 1) was 1.27%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种羟基脂肪酸油酯的制备方法,包括如下步骤:混合步骤:在酶反应器中加入内酯、0.5-10倍内酯物质的量的甘油、0.05〜10倍内酯物质的量的水、0-200倍内酯物质的量的主溶剂、0-20倍内酯物质的量的辅助溶剂,以及0.01%-5.0%内酯重量的脂肪酶;反应步骤:30-80°C条件下反应,达到平衡状态后,获取包含羟基脂肪酸甘油酯的反应液;本发明能够制备出羟基脂肪酸甘油酯,与传统的化学合成技术相比,具有反应条件温和、节能降耗、反应效率高等优点;另外,本发明的合成反应以脂肪酶作为催化剂,反应的特异性强、无副产物、安全性高,同时反应没有经过强酸强碱和高温高压过程,产品的品质也比较高。

Description

一种羟基脂肪酸甘油酯的制备方法 技术领域
本发明涉及酯的制备, 特别是涉及一种羟基脂肪酸甘油酯的制备方法。
背景技术
内酯,英文名 latctones,是指在含有羟基的羧酸分子中的羟基和羧基脱去一分水生 成的环状结构的酯。 常见的内酯为 x=2,3或 4, 分别称为 β -、 γ—或 内酯。 低级 (环 较小) 内酯为具有香味的液体, 可作为食用香料使用 (如表 ), 易溶于水、 乙醇及乙 醚。
表 1 部分可诈为食 ^香料的内酉 I
Figure imgf000003_0001
内酯的性质与开链羧酸酯相似, 与水 (酸或碱存在下) 、 醇或氨反应, 生成 相应的羟基脂肪酸、 羟基脂肪酸酯或羟基酰胺。 内酯与甘油反应, 可生成相应的 羟基酸 油酯 (包括单酯、 二酯和三酯) 。
羟基酸 油酯可作为食用香料替代相应的内酯应用于食用香精中, 高温加热 或烘焙时产生相应的内酯, 提高香精的耐温性, 增强香精的厚实逼真感, 改善口 感, 同时羟基脂肪酸 油酯亦有表面活性剂的作用, 改善香精的理化状态。
以 δ-癸内酯和 δ-十二内酯与 i油形成的 5-羟基癸酸 油酯和 5-羟基十二酸甘油酯 为例:
5-羟基癸酸甘油酯 ( Glycetyl 5-hydroxydecanoate )和 5-羟基十二酸甘油酯 (Glyceryl 5-hydroxydodecanoate) 是两种人们最新发现的可食用香料成分, 2007年 4月 11日中华人 们共和国卫生部第 8号公告刚刚被列为食品用香料名单。 国际上也是在 200 !年世界卫生 组织和国际粮农组织联合食品添加剂专家委员会(JECFA)经过安全性评估可作为香料 使用后为才逐渐被美国食品香料与萃取者协会 (FEMA)、国际食品香料工业组织(K)F1:)、 欧盟食用香料委员会 (FLAVIS) 等相关 构收录。
表 2 5-羟基癸酸甘油酯和 5-羟基十二酸甘油酯代码
Figure imgf000004_0001
5-羟基癸酸甘油酯为淡黄色黏状液体, 溶于乙醇、 - 1†油、植物油, 不溶于水, 常温 下香气较弱, 但高温加热或烘培时会产生 δ-癸内酯, 散发出甜的、 牛奶样的香气。
5-羟基十二酸 油酯为微黄色黏状液体, 溶于乙醇、 甘油、 植物油, 不溶于水, 常 温 T香气较弱, 但高温加热或烘培时会产生 δ-十二内酯, 散发出奶油香味和果香香气。
5-羟基癸酸甘油酯和 5-羟基十二酸甘油酯可作为香料用于奶类香精中, 替代目前在 奶类香精中广泛使用的 δ-癸内酯和 δ-十二内酯, 提高香精的耐温性, 同^增强香精的厚 实逼真感, 改善口感。
