WO2013018307A1 - 撮像レンズおよび撮像装置 - Google Patents

撮像レンズおよび撮像装置 Download PDF

Info

Publication number
WO2013018307A1
WO2013018307A1 PCT/JP2012/004649 JP2012004649W WO2013018307A1 WO 2013018307 A1 WO2013018307 A1 WO 2013018307A1 JP 2012004649 W JP2012004649 W JP 2012004649W WO 2013018307 A1 WO2013018307 A1 WO 2013018307A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
group
imaging
refractive power
conditional expression
Prior art date
Application number
PCT/JP2012/004649
Other languages
English (en)
French (fr)
Inventor
堤 勝久
石井 良明
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280037804.8A priority Critical patent/CN103718080A/zh
Publication of WO2013018307A1 publication Critical patent/WO2013018307A1/ja
Priority to US14/151,090 priority patent/US20140126069A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present invention relates to an imaging lens and an imaging apparatus, and more particularly to a monitoring camera, a portable terminal camera, an in-vehicle camera, and the like using an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • an image sensor such as a CCD or a CMOS having a very small size and high pixels is known.
  • the image pickup device body provided with these image pickup devices is also miniaturized, and the image pickup lens mounted on the image pickup device is also applied with a small size while maintaining good optical performance.
  • the image pickup lens mounted on the image pickup device is also applied with a small size while maintaining good optical performance.
  • Examples of wide-angle imaging lenses known in the field as described above and having a relatively small number of lenses include those described in Patent Documents 1 to 4 below.
  • Patent Document 1 since the imaging lens described in Patent Document 1 is dark with an F-number of 2.8 and has large chromatic aberration and astigmatism, application to a high-performance imaging device with high pixels as described above is recommended. It cannot be said that it has such a high optical performance.
  • the imaging lens described in Patent Document 2 has a high optical performance enough to be applied to the above-described high-performance imaging device because the F number is as dark as 3.0 and chromatic aberration and astigmatism are large. It can not be said.
  • the imaging lens described in Patent Document 3 has chromatic aberration corrected satisfactorily, but has a dark F-number of 2.8 and large astigmatism. It cannot be said that the optical performance is high enough to be applied.
  • an imaging lens having a relatively small number of lenses for example, a four-lens imaging lens having high optical performance and satisfying both a wide angle of view and a compact size is used.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a compact imaging lens having high optical performance and a wide angle of view, and an imaging device including the imaging lens.
  • the first imaging lens of the present invention includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and the first lens group has a negative refractive power.
  • the second lens group includes, in order from the object side, a second group first lens having a positive refractive power, and a second group second lens having a positive refractive power.
  • Second lens group third lens having negative refractive power conditional expression (1): 0 ⁇ f2 / f ⁇ 1.5
  • f1 is the focal length of the first lens in the d-line of the first lens
  • f2 is the focal length of the second lens in the d-line of the first lens
  • f is the focal length of the entire lens system in the d-line.
  • the first imaging lens satisfies the conditional expression (1a): 0.5 ⁇ f2 / f ⁇ 1.5, and the conditional expression (1b): 1 ⁇ f2 / f ⁇ 1.45 is satisfied. It is more desirable to do. Further, it is more desirable that the first imaging lens satisfies the conditional expression (2a): 0.4 ⁇
  • the second imaging lens of the present invention includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and the first lens group has a negative refractive power.
  • the second lens group includes, in order from the object side, a second group first lens having a positive refractive power, and a second group second lens having a positive refractive power.
  • second lens group third lens having negative refractive power and simultaneously satisfy conditional expression (1): 0 ⁇ f2 / f ⁇ 1.5 and conditional expression (3): 0.2 ⁇ f2 / f34 It is characterized by.
  • f2 is the focal length of the second lens group d lens at the d-line
  • f is the focal length of the entire lens system at d-line
  • f34 is the combined focus of the second lens group second lens and the second lens group at the d-line. Distance.
  • the second imaging lens more preferably satisfies the conditional expression (1a): 0.5 ⁇ f2 / f ⁇ 1.5, and the conditional expression (1b): 1 ⁇ f2 / f ⁇ 1.45 is satisfied. It is more desirable to do.
  • This imaging lens more preferably satisfies the conditional expression (3a): 0.2 ⁇ f2 / f34 ⁇ 1, and the conditional expression (3b): 0.25 ⁇ f2 / f34 ⁇ 0.8. More desirable.
  • Each of the first and second imaging lenses may have a stop disposed in the second lens group.
  • the third imaging lens of the present invention includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and the first lens group has a negative refractive power.
  • the first lens is a first lens that is a biconcave single lens
  • the second lens group includes, in order from the object side, a second lens unit having a positive refractive power, a stop, and a positive refractive power.
  • the second group second lens having a negative refractive power and the second group third lens having a negative refractive power, and the second group second lens and the second group third lens form a cemented lens joined together.
  • Conditional expression (1): 0 ⁇ f2 / f ⁇ 1.5 is satisfied.
  • f2 is the focal length of the second lens unit d lens at the d line
  • f is the focal length of the entire lens system at the d line.
  • the third imaging lens satisfies the conditional expression (1a ′): 0.5 ⁇ f2 / f ⁇ 1.4.
  • the second group first lens is a biconvex lens
  • the second group second lens is a biconvex lens
  • the second group third lens is a meniscus lens
  • a diaphragm is disposed between the first group lens and the second group second lens
  • the second group second lens and the second group third lens form a cemented lens joined together.
  • Each of the first to third imaging lenses preferably satisfies the conditional expression (4): 0.9 ⁇ dt3 / f ⁇ 1.3, and the conditional expression (4a): 0.95 ⁇ dt3 / f ⁇ It is more desirable to satisfy 1.2.
  • dt3 be the thickness on the optical axis of the second lens group first lens.
  • Each of the first to third imaging lenses preferably satisfies conditional expression (5): 0 ⁇ dk2 / f ⁇ 0.8, and conditional expression (5a): 0.1 ⁇ dk2 / f ⁇ 0. 7 is more preferable, and it is more preferable that conditional expression (5b): 0.15 ⁇ dk2 / f ⁇ 0.6 is satisfied.
  • dk2 is an interval (air conversion interval) on the optical axis between the first lens group first lens and the second lens group first lens. If no optical member is disposed between the first lens group first lens and the second lens group first lens, the distance is simply an air distance.
  • Each of the first to third imaging lenses preferably satisfies conditional expression (6): 0 ⁇ fg2 / f ⁇ 1.3, and conditional expression (6a): 0.3 ⁇ fg2 / f ⁇ 1. 28 is more preferable, and it is more preferable that conditional expression (6b): 0.5 ⁇ fg2 / f ⁇ 1.25 is satisfied.
  • fg2 is the combined focal length for the d-line of the entire second lens group.
  • conditional expression (7) 13.5 ⁇ dsi ⁇ 22 is satisfied, and the conditional expression (7a): 13.8 It is more desirable to satisfy ⁇ dsi ⁇ 20, and it is further desirable to satisfy the conditional expression (7b): 14 ⁇ dsi ⁇ 18.
  • dsi is an interval on the optical axis between the stop and the imaging plane (the back focus portion is an air conversion distance).
  • the “interval on the optical axis between the stop and the imaging surface” is the distance (back focus) between the apex of the image side surface of the second lens group and the third lens and the imaging surface expressed as an air conversion distance (The air equivalent distance is applied to the thickness of the optical element having no refracting power disposed between the apex and the imaging surface. It should be noted that the actual length is used for the distance between the stop and the apex of the image side surface of the second group third lens.
  • the image pickup apparatus of the present invention includes any one of the first to third image pickup lenses.
  • the second group first lens constituting the second lens group is a single lens.
  • each of the first to third imaging lenses an optical element having power is not disposed between the first lens group and the second lens group. That is, each of the first to third imaging lenses is configured such that an optical member having refractive power is not disposed between the first lens group and the second lens group.
  • the imaging lens may be substantially composed of two lens groups.
  • the “imaging lens consisting essentially of n lens groups” means a lens having substantially no refractive power, an optical element other than a lens such as a diaphragm or a cover glass, and a lens other than the n lens groups.
  • the first to third imaging lenses may have a lens group having refractive power arranged on the image side of the second lens group.
  • the first lens group having a negative refractive power and the second lens group having a positive refractive power are provided in order from the object side.
  • the lens group is composed of a first lens and a first lens that is a single lens having a negative refractive power
  • the second lens group is arranged in order from the object side, a second lens having a positive refractive power, a first lens, and a positive lens.
  • the second group second lens having a refractive power of 2nd lens and the second group third lens having a negative refractive power have a conditional expression (1): 0 ⁇ f2 / f ⁇ 1.5, conditional expression (2) : 0 ⁇
  • the first imaging lens can be made compact with a wide angle of view with a bright F-number of about 2.0 and a well-corrected aberration.
  • the first lens group having a negative refractive power and the second lens group having a positive refractive power are provided in this order from the object side.
  • the first lens group is composed of a first lens and a first lens that is a single lens having a negative refractive power
  • the second lens group is a second lens having a positive refractive power in order from the object side. It is assumed that the lens includes a second lens group second lens having positive refractive power and a second lens group third lens having negative refractive power.
  • Conditional expression (1) 0 ⁇ f2 / f ⁇ 1.5
  • conditional expression (3) Since 0.2 ⁇ f2 / f34 is satisfied at the same time, the second imaging lens and the imaging apparatus including the second imaging lens should be compact with a wide angle of view and high optical performance. Can do.
  • the second imaging lens can be made compact with a wide angle of view with a bright F-number of about 2.0 and a well-corrected aberration.
  • the first lens group having a negative refractive power and the second lens group having a positive refractive power are provided in order from the object side.
  • the lens group is composed of a first lens and a first lens that are single lenses having a negative refractive power and a biconcave shape
  • the second lens group is a second lens having a positive refractive power in order from the object side.
  • the first lens group includes a first lens group, a stop, a second lens group second lens having a positive refractive power, a second lens group third lens having a negative refractive power, and a second lens group second lens and a second lens group third lens.
  • the third imaging lens and the imaging apparatus including the third imaging lens are provided. It can be made compact with a wide angle of view and high optical performance.
  • the third imaging lens can be made compact with a wide angle of view with a bright F-number of about 2.0 and a well-corrected aberration.
  • Sectional drawing which shows the imaging lens and imaging device of the 1st Embodiment of this invention Sectional drawing which shows the imaging lens and imaging device of the 2nd Embodiment of this invention Sectional drawing which shows the imaging lens and imaging device of the 3rd Embodiment of this invention It is a figure which shows the structure of the imaging lens by Example 1 with an optical path.
  • Sectional drawing which shows the structure of the imaging lens by Example 2 Sectional drawing which shows the structure of the imaging lens by Example 3
