WO2013018123A1 - Thin film transistor and method for manufacturing same - Google Patents

Thin film transistor and method for manufacturing same Download PDF

Info

Publication number
WO2013018123A1
WO2013018123A1 PCT/JP2011/004350 JP2011004350W WO2013018123A1 WO 2013018123 A1 WO2013018123 A1 WO 2013018123A1 JP 2011004350 W JP2011004350 W JP 2011004350W WO 2013018123 A1 WO2013018123 A1 WO 2013018123A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon layer
crystalline silicon
film transistor
thin film
Prior art date
Application number
PCT/JP2011/004350
Other languages
French (fr)
Japanese (ja)
Inventor
林 宏
孝啓 川島
玄士朗 河内
Original Assignee
パナソニック株式会社
パナソニック液晶ディスプレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, パナソニック液晶ディスプレイ株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/004350 priority Critical patent/WO2013018123A1/en
Publication of WO2013018123A1 publication Critical patent/WO2013018123A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate

Definitions

  • the present invention relates to a thin film transistor, a method for manufacturing the same, and a display device.
  • organic EL displays using organic electroluminescence (EL) as one of the next generation flat panel displays that replace liquid crystal displays have attracted attention.
  • an organic EL display is a current-driven device, and development of a thin film transistor (thin film semiconductor device) having excellent on / off characteristics as a drive circuit for an active matrix display device is urgently required. Yes.
  • a thin film transistor in which a crystalline silicon layer is formed on a gate insulating layer and an amorphous silicon layer is formed on both sides of the crystalline silicon layer is disclosed as a thin film transistor that realizes excellent on and off characteristics (patent) Reference 1).
  • a thin film transistor that realizes excellent on and off characteristics (patent) Reference 1).
  • laser light is irradiated to amorphous silicon from an opening between a source electrode and a drain electrode. Thereby, only the amorphous silicon in the central region of the channel layer exposed at the opening can be formed as crystalline silicon.
  • amorphous silicon The mobility of amorphous silicon is about 1 cm 2 / Vs, whereas the mobility of crystalline silicon is as large as about 100 cm 2 / Vs, so that the on-state current can be increased by forming crystalline silicon.
  • an amorphous silicon layer is formed on both sides of the crystalline silicon layer.
  • amorphous silicon has a large band gap, and has a large energy barrier necessary for heat generation of electrons and holes and a potential barrier in which a tunnel effect occurs. Therefore, by forming an amorphous silicon layer on both sides of the crystalline silicon layer, generation of heat generation current and tunnel leakage current can be prevented, and off current can be reduced.
  • the crystalline silicon that increases the on-current and the amorphous silicon that decreases the off-current as the channel layer excellent on-characteristics and off-characteristics can be realized.
  • the portion where the source electrode, the drain electrode, the channel protective layer, and the channel layer overlap is made of amorphous silicon. That is, the ratio of the amorphous silicon layer to the channel length of the thin film transistor defined by the width of the channel protective layer is large.
  • the amorphous silicon layer acts as a resistance component and becomes a barrier for a current path parallel to the channel layer. As described above, since the resistance component due to the amorphous silicon exists in the horizontal direction in the channel layer, there is a limit in improving the on-characteristic.
  • the source electrode and the drain electrode Furthermore, manufacturing variations occur when forming the source electrode and the drain electrode. Therefore, it is difficult to form the source electrode and the drain electrode evenly with respect to the lower layer existing before the source electrode and the drain electrode are formed. is there.
  • the amorphous silicon layer is irradiated with laser from the opening of the source electrode and the drain electrode to crystallize the amorphous silicon layer. The distance from the crystalline silicon region formed by the crystallization of the amorphous silicon to the source electrode, and the distance from the crystalline silicon region formed by the crystallization of the amorphous silicon to the drain electrode And are not even.
  • the resistance component in the channel path by the amorphous silicon layer existing in the portion where the source electrode, the drain electrode, the channel protective layer, and the channel layer overlap is biased on either the source electrode side or the drain electrode side. Therefore, the characteristics of the thin film transistor between different substrates vary. In the case where a thin film transistor is formed over a large substrate, the positional deviation when forming the source electrode and the drain electrode is larger than that in the small substrate, which is a particular problem in forming the thin film transistor over the large substrate. Even in the same substrate, when the source electrode and the drain electrode are switched and operated, the electrical characteristics become asymmetric with respect to the switching of the source electrode and the drain electrode.
  • An object of the present invention is to provide a thin film transistor, a manufacturing method thereof, and a display device.
  • the thin film transistor of the present invention includes a substrate, a gate electrode formed on the substrate, a gate insulating layer formed on the gate electrode, and the gate insulating layer.
  • the drain electrode formed above the other of the amorphous silicon layer, and the thickness of the crystalline silicon layer and the thickness of the amorphous silicon layer are the same.
  • a thin film transistor a manufacturing method thereof, and a display device, which can achieve both excellent on characteristics and excellent off characteristics, and whose electrical characteristics are symmetrical with respect to replacement of a source electrode and a drain electrode. be able to.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film transistor according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a thin film transistor according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a change in current-voltage characteristics of the thin film transistor when the crystallinity of the channel layer is changed.
  • FIG. 4A is a diagram showing a change in crystallinity of the crystalline silicon layer when the laser light absorptance of the amorphous silicon layer and the scan speed of the laser light are changed in laser annealing.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film transistor according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a thin film transistor according to the first embodiment of the present invention.
  • FIG. 3 is
  • FIG. 4B is a diagram for explaining a method of calculating the light absorption rate into the amorphous silicon layer.
  • FIG. 5A is a contour diagram showing the calculation result of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing.
  • FIG. 5B is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. .
  • FIG. 5A is a contour diagram showing the calculation result of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing.
  • FIG. 5C is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing.
  • FIG. 5D is a contour diagram showing calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing.
  • FIG. 5E is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. .
  • FIG. 5C is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing.
  • FIG. 5D is a contour diagram
  • FIG. 5F is a contour diagram showing calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing.
  • FIG. 6A shows a value obtained by dividing the optical film thickness of the gate insulating layer, which is a value obtained by adding the refractive index of the gate insulating layer to the film thickness of the gate insulating layer in laser annealing, by dividing the wavelength of the laser beam by 0.330 (wavelength It is a figure which shows the change of the absorptivity of an amorphous silicon layer when it is set as a silicon oxide layer film thickness corresponding to 120 nm at 532 nm.
  • FIG. 6A shows a value obtained by dividing the optical film thickness of the gate insulating layer, which is a value obtained by adding the refractive index of the gate insulating layer to the film thickness of the gate insulating layer in laser annealing, by
  • FIG. 6B is a diagram showing an example of a value obtained by converting the value on the horizontal axis of FIGS. 5A to 5F into the film thickness of the amorphous silicon layer.
  • FIG. 6C is a diagram illustrating an example of a value obtained by converting the value on the vertical axis in FIGS. 5A to 5F into the film thickness of the silicon oxide layer or the silicon nitride layer.
  • FIG. 7 is a contour line showing the calculation results of the absorptivity of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer and the thickness of the gate insulating layer are changed in laser annealing.
  • FIG. 8A is a diagram showing a change in the absorptance of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer is changed.
  • FIG. 8B is a diagram showing a change in the absorptance of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer is changed.
  • FIG. 8C is a diagram showing a change in the absorptance of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer is changed.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the thin film transistor according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the thin film transistor according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a thin film transistor according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a configuration of a thin film transistor according to a modification of the first and second embodiments of the present invention.
  • FIG. 12 is a diagram showing a change in crystallinity of the crystalline silicon layer when the laser light absorption rate of the amorphous silicon layer and the scan speed of the laser light are changed in laser annealing.
  • FIG. 13A is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. .
  • FIG. 13B is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIG. 13A into the thicknesses of the silicon oxide layer and the silicon nitride layer included in the gate insulating layer 120.
  • FIG. 13C is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIG. 13A into the thicknesses of the silicon oxide layer and the silicon nitride layer included in the gate insulating layer 120.
  • FIG. 13D is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIG. 13A into the thicknesses of the silicon oxide layer and the silicon nitride layer included in the gate insulating layer 120.
  • FIG. 13C is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIG. 13A into the thicknesses of the silicon oxide layer and the silicon nitride layer included in the gate insulating layer 120.
  • FIG. 13D is
  • FIG. 14 is a cross-sectional view schematically showing a configuration of a thin film transistor according to a comparative example of the first and second embodiments of the present invention.
  • FIG. 15 is an external view of a display device according to the third embodiment of the present invention.
  • FIG. 16 is a partially cutaway perspective view of an organic EL panel according to the third embodiment of the present invention.
  • FIG. 17 is a diagram showing a circuit configuration of a pixel of an organic EL panel according to the third embodiment of the present invention.
  • FIG. 18A is a top view showing a state of laser light irradiation according to the embodiment of the present invention.
  • FIG. 18B is a cross-sectional view showing the rising of the amorphous silicon layer according to the embodiment of the present invention.
  • FIG. 18C is a diagram showing a change in the amount of swelling of the amorphous silicon layer with respect to the input energy of the laser beam according to the embodiment of the present invention.
  • a thin film transistor includes a substrate, a gate electrode formed over the substrate, a gate insulating layer formed over the gate electrode, and the gate insulating layer.
  • a crystalline silicon layer formed above the gate electrode; an amorphous silicon layer formed on both sides of the crystalline silicon layer on the gate insulating layer; and the crystalline silicon A crystallization control layer formed on the layer; and the amorphous silicon layer along an upper surface of an end portion of the crystallization control layer, a side surface of the crystallization control layer, and an upper surface of the amorphous silicon layer.
  • a source electrode formed on one side of the first electrode and a drain electrode formed on the other side of the non-crystalline silicon layer, and the thickness of the crystalline silicon layer and the thickness of the non-crystalline silicon layer are Same And wherein the Rukoto.
  • the average grain size of crystals contained in the crystalline silicon layer may be 10 nm or more and 1 ⁇ m or less.
  • both ends of the crystalline silicon layer and both ends of the crystallization control layer may be arranged at the same position on the semiconductor substrate.
  • the crystalline silicon layer and the source electrode may have an overlapping region
  • the crystalline silicon layer and the drain electrode may have an overlapping region
  • the channel layer is formed from the crystalline silicon layer formed under the crystallization control layer and the amorphous silicon layers formed on both sides of the crystalline silicon layer.
  • the crystalline silicon layer is formed under the crystallization control layer, and the crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer.
  • the direction resistance component decreases. In this way, all of the channel length defined by the width of the crystallization control layer is occupied by the crystalline silicon layer, and the horizontal resistance component of the channel layer due to the amorphous silicon layer is reduced, so that the on-characteristic Can be significantly improved.
  • the portion of the channel layer is made more than when the portions on both sides of the crystalline silicon layer of the channel are made of a crystalline silicon layer.
  • the band gap on both sides of the crystalline silicon layer is increased. Therefore, the heat generation current and the tunnel current can be greatly suppressed, and the off characteristics can be greatly reduced.
  • the crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the underlying crystallization control layer, the distance from the crystalline silicon layer to the source electrode in the channel path and the crystalline silicon layer in the channel path The distance to the drain electrode becomes uniform, and variations in characteristics of thin film transistors between different substrates can be suppressed. Further, even when the source electrode and the drain electrode are exchanged in the same substrate, the electrical characteristics are symmetric with respect to the exchange of the source electrode and the drain electrode. Occurrence of problems associated with asymmetry of electrical characteristics can be suppressed.
  • the thin film transistor includes a substrate, a gate electrode formed over the substrate, a gate insulating layer formed over the gate electrode, and the gate insulating layer.