目前国内外酯类物质的合成主要有化学合成和生物催化合成两种方法, 而且隨着现 代生物催化技术, 特别是非水相酶催化技术的发展, 同时面对石化资源日益枯竭、 环境 污染不断加剧的形势, 反应条件温和 (常温常压、 中性 ρΗ)、 环境友好和专一性强的生 物催化工艺有逐步取代反应条件苛刻 (高温高压、 强酸强碱)、 重污染和无选择性的传 统酯类合成工艺的趋势。
自从 1990年, fflgrand等报道了 来自于毛霉、 黑曲霉、 假丝酵母、 根霉等的脂 肪酶在有机溶剂中催化合成了 35种短链芳香酯, 底物包括 5种酸(乙酸、丙酸、丁酸、 戊酸、 己酸) 和 7种醇 (甲醇、 乙醇、 丁醇、 戊醇、 己醇、 香茅醇、 香叶醇), 证明有 机体系中脂肪嗨催化合成芳香酯是一个行之有效的方法。 非水相脂肪嗨催化合成酯类 香料的研究也越来越多。 在非水相体系中, 利用脂肪酶催化合成酯类香料, 已成为香 料行业的研究热点。非水相介质是酯合成的理想体系, 在 IgP较高的溶剂中, 利¾醇和 羧酸为底物, 醇与酸酐为底物或者转酯反应, 以特定的脂肪酶为催化剂, 都可以实现 酯的合成。
但以上所有的研究均限于普通短链脂肪酸酯的研究。 5-羟基癸酸甘'油酯和 5-羟基十 二酸 油酯等羟基脂肪酸甘油酯的非水相生物酶催化, 涉及到内酯水解、 转酯反应、 油羟基的空间位阻、羟基酸与—甘油之间羟基酯化选择性等问题, 难度较普通短链脂肪酸 酯的非水相生物催化大的多。 因此关于生物催化制备羟基脂肪酸首油酯的方法, 国内外 未见任何报道。
发明内容
本发明所要解决的技术问题是: 提供一种羟基脂肪酸甘'油酯的制备方法。
本发明的技术问题通过以下的技术方案予以解决:
一种羟基脂肪酸 i油酯的制备方法, 包括如下步骤:
混合步骤: 在酶反应器中加入内酯、 0.5- 10倍内酯物质的量的甘油、 0.05〜10倍内 酯物质的量的水、 0-200倍内酯物质的量的主溶剂、 0〜20倍内酯物质的量的辅助溶剂, 以及 0,01% 5.0%内酯重量的脂肪酶;
反应步骤: 30至 80°C条件下反应, 达到平衡状态后, 获取包含羟基脂肪酸甘油酯 的反应液。
优选的, 所述混合步骤中, 水的用量为内酯物质的量的 0. ^2倍。
优选的, 所述混合步骤中, 所述辅助溶剂的用量为内酯物质的量的 0〜1倍。
优选的, 所述主溶剂包括选自下列群组中的至少一种: 叔丁醇、叔戊醇、 丙酮和离 子液体。
优选的, 所述辅助溶剂 量为所述主溶剂重量的 0〜10%, 包括选自下列群组中的 至少一种: 甲基叔丁基醚、 二甲基亚砜和四氢呋喃。
优选的, 所述内酯包括选自下列群组中的一种: 丁内酯、 戊内酯、 γ-己内酯、 γ- 庚内酯、 γ-辛内酯、 γ-壬内酯、 γ -癸内酯、 γ-十一内酯、 γ-十二内酯、 δ-己内酯、 δ-辛内 酯、 δ-壬内酯、 δ-癸内酯、 δ-十一内酯、 δ-十二内酯、 δ-十:三内酯、 δ-十四内酯和 δ-十 六内酯。
优选的,所述脂肪酶包括选自下列群组中的一 ;来源于猪胰脏、假丝酵母、根霉、 毛霉、 青霉和红曲霉其中之一的游离或固定化脂肪酶。
优选的, 还包括如下步骤: 分离歩骤: 将所述反应液灭酶、 过滤, 通过常压或减压 蒸馏去除部分易挥发溶剂成分和部分反应底物, 然后进行分子蒸馏, 收集含有羟基脂 肪酸 油酯的分子蒸馏组分。
进一歩优选的, 还包括如下步骤: 提纯步骤: 将所述含有羟基脂肪酸†油酯的分子 蒸馏组分, 进行萃取或柱层析纯化, 对萃取液或柱层析洗脱液进行常压或减压蒸馏, 以去除萃取溶剂或洗脱溶剂, 获得含有羟基脂肪酸甘油酯的产物。