  • Sectional drawing which shows the structure of the imaging lens by Example 4
  • Sectional drawing which shows the structure of the imaging lens by Example 5.
  • (A) to (d) are aberration diagrams of the imaging lens according to the first embodiment.
  • (A) to (d) are aberration diagrams of the imaging lens according to the second embodiment.
  • FIG. 1A is a cross-sectional view illustrating a configuration of an imaging lens and an imaging apparatus according to the first embodiment of the present invention
  • FIG. 1B illustrates a configuration of the imaging lens and the imaging apparatus according to the second embodiment of the present invention
  • FIG. 1C is a cross-sectional view illustrating a configuration of an imaging lens and an imaging apparatus according to a third embodiment of the present invention.
  • an imaging apparatus 201 includes an imaging element 210 and an imaging lens 101 according to the first embodiment of the present invention.
  • the image sensor 210 converts an optical image Im representing the subject 1 formed on the light receiving surface 210J of the image sensor 210 through the imaging lens 101 into an electrical signal, and generates an image signal Gs representing the subject 1.
  • this image sensor 210 for example, a CCD image sensor, a CMOS image sensor, a MOS image sensor, or the like can be employed.
  • the imaging lens 101 includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power in order from the object side (the arrow-Z direction side in the figure).
  • an optical member having power is not disposed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 is formed by disposing only one first group first lens L11, which is a single lens having negative refractive power, as an optical member having power.
  • the second lens group G2 is an optical member having power, in order from the object side, a second lens group first lens L21 that is a single lens having positive refractive power, and a second lens group second lens L22 having positive refractive power.
  • the second lens group third lens L23 having negative refractive power is arranged.
  • the imaging lens 101 satisfies the conditional expression (1): 0 ⁇ f2 / f ⁇ 1.5 and the conditional expression (2): 0 ⁇
  • f1 is the focal length of the first lens unit L11
  • f2 is the focal length of the second lens unit first lens L21
  • f is the focal length of the entire lens system.
  • the imaging lens 101 satisfies the conditional expression (1a): 0.5 ⁇ f2 / f ⁇ 1.5, and satisfies the conditional expression (1b): 1 ⁇ f2 / f ⁇ 1.45. Is more desirable.
  • the imaging lens 101 more preferably satisfies the conditional expression (2a): 0.4 ⁇
  • an imaging apparatus 202 includes an imaging element 210 and an imaging lens 102 according to the second embodiment of the present invention.
  • the configuration and operation of the imaging element 210 are the same as those of the imaging device 201.
  • the imaging lens 102 includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power in order from the object side (the arrow-Z direction side in the figure).
  • an optical member having power is not disposed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 is formed by disposing only one first group first lens L11, which is a single lens having negative refractive power, as an optical member having power.
  • the second lens group G2 is an optical member having power, in order from the object side, a second lens group first lens L21 that is a single lens having positive refractive power, and a second lens group second lens L22 having positive refractive power.
  • the second lens group third lens L23 having negative refractive power is arranged.
  • the imaging lens 102 satisfies the conditional expression (1): 0 ⁇ f2 / f ⁇ 1.5 and the conditional expression (3): 0.2 ⁇ f2 / f34 at the same time.
  • f2 is the focal length of the second lens group first lens L21
  • f is the focal length of the entire lens system
  • f34 is the combined focal length of the second lens group second lens L22 and the second lens group third lens L23.
  • the imaging lens 101 satisfies the conditional expression (1a): 0.5 ⁇ f2 / f ⁇ 1.5, and satisfies the conditional expression (1b): 1 ⁇ f2 / f ⁇ 1.45. Is more desirable.
  • the imaging lens 101 more preferably satisfies the conditional expression (3a): 0.2 ⁇ f2 / f34 ⁇ 1, and the conditional expression (3b): 0.25 ⁇ f2 / f34 ⁇ 0.8 is satisfied. It is more desirable to do.
  • an imaging apparatus 203 includes an imaging element 210 and an imaging lens 103 according to the third embodiment of the present invention.
  • the configuration and operation of the imaging element 210 are the same as those of the imaging device 201.
  • the imaging lens 103 includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power in order from the object side (the arrow-Z direction side in the figure).
  • an optical member having power is not disposed between the first lens group G1 and the second lens group G2.
  • the first lens group G1 is formed by disposing only one first group first lens L11, which is a biconcave single lens having negative refractive power, as an optical member having power.
  • the second lens group G2 is an optical member having power, in order from the object side, a second lens group first lens L21 that is a single lens having positive refractive power, and a second lens group second lens L22 having positive refractive power. And a cemented lens composed of the second lens unit third lens L23 having negative refractive power.
  • the second group second lens L22 and the second group third lens L23 are arranged in this order from the object side.
  • a stop St is disposed between the second lens group first lens L21 and the second lens group second lens L22.
  • the imaging lens 101 of the first embodiment, the imaging lens 102 of the second embodiment, and the imaging lens 103 of the third embodiment may have the following configurations. it can.
  • Each of the imaging lenses 101 and 102 can be arranged with a stop in the second lens group G2.
  • a diaphragm St can be disposed between the two.
  • the imaging lens 103 requires a configuration in which the diaphragm St is disposed between the second group first lens L21 and the second group second lens L22.
  • each of the imaging lenses 101, 102, and 103 has the second group first lens L21 as a biconvex lens, the second group second lens L22 as a biconvex lens, the second group third lens L23 as a meniscus lens, A stop is arranged between the group first lens L21 and the second group second lens L22, and a cemented lens in which the second group second lens L22 and the second group third lens L23 are cemented with each other is configured.
  • Each of the imaging lenses 101, 102, and 103 preferably satisfies the conditional expression (4): 0.9 ⁇ dt3 / f ⁇ 1.3, and the conditional expression (4a): 0.95 ⁇ dt3 / f. It is more desirable to satisfy ⁇ 1.2. However, let dt3 be the thickness of the second group first lens L21 on the optical axis.
  • Each of the imaging lenses 101, 102, and 103 preferably satisfies the conditional expression (5): 0 ⁇ dk2 / f ⁇ 0.8, and the conditional expression (5a): 0.1 ⁇ dk2 / f ⁇ 0. .7 is more desirable, and it is more desirable to satisfy the conditional expression (5b): 0.15 ⁇ dk2 / f ⁇ 0.6.
  • dk2 is an interval (air conversion interval) on the optical axis between the first lens group first lens L11 and the second lens group first lens L21.
  • Each of the imaging lenses 101, 102, and 103 preferably satisfies the conditional expression (6): 0 ⁇ fg2 / f ⁇ 1.3, and the conditional expression (6a): 0.3 ⁇ fg2 / f ⁇ 1. .28 is more desirable, and it is more desirable to satisfy the conditional expression (6b): 0.5 ⁇ fg2 / f ⁇ 1.25.
  • fg2 be the combined focal length of the second lens group G2 (the combined focal length of the entire second lens group G2).
  • each of the imaging lenses 101, 102, and 103 satisfy the conditional expression (7): 13.5 ⁇ dsi ⁇ 22 when the diaphragm St is provided, and the conditional expression (7a): 13.8 ⁇ It is more desirable to satisfy dsi ⁇ 20, and it is further desirable to satisfy the conditional expression (7b): 14 ⁇ dsi ⁇ 18.
  • dsi is an interval on the optical axis between the stop St and the imaging plane Im (the back focus portion is an air conversion distance).
  • this “distance on the optical axis between the aperture stop St and the imaging surface Im” applies the air-converted distance to the thickness of the optical element LL such as the cover glass, and the image side surface of the second group third lens L23. It is assumed that the distance (back focus) between the apex and the imaging plane Im is expressed as an air equivalent distance.
  • conditional expression (1), (2), (3), (4), (5), (6), (7) is demonstrated collectively below.
  • Conditional expression (1) indicates that “the focal length f2 of the second lens unit first lens L21 having a positive refractive power disposed closest to the object side of the second lens unit” and “the focal length f of the entire lens system”.
  • the ratio range is defined.
  • the imaging lens By configuring the imaging lens so as to satisfy the conditional expression (1), the light beam diverged through the first lens group G1 (first group first lens L1a) having negative refractive power is the second group first lens. Since the refractive power of the second group first lens L21 can be determined so as to converge appropriately through L21, the imaging lens can be further downsized.
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, the focal length f2 of the second lens group first lens L21 increases, and the distance between the second lens group first lens L21 and the first lens group G1 tends to increase. Since the total lens length is extended, it is difficult to reduce the size of the imaging lens.
  • conditional expression (1) If the lower limit of conditional expression (1) is not reached, the distance between the first lens group G1 and the second lens group first lens L21 will be short, and this will lead to miniaturization, but the positive refraction of the second lens group first lens L21. A problem arises that the tangential image plane falls to the under side due to the increased force.
  • conditional expression (1a) and conditional expression (1b) are the same as that of the conditional expression (1).
  • Conditional expression (2) indicates that “the focal length f1 of the first lens group G1 (first group first lens L1a)” and “the second lens group G2 having the positive refractive power disposed closest to the object side”.
  • the range of the ratio with the “focal length f2 of the second group first lens L21” is defined.
  • the imaging lens By configuring the imaging lens so as to satisfy the conditional expression (2), it is possible to appropriately converge the light beam diverging through the first lens group G1 having negative refractive power through the second lens group first lens L21. Therefore, the imaging lens can be further downsized.
  • conditional expression (2) If the upper limit of conditional expression (2) is exceeded, the positive refractive power of the second lens group first lens L21 becomes stronger than the negative refractive power of the first lens group G1, so that the image plane falls to the under side. Arise.
  • conditional expression (2a) and conditional expression (2b) are the same as in the case of conditional expression (2).
  • Condition (3) Effect of 0.2 ⁇ f2 / f34
  • Conditional expression (3) indicates that “the focal length f2 of the second lens group first lens L21 having the positive refractive power arranged closest to the object side of the second lens group G2” and “the first lens having the positive refractive power”.
  • the range of the ratio between the second group second lens L22 and the combined focal length f34 of the second group third lens L23 having negative refractive power is defined.
  • the imaging lens By configuring the imaging lens so as to satisfy the conditional expression (3), it is possible to keep the refractive power balance of the lenses constituting the second lens group G2 in a good state.
  • conditional expression (3) If the lower limit of conditional expression (3) is not reached, the lateral chromatic aberration on the short wavelength side will be overcorrected and the back focus will be shortened.
  • the imaging lens is configured so as to satisfy the conditional expression (3a): 0.2 ⁇ f2 / f34 ⁇ 1 and the conditional expression (3b): 0.25 ⁇ f2 / f34 ⁇ 0.8.
  • the balance of refractive power by the lenses constituting the two-lens group G2 can be kept in a good state.
  • conditional expression (3a) or conditional expression (3b) if the upper limit of conditional expression (3a) or conditional expression (3b) is exceeded, lateral chromatic aberration on the short wavelength side will be insufficiently corrected.