  • the average grain size of the crystals contained in the first crystalline silicon layer is 40 nm or more and 1 ⁇ m or less
  • the average grain size of the crystals contained in the second crystalline silicon layer is 10 nm or more and less than 40 nm. Good.
  • both end portions of the first crystalline silicon layer and both end portions of the crystallization control layer may be arranged at the same position on the semiconductor substrate.
  • first crystalline silicon layer and the source electrode may have an overlapping region
  • first crystalline silicon layer and the drain electrode may have an overlapping region
  • the first crystalline silicon layer having a low resistance formed under the crystallization control layer and the crystalline structure of the first crystalline silicon layer formed on both sides of the first crystalline silicon layer are compared with each other.
  • a channel layer is formed from the second crystalline silicon layer having a small average grain size and high resistance. Therefore, the first crystalline silicon layer is formed under the crystallization control layer, and the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. The horizontal resistance component of the channel layer due to the crystalline silicon layer is reduced.
  • the portions on both sides of the first crystalline silicon layer of the channel layer are made of crystalline silicon layers having a small average crystal grain size, so the portions on both sides of the first crystalline silicon layer of the channel layer are There are more components of amorphous silicon having lower crystallinity and a larger band gap than in the case of a crystalline silicon layer having a large average crystal grain size. Therefore, the heat generation current and the tunnel current can be greatly suppressed, and the off characteristics can be greatly reduced.
  • the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the lower crystallization control layer, the distance from the low resistance crystalline silicon layer to the source electrode in the channel path and the low resistance in the channel path. Thus, the distance from the crystalline silicon layer to the drain electrode becomes uniform, and variations in characteristics of the thin film transistor between different substrates can be suppressed. Further, even when the source electrode and the drain electrode are exchanged in the same substrate, the electrical characteristics are symmetric with respect to the exchange of the source electrode and the drain electrode. Occurrence of problems associated with asymmetry of electrical characteristics can be suppressed.
  • the crystallinity of each of the first crystalline silicon layer of the channel layer and the second crystalline silicon layers on both sides of the channel layer is determined by placing importance on on-current or off-current. Can be made according to the design.
  • the thin film transistor manufacturing method includes a first step of preparing a substrate, a second step of forming a gate electrode over the substrate, and a gate insulating layer formed over the gate electrode. Three steps, a fourth step of forming an amorphous silicon layer on the gate insulating layer, a fifth step of forming a crystallization control layer on the amorphous silicon layer, and the crystallization control layer. A sixth step of patterning so as to leave a region above the gate electrode, a laser beam is continuously applied to the patterned crystallization control layer and the non-crystalline silicon layer on which the crystallization control layer is not formed.
  • the amorphous silicon layer in which the crystallization control layer is formed is used as a crystalline silicon layer
  • the non-crystalline silicon layer in which the crystallization control layer is not formed is used as an amorphous silicon layer.
  • the crystalline silicon layer containing crystals having an average particle diameter of 10 nm or more and 1 ⁇ m or less may be formed by irradiation with the laser beam.
  • the absorptance of the amorphous silicon layer in which the crystallization control layer is formed with respect to the laser light is the same as that in the amorphous silicon layer in which the crystallization control layer is not formed. It may be larger than the absorptance with respect to laser light.
  • the laser beam interference effect inside the crystallization control layer, the amorphous silicon layer and the gate insulating layer and the laser beam interference effect inside the amorphous silicon layer and the gate insulating layer are utilized.
  • a crystalline silicon layer is formed. That is, the non-crystalline silicon layer under the crystallization control layer is configured to increase the laser light absorption rate, and the non-crystalline silicon layers existing on both sides of the non-crystalline silicon layer under the crystallization control layer are A crystalline silicon layer is formed by irradiating a laser beam after having a structure with low absorptance.
  • the amorphous silicon layer under the crystallization control layer has a structure in which the absorptance of laser light is increased, the amorphous silicon layer is crystallized as a crystalline silicon layer when irradiated with laser light.
  • the non-crystalline silicon layers existing on both sides of the non-crystalline silicon layer under the crystallization control layer have a structure in which the absorption rate of the laser light is low. It remains as a channel layer. Therefore, a channel layer composed of a crystalline silicon layer and an amorphous silicon layer formed on both sides of the crystalline silicon layer can be formed. As a result, both excellent on characteristics and off characteristics can be achieved.
  • the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the lower crystallization control layer, the distance from the low resistance crystalline silicon layer to the source electrode in the channel path and the low resistance in the channel path. The distance from the crystalline silicon layer to the drain electrode becomes uniform, and the electrical characteristics can be made symmetrical with respect to the replacement of the source electrode and the drain electrode.
  • the wavelength of the laser beam may be not less than 473 nm and not more than 561 nm.
  • the laser beam interference effect can be easily generated in the crystallization control layer, the amorphous silicon layer, and the gate insulating layer, and the portion of the channel layer where the crystallization control layer is formed It is possible to easily cause a difference in the absorption rate of the laser light between the portions on both sides.
  • the thin film transistor manufacturing method includes a first step of preparing a substrate, a second step of forming a gate electrode over the substrate, and a gate insulating layer formed over the gate electrode. Three steps, a fourth step of forming an amorphous silicon layer on the gate insulating layer, a fifth step of forming a crystallization control layer on the amorphous silicon layer, and the crystallization control layer. A sixth step of patterning so as to leave a region above the gate electrode, a laser beam is continuously applied to the patterned crystallization control layer and the non-crystalline silicon layer on which the crystallization control layer is not formed.
  • the first crystalline silicon layer including crystals having an average grain size larger than an average grain size of crystals contained in the layer is formed.
  • the average grain size of the crystals contained in the first crystalline silicon layer is 40 nm or more and 1 ⁇ m or less
  • the average grain size of the crystals contained in the second crystalline silicon layer is 10 nm or more and less than 40 nm. May be.
  • the absorptance of the amorphous silicon layer in which the crystallization control layer is formed with respect to the laser light is the same as that in the amorphous silicon layer in which the crystallization control layer is not formed. It may be larger than the absorptance with respect to laser light.
  • the first crystalline silicon layer that is, the amorphous silicon layer that forms the highly crystalline channel layer, in which the crystallization control layer is formed
  • the second crystalline silicon layer that is, the crystalline property.
  • a portion of the amorphous silicon layer that forms a low channel layer where the crystallization control layer is not formed is also irradiated with laser. Therefore, if the intensity of the laser beam and the film thickness are appropriately selected, there is a degree of freedom in forming a low crystalline channel layer up to a crystalline silicon layer having a small average crystal grain size.
  • the entire region of the channel layer has the average grain size of the first crystalline silicon layer. Compared to the above, off characteristics can be reduced.
  • the first crystalline silicon layer has a larger average crystal grain size and lower resistance than the second crystalline silicon layer, the entire region of the channel layer has an average grain size of the second crystalline silicon layer.
  • the transverse resistance can be lowered and the on-current can be increased. Therefore, a region having a large average particle size and a region having a small average particle size in the channel layer can be formed according to a desired thin film transistor design, such as emphasizing on-current or emphasizing off-current. As a result, both excellent on characteristics and off characteristics can be achieved.
  • the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the lower crystallization control layer, the distance from the low resistance crystalline silicon layer to the source electrode in the channel path and the low resistance in the channel path. The distance from the crystalline silicon layer to the drain electrode becomes uniform, and the electrical characteristics can be made symmetrical with respect to the replacement of the source electrode and the drain electrode.
  • the wavelength of the laser beam may be not less than 473 nm and not more than 561 nm.
  • the laser beam interference effect can be easily generated in the crystallization control layer, the amorphous silicon layer, and the gate insulating layer, and the portion of the channel layer where the crystallization control layer is formed It is possible to easily cause a difference in the absorption rate of the laser light between the portions on both sides.
  • the laser light absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed, and the non-crystalline silicon layer in which the crystallization control layer is not formed The difference from the absorption rate with respect to the laser beam may be 7% or more.
  • the portion of the channel layer where the crystallization control layer is formed can be a polycrystalline silicon layer, and the portion of the channel layer where the crystallization control layer is not formed can be a microcrystalline silicon layer.
  • the laser light absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed, and the non-crystalline silicon layer in which the crystallization control layer is not formed The difference from the absorption rate with respect to the laser light may be 1% or more.
  • the portion of the channel layer where the crystallization control layer is formed is a polycrystalline silicon layer, and the portion of the channel layer where the crystallization control layer is not formed is an amorphous silicon layer or a microcrystalline silicon layer. It can also be.
  • l and m are integers starting from 0, and the refractive index of the amorphous silicon layer is set to a film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer.
  • the value obtained by dividing the optical film thickness of the amorphous silicon layer, which is the integrated value, by the wavelength of the laser beam is X, and the value obtained by integrating the refractive index of the gate insulating layer to the film thickness of the gate insulating layer.
  • a value obtained by dividing the optical film thickness of a certain gate insulating layer by the wavelength of the laser beam may be Y, and X and Y may satisfy the following (Expression 1) and (Expression 2).
  • the absorption rate of the laser beam in the portion where the crystallization control layer of amorphous silicon is formed can include the maximum absorption rate, for example, 50% or more.
  • the gate insulating layer composed of a silicon nitride layer and a silicon oxide layer formed on the silicon nitride layer may be formed.
  • the gate insulating layer includes a capacitance of a series capacitor formed by the silicon nitride layer and the silicon oxide layer, and a capacitance of a single silicon oxide layer having a thickness of 100 nm to 140 nm. May be formed in such a film thickness that becomes equal to each other.
  • the gate insulating layer has a two-layer structure, and the absorptance of the laser beam in the portion where the amorphous silicon crystallization control layer is formed can be increased.
  • the average grain size of the crystal in the portion where the crystallization control layer of the channel layer is formed can be increased, and the on-current can be increased.
  • n is an integer starting from 0, and the refractive index of the amorphous silicon layer is added to the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer.
  • the value obtained by dividing the optical film thickness of the amorphous silicon layer by the wavelength of the laser beam is X, and the gate insulating layer composed of the silicon nitride layer and the silicon oxide layer is used as the refractive index of the silicon oxide layer.
  • the value obtained by dividing the optical film thickness converted by (1) by the value obtained by integrating the refractive index of the silicon oxide layer and the wavelength of the laser beam is defined as Y, where X and Y are the following (Expression 3) and (Expression 4). Or (Equation 5) and (Equation 6) may be satisfied.
  • the absorption rate of the laser beam in the portion where the crystallization control layer of amorphous silicon is formed includes the maximum absorption rate, for example, 50 % Or more.
  • the optical thickness of the crystallization control layer which is a value obtained by integrating the refractive index of the crystallization control layer to the thickness of the crystallization control layer, is divided by the wavelength of the laser beam.
  • the value may be Z, k may be an integer starting from 0, and the Z may satisfy (Equation 7) below.
  • the crystallization control layer functions as an antireflection film for laser light, and can increase the laser light absorption rate of amorphous silicon.
  • the degree of increase in the absorptance periodically varies with the film thickness of the crystallization control layer, but the range in which the absorptance particularly increases is expressed by (Equation 7) using the optical film thickness of the crystallization control layer. . Therefore, by forming the crystallization control layer that satisfies (Equation 7), the absorption efficiency of the laser light below the channel layer can be increased.
  • the amorphous silicon layer may be formed so that the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer is 100 nm or less.
  • the laser light passes through the amorphous silicon layer in the thickness direction and attenuates until reaching the position directly above the gate insulating layer serving as a current path.
  • the film thickness of the amorphous silicon layer is set to 100 nm or less, the laser light penetrates deeply into the amorphous silicon layer and crystallizes to the amorphous silicon layer directly above the gate insulating layer serving as a current path. be able to. Thereby, the subthreshold swing characteristic of the thin film transistor can be improved.