进一步优选的, 所述萃取溶剂包括选自下列群组中的至少一种: 水、 甲醇、 乙醇、 乙酸乙酯、 丙酮、 氯仿、 二氯甲烷、 环己烷、 正己烷、 石油醚和甲基叔丁基醚; 所述 洗脱溶剂包括选自下列群组中的至少一种: 水、 甲醇、 乙醇、 乙酸乙酯、 丙酮、 氯仿、 二氯甲烷、 环己烷、 正己烷和正庚烷。
本发明与现有技术相比的有益效果是:本发明通过选择合适的反应溶剂体系和具有 特异催化性的酶, 以及使内酯和甘油保持适当的摩尔比, 一方面使反应在适当的水分活 度条件下进行, 使酶具有最大的催化活力, 同时避免甘油吸附于酶载体的表面或在酶表 面形成亲水层, 影响酶微环境的水分活度, 保证内酯水解和转酯反应的顺利进行: 另一 方面利用不同反应溶剂体系的溶解性和极性不同, 改变反应平衡点, 使内酯的水解产物 (羟基酸)更趋向于与—甘油酯化, 降低其自身内酯化的反应趋势, 提高内酯的转酯率和 羟基脂肪酸甘油酯的得率。 采 ¾上述技术方案, 能够制备出羟基脂肪酸 油酯, 与传统 的化学合成技术相比,上述技术方案具有反应条件温和、节能降耗、反应效率高等优点; 另外, 本发明的合成反应以脂肪酶作为催化剂, 反应的特异性强、无副产物、安全性高, 同时反应没有经过强酸强碱和高温高压过程, 产品的品质也比较高。
附图说明
图 1是本发明实施例 1的产品 I的气相色谱图;
图 2是本发明实施例 2的产品 U的气相色谱图;
图 3是本发明实施例 3的产品 m的气相色谱图。
具侔实施方式
下面对照附图并结合优选的实施铜对本发明作进一步说明。
本发明公开了生物催化首油和内酯反应制备羟基脂肪酸甘油酯的方法, 首先, 于 甘油具有较高的亲水性, 为了溶解甘油, 反应体系必须是亲水性溶剂, 但亲水性溶剂往 往容易造成酶的失活, 为了保持酶的稳定性和底物的溶解性之间的平衡, 本发明中采用 了无有机溶剂或混合溶剂反应体系, 使酶具有持久的催化活力, 其次, 水分活度对于酶 的催化活性和羟基脂肪酸甘油酯的产率影响很大, 因为反应涉及到内酯的水解, 水作为 反应底物是不可缺少的, 但同时水又是酯化反应产物, 是酯化反应的抑制剂, 虽然最终 的反应结果不会产生水, ¾不会消耗水, 但在反应动态进行过程中, 如何保持合适的含 水量直接决定了羟基脂肪酸甘油酯的产率, 同时, 酶分子的构象主要由静电作用力、 范 德华力、 疏水作 以及氢键等作用构成的一个复杂网络来维持, 水分子直接或间接地参 与这些非共价作用力的形成或维持, 其作用类似于润滑剂或增塑剂, 因此为了使醸在有 机溶剂中也能具有催化活性, 必须在微环境中保持酶与一些 "必需水"的牢固结合, 保 持它在催化反应中的调节作用, 本反应的底物甘油由于含有多羟基, 具有与水争夺酶蛋 白的特点, 容易吸附于酶载体的表面或在嗨表面形成亲水层, 影响酶微环境。 所以根据 以上特点, 本发明通过选择合适的反应有机溶剂体系和具有特异催化性的酶, 以及使内 酯和甘 '油保持适当的摩尔比, 特别是保持最佳的水分添加量, 一方面使反应在适当的水 分活度条件下进行, 使酶具有最大的催化活力, 同时避免甘油吸 于酶载体的表面或在 酶表面形成亲水层, 影响酶微环境的水分活度, 保证内酯水解和酯化反应的同步顺利进 行; 另一方面利用不同反应溶剂体系的溶解性和极性不同, 改变反应平衡点, 使羟基酸 更趋向于与甘油酯化, 降低其自身内酯化的反应趋势, 提高内酯的转酯率和羟基脂肪酸 i油酯的得率。