  • conditional expression (3a) or conditional expression (3b) If the lower limit of conditional expression (3a) or conditional expression (3b) is not reached, lateral chromatic aberration on the short wavelength side will be overcorrected and the back focus will be shortened.
  • Conditional expression (4) indicates that “the thickness dt3 of the second lens group first lens L21 having the positive refractive power disposed closest to the object side of the second lens group G2” and “the focal length f of the entire lens system”. This defines the range of the ratio.
  • conditional expression (4) If the upper limit of conditional expression (4) is exceeded, the optical performance can be improved, but the workability deteriorates and the manufacturing cost increases.
  • conditional expression (4) If the lower limit of conditional expression (4) is not reached, it becomes difficult to reduce the size because the necessity of extending the entire lens length for aberration correction increases. On the other hand, if an attempt is made to suppress the overall lens length, spherical aberration increases or the peripheral tangential image surface falls to the over side.
  • conditional expression (4a) and conditional expression (4b) are the same as in the case of conditional expression (4).
  • Conditional expression (5) defines the range of the ratio between the “distance dk2 (air conversion interval) between the first lens group G1 and the second lens group G2” and the “focal length f of the entire lens system”. .
  • the imaging lens By configuring the imaging lens so as to satisfy the conditional expression (5), it is possible to keep the balance between the spherical aberration and the field aberration in a good state while reducing the size.
  • conditional expression (5) If the upper limit of conditional expression (5) is exceeded, it becomes difficult to reduce the size because the necessity of extending the entire lens length for aberration correction increases.
  • conditional expression (5) If the lower limit of conditional expression (5) is not reached, it is convenient for downsizing, but there is a problem that the spherical aberration tends to increase and the tangential image surface falls to the over side.
  • conditional expression (5a) the conditional expression (5b)
  • conditional expression (5b) the conditional expression
  • Conditional expression (6) defines the range of the ratio of “the total focal length fg2 of the entire second lens group G2” and “the focal length f of the entire lens system”.
  • the imaging lens By configuring the imaging lens so as to satisfy the conditional expression (6), it is possible to keep the balance between the spherical aberration and the field aberration in a good state while reducing the size of the imaging lens.
  • conditional expression (6) If the upper limit of conditional expression (6) is exceeded, the refractive power balance between the first lens group G1 and the subsequent group is lost, and the tangential image surface falls to the under side.
  • conditional expression (6) If the lower limit of conditional expression (6) is surpassed, the focal lengths of the first lens group G1 and the subsequent lens group both become shorter and the refractive power becomes stronger, so that higher-order spherical aberration tends to occur.
  • conditional expression (6a) and conditional expression (6b) are the same as in the case of conditional expression (6).
  • Conditional expression (7) defines the above-mentioned range of “the distance between the stop St and the imaging plane Im on the optical axis (the back focus portion is an air conversion distance)”.
  • the imaging lens is configured so as to satisfy the conditional expression (7), it is possible to reduce the overall length and diameter of the imaging lens and reduce the size.
  • conditional expression (7) If the upper limit of conditional expression (7) is exceeded, it becomes difficult to reduce the size of the lens because the need to extend the entire lens length for aberration correction increases. In order to obtain the desired lens performance, there arises a problem that the entire lens length must be increased, or that the lateral chromatic aberration relating to the light on the short wavelength side is insufficiently corrected.
  • conditional expression (7a) and conditional expression (7b) are the same as in the case of conditional expression (7).
  • a cover glass, a low-pass filter, an infrared cut filter, or the like is provided between the imaging lenses 101 to 103 and the imaging element 210 according to the configuration of the imaging apparatus.
  • the optical element LL having substantially no refractive power can be disposed.
  • each of the imaging lenses 101 to 103 is mounted on an in-vehicle camera and used as a nighttime monitoring camera, light having a wavelength ranging from ultraviolet light to blue light is interposed between the imaging lens and the imaging element. It is desirable to insert a filter that cuts.
  • various filters are arranged between the lenses constituting the imaging lens instead of arranging a low-pass filter or various filters for cutting off a specific wavelength range between the imaging lenses 101 to 103 and the imaging element 210.
  • a thin film having the same action as various filters can be formed (coated) on the lens surface constituting the imaging lens.
  • each of the imaging lenses 101 to 103 When each of the imaging lenses 101 to 103 is applied to, for example, outdoor monitoring, it is required that the imaging lenses 101 to 103 can be used in a wide temperature range from the outside air in a cold region to the interior of a tropical summer vehicle. In such a case, it is preferable that the material of all the lenses constituting each imaging lens is glass. In order to manufacture lenses at low cost, it is preferable that all lenses constituting each imaging lens are spherical lenses. However, when priority is given to optical performance over cost, an aspheric lens can be employed.
  • the imaging lenses according to the first to third embodiments of the present invention have high optical performance, and can achieve a wide angle of view and compactness.
  • FIGS. 2 to 6 and FIGS. 7 to 11 and Tables 1 to 6 numerical data and the like of each of Examples 1 to 5 of the imaging lens of the present invention will be described together.
  • the reference numerals in FIGS. 2 to 6 that correspond to the reference numerals in FIGS. 1A, 1B, and 1C showing the imaging lenses 101, 102, and 103 show the configurations corresponding to each other.
  • FIG. 2 is a diagram illustrating a schematic configuration of the imaging lens of Example 1 together with an optical path of light passing through the imaging lens.
  • the imaging lens of Example 1 has a configuration corresponding to the imaging lenses of the first to third embodiments.
  • the imaging lens of Example 1 is configured to satisfy all the conditional expressions (1), (2), (3), (4), (5), (6), and (7).
  • Table 1 shows lens data of the imaging lens of Example 1.
  • the lens data in Table 1 are assigned surface numbers including the aperture stop St and the optical element LL having no power.
  • the surface interval on the optical axis Z1 is shown.
  • dt3 described in conditional expression (4): 0.9 ⁇ dt3 / f ⁇ 1.3 corresponds to the surface interval (lens thickness) indicated by the symbol “D3” in the lens data. .
  • ⁇ dj represents the Abbe number of the j-th optical element with respect to the d-line.
  • Table 1 the unit of the radius of curvature and the surface interval is mm, and the radius of curvature is positive when convex on the object side and negative when convex on the image side.
  • the first optical element is the first group first lens L11
  • the second optical element is the second group first lens L21
  • the third optical element is the second group second lens L22
  • the fourth optical element respectively correspond to optical elements LL having no power.
  • the optical element LL having no power corresponds to, for example, a cover glass disposed on the light receiving surface of the image sensor.
  • the imaging lens can also be an embodiment according to the present invention.
  • FIG. 7 is a diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration of the imaging lens of Example 1.
  • aberrations relating to each light of d-line, F-line, and C-line are shown.
  • astigmatism diagram aberrations with respect to the sagittal image surface and the tangential image surface are shown.
  • the diagram indicated by symbol (a) indicates spherical aberration
  • the diagram indicated by symbol (b) indicates astigmatism
  • the diagram indicated by symbol (c) indicates distortion
  • symbol (d) indicates the chromatic aberration of magnification.
  • the above distortion diagram shows the amount of deviation from the ideal image height f ⁇ tan ⁇ using the focal length f and half angle of view ⁇ (variable treatment, 0 ⁇ ⁇ ⁇ ⁇ ) of the entire lens system.
  • Table 6 shown at the end of the description of the examples shows the values obtained from the mathematical expressions described in the conditional expressions for each of the examples 1 to 5.
  • the value of the numerical formula described in each conditional expression is a thing with respect to d line
  • FIG. 2 which shows the structure of the imaging lens of the said Example 1
  • FIG. 7 which shows the aberration of an imaging lens
  • Table 1 which shows the lens data of an imaging lens
  • description “dt3” in conditional expressions and description in lens data
  • Table 6 shows the value of each mathematical expression in the conditional expression
  • FIG. 3 is a diagram illustrating a schematic configuration of the imaging lens of the second embodiment.
  • the imaging lens of Example 2 has a configuration corresponding to the imaging lenses of the first to third embodiments.
  • the imaging lens of Example 2 is configured to satisfy all the conditional expressions (1), (2), (3), (4), (5), (6), and (7).
  • FIG. 8 is a diagram showing aberrations of the imaging lens of Example 2.
  • FIG. 4 is a diagram illustrating a schematic configuration of the imaging lens of the third embodiment.
  • the imaging lens of Example 3 has a configuration corresponding to the imaging lenses of the first to third embodiments.
  • the imaging lens of Example 3 is configured to satisfy all the conditional expressions (1), (2), (3), (4), (5), (6), and (7).
  • FIG. 9 shows aberrations of the imaging lens of Example 3.
  • FIG. 5 is a diagram illustrating a schematic configuration of the imaging lens of the fourth embodiment.
  • the imaging lens of Example 4 has a configuration corresponding to the imaging lenses of the first to third embodiments.
  • the imaging lens of Example 4 is configured to satisfy all of the conditional expressions (1), (2), (3), (4), (5), (6), and (7).
  • FIG. 10 shows aberrations of the imaging lens of Example 4.
  • FIG. 6 is a diagram illustrating a schematic configuration of the imaging lens of the fifth embodiment.
  • the imaging lens of Example 5 has a configuration corresponding to the imaging lenses of the first to third embodiments.
  • the imaging lens of Example 5 is configured to satisfy all the conditional expressions (1), (2), (3), (4), (5), (6), and (7). .
  • FIG. 11 is a diagram illustrating aberrations of the imaging lens of Example 5.
  • Table 5 below shows lens data of Example 5.
  • Table 6 below shows values obtained by mathematical expressions described in the conditional expressions.
  • the imaging lenses of Examples 1 to 5 have high optical performance and can be made into a compact imaging lens with a wide angle of view.
  • FIG. 12 shows a schematic configuration diagram of a monitoring camera as one embodiment of the imaging apparatus of the present invention.
  • the surveillance camera 200 shown in FIG. 12 is imaged by the imaging lens 100 (for example, the imaging lenses 101, 102, 103, etc.) of the present invention disposed inside a substantially cylindrical lens barrel and the imaging lens 100.
  • an image sensor 210 that captures an optical image of the subject.
  • An optical image formed on the light receiving surface of the image sensor 210 through the imaging lens 100 is converted into an electric signal Gs and output from the monitoring camera 200.
  • the present invention has been described with reference to the first to third embodiments and examples.
  • the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface spacing, the refractive index, the Abbe number, etc. of each lens component are not limited to the values shown in the above numerical examples, but can take other values.
  • an imaging lens in which a lens group having refractive power is arranged on the image side of the second lens group G2 can be mentioned.
  • the present invention is not limited to such an application.
  • a video camera or an electronic still is used. It can also be applied to cameras, in-vehicle cameras, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