  • the amorphous silicon layer may be formed so that the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer is 10 nm or more.
  • the amorphous silicon layer When the amorphous silicon layer is extremely thin, the absorption rate of the laser beam by the amorphous silicon layer is low. Therefore, most of the energy of the laser beam transmitted through the amorphous silicon layer is input to the gate electrode, and the gate The electrode will be damaged. However, by setting the thickness of the amorphous silicon layer to 10 nm or more, damage to the gate electrode due to excessive laser light can be prevented.
  • the substrate having an undercoat layer formed on the surface may be prepared, and in the second step, the gate electrode may be formed on the undercoat layer.
  • the intrusion of impurities contained in the substrate into the channel layer can be suppressed.
  • a metal film made of a refractory metal containing Mo or MoW or an alloy of the refractory metal may be formed as the gate electrode.
  • a film having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser beam may be formed as the gate insulating layer.
  • the light absorption of the laser light by the gate insulating layer can be suppressed, and the absorption rate of the amorphous silicon laser light can be increased.
  • a silicon oxide layer may be formed as the gate insulating layer.
  • a silicon nitride layer may be formed as the gate insulating layer.
  • a film having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser beam may be formed as the crystallization control layer.
  • a silicon oxide layer may be formed as a crystallization control layer.
  • a silicon nitride layer may be formed as a crystallization control layer.
  • the laser light may be light in a continuous oscillation mode or a pseudo continuous oscillation mode.
  • the laser light may be light emitted from a solid-state laser device.
  • the laser light may be light emitted from a laser device using a semiconductor laser element.
  • the fluctuation of the irradiation energy density of the laser light on the amorphous silicon layer may be less than 5%.
  • the non-crystalline silicon layer on which the crystallization control layer is formed and the non-crystalline silicon layer on which the crystallization control layer is not formed at a constant scan speed with laser light May be continuously irradiated.
  • a display device is a display device including a liquid crystal panel or an organic EL panel, and includes the thin film transistor.
  • the thin film transistor includes the liquid crystal panel when the display device includes the liquid crystal panel.
  • the organic EL panel is driven when the display device includes the organic EL panel.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film transistor according to the present embodiment.
  • This thin film transistor is a channel protection type bottom gate thin film transistor for a display device, and includes a substrate 100, a gate electrode 110 formed on the substrate 100, a gate insulating layer 120 formed on the gate electrode 110, A crystalline silicon layer 131 formed on the gate insulating layer 120 and above the gate electrode 110; and an amorphous silicon layer formed on both sides of the crystalline silicon layer 131 on the gate insulating layer 120.
  • a drain electrode 172 formed on the other of the upper con layer 130 is identical to the thickness of each of the crystalline silicon layer 131 and the amorphous silicon layer 130.
  • a contact layer 162 formed between the amorphous silicon layer 130 and the source electrode 171 and a contact layer 161 formed between the amorphous silicon layer 130 and the drain electrode 172 are provided.
  • both ends of the crystalline silicon layer 131 and both ends of the channel protective layer 140 are disposed at the same position on the substrate 100.
  • the crystalline silicon layer 131 and the source electrode 171 have an overlapping region, and the crystalline silicon layer 131 and the drain electrode 172 have an overlapping region.
  • the substrate 100 is a glass substrate made of a glass material such as quartz glass, non-alkali glass, and high heat resistance glass. Note that in order to prevent impurities such as sodium and phosphorus contained in the glass substrate from entering the crystalline silicon layer 131 and the amorphous silicon layer 130, silicon nitride (SiNx), silicon oxide (SiOy) is formed on the surface. Or a substrate on which an undercoat layer made of silicon oxynitride film (SiOyNx) or the like is formed. In addition, the undercoat layer may play a role of reducing the influence of heat on the substrate 100 in a high-temperature heat treatment process such as laser annealing. The thickness of the undercoat layer is, for example, about 100 nm to 2000 nm.
  • the gate electrode 110 has a single layer structure or a multilayer structure such as a conductive material that can withstand the melting point temperature of silicon or an alloy thereof.
  • a conductive material that can withstand the melting point temperature of silicon or an alloy thereof.
  • molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W) , Ta (tantalum), Nb (niobium), Ni (nickel), titanium (Ti), chromium (Cr), molybdenum tungsten (MoW), etc. are formed on the substrate 100 and patterned into a predetermined shape. It is formed.
  • the thickness of the gate electrode 110 is preferably 30 nm to 300 nm, more preferably 50 nm to 100 nm.
  • the thickness of the gate electrode 110 is small, the transmittance of the gate electrode 110 increases, and the reflection of the laser beam is likely to decrease.
  • the thickness of the gate electrode 110 is large, the coverage of the gate insulating layer 120 is lowered, and in particular, the characteristics of the thin film transistor are deteriorated such that the gate insulating layer 120 is disconnected at the end of the gate electrode 110. This is because it becomes easier.
  • the crystalline silicon layer 131 and the amorphous silicon layer 130 are semiconductor layers formed on the gate insulating layer 120 and constitute a channel layer whose carrier movement is controlled by the voltage of the gate electrode 110.
  • the crystalline silicon layer 131 is formed of a crystalline silicon layer such as a polycrystalline silicon layer, and is made polycrystalline by irradiating a part of amorphous silicon of the amorphous silicon layer 130 with a laser. Formed).
  • the crystalline silicon layer 131 can be a silicon layer having a mixed crystal structure of amorphous silicon and a crystalline silicon layer.
  • the average particle diameter of crystals contained in the crystalline silicon layer 131 is 10 nm or more and 1 ⁇ m or less.
  • the bottom surface of the crystalline silicon layer 131 of the channel layer and the bottom surface of the amorphous silicon layer 130 are flush and form the same plane, and the top surface of the crystalline silicon layer 131 and the top surface of the amorphous silicon layer 130 are also formed. Similarly, the same plane is formed on the same plane.
  • the crystalline silicon layer 131 is located above the gate electrode 110, and both ends thereof are located inside the both ends of the gate electrode 110. That is, the gate length (channel length) of the gate electrode 110 is longer than the length of the channel layer in the gate length direction.
  • both sides of the crystalline silicon layer 131 of the channel layer, that is, the amorphous silicon layer 130 of the channel layer serve as a charge transfer path.
  • the gate insulating layer 120 is made of, for example, silicon oxide, silicon nitride, silicon oxynitride film, aluminum oxide (AlOz), tantalum oxide (TaOw), or a laminated film thereof, and covers the gate electrode 110 on the substrate 100 so as to cover it. It is formed on the substrate 100 and the gate electrode 110.
  • the gate insulating layer 120 is preferably formed of silicon oxide. This is because it is preferable to make the interface state between the channel layer and the gate insulating layer 120 good in order to maintain good threshold voltage characteristics in the TFT.
  • the channel protective layer 140 is a light-transmitting crystallization control layer that controls the degree of crystallization from amorphous silicon in the formation of the crystalline silicon layer 131, and is a protective film that protects the channel layer, It is formed on the upper surface of the crystalline silicon layer 131 of the channel layer.
  • the side surface of the channel protective layer 140 and the side surface of the crystalline silicon layer 131 are flush with each other.
  • the channel protective layer 140 functions as a channel etching stopper (CES) layer for preventing the channel layer from being etched during the etching process when forming the pair of contact layers 161 and 162.
  • CES channel etching stopper
  • the upper portion of the channel protective layer 140 is etched by etching when patterning the contact layers 161 and 162 (not shown).
  • the channel protective layer 140 is an inorganic material layer mainly composed of an inorganic material such as silicon oxide or silicon nitride. Note that the channel protective layer 140 has an insulating property, and the pair of contact layers 161 and 162 are not electrically connected to each other.
  • the pair of contact layers 161 and 162 is made of an amorphous semiconductor layer containing impurities at a high concentration or a polycrystalline semiconductor layer containing impurities at a high concentration, and a part of the contact layers 161 and 162 is located above the channel layer with a channel protection layer 140 interposed therebetween. The other part is formed on and in contact with the channel layer. Further, the pair of contact layers 161 and 162 are arranged to face each other with a predetermined interval on the channel protective layer 140.
  • Each of the pair of contact layers 161 and 162 is formed so as to extend from the upper surface of the channel protective layer 140 to the amorphous silicon layer 130 of the channel layer. It is formed so as to cover the side surface of the crystalline silicon layer 131 and the upper surface of the amorphous silicon layer 130. More specifically, the two contact layers 161 and 162 are separately provided on both sides of the crystalline silicon layer 131 of the channel layer, and are formed on the upper surface and side surface of the end portion of the channel protective layer 140 and on the side surface of the channel protective layer 140. It is formed on the upper surface of the amorphous silicon layer 130 of the sparse channel layer.
  • the pair of contact layers 161 and 162 is, for example, an n-type semiconductor layer in which amorphous silicon is doped with phosphorus (P) as an impurity, and a high-concentration impurity of 1 ⁇ 10 19 [atm / cm 3 ] or more is formed. Including n + layer.
  • Each of the contact layers 161 and 162 can have a film thickness of, for example, 5 nm to 100 nm.
  • the pair of source electrode 171 and drain electrode 172 are formed along the upper surface and side surface of the end portion of the channel protective layer 140 and the upper surface of the non-crystalline silicon layer 130 of the channel layer connected to the side surface of the channel protective layer 140. In addition, the pair of source electrode 171 and drain electrode 172 are provided to be separated from each other.
  • the pair of source electrode 171 and drain electrode 172 is formed above the channel layer, and is formed on the corresponding contact layer 161 or 162, respectively. That is, the source electrode 171 is formed on the pair of contact layers 162, and the drain electrode 172 is formed on the contact layer 161.
  • the source electrode 171 and the drain electrode 172 can each have a single layer structure or a multilayer structure made of a conductive material or an alloy thereof, for example, aluminum (Al), tantalum (Ta), molybdenum (Mo), tungsten (W), silver (Ag), copper (Cu), titanium (Ti), or chromium (Cr). Further, the source electrode 171 and the drain electrode 172 can have a three-layer structure of MoW / Al / MoW. The film thickness of the source electrode 171 and the drain electrode 172 is, for example, about 100 nm to 500 nm.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method of manufacturing a thin film transistor according to the present embodiment.
  • the thin film transistor manufacturing method includes a first step of preparing the substrate 100, a second step of forming the gate electrode 110 on the substrate 100, a third step of forming the gate insulating layer 120 on the gate electrode 110, a gate A fourth step of forming the amorphous silicon layer 130 on the insulating layer 120, a fifth step of forming the channel protective layer 140 on the amorphous silicon layer 130, and the channel protective layer 140 over the gate electrode 110; Patterning was performed by continuously irradiating the patterned channel protective layer 140 and the amorphous silicon layer 130 where the channel protective layer 140 is not formed with a sixth step of patterning so as to leave a region.
  • the amorphous silicon layer 130 on which the channel protective layer 140 is formed is referred to as a crystalline silicon layer 131, and the channel protective layer 14 A seventh step of leaving the amorphous silicon layer 130 on which the layer is not formed as the amorphous silicon layer 130, the upper surface of the end portion of the channel protective layer 140, the side surface of the channel protective layer 140, and the amorphous silicon layer 130 And an eighth step of forming a source electrode 171 above one of the amorphous silicon layers 130 and a drain electrode 172 above the other of the amorphous silicon layers 130.
  • the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is formed with respect to the laser light is the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is not formed with respect to the laser light. Greater than rate.
  • a glass substrate is prepared as a substrate 100 as shown in FIG.
  • an undercoat layer made of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, or the like may be formed on the surface of the substrate 100 by plasma CVD (Chemical Vapor Deposition) or the like.