在一个实施例中, 羟基脂肪酸甘 '油酯的制备方法, 包括如下步骤- 混合步骤: 在酶反应器中加入内酯、 0.5- 10倍内酯物质的量的甘油、 ().05~ 0倍内 酯物质的量的水、 0-200倍内酯物质的量的主溶剂、 0〜20信内酯物质的量的辅助溶剂, 以及 0.01%- 5.0%内酯重量的脂肪酶;
反应步骤; 30至 80Γ条件下反应, 达到平衡状态后, 获取包含羟基脂肪酸甘油酯 的反应液。
其中,所述的主溶剂是指至少能溶解内酯和 油中的一种的有机溶剂,一般为亲水 性溶剂, 可以是叔丁醇、 叔戌醇、 丙酮和离子液体中的一种或多种混合, 所述的辅助 溶剂是指能促进反应底物在主溶剂中的溶解性, 又能降低其对脂肪酶的毒害的有机溶 齐 ^ 可以是甲基叔丁基醚、 二甲基亚砜和四氢呋喃中的一种或多种混合, 辅助溶剂^ 量为所述主溶剂重量的 0〜10%; 反应步骤中, 反应一段时间后可以采用 GC- MS动态 测试反应液, 以确定是否达到反应平衡。 在另一些实施倒中, 可以优选:
水的用量为内酯物质的量的 0J〜2倍。
辅助溶剂的用量为内酯物质的量的 0〜1倍。
本发明选择可以作为香料的内酯作为原料, 与甘油酯化得到的产物可以用作香料, 内酯包括选自下列群组中的一种: γ-丁内酯、 γ-戊内酯、 γ-己内酯、 γ-庚内酯、 γ-辛内 酯、 γ-壬内酯、 γ-癸内酯、 γ-十一内酯、 γ-十二内酯、 δ-己内酯、 δ-辛内酯、 δ-壬内酯、 δ-癸内酯、 δ-十一内酯、 δ-十二内酯、 δ-十三内酯、 δ-十四内酯和 δ-十六内酯。
脂肪醮包括选自下列群组中的一种: 来源干猪胰脏、 假丝酵母、 根霉、 毛霉、 青霉 和红曲霉其中之一的游离或固定化脂肪酶。
还包括分离步骤: 将所述反应液灭酶、过滤, 通过常压或减压蒸權去除部分易挥发 溶剂成分和部分反应底物, 然后进行分子蒸镏, 收集含有羟基脂肪酸甘油酯的分子蒸 馏组分。
还包括提纯步骤:将所述含有羟基脂肪酸 i油酯的分子蒸馏组分,进行萃取或柱层 析纯化, 对萃取液或柱层析洗脱液进行常压或减压蒸馏, 以去除萃取溶剂或洗脱溶剂, 获得含有羟基脂肪酸甘油酯的产物。
萃取溶剂包括选自下列群组中的至少一种: 水、 甲醇、 乙醇、 乙酸乙酯、 丙酮、 氯 仿、 二氯甲烷、 环己烷、 正己烷、 石油醚和甲基叔丁基醚。
柱层析填料为硅胶、凝胶、 大孔吸附树脂、 离子交换纤维素、氧化铝和聚酰胺中的 一种。
洗] S溶剂包括选自 T列群组中的至少一种: 水、 甲醇、 乙醇、 乙酸乙酯、 丙酮、 氯 仿、 二氯甲烷、 环己烷、 正己烷和正庚烷。
采 分子蒸镏可以使得产物收率提高, 分子蒸馏条件可以是温度 30- 100'Ό , 真空 度为 1- 1000Pa。
以下通过更优选的实施 对本发明进行详细阐述。
实施例 1 :
将 170.250g( lmol)S-癸内酯、920.090 g( lOmol)甘油、 18.016g( lmol)水、 7412.160g lOOmol) 叔丁醇和 7.812g (O.lmol) 二甲基亚砜加入到酶反应器中, 再加入 5g固定 化的假丝酵母脂肪酶, 在 60Ό条件下搅拌反应 24小时, 反应基本达到平衡, 产生 5- 羟基癸酸—甘油酯 (单酯、 二酯), 剩余未反应的 δ-癸内酯 112,458g (0.66mol), δ-癸内 酯的转酯率达到 34%。