【課題】撮像レンズにおいて、広画角化およびコンパクト化するとともに、高い光学性能が得られるようにする。 【解決手段】物体側から順に、負の屈折力を有する第1レンズ群(G1)、正の屈折力を有する第2レンズ群(G2)を備えるようにする。第1レンズ群(G1)は、負の屈折力を有する単レンズである第1群第1レンズ(L11)からなるものとし、第2レンズ群(G2)は、物体側より順に、正の屈折力を有する第2群第1レンズ(L21)、正の屈折力を有する第2群第2レンズ(L22)、負の屈折力を有する第2群第3レンズ(L23)からなるものとする。さらに、f1を第1群第1レンズ(L11)の焦点距離、f2を第2群第1レンズ(L21)の焦点距離、fをレンズ全系の焦点距離としたときに、条件式(1):0<f2/f<1.5、条件式(2):0<|f1/f2|<0.9を同時に満足する。

Description

撮像レンズおよび撮像装置
 本発明は、撮像レンズおよび撮像装置に関し、より詳しくは、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を用いた監視用カメラ、携帯端末用カメラ、車載用カメラ等に使用される撮像レンズ、およびその撮像レンズを備えた撮像装置に関するものである。
 近年、CCDやCMOS等の撮像素子として、非常に小型化及び高画素化されたものが知られている。それとともに、これらの撮像素子を備えた撮像機器本体も小型化されたものが知られており、それに搭載される撮像レンズにも良好な光学性能を維持しつつ小型化されたものが適用されている。一方、監視用カメラや車載用カメラ等の用途でも、広画角のレンズでありながら、小型で高性能な撮像レンズを搭載したものが知られている。
 上記のような分野において知られている比較的レンズ枚数の少ない広画角の撮像レンズとして、例えば下記特許文献1~4に記載のものが挙げられる。
特開平09-281387号公報 特開平02-284108号公報 特開2005-316208号公報 特開2011-128210号公報
 しかしながら、特許文献1に記載の撮像レンズは、Fナンバーが2.8と暗く、色収差、非点収差が大きいため、上記のような高画素化された高性能な撮像素子への適用が推奨されるほどの高い光学性能を有するものとは言えない。
 また、特許文献2に記載の撮像レンズも、Fナンバーが3.0と暗く、色収差、非点収差が大きいため、上記のような高性能な撮像素子へ適用するほどの高い光学性能を有するものとは言えない。
 また、特許文献3に記載の撮像レンズは、色収差が良好に補正されてはいるが、Fナンバーが2.8と暗く、非点収差が大きいため、上記と同様に、高性能な撮像素子へ適用するほどの高い光学性能を有するものとは言えない。
 また、特許文献4に記載の撮像レンズは、明るいレンズを実現しようとするものではあるが、その明るさを実現するために若干小型化が犠牲となっているため十分にコンパクト化されたものとは言えない。
 上記のようなことにより、比較的レンズ枚数の少ない、例えば4枚構成の撮像レンズにおいて、高い光学性能を有し、かつ、広画角化とコンパクト化とを同時に満足するような撮像レンズを使用したいという要請がある。より具体的には、Fナンバーが2.0程度の明るい光学系であって、収差が良好に補正されるとともに、広画角でコンパクトな撮像レンズの実現が望まれている。
 本発明は、上記事情に鑑みてなされたものであり、高い光学性能を有するとともに広画角でコンパクトな撮像レンズおよびこの撮像レンズを備えた撮像装置を提供することを目的とするものである。
 本発明の第1の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、第1レンズ群は、負の屈折力を有する単レンズである第1群第1レンズからなり、第2レンズ群は、物体側より順に、正の屈折力を有する第2群第1レンズ、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなり、条件式(1):0<f2/f<1.5、条件式(2):0<|f1/f2|<0.9を同時に満足することを特徴とするものである。ただし、f1を第1群第1レンズのd線における焦点距離、f2を第2群第1レンズのd線における焦点距離、fをレンズ全系のd線における焦点距離とする。
 前記第1の撮像レンズは、条件式(1a):0.5<f2/f<1.5を満足することがより望ましく、条件式(1b):1<f2/f<1.45を満足することがさらに望ましい。また、この第1の撮像レンズは、条件式(2a):0.4<|f1/f2|<0.85を満足することがより望ましく、条件式(2b):0.5<|f1/f2|<0.8を満足することがさらに望ましい。
 本発明の第2の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、第1レンズ群は、負の屈折力を有する単レンズである第1群第1レンズからなり、第2レンズ群は、物体側より順に、正の屈折力を有する第2群第1レンズ、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなり、条件式(1):0<f2/f<1.5、条件式(3):0.2<f2/f34を同時に満足することを特徴とするものである。ただし、f2を第2群第1レンズのd線における焦点距離、fをレンズ全系のd線における焦点距離、f34を第2群第2レンズと第2群第3レンズのd線における合成焦点距離とする。
 前記第2の撮像レンズは、条件式(1a):0.5<f2/f<1.5を満足することがより望ましく、条件式(1b):1<f2/f<1.45を満足することがさらに望ましい。この撮像レンズは、条件式(3a):0.2<f2/f34<1を満足することがより望ましく、条件式(3b):0.25<f2/f34<0.8を満足することがさらに望ましい。
 前記第1、第2の撮像レンズそれぞれは、第2レンズ群中に絞りを配置したものとすることができる。
 本発明の第3の撮像レンズは、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、第1レンズ群は、負の屈折力を有し両凹形状をなす単レンズである第1群第1レンズからなり、第2レンズ群は、物体側より順に、正の屈折力を有する第2群第1レンズ、絞り、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなり、第2群第2レンズと第2群第3レンズとは互いに接合された接合レンズをなすものであり、条件式(1):0<f2/f<1.5を満足することを特徴とするものである。ただし、f2を第2群第1レンズのd線における焦点距離、fをレンズ全系のd線における焦点距離とする。
 前記第3の撮像レンズは、条件式(1a′):0.5<f2/f<1.4を満足することがより望ましい。
 前記第1から第3の撮像レンズそれぞれは、第2群第1レンズが両凸レンズであり、第2群第2レンズが両凸レンズであり、第2群第3レンズがメニスカスレンズであり、第2群第1レンズと第2群第2レンズとの間に絞りが配置され、かつ、第2群第2レンズと第2群第3レンズとは互いに接合された接合レンズをなすものとすることが望ましい。
 前記第1から第3の撮像レンズそれぞれは、条件式(4):0.9<dt3/f<1.3を満足することが望ましく、条件式(4a):0.95<dt3/f<1.2を満足することがより望ましい。ただし、dt3を第2群第1レンズの光軸上における厚さとする。
 前記第1から第3の撮像レンズそれぞれは、条件式(5):0<dk2/f<0.8を満足することが望ましく、条件式(5a):0.1<dk2/f<0.7を満足することがより望ましく、条件式(5b):0.15<dk2/f<0.6を満足することがさらに望ましい。ただし、dk2を第1群第1レンズと第2群第1レンズとの光軸上における間隔(空気換算間隔)とする。なお、第1群第1レンズと第2群第1レンズとの間に光学部材が配置されていなければその間隔は単に空気間隔となる。
 前記第1から第3の撮像レンズそれぞれは、条件式(6):0<fg2/f<1.3を満足することが望ましく、条件式(6a):0.3<fg2/f<1.28を満足することがより望ましく、条件式(6b):0.5<fg2/f<1.25を満足することがさらに望ましい。ただし、fg2を第2レンズ群全体のd線における合成焦点距離とする。
 前記第1から第3の撮像レンズそれぞれは、絞りを有するものであるときに、条件式(7):13.5<dsi<22を満足することが望ましく、条件式(7a):13.8<dsi<20を満足することがより望ましく、条件式(7b):14<dsi<18を満足することがさらに望ましい。ただし、dsiを絞りと結像面との光軸上における間隔(バックフォーカス部分は空気換算距離)とする。すなわち、この「絞りと結像面との光軸上における間隔」は、第2群第3レンズの像側面の頂点と結像面との間隔(バックフォーカス)を空気換算距離で表したもの(上記頂点と結像面との間に配された屈折力を有していない光学要素の厚みに空気換算距離を適用したもの)とする。なお、絞りと第2群第3レンズの像側面の頂点との間隔については実長を用いるものとする。
 本発明の撮像装置は、第1から第3の撮像レンズのいずれかを備えたことを特徴とするものである。
 なお、前記第1から第3の各撮像レンズにおいて、第2レンズ群を構成する第2群第1レンズは単レンズである。
 また、前記第1から第3の各撮像レンズは、第1レンズ群と第2レンズ群との間にパワーを有する光学要素は配置されていない。すなわち、第1から第3の各撮像レンズは、第1レンズ群と第2レンズ群との間に、屈折力を持つ光学部材を配置しないように構成されたものである。