  • the undercoat layer is preferably a silicon oxide film (SiOy) of 1.5 ⁇ y ⁇ 2.0, and has a thickness of 300 nm to 1500 nm.
  • a more preferable thickness range of the undercoat layer is 500 nm or more and 1000 nm or less. This is because if the thickness of the undercoat layer is increased, the thermal load on the substrate 100 can be reduced, but if it is too thick, film peeling or cracking occurs.
  • a gate electrode 110 having a predetermined shape is formed on the substrate 100.
  • a gate metal film made of a refractory metal containing Mo or MoW or an alloy of the refractory metal is formed on the substrate 100 by sputtering as the gate electrode 110, and the gate metal film is formed using a photolithography method and a wet etching method.
  • the gate electrode 110 having a predetermined shape can be formed by patterning. MoW wet etching can be performed using, for example, a chemical solution in which phosphoric acid (HPO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH) and water are mixed in a predetermined composition.
  • HPO 4 phosphoric acid
  • HNO 3 nitric acid
  • CH 3 COOH acetic acid
  • a gate insulating layer 120 is formed on the substrate 100 and the gate electrode 110 so as to cover the gate electrode 110.
  • a silicon oxide layer or a silicon nitride layer is formed as the gate insulating layer 120 over the gate electrode 110 by a plasma CVD method.
  • an amorphous silicon layer 130 made of amorphous silicon is continuously formed on the gate insulating layer 120 by plasma CVD or the like. To do.
  • a channel protective layer 140 made of silicon oxide is formed on the amorphous silicon layer 130 by plasma CVD or the like.
  • a part of the channel protective layer 140 is removed by etching.
  • the amorphous silicon layer 130 is made into a crystalline silicon layer 131 by laser annealing. Specifically, a predetermined laser beam is moved relative to the substrate 100 in a certain direction, and the amorphous silicon layer 130 is crystallized using the laser beam to generate the crystalline silicon layer 131. More specifically, first, the formed amorphous silicon layer 130 is subjected to dehydrogenation treatment (dehydrogenation annealing treatment at a temperature of 400 ° C. or higher, which is a temperature at which hydrogen escapes from the amorphous silicon layer 130). carry out. After that, the amorphous silicon layer 130 is made polycrystalline (including microcrystals) by laser annealing to form a crystalline silicon layer 131.
  • dehydrogenation treatment dehydrogenation annealing treatment at a temperature of 400 ° C. or higher, which is a temperature at which hydrogen escapes from the amorphous silicon layer 130.
  • the laser light is emitted from the portion of the amorphous silicon layer 130 where the channel protective layer 140 is not formed, the portion of the amorphous silicon layer 130 where the channel protective layer 140 is formed, and the channel of the amorphous silicon layer 130.
  • the amorphous silicon layer 130 is scanned in the order of the portion where the protective layer 140 is not formed, but the absorption rate of the laser light in the portion where the channel protective layer 140 is not formed is low. Therefore, in the amorphous silicon layer 130, the portion where the channel protective layer 140 is formed is crystallized to form the crystalline silicon layer 131, but the portion where the channel protective layer 140 is not formed is not crystallized.
  • the amorphous silicon layer 130 remains.
  • a silicon layer 131 can be formed.
  • the laser light source of the laser light is a laser having a wavelength in the visible light region.
  • the laser having a wavelength in the visible light region is a laser having a wavelength of about 380 nm to 780 nm, and preferably a green laser having a wavelength of 473 nm to 561 nm.
  • the laser light having a wavelength in the visible light region is preferably light in a continuous oscillation mode or a pseudo continuous oscillation mode. This is because when the laser light having a wavelength in the visible light region is in a pulse oscillation mode other than the continuous oscillation mode or the pseudo continuous oscillation mode, the amorphous silicon layer 130 is irradiated with the laser light discontinuously.
  • the amorphous silicon layer 130 cannot always be kept in a molten state.
  • the reason why the quasi-continuous oscillation mode is also included is that the amorphous silicon layer 130 can be maintained in its molten state by applying a pulse and reheating it before it is cooled to below its melting point. Therefore, a preferred mode of the quasi-continuous oscillation mode is one in which the amorphous silicon layer 130 can be reheated by applying a pulse before it is cooled to below its melting point, and the molten state can be maintained.
  • the laser light having a wavelength in the visible light region may be light emitted from a solid-state laser device or light emitted from a laser device using a semiconductor laser element.
  • the laser light can be controlled with high accuracy. Further, the laser light having a wavelength in the visible light region is irradiated on the non-crystalline silicon layer 130 with the laser light when irradiated on the non-crystalline silicon layer 130 in order to form the crystalline silicon layer 131 without crystal unevenness. It is preferable if the fluctuation of the energy density is less than 5%. By forming the crystalline silicon layer 131 having no crystal unevenness, the initial design characteristics of the thin film transistor can be achieved, and the characteristics can be made uniform.
  • the amorphous silicon layer 130 is extremely thick, the laser light is transmitted through the amorphous silicon layer 130 in the thickness direction and attenuated until it reaches directly above the gate insulating layer 120 serving as a current path.
  • the laser light penetrates deeply into the amorphous silicon layer 130 and the amorphous silicon layer 130 immediately above the gate insulating layer 120 serving as a current path. Can be crystallized. Therefore, in the process of FIG. 2D, the amorphous silicon layer 130 is formed so that the film thickness from the bottom surface of the amorphous silicon layer 130 to the top surface of the amorphous silicon layer 130 is 100 nm or less. Is preferred.
  • the amorphous silicon layer 130 is formed so that the film thickness from the bottom surface of the amorphous silicon layer 130 to the top surface of the amorphous silicon layer 130 is 10 nm or more. Is preferred.
  • a film such as silicon oxide or silicon nitride having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser light is preferably formed as the gate insulating layer 120.
  • the step of FIG. 2E the step of FIG. A film such as silicon oxide or silicon nitride having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser light is preferably formed as the channel protective layer 140.
  • the amorphous silicon layer 130 is irradiated with linearly focused laser light.
  • linearly focused laser light There are, for example, two irradiation methods, one of which is a fixed irradiation position of the linearly focused laser light.
  • the laser beam is irradiated while moving relative to the amorphous silicon layer 130.
  • the amorphous silicon layer 130 irradiated with the laser light absorbs the energy of the laser light and rises in temperature to be crystallized to become the crystalline silicon layer 131.
  • a contact layer 160 to be the contact layers 161 and 162 is formed so as to extend from the upper surface of the channel protective layer 140 to the amorphous silicon layer 130.
  • the noncrystalline property doped with an impurity of a pentavalent element such as phosphorus by plasma CVD so as to cover the upper surface and side surfaces of the channel protective layer 140 and the upper surface of the amorphous silicon layer 130.
  • a contact layer 160 made of silicon is formed.
  • a source / drain metal film 170 to be the source electrode 171 and the drain electrode 172 is formed so as to cover the contact layer 160.
  • the source / drain metal film 170 having a three-layer structure of MoW / Al / MoW is formed by sputtering.
  • a resist material is applied onto the source / drain metal film 170, exposed and developed, and then patterned into a predetermined shape. Form. Thereafter, as shown in FIG. 2J, etching is performed using this resist as a mask to pattern the source / drain metal film 170, thereby forming a source electrode 171 and a drain electrode 172 having predetermined shapes. At this time, the contact layer 160 functions as an etching stopper.
  • the resist on the source electrode 171 and the drain electrode 172 is removed, and dry etching is performed using the source electrode 171 and the drain electrode 172 as a mask, thereby patterning the contact layer 160 and patterning the channel layer in an island shape.
  • a pair of contact layers 161 and 162 having a predetermined shape and an island-shaped channel layer can be formed.
  • FIG. 3 is a diagram showing changes in the current-voltage characteristics of the thin film transistor when the crystallinity of the channel layer is changed.
  • FIG. 3 shows the characteristics when a voltage of 12 V is applied between the source and drain, the horizontal axis shows the gate-source voltage, and the vertical axis shows the source-drain current.
  • the channel layer is composed of the amorphous silicon layer 130 and the crystalline silicon layer 131.
  • the channel layer is composed of only the amorphous silicon layer 130 and only the crystalline silicon layer 131.
  • the channel layer exhibits different characteristics when the channel layer is configured. That is, as shown in FIG. 3, when the channel layer is formed of only the amorphous silicon layer 130, the off characteristics are good, but the on characteristics are bad. On the other hand, when the channel layer is composed of only the crystalline silicon layer 131, the off characteristics are poor, but the on characteristics are good.
  • the thin film transistor shown in FIG. 1 achieves both good off-characteristics and on-characteristics by utilizing the change in characteristics due to the difference in crystallinity shown in FIG.
  • the portion below the channel protective layer 140 in the channel layer is all made of the crystalline silicon layer 131 to increase the on-current, and the portions on both sides thereof are made to be the amorphous silicon layer 130 to reduce the off-current (leakage current). is there.
  • FIG. 4A shows the crystallinity of the crystalline silicon layer 131 when the laser light absorptivity of the amorphous silicon layer 130 and the scan speed of the laser light are changed in the laser annealing in the step of FIG. It is a figure which shows the change of.
  • changing the absorptance of the amorphous silicon layer 130 is realized by changing the thickness of the amorphous silicon layer 130, that is, the thickness of the channel layer.
  • a sample is used in which the laser output is 60 kW / cm 2 , the gate electrode 110 is 50 nm thick MoW, and the gate insulating layer 120 is 120 nm thick silicon oxide.
  • a-Si indicates that the crystalline silicon layer 131 does not crystallize as crystalline silicon but becomes amorphous silicon
  • SPC indicates the average grain size of the crystalline silicon layer 131.
  • Ex & .SPC indicates that the average particle diameter of the crystalline silicon layer 131 is approximately 40 nm or more and less than 60 nm
  • p-Si indicates the crystalline silicon layer.
  • the average particle size of 131 is about 60 nm or more and 1 ⁇ m or less
  • “abration” indicates that the crystalline silicon layer 131 does not function as a channel layer.
  • different crystalline silicon layers can be formed by changing the scanning speed of laser annealing and the absorption rate of the amorphous silicon layer 130.
  • the scanning speed is constant, in the step of FIG. 2F, the absorptance with respect to the laser light of the portion below the channel protective layer 140 of the amorphous silicon layer 130 in which the channel protective layer 140 is formed,
  • the difference between the absorption ratio to the laser light of the portions on both sides is set to 1% or more, so that the amorphous silicon layer and the crystalline
  • the silicon layer can be formed simultaneously by one laser scan, and the crystalline silicon layer 131 of the channel layer and the amorphous silicon layers 130 on both sides thereof can be formed.
  • the absorptance of the amorphous silicon layer 130 depends on the configuration, thickness and optical constant of the channel protective layer 140, the thickness and optical constant of the amorphous silicon layer 130, the configuration, thickness and optical constant of the gate insulating layer 120. It is derived by optical calculation taking into account multiple interference of laser light, using the constant and the optical constant of the metal material forming the underlying gate electrode 110 as parameters. Hereinafter, examples of optical calculation will be described in detail.
  • FIG. 4B is a diagram for explaining a method for calculating the light absorption rate of the amorphous silicon layer 130.
  • FIG. 4B shows a model structure of a multilayer structure in which the structure of the thin film transistor shown in FIG. 1 is modeled.
  • a layer 401 of the complex refractive index N 1, and 402 of the complex refractive index N 2 a layer 403 of the complex refractive index N 3, a layer 404 of the complex refractive index N 4, the complex index of refraction N 5 substrate 405.
  • a layer 404, a layer 403, a layer 402, and a layer 401 are stacked on the substrate 405 in this order.