结束反应, 灭酶、 过滤除去脂肪酶, 将反应液进行减压蒸馏除去叔丁醇、 水以及 大部分二甲基亚讽和甘油, 将蒸馏残余部分在温度 50Γ , 真空度 200Pa的条件下进行 分子蒸熘, 甘油、 二曱基亚砜和部分 δ-癸内酯被蒸出, 分子蒸馏剩余部分用环己垸进 行萃取, δ-癸内酯大部分被萃取到环己垸相中, 静置分层, 取 Τ层蒸馏去除少量的环己 烷, 得到最终产品 ΐ 。 将产品进行 GC和 GC- MS分析, 气相色谱图如图 1所示, 其 5- 羟基癸酸 油酯单酯(峰 2) 的含量达到 73,25%, 二酯(峰 3 ) 的含量达到 25,29% (5- 羟基癸酸 油酯含量合计 98.54%), δ-癸内酯 (峰 1 ) 的含量为 i.36%。
实施例 2:
将 114.140g ( lmol) y-己内酯、 92.090g ( lmol)甘油、 1.802g (O.imol)水和 580.800g
( lOmol) 丙酮加入到酶反应器中, 再加入 0.2g猪胰脂肪醸, 在 50Γ条件下搅拌反应 96小时, 反应基本达到平衡, 产生 4-羟基己酸甘油酯(单酯、 二酯、 三酯), 剩余未反 应的 γ-己内酯 5 i.07:! g (0.45mol), γ-己内酯的转酯率达到 55%。
结束反应, 灭酶、 过滤除去脂肪酶, 将反应液进行常压和减压蒸馏除去丙酮、 水、 部分 γ-己内酯和首油,将蒸熘残余部分在温度 80Ό ,真空度 201¾的条件下进行分子蒸 镏, 油、 γ-己内酯和 4- 基己酸首油酯被蒸出, 将蒸出部分进行硅胶柱层析, 用不 同比例的正己烷-乙酸乙酯-乙醇-水混合溶剂进行分步洗脱, 选择含有 4-羟基己酸甘'油 酯的洗脱液, 蒸熘除去洗脱溶剂, 得到最终产品 II。 将产品进行 GC和 GC- MS分析, 其气相色谱图如图 2所示, 其 4-羟基己酸甘'油酯单酯 (峰 2) 的含量达到 71,13%, 二 酯 (峰 3) 的含量达到 20.91%, ―;三酯的含量 (峰 4)达到 7.32% (4-羟基己酸首油酯含 量合计 99.36%), γ-己内酯 (峰 1 ) 的含量为 0,59%。
实施例 3:
将 198.31 Og Π mol ) δ-十二内酯、 184.180g (2raoi )甘'油、 3.6()3g ( 2mol )水、 2841.800g ( lOmol) 离子液体 1-丁基- 3-甲基咪唑六氟磯酸盐 (BM1MPF6) 加入到酶反应器中, 再加入 lg固定化的根霉脂肪酶,在 40Ό条件下搅拌反应 48小时, 反应基本达到平衡, 产生 5-羟基十二酸甘 '油酯(单酯、二酯),剩余未反应的 δ-十二内酯 102.586g(0.52mo! ), δ-癸内酯的转酯率达到 48%。
结束反应, 灭醮、 过滤除去脂肪酶, 将反应液进行减压蒸镏除去水以及大部分甘 油, 将蒸馏残余部分在温度 90Ό , 真空度 2: ¾的条件下进行分子蒸馏, 甘油、 δ-十二 内酯和 5-羟基十二酸甘油酯被蒸出, 将蒸出部分进行珪胶柱层析, 用不同比飼的正己 烷-丙酮-氯仿-乙酸乙酯-乙醇-水混合溶剂进行分步洗脱,选择含有 5-羟基十二酸甘油酯 的洗脱液, 蒸馏除去洗脱溶剂, 得到最终产品 III。 将产品进行 GC和 GC- MS分析, 其 气相色谱图如图 3所示, 其 5羟基十二酸†油酯单酯 (峰 2) 的含量达到 81.83%, 二 酯(峰 3 )的含量达到 16.74% (5-羟基十二酸甘油酯含量合计 98.57%), δ-十二内酯(峰 1 ) 的含量为 1.27%。
以上内容是结合具体的优选实施方式对本发明所作的迸一歩详细说明, 不能认定 本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不] S离本发明构思的前提下, 还可以做出若干简单推演或替换, 而 ϋ性能或 ^途相 同, 都应当视为属于本发明的保护范围。