 前記撮像レンズは、実質的に2個のレンズ群からなるものとすることができる。なお、「実質的にn個のレンズ群からなる撮像レンズ」とは、n個のレンズ群以外に、実質的に屈折力を有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分、等を持つ撮像レンズである。
 なお、前記第1から第3の各撮像レンズは、屈折力を有するレンズ群を第2レンズ群の像側に配置したものとしてもよい。
 本発明の第1の撮像レンズおよびこれを備えた撮像装置によれば、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、第1レンズ群を、負の屈折力を有する単レンズである第1群第1レンズからなるものとし、第2レンズ群を、物体側より順に、正の屈折力を有する第2群第1レンズ、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなるものとし、条件式(1):0<f2/f<1.5、条件式(2):0<|f1/f2|<0.9を同時に満足するようにしたので、この第1の撮像レンズおよびこれを備えた撮像装置を、高い光学性能を有する広画角でコンパクトなものとすることができる。例えば、第1の撮像レンズを、Fナンバーが2.0程度と明るく、かつ収差が良好に補正された広画角でコンパクトなものとすることができる。
 本発明の第2の撮像レンズおよびこれを備えた第2の撮像装置によれば、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、第1レンズ群を、負の屈折力を有する単レンズである第1群第1レンズからなるものとし、第2レンズ群を、物体側より順に、正の屈折力を有する第2群第1レンズ、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなるものとし、条件式(1):0<f2/f<1.5、条件式(3):0.2<f2/f34を同時に満足するようにしたので、この第2の撮像レンズおよびこれを備えた撮像装置を、高い光学性能を有する広画角でコンパクトなものとすることができる。例えば、第2の撮像レンズを、Fナンバーが2.0程度と明るく、かつ収差が良好に補正された広画角でコンパクトなものとすることができる。
 本発明の第3の撮像レンズおよびこれを備えた撮像装置によれば、物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、第1レンズ群を、負の屈折力を有し両凹形状をなす単レンズである第1群第1レンズからなるものとし、第2レンズ群を、物体側より順に、正の屈折力を有する第2群第1レンズ、絞り、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなるものとし、第2群第2レンズと第2群第3レンズとは互いに接合された接合レンズをなすものとし、条件式(1):0<f2/f<1.5を満足するようにしたので、この第3の撮像レンズおよびこれを備えた撮像装置を、高い光学性能を有する広画角でコンパクトなものとすることができる。例えば、第3の撮像レンズを、Fナンバーが2.0程度と明るく、かつ収差が良好に補正された広画角でコンパクトなものとすることができる。
本発明の第1の実施の形態の撮像レンズおよび撮像装置を示す断面図 本発明の第2の実施の形態の撮像レンズおよび撮像装置を示す断面図 本発明の第3の実施の形態の撮像レンズおよび撮像装置を示す断面図 実施例1による撮像レンズの構成を光路とともに示す図である。 実施例2による撮像レンズの構成を示す断面図 実施例3による撮像レンズの構成を示す断面図 実施例4による撮像レンズの構成を示す断面図 実施例5による撮像レンズの構成を示す断面図 (a)~(d)は実施例1による撮像レンズの収差図 (a)~(d)は実施例2による撮像レンズの収差図 (a)~(d)は実施例3による撮像レンズの収差図 (a)~(d)は実施例4による撮像レンズの収差図 (a)~(d)は実施例5による撮像レンズの収差図 本発明の撮像レンズを搭載した監視用カメラを示す図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
 図1Aは、本発明の第1の実施の形態による撮像レンズおよび撮像装置の構成を示す断面図であり、図1Bは、本発明の第2の実施の形態による撮像レンズおよび撮像装置の構成を示す断面図であり、図1Cは、本発明の第3の実施の形態による撮像レンズおよび撮像装置の構成を示す断面図である。
 図1Aに示すように、本発明の第1の実施の形態による撮像装置201は、撮像素子210と本発明の第1の実施の形態による撮像レンズ101とを備えている。撮像素子210は、撮像レンズ101を通してこの撮像素子210の受光面210J上に形成された被写体1を表す光学像Imを、電気信号に変換してこの被写体1を表す画像信号Gsを生成する。この撮像素子210としては、例えばCCDイメージセンサや、CMOSイメージセンサ、MOSイメージセンサ等を採用することができる。
 撮像レンズ101は、物体側(図中矢印-Z方向の側)から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2を備えている。ここで、第1レンズ群G1と第2レンズ群G2との間には、パワーを持つ光学部材は配置されていない。
 第1レンズ群G1は、パワーを持つ光学部材として、負の屈折力を有する単レンズである第1群第1レンズL11を1枚のみ配置してなるものである。
 第2レンズ群G2は、パワーを持つ光学部材として、物体側から順に、正の屈折力を有する単レンズである第2群第1レンズL21、正の屈折力を有する第2群第2レンズL22、負の屈折力を有する第2群第3レンズL23を配置してなるものである。
 さらに、上記撮像レンズ101は、条件式(1):0<f2/f<1.5および条件式(2):0<|f1/f2|<0.9を同時に満足するものである。ただし、f1を第1群第1レンズL11の焦点距離、f2を第2群第1レンズL21の焦点距離、fをレンズ全系の焦点距離とする。
 この撮像レンズ101は、条件式(1a):0.5<f2/f<1.5を満足することがより望ましく、条件式(1b):1<f2/f<1.45を満足することがさらに望ましい。また、この撮像レンズ101は、条件式(2a):0.4<|f1/f2|<0.85を満足することがより望ましく、条件式(2b):0.5<|f1/f2|<0.8を満足することがさらに望ましい。
 図1Bに示すように、本発明の第2の実施の形態による撮像装置202は、撮像素子210と本発明の第2の実施の形態による撮像レンズ102とを備えている。この撮像素子210の構成および作用は上記撮像装置201の場合と同様である。
 撮像レンズ102は、物体側(図中矢印-Z方向の側)から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2を備えている。ここで、第1レンズ群G1と第2レンズ群G2との間には、パワーを持つ光学部材は配置されていない。
 第1レンズ群G1は、パワーを持つ光学部材として、負の屈折力を有する単レンズである第1群第1レンズL11を1枚のみ配置してなるものである。
 第2レンズ群G2は、パワーを持つ光学部材として、物体側から順に、正の屈折力を有する単レンズである第2群第1レンズL21、正の屈折力を有する第2群第2レンズL22、負の屈折力を有する第2群第3レンズL23を配置してなるものである。
 さらに、上記撮像レンズ102は、条件式(1):0<f2/f<1.5および条件式(3):0.2<f2/f34を同時に満足するものである。ただし、f2を第2群第1レンズL21の焦点距離、fをレンズ全系の焦点距離,f34を第2群第2レンズL22と第2群第3レンズL23の合成焦点距離とする。
 この撮像レンズ101は、条件式(1a):0.5<f2/f<1.5を満足することがより望ましく、条件式(1b):1<f2/f<1.45を満足することがさらに望ましい。また、この撮像レンズ101は、条件式(3a):0.2<f2/f34<1を満足することがより望ましく、条件式(3b):0.25<f2/f34<0.8を満足することがさらに望ましい。
 図1Cに示すように、本発明の第3の実施の形態による撮像装置203は、撮像素子210と本発明の第3の実施の形態による撮像レンズ103とを備えている。この撮像素子210の構成および作用は上記撮像装置201の場合と同様である。
 撮像レンズ103は、物体側(図中矢印-Z方向の側)から順に、負の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2を備えている。ここで、第1レンズ群G1と第2レンズ群G2との間には、パワーを持つ光学部材は配置されていない。
 第1レンズ群G1は、パワーを持つ光学部材として、負の屈折力を有する両凹形状の単レンズである第1群第1レンズL11を1枚のみ配置してなるものである。
 第2レンズ群G2は、パワーを持つ光学部材として、物体側から順に、正の屈折力を有する単レンズである第2群第1レンズL21、正の屈折力を有する第2群第2レンズL22と負の屈折力を有する第2群第3レンズL23とからなる接合レンズを配置してなるものである。なお、第2群第2レンズL22と第2群第3レンズL23は、物体側からこの順に配置されている。
 第2群第1レンズL21と第2群第2レンズL22との間には絞りStが配置されている。
 さらに、上記第1の実施の形態の撮像レンズ101、第2の実施の形態の撮像レンズ102、第3の実施の形態の撮像レンズ103それぞれは、以下のような構成を有するものとすることもできる。