  • the region of the complex refractive index N 0 shown in the figure is outside the model structure and indicates the side on which the laser light is incident on the model structure. This region is, for example, air. In this case, the refractive index is 1 and the extinction coefficient is 0.
  • the substrate 405 is an insulating substrate made of, for example, transparent glass or quartz, and has a refractive index of 1.46, for example, and corresponds to the substrate 100 shown in FIG.
  • the layer 404 is made of, for example, 50 nm MoW having a refractive index of 3.47 and an extinction coefficient of 3.78, and corresponds to the gate electrode 110 shown in FIG.
  • the layer 403 is made of, for example, silicon oxide having a refractive index of 1.467 and an extinction coefficient of 0, and corresponds to the gate insulating layer 120 shown in FIG.
  • the layer 402 corresponds to the amorphous silicon layer 130 having a refractive index of 5.074 and an extinction coefficient of 0.621, for example.
  • the layer 401 is made of, for example, silicon oxide having a refractive index of 1.467 and an extinction coefficient of 0, and corresponds to the channel protective layer 140 shown in FIG.
  • the amplitude reflection coefficient for light incident on the layer 401 from the outside is r 01
  • the amplitude reflection coefficient for light incident on the layer 402 from the layer 401 is r 12
  • R 23 is the amplitude reflection coefficient with respect to the incident light
  • r 34 is the amplitude reflection coefficient with respect to the light incident on the layer 404 from the layer 403.
  • the amplitude transmission coefficient of light incident on the layer 401 from the outside is t 01
  • the amplitude transmission coefficient of light incident on the layer 402 from the layer 401 is t 12
  • the amplitude transmission of light incident on the layer 402 from the layer 402 The coefficient is t 23
  • the amplitude transmission coefficient of light incident on the layer 404 from the layer 403 is t 34 .
  • the amplitude reflection coefficients of the entire layers above the region where the layer 404 corresponding to the gate electrode 110 is formed are r 01234 (R1), r 1234 (R2), and r 234 (R3), respectively.
  • the amplitude reflection coefficient when the layers 404 and 403 are regarded as one layer is r 234 (R3).
  • the amplitude reflection coefficient when the layer 404, the layer 403, and the layer 402 are regarded as one layer is r 1234 (R2)
  • the amplitude when the layer 404, the layer 403, the layer 402, and the layer 401 are regarded as one layer.
  • the reflection coefficient is r 01234 (R1).
  • the amplitude transmission coefficients of the entire layers in the first region are t 01234 (T1), t 1234 (T2), and t 234 (T3), respectively.
  • the amplitude transmission coefficient when the layers 404 and 403 are regarded as one layer is t 234 (T3).
  • t 1234 (T2) is an amplitude transmission coefficient when the layer 404, the layer 403, and the layer 402 are regarded as one layer, and the amplitude when the layer 404, the layer 403, the layer 402, and the layer 401 are regarded as one layer.
  • the transmission coefficient is t 01234 (T1).
  • the amplitude reflection coefficient and amplitude transmission coefficient of each layer in the first region can be expressed by the following (Expression 12) to (Expression 17).
  • the amplitude reflection coefficient and amplitude transmission coefficient of each layer in the second region can be expressed by the following (Equation 18) to (Equation 23).
  • d is the film thickness of each layer
  • is the incident angle / transmission angle in each layer
  • is the wavelength of the laser beam.
  • can be calculated as shown below from Snell's law of the following equation.
  • the amplitude reflection coefficients r 01 , r 12 , r 23 , r 34 , r 35 and the amplitude transmission coefficients t 01 , t 12 , t 12 , t 34 , t 35 of each layer are expressed by the following (formula 24) to (formula). 33).
  • the light is monochromatic laser light, and the polarization is assumed to be P-polarized light.
  • the amplitude reflection coefficient and amplitude transmission coefficient of the entire layer in the first region are calculated as follows. That is, first, r 234 is calculated by substituting (Equation 26) and (Equation 27) into (Equation 14). Next, r 1234 is calculated by substituting (Equation 25) and r 234 into (Equation 13). Next, r 01234 is calculated by substituting (Equation 24) and r 1234 into (Equation 12). Next, t 234 is calculated by substituting (Equation 26), (Equation 27), (Equation 31), and (Equation 32) into (Equation 17).
  • t 1234 is calculated by substituting (Equation 25), (Equation 30), r 234 and t 234 into (Equation 16).
  • t 01234 is calculated by substituting (Equation 24), (Equation 29), r 1234 and t 1234 into (Equation 15).
  • an example of a model structure including the gate electrode 110 made of MoW, the gate insulating layer 120 made of silicon oxide, the amorphous silicon 130, and the channel protective layer 140 made of silicon oxide is shown.
  • Modification cases such as a case where the film 120 has a laminated structure of silicon oxide and silicon nitride or a case where the channel protective layer 140 is not present can be similarly calculated by appropriately modifying the model structure of FIG. 4B.
  • the material of the gate electrode 110 is changed (for example, the material of the gate electrode 110 is Cu (refractive index 1.04, extinction coefficient 2.59), Al (refractive index 0.867, extinction coefficient 6.42), Mo.
  • FIG. 5F shows the absorption of the amorphous silicon layer 130 when the thickness of the amorphous silicon layer 130 and the thickness of the gate insulating layer 120 are changed in the laser annealing in the step of FIG. Show rate calculation results, etc. It is a diagrammatic view. 6A is a diagram showing a change in the absorptance of the amorphous silicon layer 130 when the thickness of the gate insulating layer 120 made of silicon oxide is 120 nm in FIGS. 5D and 5F.
  • the lower horizontal axis represents the optical film thickness of the amorphous silicon layer 130, that is, the value obtained by adding the refractive index of the amorphous silicon layer 130 to the film thickness of the amorphous silicon layer 130. Is divided by the wavelength of the laser beam.
  • the left vertical axis indicates the optical film thickness of the gate insulating layer 120, that is, the value obtained by dividing the refractive index of the gate insulating layer 120 by the film thickness of the gate insulating layer 120 and dividing it by the wavelength of the laser beam.
  • the film thickness of the amorphous silicon layer 130 when the wavelength of the laser light is 532 nm without being normalized by the wavelength of the laser light is shown on the horizontal axis, and the film thickness of the gate insulating layer 120 is shown on the right side. It is shown on the vertical axis.
  • the value obtained by dividing the optical film thickness of the amorphous silicon layer 130 by the wavelength of the laser beam is shown on the horizontal axis, and the absorptance of the amorphous silicon layer 130 is shown on the vertical axis.
  • the calculation in FIG. 5A uses a model in which the gate electrode 110 is made of Cu, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm (the channel protective layer 140 is not formed).
  • the calculation in FIG. 5B uses a model in which the gate electrode 110 is made of Al, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm.
  • the calculation in FIG. 5C uses a model in which the gate electrode 110 is made of Mo, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm.
  • 5D uses a model in which the gate electrode 110 is made of MoW, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm.
  • 5E uses a model in which the gate electrode 110 is made of W, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm.
  • 5F uses a model in which the gate electrode 110 is made of MoW, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is made of 275 nm silicon oxide.
  • FIG. 6B is a diagram illustrating an example of a value obtained by converting the value on the horizontal axis of FIGS. 5A to 5F into the film thickness of the amorphous silicon layer 130.
  • FIG. 6B shows values obtained by converting the values on the horizontal axis of FIGS. 5A to 5F into the film thickness of the amorphous silicon layer 130 at the wavelength of 532 nm, the wavelength of 473 nm, and the wavelength of 569 nm. .
  • FIG. 6C is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIGS. 5A to 5F into the thickness of the gate insulating layer 120 made of silicon oxide or the gate insulating layer 120 made of silicon nitride.
  • FIG. 6C shows values obtained by converting the values on the vertical axis in FIGS.
  • 6C shows an example of values obtained by converting the values on the horizontal axis and the vertical axis into the film thickness of the channel protective layer 140 made of silicon oxide or silicon nitride or the film thickness of the gate insulating layer 120 in FIG. 7 described later. It can also be applied as a diagram shown.
  • l and m are integers starting from 0, and the amorphous silicon layer 130 A value obtained by dividing the optical film thickness of the amorphous silicon layer 130 by the wavelength of the laser beam, which is a value obtained by adding the refractive index of the amorphous silicon layer 130 to the film thickness from the bottom surface to the upper surface of the amorphous silicon layer 130.
  • Is X, Y is a value obtained by dividing the optical film thickness of the gate insulating layer 120 by the film thickness of the gate insulating layer 120 and the refractive index of the gate insulating layer 120 by the wavelength of the laser beam, and X and Y If the following (Equation 1) and (Equation 2) are satisfied, the absorption rate of the laser light of the amorphous silicon layer 130 includes the maximum absorption rate, for example, 50% or more. 5A to 5F indicate ranges where X and Y satisfy the following (formula 1) and (formula 2), respectively.
  • FIG. 7 shows channel protection of the amorphous silicon layer 130 when the thickness of the channel protective layer 140 and the thickness of the gate insulating layer 120 are changed in the laser annealing in the step of FIG.
  • FIG. 6 is a contour diagram showing the calculation result of the absorptance of the portion below the layer 140.
  • 8A to 8C are diagrams showing changes in the absorptance of the portion of the amorphous silicon layer 130 below the channel protective layer 140 when the film thickness of the channel protective layer 140 is changed.
  • the lower horizontal axis represents the optical film thickness of the channel protective layer 140, that is, the value obtained by adding the refractive index of the channel protective layer 140 to the film thickness of the channel protective layer 140 divided by the wavelength of the laser beam.
  • the value is shown.
  • the left vertical axis indicates the optical film thickness of the gate insulating layer 120, that is, the value obtained by dividing the refractive index of the gate insulating layer 120 by the film thickness of the gate insulating layer 120 and dividing it by the wavelength of the laser beam.
  • the film thickness of the channel protective layer 140 when the wavelength of the laser light is 532 nm without being normalized by the wavelength of the laser light is shown on the horizontal axis
  • the film thickness of the gate insulating layer 120 is shown on the right vertical axis.
  • the horizontal axis represents the value obtained by dividing the optical film thickness of the channel protective layer 140 by the wavelength of the laser beam
  • the absorptance of the portion below the channel protective layer 140 of the amorphous silicon layer 130 is represented vertically. Shown on the axis.
  • the gate electrode 110 is made of MoW
  • the gate insulating layer 120 is made of silicon oxide
  • the optical film thickness of the amorphous silicon layer 130 that is, the film thickness of the amorphous silicon layer 130 is amorphous.
  • the value obtained by integrating the refractive index of the crystalline silicon layer 130 divided by the wavelength of the laser beam is 0.477 (corresponding to a wavelength of 532 nm and an amorphous silicon layer thickness of 50 nm), and the channel protective layer 140 is oxidized.
  • a model consisting of silicon is used.
  • the gate electrode 110 is made of MoW
  • the optical film thickness of the gate insulating layer 120 that is, the value obtained by adding the refractive index of the gate insulating layer 120 to the film thickness of the gate insulating layer 120
  • a model obtained by dividing the wavelength by 0.331 (corresponding to a wavelength of 532 nm and a silicon oxide layer thickness of 120 nm) is used, and the channel protective layer 140 is made of silicon oxide.
  • the broken line, the alternate long and two short dashes line, and the solid line represent values obtained by adding the refractive index of the amorphous silicon layer 130 to the optical thickness of the amorphous silicon layer 130, that is, the thickness of the amorphous silicon layer 130, respectively.
  • the gate electrode 110 is made of MoW
  • the gate insulating layer 120 is made of silicon oxide
  • the amorphous film has an optical film thickness of the amorphous silicon layer 130, that is, the film thickness of the amorphous silicon layer 130.