Claims

利 要 求 书
1、 一种羟基脂肪酸 油酯的制备方法, 其特征在于, 包括如下步骤:
混合步骤: 在酶反应器中加入内酯、 0.5- 10倍内酯物质的量的甘油、 0.05〜10倍内 酯物质的量的水、 0-200倍内酯物质的量的主溶剂、 0〜20倍内酯物质的量的辅助溶剂, 以及 0,01% 5.0%内酯重量的脂肪酶;
反应步骤: 30至 80°C条件下反应, 达到平衡状态后, 获取包含羟基脂肪酸甘油酯 的反应液。
2、 如权利要求 1所述的羟基脂肪酸甘油酯的制备方法, 其特征在于: 所述混合步 骤中, 水的用量为内酯物质的量的 0.1〜2倍。
3、 如权利要求 1所述的羟基脂肪酸甘油酯的制备方法, 其特征在于: 所述混合步 骤中, 所述辅助溶剂的用量为内酯物质的量的 0〜i倍。
4、 如权利要求 1所述的羟基脂肪酸甘油酯的制备方法, 其特征在于: 所述主溶剂 包括选自下列群组中的至少一种: 叔丁醇、 叔戊醇、 丙酮和离子液体。
5、 如权利要求 1所述的羟基脂肪酸甘油酯的制备方法, 其特征在于: 所述辅助溶 剂用量为所述主溶剂重量的 0〜10%,包括选自下列群组中的至少一种:甲基叔丁基醚、 二甲基亚砜和四氢呋喃。
6、 如权利要求 1所述的羟基脂肪酸甘油酯的制备方法, 其特征在干, 所述内酯包 括选自下列群组中的一种: γ-丁内酯、 γ-戊内酯、 己内酯、 γ-庚内翻、 γ-辛内酯、 Ί- 壬内酯、 γ—癸内酯、 γ-十一内酯、 γ—十二内酯、 δ-己内酯、 δ-辛内酯、 δ-壬内酯、 δ-癸内 酯、 δ-十一内酯、 δ-十二内酯、 δ-十:三内酯、 δ-十四内酯和 δ-十六内酯。
7、 如权利要求 1所述的羟基脂肪酸甘油酯的制备方法, 其特征在于, 所述脂肪酶 包括选自下列群组中的一种: 来源于猪胰脏、 假丝酵母、 根霉、 毛霉、 青霉和红曲霉 其中之一的游离或固定化脂肪酶。
8、 如权利要求 1中所述的羟基脂肪酸甘油酯的制备方法, 其特征在于, 还包括如 下步骤;
分离步骤: 将所述反应液灭酶、过滤, 通过常压或减压蒸馏去除部分易挥发溶剂成 分和部分反应底物, 然后进行分子蒸馏, 收集含有羟基脂肪酸―甘油酯的分子蒸馏组分。
9、 如权利要求 8中所述的羟基脂肪酸 i油酯的制备方法, 其特征在于, 还包括如 下步骤:
提纯步骤:将所述含有羟基脂肪酸 油酯的分子蒸馏组分,进行萃取或柱层析纯化, 对萃取液或柱层析洗脱液进行常压或减压蒸镏, 以去除萃取溶剂或洗脱溶剂, 获得含 有羟基脂肪酸—甘油酯的产物。
】()、如权利要求 9中所述的羟基脂肪酸 油酯的制备方法, 其特征在于: 所述萃取 溶剂包括选自下列群组中的至少一种: 水、 甲醇、 乙醇、 乙酸乙酯、 丙酮、 氯仿、 二 氯甲烷、 环己烷、 正己烷、 石油醚和甲基叔丁基醚; 所述洗脱溶剂包括选自下列群组 中的至少一种: 水、 甲醇、 乙醇、 乙酸乙酯、 丙酮、 氯仿、 二氯甲垸、 环己垸、 正己 烷和正庚垸。
PCT/CN2011/078631 2011-08-09 2011-08-19 一种羟基脂肪酸甘油酯的制备方法 WO2013020303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110227189.4 2011-08-09
CN201110227189.4A CN102321691B (zh) 2011-08-09 2011-08-09 一种羟基脂肪酸甘油酯的制备方法