 撮像レンズ101、102それぞれは、第2レンズ群G2中に絞りを配置することができ、例えば、図1A、1Bに示すように、第2群第1レンズL21と第2群第2レンズL22との間に絞りStを配置することができる。なお、撮像レンズ103については、図1Cに示すように、第2群第1レンズL21と第2群第2レンズL22との間へ絞りStを配置する構成は必須である。
 また、撮像レンズ101、102、103それぞれは、第2群第1レンズL21を両凸レンズとし、第2群第2レンズL22を両凸レンズとし、第2群第3レンズL23をメニスカスレンズとし、第2群第1レンズL21と第2群第2レンズL22との間に絞りを配置し、かつ、第2群第2レンズL22と第2群第3レンズL23とが互いに接合された接合レンズを構成するものとすることができる。
 また、上記撮像レンズ101、102、103それぞれは、条件式(4):0.9<dt3/f<1.3を満足することが望ましく、条件式(4a):0.95<dt3/f<1.2を満足することがより望ましい。ただし、dt3を第2群第1レンズL21の光軸上における厚みとする。
 また、上記撮像レンズ101、102、103それぞれは、条件式(5):0<dk2/f<0.8を満足することが望ましく、条件式(5a):0.1<dk2/f<0.7を満足することがより望まく、条件式(5b):0.15<dk2/f<0.6を満足することがさらに望ましい。ただし、dk2を第1群第1レンズL11と第2群第1レンズL21との光軸上における間隔(空気換算間隔)とする。
 また、上記撮像レンズ101、102、103それぞれは、条件式(6):0<fg2/f<1.3を満足することが望ましく、条件式(6a):0.3<fg2/f<1.28を満足することがより望まく、条件式(6b):0.5<fg2/f<1.25を満足することがさらに望ましい。ただし、fg2を第2レンズ群G2の合成焦点距離(第2レンズ群G2全体の合成焦点距離)とする。
 また、各撮像レンズ101、102、103それぞれは、絞りStを有するときに、条件式(7):13.5<dsi<22を満足することが望ましく、条件式(7a):13.8<dsi<20を満足することがより望まく、さらに条件式(7b):14<dsi<18を満足することがさらに望ましい。ただし、dsiを絞りStと結像面Imとの光軸上における間隔(バックフォーカス部分は空気換算距離)とする。すなわち、この「絞りStと結像面Imとの光軸上における間隔」は、カバーガラス等の光学要素LLの厚みに空気換算距離を適用して、第2群第3レンズL23の像側面の頂点と結像面Imとの間隔(バックフォーカス)を空気換算距離で表したものとする。
 なお、以下に条件式(1)、(2)、(3)、(4)、(5)、(6)、(7)に関する作用効果についてまとめて説明する。
〔条件式(1):0<f2/f<1.5の作用効果〕
 条件式(1)は、「第2レンズ群の最も物体側に配置されている正の屈折力を有する第2群第1レンズL21の焦点距離f2」と「レンズ全系の焦点距離f」との比率の範囲を規定するものである。
 条件式(1)を満足するように撮像レンズを構成することにより、負の屈折力を有する第1レンズ群G1(第1群第1レンズL1a)通って発散した光線を第2群第1レンズL21を通して適切に収束させるように、この2群第1レンズL21の屈折力を定めることができるので、撮像レンズをより小型化することができる。
 条件式(1)の上限を上回ると、第2群第1レンズL21の焦点距離f2が大きくなり、この第2群第1レンズL21と第1レンズ群G1との間隔が広がる傾向が強くなってレンズ全長が伸びるため、撮像レンズを小型化することが困難となる。
 条件式(1)の下限を下回ると、第1レンズ群G1と第2群第1レンズL21との間隔が短かくなるため小型化には向かうが、第2群第1レンズL21の正の屈折力が大きくなるためにタンジェンシャル像面がアンダー側に倒れるという問題が生じる。
 なお、上述の条件式(1a)、条件式(1b)の作用効果も、条件式(1)の場合と同様である。
〔条件式(2):0<|f1/f2|<0.9の作用効果〕
 条件式(2)は、「第1レンズ群G1(第1群第1レンズL1a)の焦点距離f1」と「第2レンズ群G2の最も物体側に配置されている正の屈折力を有する第2群第1レンズL21の焦点距離f2」との比率の範囲を規定するものである。
 条件式(2)を満足するように撮像レンズを構成することにより、負の屈折力を有する第1レンズ群G1を通って発散した光線を第2群第1レンズL21を通して適切に収束させることができるので、撮像レンズをより小型化することができる。
 条件式(2)の上限を上回ると、第1レンズ群G1の負の屈折力に比べて第2群第1レンズL21の正の屈折力が強くなるので像面がアンダー側に倒れるという問題が生じる。
 条件式(2)の下限を下回ると、第2群第1レンズL21の焦点距離f2が大きくなり、第1レンズ群G1と第2レンズ群G2との間隔が広がってレンズ全長が伸びる傾向が強くなるため小型化することが困難となる。
 なお、上述の条件式(2a)、条件式(2b)の作用効果も、条件式(2)の場合と同様である。
〔条件式(3):0.2<f2/f34の作用効果〕
 条件式(3)は、「第2レンズ群G2の最も物体側に配置されている正の屈折力を有する第2群第1レンズL21の焦点距離f2」と、「正の屈折力を有する第2群第2レンズL22と負の屈折力を有する第2群第3レンズL23の合成焦点距離f34」との比率の範囲を規定するものである。
 条件式(3)を満足するように撮像レンズを構成することにより、第2レンズ群G2を構成する各レンズによる屈折力のバランスを良好な状態に保つことができる。
 条件式(3)の下限を下回ると、短波長側の倍率色収差が補正過剰になるとともに、バックフォーカスが短くなる。
 また、条件式(3a):0.2<f2/f34<1や、条件式(3b):0.25<f2/f34<0.8を満足するように撮像レンズを構成することにより、第2レンズ群G2を構成する各レンズによる屈折力のバランスを良好な状態に保つことができる。
 ここで、条件式(3a)や、条件式(3b)の上限を上回ると、短波長側の倍率色収差が補正不足になる。
 また、条件式(3a)や、条件式(3b)の下限を下回ると、短波長側の倍率色収差が補正過剰になるとともに、バックフォーカスが短くなる。
〔条件式(4):0.9<dt3/f<1.3の作用効果〕
 条件式(4)は、「第2レンズ群G2の最も物体側に配置されている正の屈折力を有する第2群第1レンズL21の厚さdt3」と「レンズ全系の焦点距離f」との比率の範囲を規定するものである。
 条件式(4)の上限を上回ると、光学性能を高めることはできるが、加工性が悪化し製造コストが増大する。
 条件式(4)の下限を下回ると、収差補正のためにレンズ全長を伸ばす必要性が高まるため小型化することが困難となる。一方、レンズ全長を抑えようとすれば、球面収差が増大したり周辺タンジェンシャル像面がオーバー側に倒れる。
 なお、上述の条件式(4a)、条件式(4b)の作用効果も、条件式(4)の場合と同様である。
〔条件式(5):0<dk2/f<0.8の作用効果〕
 条件式(5)は、「第1レンズ群G1と第2レンズ群G2との間隔dk2(空気換算間隔)」と「レンズ全系の焦点距離f」との比率の範囲を規定するものである。
 条件式(5)を満足するように撮像レンズを構成することにより、小型化を図りつつ球面収差と像面収差のバランスを良好な状態に保つことができる。
 条件式(5)の上限を上回ると、収差補正のためにレンズ全長を伸ばす必要性が高まるため小型化することが困難となる。
 条件式(5)の下限を下回ると、小型化するには都合良くなるが、球面収差が増大する傾向が強くなったり、タンジェンシャル像面がオーバー側に倒れるという問題が生じる。
 なお、上述の条件式(5a)、条件式(5b)の作用効果も、条件式(5)の場合と同様である。
〔条件式(6):0<fg2/f<1.3の作用効果〕
 条件式(6)は、「第2レンズ群G2全体の合成焦点距離fg2」と「レンズ全系の焦点距離f」との比率の範囲を規定するものである。
 条件式(6)を満足するように撮像レンズを構成することにより、撮像レンズの小型化を図りつつ球面収差と像面収差とのバランスを良好な状態に保つことができる。
 条件式(6)の上限を上回ると、第1レンズ群G1とその後群との屈折力のバランスが崩れるため、タンジェンシャル像面がアンダー側に倒れる。
 条件式(6)の下限を下回ると、第1レンズ群G1とその後群の焦点距離が両方共に短くなり、屈折力が強くなるので高次の球面収差が発生しやすくなる。
 なお、上述の条件式(6a)、条件式(6b)の作用効果も、条件式(6)の場合と同様である。
〔条件式(7):13.5<dsi<22の作用効果〕
 条件式(7)は、上述の「絞りStと結像面Imとの光軸上における間隔(バックフォーカス部分は空気換算距離)」の範囲を規定するものである。
 条件式(7)を満足するように撮像レンズを構成すると、撮像レンズの全長や径を小さくして小型化することができる。
 条件式(7)の上限を上回ると、収差補正のためにレンズ全長を伸ばす必要性が高まるため小型化することが困難となる。所望のレンズ性能を得るためにはレンズ全長を長くしなければならなくなったり、短波長側の光に関する倍率色収差が補正不足になるという問題が生じる。
 一方、条件式(7)の下限を下回ると、球面収差が増大し「マージナル光線における球面収差」と「このマージナル光線の光線高の7割の光線高を通る光線における球面収差」との差が大きくなる。