  • the value obtained by integrating the refractive index of the crystalline silicon layer 130 divided by the wavelength of the laser beam is 0.477 (corresponding to a wavelength of 532 nm and an amorphous silicon layer thickness of 50 nm), and the channel protective layer 140 is oxidized.
  • a model consisting of silicon is used.
  • the optical film thickness of the gate insulating layer 120 that is, the value obtained by adding the refractive index of the gate insulating layer 120 to the film thickness of the gate insulating layer 120, respectively.
  • the value divided by 0.276 (corresponding to a silicon oxide layer thickness of 100 nm at a wavelength of 532 nm), 0.552 (corresponding to a silicon oxide layer thickness of 200 nm at a wavelength of 532 nm) and 1.103 (silicon oxide at a wavelength of 532 nm). The calculation results when the layer thickness corresponds to 400 nm are shown.
  • the gate insulating layer 120 is made of silicon oxide, and the refractive index of the amorphous silicon layer 130 is set to the optical film thickness of the amorphous silicon layer 130, that is, the film thickness of the amorphous silicon layer 130.
  • a value obtained by dividing the integrated value by the wavelength of the laser beam is 0.477 (corresponding to a wavelength of 532 nm and an amorphous silicon layer thickness of 50 nm), and a model is used in which the channel protective layer 140 is made of silicon oxide. ing.
  • the broken line of FIG. 8C, the dashed-two dotted line, and the continuous line have shown the calculation result in case the gate electrode 110 is Cu, Al, and MoW, respectively.
  • the value obtained by dividing the optical film thickness of the channel protective layer 140 by the wavelength of the laser beam is Z, and k is an integer starting from 0. If Expression 3) is satisfied, the absorption efficiency of the laser light in the portion below the channel protective layer 140 of the amorphous silicon layer 130 can be increased.
  • a of FIG. 7 has shown the range where Z satisfy
  • the portion of the channel layer below the channel protective layer 140 is formed of the crystalline silicon layer 131 and both sides thereof are formed of the amorphous silicon layer 130. Therefore, it is possible to achieve both excellent on characteristics and excellent off characteristics.
  • the distance from the crystalline silicon layer 131 to the source electrode 171 in the channel path and the crystal in the channel path is uniform. Therefore, the electrical characteristics can be symmetric with respect to the replacement of the source electrode and the drain electrode.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the thin film transistor according to this embodiment.
  • the first crystalline silicon layer 130 is replaced with the second crystalline silicon layer 230, and the crystalline silicon layer 131 is replaced with the first crystalline silicon layer 231.
  • the first crystalline silicon layer 130 is replaced with the second crystalline silicon layer 230, and the crystalline silicon layer 131 is replaced with the first crystalline silicon layer 231.
  • the thin film transistor is formed on the substrate 100, the gate electrode 110 formed on the substrate 100, the gate insulating layer 120 formed on the gate electrode 110, and the gate insulating layer 120 above the gate electrode 110.
  • the second crystalline silicon layer 230 formed on both sides of the first crystalline silicon layer 231 and the first crystalline silicon layer 231.
  • the channel protective layer 140 formed on the upper surface of the channel protective layer 140, the side surface of the channel protective layer 140, and the upper surface of the second crystalline silicon layer 230.
  • the average grain size of crystals contained in the silicon layer 231 is larger than the average grain size of crystals contained in the second crystalline silicon layer 230, and the film thickness of the first crystalline silicon layer 231 and the film of the second crystalline silicon layer Thickness is the same.
  • a contact layer 162 formed between the second crystalline silicon layer 230 and the source electrode 171 and a contact layer 161 formed between the second crystalline silicon layer 230 and the drain electrode 172 are provided.
  • both ends of the crystalline silicon layer 131 and both ends of the channel protective layer 140 are disposed at the same position on the substrate 100.
  • the first crystalline silicon layer 231 and the source electrode 171 have an overlapping region
  • the first crystalline silicon layer 231 and the drain electrode 172 have an overlapping region.
  • the first crystalline silicon layer 231 and the second crystalline silicon layer 230 are semiconductor layers formed on the gate insulating layer 120 and constitute a channel layer whose carrier movement is controlled by the voltage of the gate electrode 110. .
  • the first crystalline silicon layer 231 and the second crystalline silicon layer 230 are made of a crystalline silicon layer, and are made polycrystalline by irradiating the amorphous silicon of the amorphous silicon layer with laser. Formed).
  • the first crystalline silicon layer 231 and the second crystalline silicon layer 230 may be silicon layers having a mixed crystal structure of amorphous silicon and crystalline silicon layers.
  • the average grain size of crystals contained in the first crystalline silicon layer 231 is not less than 40 nm and not more than 1 ⁇ m, and the average grain size of crystals contained in the second crystalline silicon layer 230 is not less than 10 nm and less than 40 nm.
  • the bottom surface of the first crystalline silicon layer 231 and the bottom surface of the second crystalline silicon layer 230 in the channel layer are flush and form the same plane, and the top surface of the first crystalline silicon layer 231 and the second crystalline silicon layer 231 are formed.
  • the upper surface of the silicon layer 230 is flush and forms the same plane.
  • the first crystalline silicon layer 231 is located above the gate electrode 110 and both ends thereof are located inside the both ends of the gate electrode 110.
  • the side surface of the channel protective layer 140 and the side surface of the first crystalline silicon layer 231 are flush with each other.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of each step in the method of manufacturing a thin film transistor according to this embodiment.
  • the thin film transistor manufacturing method includes a first step of preparing the substrate 100, a second step of forming the gate electrode 110 on the substrate 100, a third step of forming the gate insulating layer 120 on the gate electrode 110, a gate A fourth step of forming the amorphous silicon layer 330 on the insulating layer 120, a fifth step of forming the channel protective layer 140 on the amorphous silicon layer 330, and the channel protective layer 140 above the gate electrode 110.
  • the amorphous silicon layer 330 on which the layer 140 is formed is used as the first crystalline silicon layer 231, and the channel protective layer 140 is formed.
  • the first crystalline silicon layer 231 containing crystals having an average grain size larger than the average grain size of crystals contained in the second crystalline silicon layer 230 is formed.
  • the absorption rate of the amorphous silicon layer 330 in which the channel protective layer 140 is formed with respect to the laser beam is the absorption rate of the amorphous silicon layer 330 in which the channel protective layer 140 is not formed with respect to the laser beam. Greater than rate.
  • a glass substrate is prepared as the substrate 100 as shown in FIG.
  • a gate electrode 110 having a predetermined shape is formed on the substrate 100.
  • a gate insulating layer 120 is formed on the substrate 100 and the gate electrode 110 so as to cover the gate electrode 110.
  • an amorphous silicon layer 330 made of amorphous silicon is continuously formed on the gate insulating layer 120 by plasma CVD or the like. To do. Note that the amorphous silicon layer 330 is made of the same material as the amorphous silicon layer 130.
  • a channel protective layer 140 is formed on the amorphous silicon layer 330.
  • the non-crystalline silicon layer 330 is formed into a first crystalline silicon layer 231 and a second crystalline silicon layer 230 by laser annealing.
  • a predetermined laser beam is moved relative to the substrate 100 in a certain direction, and the amorphous silicon layer 330 is crystallized using the laser beam, so that the first crystalline silicon layer 231 and the second crystalline silicon layer 231 A crystalline silicon layer 230 is generated.
  • a dehydrogenation process is performed on the formed amorphous silicon layer 330.
  • the first crystalline silicon layer 231 and the second crystalline silicon layer 230 are formed by making the amorphous silicon layer 330 polycrystalline (including microcrystals) by laser annealing.
  • the laser beam is emitted from the portion of the amorphous silicon layer 330 where the channel protective layer 140 is not formed, the portion of the amorphous silicon layer 330 where the channel protective layer 140 is formed, and the channel of the amorphous silicon layer 330.
  • the amorphous silicon layer 330 is scanned in the order of the portion where the protective layer 140 is not formed, but the absorption rate of the laser light in the portion where the channel protective layer 140 is not formed is low. Accordingly, in the amorphous silicon layer 330, the first crystalline silicon layer 231 having a large average crystal grain size is formed in the portion where the channel protective layer 140 is formed, but the channel protective layer 140 is not formed.
  • a second crystalline silicon layer 230 having a small average crystal grain size is formed in the portion.
  • the laser light source of the laser light is a laser having a wavelength in the visible light region.
  • the laser having a wavelength in the visible light region is a laser having a wavelength of about 380 nm to 780 nm, and preferably a green laser having a wavelength of 473 nm to 561 nm.
  • the laser light having a wavelength in the visible light region is preferably light in a continuous oscillation mode or a pseudo continuous oscillation mode. This is because when the laser light having a wavelength in the visible light region is in a pulse oscillation mode other than the continuous oscillation mode or the pseudo continuous oscillation mode, the amorphous silicon layer 330 is irradiated with the laser light discontinuously.
  • the amorphous silicon layer 330 cannot always be kept in a molten state.
  • the reason why the pseudo continuous oscillation mode is also included is that the amorphous silicon layer 330 can be maintained in its molten state by being reheated by applying a pulse before it is cooled to below its melting point. Therefore, a preferred embodiment of the quasi-continuous oscillation mode is one in which the amorphous silicon layer 330 can be reheated by applying a pulse before it is cooled to below its melting point, and the molten state can be maintained.
  • the laser light having a wavelength in the visible light region may be light emitted from a solid-state laser device or light emitted from a laser device using a semiconductor laser element.
  • a density variation of less than 5% is preferred.
  • the amorphous silicon layer 330 is preferably formed so that the thickness of the amorphous silicon layer 330 is 100 nm or less.
  • the amorphous silicon layer 330 starts from the bottom surface of the amorphous silicon layer 330. It is preferable that the amorphous silicon layer 330 is formed so that the film thickness up to the upper surface is 10 nm or more.
  • the extinction coefficient is 0.01 or less with respect to the wavelength of the laser light of FIG.
  • a film such as silicon oxide or silicon nitride is preferably formed as the gate insulating layer 120.
  • the extinction coefficient is 0.01 or less with respect to the wavelength of the laser light of FIG.
  • a film of silicon oxide or silicon nitride is preferably formed as the channel protective layer 140.
  • the amorphous silicon layer 330 is irradiated with the laser beam condensed linearly, and there are, for example, two irradiation methods as described above.
  • a contact layer 160 to be the contact layers 161 and 162 is formed so as to straddle the upper surface of the channel protective layer 140 to the second crystalline silicon layer 230.
  • the contact layer 160 is formed so as to cover the upper surface and side surfaces of the channel protective layer 140 and the upper surface of the second crystalline silicon layer 230.
  • a source / drain metal film 170 to be the source electrode 171 and the drain electrode 172 is formed so as to cover the contact layer 160.
  • a source electrode 171 and a drain electrode 172 and contact layers 161 and 162 corresponding to the source electrode 171 and the drain electrode 172 are formed by using a photolithography method and an etching method.
  • the absorption rate of the amorphous silicon layer 330 on which the channel protective layer 140 is formed with respect to the laser beam, and the channel protective layer By making the difference between the absorptivity with respect to the laser light of the amorphous silicon layer 330 in which 140 is not formed 7% or more, silicon layers having different average grain sizes of crystals can be simultaneously formed by one laser scan, The first crystalline silicon layer 231 of the channel layer and the second crystalline silicon layers 230 on both sides thereof can be formed.
  • the channel protective layer 140 below the channel layer is formed of the first crystalline silicon layer 231 having a large average crystal grain size, and both sides have a small average crystal grain size.
  • a second crystalline silicon layer 230 is formed. Therefore, it is possible to achieve both excellent on characteristics and excellent off characteristics.