Publications (1)

Publication Number Publication Date
WO2013020303A1 true WO2013020303A1 (zh) 2013-02-14

Family

ID=45449524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078631 WO2013020303A1 (zh) 2011-08-09 2011-08-19 一种羟基脂肪酸甘油酯的制备方法

Country Status (2)

Country Link
CN (1) CN102321691B (zh)
WO (1) WO2013020303A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591385B (zh) * 2016-11-11 2020-07-28 华南理工大学 一种酶法制备丁酸甘油酯的方法
CN114478240A (zh) * 2022-02-18 2022-05-13 安徽华业香料股份有限公司 一种单羟基脂肪酸甘油酯的合成方法
CN117737146B (zh) * 2023-12-20 2024-06-18 广东省农业科学院蚕业与农产品加工研究所 甘油酯型脂肪酸羟基脂肪酸酯及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143097A1 (en) * 2009-06-09 2010-12-16 Firmenich Sa Lactone flavour precursor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG139587A1 (en) * 2006-07-28 2008-02-29 Givaudan Sa Method of using organic compounds
CN102094050B (zh) * 2009-12-14 2012-07-25 深圳波顿香料有限公司 一种十六酸丙二醇酯的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143097A1 (en) * 2009-06-09 2010-12-16 Firmenich Sa Lactone flavour precursor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU, SUN ET AL.: "Enzymatic Synthesis of Monoglycerides by Lipase-Catalyzed Glycerolysis.", JOUMAL OF THE CHINESE CEREALS AND OILS ASSOCIATION, vol. 22, no. 3, May 2007 (2007-05-01), pages 80 - 84 *

Also Published As

Publication number Publication date
CN102321691A (zh) 2012-01-18
CN102321691B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
KR101357298B1 (ko) 오메가-3계 고도불포화 지방산의 고순도 정제방법
AU2021201921B2 (en) Polyunsaturated fatty acid triglyceride and preparation and uses thereof
EP1560803B1 (en) Lipase-catalysed esterification of marine oil
Patel et al. Enzymatic resolution of racemic secondary alcohols by lipase B from Candida antarctica
JP2005287510A (ja) 不飽和脂肪酸のトリグリセリドを酵素合成するための方法
KR101605595B1 (ko) 지방산 에스테르의 증류 방법
WO2016136751A1 (ja) 油脂の製造方法
WO2013020303A1 (zh) 一种羟基脂肪酸甘油酯的制备方法
Holmberg et al. Reaction conditions for the resolution of 2-methylalkanoic acids in esterification and hydrolysis with lipase from Candida cylindracea
CN102584586B (zh) 共轭亚油酸甘油酯的制备方法
US20110076358A1 (en) Process for producing diacylglycerol-rich fat or oil
JP4079516B2 (ja) トリグリセリドの製造方法
EP1582595A1 (de) Enzymatisches Verfahren zur Herstellung von Triglyzeriden, ausgehend von Alkylestern mehrfach ungesättigter Fettsäuren
JPS60234588A (ja) 長鎖高度不飽和脂肪酸アルコ−ルエステルの製造法
KR101055646B1 (ko) 포화지방산 저감화 방법 및 포화지방산이 저감된 유지 조성물
JP6194908B2 (ja) 油脂の製造方法
JP2004248671A (ja) 共役リノール酸異性体の精製方法およびその用途
JP4510045B2 (ja) 共役リノール酸異性体の精製方法およびその用途
CN117737146B (zh) 甘油酯型脂肪酸羟基脂肪酸酯及其制备方法
CN113355369B (zh) 一种采用流加方式的固定化脂肪酶催化制备共轭亚油酸的方法及应用
JP2005528919A (ja) 共役リノール酸の製造方法
JP2017145354A (ja) 油脂の製造方法
JP2004305155A (ja) トコフェロール及びトコトリエノールの製造方法
JPH01108990A (ja) 油脂の製造方法
CN117802169A (zh) 一种酶法制备甘油二酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870519

Country of ref document: EP

Kind code of ref document: A1