 なお、上述の条件式(7a)、条件式(7b)の作用効果も、条件式(7)の場合と同様である。
 なお、上記各撮像レンズを撮像装置に適用する際には、その撮像装置の構成に応じて撮像レンズ101~103それぞれと撮像素子210との間にカバーガラスや、ローパスフィルタ、あるいは赤外線カットフィルタ等の、実質的に屈折力を有さない光学要素LLを配置することができる。例えば、撮像レンズ101~103それぞれが、車載カメラに搭載されて夜間の監視用カメラとして使用される場合には、撮像レンズと撮像素子との間に紫外光から青色光に亘る波長を持つ光をカットするようなフィルタを挿入することが望ましい。
 また、撮像レンズ101~103それぞれと撮像素子210との間にローパスフィルタや特定の波長域をカットするような各種フィルタ等を配置する代わりに、撮像レンズを構成するレンズの間に各種フィルタを配置したり、撮像レンズを構成するレンズ面に、各種フィルタと同様の作用を奏する薄膜を形成すること(コーティングを施すこと)もできる。
 上記撮像レンズ101~103それぞれが、例えば屋外の監視に適用される場合には、寒冷地の外気から熱帯地方の夏の車内まで広い温度範囲で使用可能なことが要求される。そのような場合には各撮像レンズを構成する全てのレンズの材質がガラスであることが好ましい。また、安価にレンズを製作するために、各撮像レンズを構成する全てのレンズが球面レンズであることが好ましい。しかしながら、コストよりも光学性能を優先する場合には非球面レンズを採用することができる。
 上記のように、本発明の第1から第3の実施の形態の撮像レンズは、高い光学性能を有し、かつ広画角化、コンパクト化を実現することができる。
 次に、本発明による撮像レンズの具体的な数値データを示す実施例について説明する。
 以下、図2~6、図7~11、表1~6を参照し、本発明の撮像レンズの実施例1~5それぞれの数値データ等についてまとめて説明する。なお、上述の撮像レンズ101、102、103を示す図1A、1B、1C中の符号と一致する図2~6中の符号は互に対応する構成を示している。
<実施例1>
 図2は、実施例1の撮像レンズの概略構成を、この撮像レンズを通る光の光路とともに示す図である。
 実施例1の撮像レンズは、上記第1から第3の実施の形態の撮像レンズに対応する構成を有するものである。この実施例1の撮像レンズは、上記条件式(1)、(2)、(3)、(4)、(5)、(6)、(7)を全て満足するように構成されている。
 また、表1は、実施例1の撮像レンズのレンズデータを示すものである。表1に示すレンズデータにおいて、面番号iは最も物体側の構成要素の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面Siの面番号を示す。なお、表1のレンズデータには開口絞りStやパワーを持たない光学要素LLも含めて面番号を付している。
 表1のRiはi番目(i=1、2、3、…)の面の曲率半径を示し、Diはi(i=1、2、3、…)番目の面とi+1番目の面との光軸Z1上の面間隔を示す。レンズデータの記号Riおよび記号Diは、レンズ面や絞り等を示す記号Si(i=1、2、3、・・・)と番号が対応している。
 また、条件式(4):0.9<dt3/f<1.3に記載の「dt3」は、上記レンズデータ中に記号「D3」で示す面間隔(レンズの厚み)に対応している。
 なお、条件式(5):0<dk2/f<0.8に記載の「dk2」は、上記レンズデータ中に記号「D2」で示す面間隔に対応している。
 また、Ndjは最も物体側の光学要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線(波長587.6nm)に対する屈折率を示し、νdjはj番目の光学要素のd線に対するアッベ数を示す。表1において、曲率半径および面間隔の単位はmmであり、曲率半径は物体側に凸の場合を正、像側に凸の場合を負としている。
 ここで、1番目の光学要素は第1群第1レンズL11、2番目の光学要素は第2群第1レンズL21、3番目の光学要素は第2群第2レンズL22、4番目の光学要素は第2群第3レンズL23、5番目の光学要素はパワーを持たない光学要素LLにそれぞれ対応している。このパワーを持たない光学要素LLは、例えば撮像素子の受光面上に配置されるカバーガラス等に対応するものである。
 なお、上記のような光学系は、一般にレンズ等の光学要素の寸法を比例拡大または比例縮小しても所定の性能を維持することが可能なため、上記レンズデータ全体を比例拡大または比例縮小した撮像レンズについても本発明に係る実施例とすることができる。
Figure JPOXMLDOC01-appb-T000001
 図7は、実施例1の撮像レンズの球面収差、非点収差、ディストーションおよび倍率色収差を示す図である。図中には、d線、F線、C線の各光に関する収差が示されている。なお、非点収差図には、サジタル像面およびタンジェンシャル像面に対する収差が示されている。
 図7中に示すように、記号(a)で示す図が球面収差を、記号(b)で示す図が非点収差を、記号(c)で示す図がディストーションを、記号(d)で示す図が倍率色収差を表している。
 また、上記ディストーションの図は、レンズ全系の焦点距離f、半画角θ(変数扱い、0≦θ≦ω)を用いて、理想像高をf×tanθとし、それからのずれ量を示す。
 また、実施例の説明の最後に示す表6は、1から5の各実施例毎に、各条件式中に記載の数式から求まる値を示すものである。なお、各条件式中に記載されている数式の値は、d線(波長587.56nm)に対するものであり、表1に示す撮像レンズに関するレンズデータ等から求めることができる。
 なお、上記実施例1の撮像レンズの構成を示す図2、撮像レンズの収差を示す図7、撮像レンズのレンズデータを示す表1、条件式中の記載「dt3」とレンズデータ中の記載「D3」との対応、条件式中の記載「dk2」とレンズデータ中の記載「D2」との対応、および条件式中の各数式の値を示す表6等の読取り方は、後述する実施例2~5についても同様なので、後述の実施例についてはそれらの説明は省略する。
<実施例2>
 図3は、実施例2の撮像レンズの概略構成を示す図である。この実施例2の撮像レンズは、上記第1から第3の実施の形態の撮像レンズに対応する構成を有するものである。この実施例2の撮像レンズは、上記条件式(1)、(2)、(3)、(4)、(5)、(6)、(7)を全て満足するように構成されている。
 図8は、実施例2の撮像レンズの収差を示す図である。
 下記表2に実施例2のレンズデータ示す。
Figure JPOXMLDOC01-appb-T000002
<実施例3>
 図4は、実施例3の撮像レンズの概略構成を示す図である。この実施例3の撮像レンズは、上記第1から第3の実施の形態の撮像レンズに対応する構成を有するものである。この実施例3の撮像レンズは、上記条件式(1)、(2)、(3)、(4)、(5)、(6)、(7)を全て満足するように構成されている。
 図9は、実施例3の撮像レンズの収差を示す図である。
 下記表3に実施例3のレンズデータ示す。
Figure JPOXMLDOC01-appb-T000003
<実施例4>
 図5は、実施例4の撮像レンズの概略構成を示す図である。この実施例4の撮像レンズは、上記第1から第3の実施の形態の撮像レンズに対応する構成を有するものである。この実施例4の撮像レンズは、上記条件式(1)、(2)、(3)、(4)、(5)、(6)、(7)を全て満足するように構成されている。
 図10は、実施例4の撮像レンズの収差を示す図である。
 下記表4に実施例4のレンズデータ示す。
Figure JPOXMLDOC01-appb-T000004
<実施例5>
 図6は、実施例5の撮像レンズの概略構成を示す図である。この実施例5の撮像レンズは、上記第1から第3の実施の形態の撮像レンズに対応する構成を有するものである。なお、実施例5の撮像レンズは、上記条件式(1)、(2)、(3)、(4)、(5)、(6)、(7)を全て満足するように構成されている。
 図11は、実施例5の撮像レンズの収差を示す図である。
 下記表5に実施例5のレンズデータ示す。
Figure JPOXMLDOC01-appb-T000005
 下記表6は、各条件式中に記載されている数式によって求められる値を示している。
Figure JPOXMLDOC01-appb-T000006
 上記のことからわかるように、実施例1~5の撮像レンズは、高い光学性能を有し、かつ広画角でコンパクトな撮像レンズとすることができる。
 図12に、本発明の撮像装置の1実施形態として、監視用カメラの概略構成図を示す。図12に示す監視用カメラ200は、略円筒状の鏡筒の内部に配置された本発明の撮像レンズ100(例えば、撮像レンズ101、102、103等)と、撮像レンズ100によって結像された被写体の光学像を撮像する撮像素子210とを備えている。撮像レンズ100を通してこの撮像素子210の受光面上に形成された光学像は電気信号Gsに変換されて、この監視用カメラ200から出力される。
 以上、第1~第3の実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。例えば、図1Cに示すような、接合レンズを有する撮像レンズに関する変形例として、第2レンズ群G2の像側に屈折力を有するレンズ群を配置した撮像レンズを挙げることができる。
 また、撮像装置の実施の形態では、本発明を監視用カメラに適用した例について図示して説明したが、本発明はこのような用途に限定されるものではなく、例えば、ビデオカメラや電子スチルカメラ、車載用カメラ等にも適用可能である。