  • the electrical characteristics can be symmetric with respect to the replacement of the source electrode and the drain electrode.
  • FIG. 11 is a cross-sectional view schematically showing the configuration of the thin film transistor according to this modification.
  • the first and second embodiments are that the gate insulating layer 120 has a two-layer structure and includes a silicon nitride layer 121 and a silicon oxide layer 122 formed on the silicon nitride layer 121. Different from form. The following description will focus on differences from the first and second embodiments.
  • This thin film transistor includes a substrate 100, a gate electrode 110, a gate insulating layer 120, a crystalline silicon layer 131, an amorphous silicon layer 130, a channel protective layer 140, a source electrode 171 and a drain electrode 172, and contacts. Layers 162 and 161.
  • the capacitance of the series capacitor formed by the silicon nitride layer 121 and the silicon oxide layer 122 is equal to the capacitance of the single-layer silicon oxide layer 122 having a thickness of 100 nm to 140 nm. It has such a film thickness.
  • the manufacturing method of the thin film transistor of this modification is the same as the manufacturing method shown in FIG. 2, but in the step of FIG. 2C, the silicon nitride layer 121 and the silicon oxide layer formed on the silicon nitride layer 121 are used.
  • 2 is different from the manufacturing method of FIG. 2 in that a gate insulating layer 120 composed of 122 is formed. Since the gate insulating layer 120 has a two-layer structure, the laser light of the laser annealing in FIG. 2G is easily reflected by the gate insulating layer 120, so that the laser light absorption rate of the amorphous silicon layer 130 is increased. be able to.
  • FIG. 12 shows the crystal of the crystalline silicon layer 131 when the absorption rate of the laser beam of the amorphous silicon layer 130 and the scan speed of the laser beam are changed in the step of FIG. It is a figure which shows the change of sex.
  • changing the absorptance of the amorphous silicon layer 130 is realized by changing the thickness of the amorphous silicon layer 130, that is, the thickness of the channel layer.
  • the laser output is 40 kW / cm 2
  • the gate electrode 110 is 50 nm thick MoW
  • the gate insulating layer 120 is 65 nm thick silicon nitride layer 121
  • the 85 nm thick silicon oxide layer 122 is A sample consisting of
  • a-Si in FIG. 12 indicates that the crystalline silicon layer 131 does not crystallize as crystalline silicon but becomes amorphous silicon
  • SPC indicates the average grain size of the crystalline silicon layer 131.
  • Ex & .SPC indicates that the average particle diameter of the crystalline silicon layer 131 is approximately 40 nm or more and less than 60 nm
  • p-Si indicates the crystalline silicon layer.
  • the average particle size of 131 is about 60 nm or more and 1 ⁇ m or less
  • “abration” indicates that the crystalline silicon layer 131 does not function as a channel layer.
  • an amorphous silicon layer and a crystalline silicon layer can be formed by changing the scanning speed of laser annealing and the absorptance of the amorphous silicon layer 130. Even when the scan speed is constant, the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is formed and the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is not formed are obtained. By making a difference of 1% or more, the amorphous silicon layer 130 and the crystalline silicon layer 131 of the channel layer can be formed.
  • the absorptance of the amorphous silicon layer 330 on which the channel protective layer 140 is formed and the amorphous on which the channel protective layer 140 is not formed By making a difference of 7% or more to the absorptivity of the crystalline silicon layer 330, the first crystalline silicon layer 231 of the channel layer and the second crystalline silicon layers 230 on both sides thereof can be formed.
  • FIG. 13A shows an amorphous silicon layer 130 when the thickness of the amorphous silicon layer 130 and the thickness of the gate insulating layer 120 are changed in the step of FIG. It is a contour map which shows the calculation result of the absorptivity.
  • the lower horizontal axis indicates the optical thickness of the amorphous silicon layer 130, that is, the value obtained by integrating the refractive index of the amorphous silicon layer 130 with the thickness of the amorphous silicon layer 130.
  • the value divided by the wavelength of light is shown.
  • the left vertical axis shows the optical thickness obtained by converting the gate insulating layer 120 composed of the silicon nitride layer 121 and the silicon oxide layer 122 by the refractive index of the silicon oxide layer 122, that is, the silicon nitride layer 121 has a thickness of silicon nitride.
  • the sum of the value obtained by integrating the refractive index of the layer 121 and the value obtained by integrating the refractive index of the silicon oxide layer 122 with the thickness of the silicon oxide layer 122 is integrated with the refractive index of the silicon oxide layer 122 and the wavelength of the laser beam.
  • the value divided by the value is shown.
  • the film thickness (film thickness) of the gate insulating layer 120 is plotted with the film thickness of the amorphous silicon layer 130 when the laser beam wavelength is set to 532 nm without being normalized by the laser beam wavelength.
  • the thickness of the 120 nm single-layer silicon oxide layer 122 is shown on the right vertical axis. Further, on the right vertical axis, the film thickness ratio of the silicon oxide layer 122 and the silicon nitride layer 121 is also indicated by “film thickness of the silicon oxide layer 122 / film thickness of the silicon nitride layer 121”.
  • a model is used in which the gate electrode 110 is made of MoW and the channel protective layer 140 is 0 nm.
  • FIG. 13B to 13D are diagrams showing examples of values obtained by converting the values on the vertical axis in FIG. 13A into the film thicknesses of the silicon oxide layer 122 and the silicon nitride layer 121 included in the gate insulating layer 120.
  • FIG. FIG. 13A is a diagram showing examples of values obtained by converting the values on the vertical axis in FIG. 13A into the film thicknesses of the silicon oxide layer 122 and the silicon nitride layer 121 included in the gate insulating layer 120.
  • FIGS. 13B and 13D show values obtained by calculating the film thicknesses of the silicon oxide layer 122 and the silicon nitride layer 121 at a wavelength of 532 nm.
  • FIGS. 13C and 13D show values obtained by calculating the film thicknesses of the silicon oxide layer 122 and the silicon nitride layer 121 at wavelengths of 561 nm and 473 nm, respectively.
  • the relative dielectric constants of the silicon oxide layer 122 and the silicon nitride layer 121 are calculated as 4.1 and 7.9, respectively.
  • the value obtained by dividing the optical film thickness of the amorphous silicon layer 130 by the wavelength of the laser beam which is a value obtained by adding the refractive index of the amorphous silicon layer 130 to the film thickness of 130, is X, and the silicon nitride layer 121 is oxidized.
  • An optical film thickness obtained by converting the gate insulating layer 120 composed of the silicon layer 122 by the refractive index of the silicon oxide layer 122 that is, a value obtained by adding the refractive index of the silicon nitride layer 121 to the film thickness of the silicon nitride layer 121 and silicon oxide
  • a value obtained by dividing the sum of the film thickness of the layer 122 and the value obtained by integrating the refractive index of the silicon oxide layer 122 by the value obtained by integrating the refractive index of the silicon oxide layer 122 and the wavelength of the laser beam is Y.
  • the absorption rate of the laser light of the amorphous silicon layer 130 includes the maximum absorption rate. For example, it can be 50% or more.
  • 12A shows a range where X and Y satisfy the following (formula 4) and (formula 5), and B in FIG. 12 shows that X and Y satisfy the following (formula 6) and (formula 7). The range is shown.
  • both excellent on characteristics and excellent off characteristics can be achieved for the same reason as in the first embodiment. Further, the electrical characteristics can be made symmetrical with respect to the replacement of the source electrode and the drain electrode.
  • the gate insulating layer 120 since the gate insulating layer 120 has a two-layer structure, it is possible to increase the absorptance of the laser light in the portion below the channel protective layer 140 of the amorphous silicon layer 130. Therefore, for example, the average grain size of the crystal in the portion of the channel layer below the channel protective layer 140 can be increased to increase the on-current.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the thin film transistor according to this comparative example.
  • This thin film transistor is the same as the first and second embodiments in that the crystalline silicon layer 131 is formed by irradiating the amorphous silicon layer 130 with laser light using the source electrode 171 and the drain electrode 172 as a mask. Different.
  • This thin film transistor includes a substrate 100, a gate electrode 110, a gate insulating layer 120, a crystalline silicon layer 131, an amorphous silicon layer 130, a channel protective layer 140, a source electrode 171 and a drain electrode 172, and contacts. Layers 162 and 161.
  • the crystalline silicon layer 131 is not formed in the entire region below the channel protective layer 140, but is formed only in a part of the region. Therefore, a part of the channel length defined by the width of the channel protective layer 140 (C and D in FIG. 14) is occupied by the high-resistance amorphous silicon layer 130. Compared to the first and second embodiments, The horizontal resistance component of the channel layer increases.
  • the source electrode 171 and the drain electrode 172 are non-uniformly arranged with respect to the lower channel protective layer 140. Accordingly, the distance from the crystalline silicon layer 131 to the source electrode 171 in the channel path (B in FIG. 14) and the distance from the crystalline silicon layer 131 to the drain electrode 172 in the channel path are unequal. As a result, when the source electrode 171 and the drain electrode 172 are switched to operate, the electrical characteristics are asymmetric with respect to the replacement of the source electrode 171 and the drain electrode 172.
  • the thin film transistor according to the first and second embodiments can realize excellent on characteristics and excellent off characteristics as compared with the thin film transistor according to this comparative example, and the electrical characteristics can be switched between the source electrode and the drain electrode. It can be symmetric.
  • FIG. 15 is an external view of a display device according to the third embodiment of the present invention.
  • FIG. 16 is a partially cutaway perspective view of the organic EL panel according to the present embodiment.
  • the display device 340 is a display device including an organic EL panel, and includes the thin film transistor of the first or second embodiment, and the thin film transistor drives the organic EL panel.
  • the display device 340 includes an organic EL panel 320 using the thin film transistor of the first or second embodiment as a switching transistor or a driving transistor of an active matrix substrate.
  • the organic EL panel 320 includes an active matrix substrate 321, a plurality of pixels 322 arranged in a matrix on the active matrix substrate 321, and a pixel circuit connected to the pixels 322 and arranged in an array on the active matrix substrate 321.
  • a source line 327 and a gate line 328 are provided.
  • the organic EL layer 325 is configured by laminating layers such as an electron transport layer, a light emitting layer, and a hole transport layer.
  • FIG. 17 is a diagram showing a circuit configuration of the pixel 322 of the organic EL panel 320 of FIG.
  • the pixel 322 includes a driving transistor 331, a switching transistor 332, an organic EL element 333, and a capacitor 334.
  • the drive transistor 331 is a transistor that drives the organic EL element 333
  • the switching transistor 332 is a transistor for selecting the pixel 322.
  • the source electrode 332S of the switching transistor 332 is connected to the source line 327, the gate electrode 332G is connected to the gate line 328, and the drain electrode 332D is connected to the capacitor 334 and the gate electrode 331G of the driving transistor 331.
  • drain electrode 331D of the drive transistor 331 is connected to the power supply line 335, and the source electrode 331S is connected to the anode of the organic EL element 333.
  • the organic EL display device using the organic EL panel has been described.
  • the thin film transistor of the first or second embodiment can also be applied to a transistor that drives the liquid crystal panel of the liquid crystal display device.
  • the display device includes a liquid crystal panel, and includes the thin film transistor according to the first or second embodiment, and the thin film transistor drives the liquid crystal panel.
  • the thin-film transistor, its manufacturing method, and the display apparatus of this invention were demonstrated based on embodiment, this invention is not limited of these embodiment.
  • the present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.
  • the display device of the above-described embodiment can be used as a flat panel display, and can be applied to an electronic apparatus having any display unit such as a television set, a personal computer, and a mobile phone.