Claims (22)

  1.  物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、
     前記第1レンズ群が、負の屈折力を有する単レンズである第1群第1レンズからなり、
     前記第2レンズ群が、物体側より順に、正の屈折力を有する第2群第1レンズ、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなり、
     以下の条件式(1)、(2)を同時に満足するものであることを特徴とする撮像レンズ。
       0<f2/f<1.5・・・(1)
       0<|f1/f2|<0.9・・・(2)
    ただし、
    f1:第1群第1レンズの焦点距離
    f2:第2群第1レンズの焦点距離
    f:レンズ全系の焦点距離
  2.  以下の条件式(1a)、(2a)を同時に満足するものであることを特徴とする請求項1記載の撮像レンズ。
       0.5<f2/f<1.5・・・(1a)
       0.4<|f1/f2|<0.85・・・(2a)
  3.  以下の条件式(1b)、(2b)を同時に満足するものであることを特徴とする請求項1記載の撮像レンズ。
       1<f2/f<1.45・・・(1b)
       0.5<|f1/f2|<0.8・・・(2b)
  4.  物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、
     前記第1レンズ群が、負の屈折力を有する単レンズである第1群第1レンズからなり、
     前記第2レンズ群が、物体側より順に、正の屈折力を有する第2群第1レンズ、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなり、
     以下の条件式(1)、(3)を同時に満足するものであることを特徴とする撮像レンズ。
       0<f2/f<1.5・・・(1)
       0.2<f2/f34・・・(3)
    ただし、
    f2:第2群第1レンズの焦点距離
    f:レンズ全系の焦点距離
    f34:第2群第2レンズと第2群第3レンズの合成焦点距離
  5.  以下の条件式(1a)、(3a)を同時に満足するものであることを特徴とする請求項4記載の撮像レンズ。
       0.5<f2/f<1.5・・・(1a)
       0.2<f2/f34<1・・・(3a)
  6.  以下の条件式(1b)、(3b)を同時に満足するものであることを特徴とする請求項4記載の撮像レンズ。
       1<f2/f<1.45・・・(1b)
       0.25<f2/f34<0.8・・・(3b)
  7.  物体側から順に、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群を備え、
     前記第1レンズ群が、負の屈折力を有し両凹形状をなす単レンズである第1群第1レンズからなり、
     前記第2レンズ群が、物体側より順に、正の屈折力を有する第2群第1レンズ、絞り、正の屈折力を有する第2群第2レンズ、負の屈折力を有する第2群第3レンズからなり、
     前記第2群第2レンズと前記第2群第3レンズとは互いに接合された接合レンズをなすものであり、
     以下の条件式(1)を満足するものであることを特徴とする撮像レンズ。
       0<f2/f<1.5・・・(1)
    ただし、
    f2:第2群第1レンズの焦点距離
    f:レンズ全系の焦点距離
  8.  以下の条件式(1a′)を満足するものであることを特徴とする請求項7記載の撮像レンズ。
       0.5<f2/f<1.4・・・(1a′)
  9.  前記第2レンズ群中に絞りを配置したことを特徴とする請求項1から6のいずれか1項記載の撮像レンズ。
  10.  前記第2群第1レンズが、両凸レンズであり、
     前記第2群第2レンズが、両凸レンズであり、
     前記第2群第3レンズが、メニスカスレンズであり、
     前記第2群第1レンズと前記第2群第2レンズとの間に絞りが配置され、かつ、前記第2群第2レンズと前記第2群第3レンズとは互いに接合された接合レンズをなすものであることを特徴とする請求項1から8のいずれか1項記載の撮像レンズ。
  11.  以下の条件式(4)を満足するものであることを特徴とする請求項1から10のいずれか1項記載の撮像レンズ。
       0.9<dt3/f<1.3・・・(4)
    ただし、
    dt3:第2群第1レンズの光軸上における厚さ
  12.  以下の条件式(4a)を満足するものであることを特徴とする請求項11記載の撮像レンズ。
       0.95<dt3/f<1.2・・・(4a)
  13.  以下の条件式(5)を満足するものであることを特徴とする請求項1から12のいずれか1項記載の撮像レンズ。
       0<dk2/f<0.8・・・(5)
    ただし、
    dk2:第1群第1レンズと第2群第1レンズとの光軸上における間隔(空気換算間隔)
  14.  以下の条件式(5a)を満足するものであることを特徴とする請求項13記載の撮像レンズ。
       0.1<dk2/f<0.7・・・(5a)
  15.  以下の条件式(5b)を満足するものであることを特徴とする請求項13記載の撮像レンズ。
       0.15<dk2/f<0.6・・・(5b)
  16.  以下の条件式(6)を満足するものであることを特徴とする請求項1から15のいずれか1項記載の撮像レンズ。
       0<fg2/f<1.3・・・(6)
    ただし、
    fg2:第2レンズ群全体の合成焦点距離
  17.  以下の条件式(6a)を満足するものであることを特徴とする請求項16記載の撮像レンズ。
       0.3<fg2/f<1.28・・・(6a)
  18.  以下の条件式(6b)を満足するものであることを特徴とする請求項16記載の撮像レンズ。
       0.5<fg2/f<1.25・・・(6b)
  19.  以下の条件式(7)を満足するものであることを特徴とする請求項1から18のいずれか1項記載の撮像レンズ。
       13.5<dsi<22・・・(7)
    ただし、
    dsi:絞りと結像面との光軸上における間隔(バックフォーカス部分は空気換算距離)
  20.  以下の条件式(7a)を満足するものであることを特徴とする請求項19記載の撮像レンズ。
       13.8<dsi<20・・・(7a)
  21.  以下の条件式(7b)を満足するものであることを特徴とする請求項19記載の撮像レンズ。
       14<dsi<18・・・(7b)
  22.  請求項1から21のいずれか1項記載の撮像レンズを備えたことを特徴とする撮像装置。
PCT/JP2012/004649 2011-07-29 2012-07-23 撮像レンズおよび撮像装置 WO2013018307A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280037804.8A CN103718080A (zh) 2011-07-29 2012-07-23 成像镜头和成像设备
US14/151,090 US20140126069A1 (en) 2011-07-29 2014-01-09 Imaging lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-166423 2011-07-29
JP2011166423 2011-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/151,090 Continuation US20140126069A1 (en) 2011-07-29 2014-01-09 Imaging lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2013018307A1 true WO2013018307A1 (ja) 2013-02-07

Family

ID=47628858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004649 WO2013018307A1 (ja) 2011-07-29 2012-07-23 撮像レンズおよび撮像装置

Country Status (4)

Country Link
US (1) US20140126069A1 (ja)
JP (1) JPWO2013018307A1 (ja)
CN (1) CN103718080A (ja)
WO (1) WO2013018307A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425238B2 (ja) * 2014-07-02 2018-11-21 カンタツ株式会社 撮像レンズ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174966A (ja) * 1993-11-01 1995-07-14 Asahi Optical Co Ltd 内視鏡対物レンズ
JPH09179022A (ja) * 1995-12-22 1997-07-11 Hitachi Ltd 単焦点レンズ
JPH09281387A (ja) * 1996-04-11 1997-10-31 Konica Corp 撮像レンズ
JP2004020972A (ja) * 2002-06-18 2004-01-22 Olympus Corp 撮影光学系およびそれを用いた内視鏡
JP2005024969A (ja) * 2003-07-03 2005-01-27 Minolta Co Ltd 撮像レンズ
JP2006003549A (ja) * 2004-06-16 2006-01-05 Olympus Corp 内視鏡用撮像ユニット及びその組立方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193884A (ja) * 1998-12-28 2000-07-14 Minolta Co Ltd 撮影レンズ系
JP4989235B2 (ja) * 2007-01-10 2012-08-01 キヤノン株式会社 ズームレンズ
JP5465018B2 (ja) * 2010-01-16 2014-04-09 キヤノン株式会社 ズームレンズ及びそれを有する光学機器
TWI429980B (zh) * 2011-05-11 2014-03-11 Largan Precision Co Ltd 影像拾取鏡頭組
TWI447427B (zh) * 2011-10-27 2014-08-01 Largan Precision Co Ltd 影像透鏡組

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174966A (ja) * 1993-11-01 1995-07-14 Asahi Optical Co Ltd 内視鏡対物レンズ
JPH09179022A (ja) * 1995-12-22 1997-07-11 Hitachi Ltd 単焦点レンズ
JPH09281387A (ja) * 1996-04-11 1997-10-31 Konica Corp 撮像レンズ
JP2004020972A (ja) * 2002-06-18 2004-01-22 Olympus Corp 撮影光学系およびそれを用いた内視鏡
JP2005024969A (ja) * 2003-07-03 2005-01-27 Minolta Co Ltd 撮像レンズ
JP2006003549A (ja) * 2004-06-16 2006-01-05 Olympus Corp 内視鏡用撮像ユニット及びその組立方法

Also Published As

Publication number Publication date
US20140126069A1 (en) 2014-05-08
JPWO2013018307A1 (ja) 2015-03-05
CN103718080A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5778284B2 (ja) 撮像レンズおよびこれを用いた撮像装置
JP5224455B2 (ja) 撮像レンズおよび撮像装置
WO2013153792A1 (ja) 撮像レンズおよび撮像装置
KR101758621B1 (ko) 어안 렌즈계 및 이를 구비한 촬영 장치
JP2009092798A (ja) 撮像レンズおよび撮像装置
JP2009092797A (ja) 撮像レンズおよび撮像装置
JP2009047947A (ja) 撮像レンズおよび撮像装置
JP2010091697A (ja) 撮像レンズおよび撮像装置
JP6001430B2 (ja) 撮像レンズ
JP5823522B2 (ja) 撮像レンズおよびこれを用いた撮像装置
JP2011128210A (ja) 撮像レンズおよび撮像装置
JP5806737B2 (ja) 撮像レンズおよび撮像装置
JP5778280B2 (ja) 撮像レンズおよび撮像装置
JP5796915B2 (ja) 撮像レンズおよびこれを用いた撮像装置
JP5807066B2 (ja) 撮像レンズおよび撮像装置
JP5782123B2 (ja) 撮像レンズおよび撮像装置
WO2013018307A1 (ja) 撮像レンズおよび撮像装置
JP2006078820A (ja) 撮像レンズおよびこれを備えた撮像モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820098

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013526736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820098

Country of ref document: EP

Kind code of ref document: A1