  • the thickness of the crystalline silicon layer 131 and the thickness of the amorphous silicon layer 130 are the same, or the thickness of the first crystalline silicon layer 231 and the thickness of the second crystalline silicon layer are the same.
  • the “same” at this time includes a state in which there is a step formed by laser light irradiation.
  • the amorphous silicon layer 130 is irradiated with laser light in forming the crystalline silicon layer 131.
  • a bulge is formed on the surface of the amorphous silicon layer 130 by a volume change according to the irradiation energy of the laser light.
  • the crystalline property A step is formed between the surface of the silicon layer 131 and the surface of the amorphous silicon layer 130. Therefore, the state where there is such a step is also included in the “same” in the present invention. Note that the change in the bulge amount with respect to the input energy of the laser light to the amorphous silicon layer 130 is as shown in FIG. 18C.
  • the semiconductor layer such as the channel layer may be an n-type semiconductor or a p-type semiconductor.
  • the present invention can be used for a thin film transistor, a method for manufacturing the same, and a display device, and in particular, can be used for a display device such as a television set, a personal computer and a mobile phone, or various electric devices having a thin film transistor.

Abstract

The purpose of this thin film transistor is to provide a thin film transistor that can establish both superior ON characteristics and superior OFF characteristics and in which the electrical characteristics are symmetrical for interchanging the source electrode and drain electrode. The thin film transistor is provided with: a substrate (100); a gate electrode (110); a gate insulating layer (120); a crystalline silicon layer (131) formed on the gate insulating layer (120) and above the gate electrode (110); a noncrystalline silicon layer (130) formed on the gate insulating layer (120) and on both sides of the crystalline silicon layer (131); a channel protective layer (140) formed on the crystalline silicon layer (131); and a source electrode (171) and drain electrode (172). The thicknesses of the crystalline silicon layer (131) film and the noncrystalline silicon layer (130) film are the same.

Description

[規則37.2に基づきISAが決定した発明の名称] 薄膜トランジスタ及びその製造方法[Title of Invention Determined by ISA Based on Rule 37.2] Thin Film Transistor and Manufacturing Method
 本発明は、薄膜トランジスタおよびその製造方法ならびに表示装置に関するものである。 The present invention relates to a thin film transistor, a method for manufacturing the same, and a display device.
 近年、液晶ディスプレイに変わる次世代フラットパネルディスプレイの一つとしての有機材料のEL(Electroluminescence)を利用した有機ELディスプレイが注目されている。有機ELディスプレイは、電圧駆動型の液晶ディスプレイと異なり電流駆動型のデバイスであり、アクティブマトリクス方式の表示装置の駆動回路として優れたオンオフ特性を有する薄膜トランジスタ(薄膜半導体装置)の開発が急がれている。 In recent years, organic EL displays using organic electroluminescence (EL) as one of the next generation flat panel displays that replace liquid crystal displays have attracted attention. Unlike a voltage-driven liquid crystal display, an organic EL display is a current-driven device, and development of a thin film transistor (thin film semiconductor device) having excellent on / off characteristics as a drive circuit for an active matrix display device is urgently required. Yes.
 優れたオン特性とオフ特性とを実現する薄膜トランジスタとして、ゲート絶縁層上に結晶性シリコン層を形成し、結晶性シリコン層の両側に非結晶性シリコン層を形成した薄膜トランジスタが開示されている(特許文献1)。この開示技術では、チャネル層として非結晶性シリコンを結晶化するために、ソース電極とドレイン電極との間の開口部から非結晶性シリコンにレーザー光が照射される。これにより、開口部で露出するチャネル層の中央領域の非結晶性シリコンのみを結晶性シリコンとして形成することができる。非結晶性シリコンの移動度が1cm/Vs程度であるのに対し、結晶性シリコンの移動度は100cm/Vs程度と大きいため、結晶性シリコンの形成によりオン電流を増加させることができる。また、この開示技術では、結晶性シリコン層の両側に非結晶性シリコン層を形成している。結晶性シリコンに比べ非結晶性シリコンのバンドギャップは大きく、電子およびホールを熱生成するために必要なエネルギーや、トンネル効果が起こるポテンシャル障壁が大きい。従って、結晶性シリコン層の両側に非結晶性シリコン層を形成することで、熱生成電流およびトンネルリーク電流の発生を防ぎ、オフ電流を低下させることができる。このように、オン電流を増大させる結晶性シリコンとオフ電流を低下させる非結晶性シリコンとをチャネル層として形成することで、優れたオン特性とオフ特性とを実現することができる。 A thin film transistor in which a crystalline silicon layer is formed on a gate insulating layer and an amorphous silicon layer is formed on both sides of the crystalline silicon layer is disclosed as a thin film transistor that realizes excellent on and off characteristics (patent) Reference 1). In this disclosed technique, in order to crystallize amorphous silicon as a channel layer, laser light is irradiated to amorphous silicon from an opening between a source electrode and a drain electrode. Thereby, only the amorphous silicon in the central region of the channel layer exposed at the opening can be formed as crystalline silicon. The mobility of amorphous silicon is about 1 cm 2 / Vs, whereas the mobility of crystalline silicon is as large as about 100 cm 2 / Vs, so that the on-state current can be increased by forming crystalline silicon. In this disclosed technique, an amorphous silicon layer is formed on both sides of the crystalline silicon layer. Compared to crystalline silicon, amorphous silicon has a large band gap, and has a large energy barrier necessary for heat generation of electrons and holes and a potential barrier in which a tunnel effect occurs. Therefore, by forming an amorphous silicon layer on both sides of the crystalline silicon layer, generation of heat generation current and tunnel leakage current can be prevented, and off current can be reduced. As described above, by forming the crystalline silicon that increases the on-current and the amorphous silicon that decreases the off-current as the channel layer, excellent on-characteristics and off-characteristics can be realized.
特開2005-322898号公報JP 2005-322898 A
 しかしながら、特許文献1の開示技術では、ソース電極とドレイン電極とチャネル保護層とチャネル層とが重複する部分は非結晶性シリコンとなっている。すなわち、チャネル保護層の幅で定義される薄膜トランジスタのチャネル長のうち、非結晶性シリコン層が占める割合が大きい。非結晶性シリコン層は抵抗成分として働き、チャネル層に水平な電流経路の障壁となる。このように、非結晶性シリコンによる抵抗成分が、チャネル層において、水平な方向に存在するため、オン特性を向上させるにも限界がある。 However, in the technique disclosed in Patent Document 1, the portion where the source electrode, the drain electrode, the channel protective layer, and the channel layer overlap is made of amorphous silicon. That is, the ratio of the amorphous silicon layer to the channel length of the thin film transistor defined by the width of the channel protective layer is large. The amorphous silicon layer acts as a resistance component and becomes a barrier for a current path parallel to the channel layer. As described above, since the resistance component due to the amorphous silicon exists in the horizontal direction in the channel layer, there is a limit in improving the on-characteristic.
 さらに、ソース電極およびドレイン電極を形成する際、製造ばらつきが生じるため、ソース電極およびドレイン電極の形成前に存在する下層に対してソース電極およびドレイン電極の位置を全く均等に形成することは困難である。ソース電極およびドレイン電極が下層に対して不均一に配置された場合、ソース電極およびドレイン電極の開口部から非結晶性シリコン層にレーザー照射を行って非結晶性シリコンの結晶化により結晶性シリコン層を形成すると、非結晶性シリコンの結晶化により形成される結晶性シリコンの領域からソース電極までの距離と、非結晶性シリコンの結晶化により形成される結晶性シリコンの領域からドレイン電極までの距離とが均等ではなくなる。すなわち、ソース電極とドレイン電極とチャネル保護層とチャネル層とが重複する部分に存在する非結晶性シリコン層によるチャネル経路における抵抗成分について、ソース電極側、またはドレイン電極側のいずれかに偏りが生じるため、異なる基板間における薄膜トランジスタの特性がばらついてしまう。大型基板に薄膜トランジスタを形成する場合、小型基板に比べてソース電極およびドレイン電極の形成時の位置ずれは大きくなるため、大型基板に薄膜トランジスタを形成する上で特に問題となる。また、同一の基板内においても、ソース電極とドレイン電極とを入れ替えて動作させる場合、電気特性がソース電極およびドレイン電極の入れ替えに対して非対称となってしまう。電気特性がソース電極およびドレイン電極の入れ替えに対して非対称となると、薄膜トランジスタにより構成される駆動回路の動作において、電気特性の非対称性に付随する問題が発生しうる。例えば、電気特性が非対称な薄膜トランジスタを液晶ディスプレイのスイッチングトランジスタとして用いた場合、フリッカーが生じ、画像表示装置としての表示特性が損なわれてしまう。 Furthermore, manufacturing variations occur when forming the source electrode and the drain electrode. Therefore, it is difficult to form the source electrode and the drain electrode evenly with respect to the lower layer existing before the source electrode and the drain electrode are formed. is there. When the source electrode and the drain electrode are arranged unevenly with respect to the lower layer, the amorphous silicon layer is irradiated with laser from the opening of the source electrode and the drain electrode to crystallize the amorphous silicon layer. The distance from the crystalline silicon region formed by the crystallization of the amorphous silicon to the source electrode, and the distance from the crystalline silicon region formed by the crystallization of the amorphous silicon to the drain electrode And are not even. That is, the resistance component in the channel path by the amorphous silicon layer existing in the portion where the source electrode, the drain electrode, the channel protective layer, and the channel layer overlap is biased on either the source electrode side or the drain electrode side. Therefore, the characteristics of the thin film transistor between different substrates vary. In the case where a thin film transistor is formed over a large substrate, the positional deviation when forming the source electrode and the drain electrode is larger than that in the small substrate, which is a particular problem in forming the thin film transistor over the large substrate. Even in the same substrate, when the source electrode and the drain electrode are switched and operated, the electrical characteristics become asymmetric with respect to the switching of the source electrode and the drain electrode. When the electrical characteristics are asymmetric with respect to the replacement of the source electrode and the drain electrode, problems associated with the asymmetry of the electrical characteristics may occur in the operation of the driving circuit formed of the thin film transistors. For example, when a thin film transistor having an asymmetric electrical characteristic is used as a switching transistor of a liquid crystal display, flicker occurs and display characteristics as an image display device are impaired.
 そこで、本発明は、上記課題に鑑みてなされたものであって、優れたオン特性と優れたオフ特性とを両立させることができ、電気特性がソース電極およびドレイン電極の入れ替えに対して対称となる薄膜トランジスタおよびその製造方法ならびに表示装置を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and can achieve both excellent on-characteristics and excellent off-characteristics, and the electric characteristics are symmetrical with respect to the replacement of the source electrode and the drain electrode. An object of the present invention is to provide a thin film transistor, a manufacturing method thereof, and a display device.
 上記目的を達成するために、本発明の薄膜トランジスタは、基板と、前記基板上に形成されたゲート電極と、前記ゲート電極上に形成されたゲート絶縁層と、前記ゲート絶縁層上であって、前記ゲート電極の上方に形成された結晶性シリコン層と、前記ゲート絶縁層上であって、前記結晶性シリコン層の両側に形成された非結晶性シリコン層と、前記結晶性シリコン層上に形成された結晶性制御層と、前記結晶性制御層の端部の上面、前記結晶性制御層の側面、および前記非結晶性シリコン層の上面に沿って、前記非結晶性シリコン層の一方の上方に形成されたソース電極および前記非結晶性シリコン層の他方の上方に形成されたドレイン電極とを備え、前記結晶性シリコン層の膜厚と前記非結晶性シリコン層の膜厚は同一であることを特徴とする。 To achieve the above object, the thin film transistor of the present invention includes a substrate, a gate electrode formed on the substrate, a gate insulating layer formed on the gate electrode, and the gate insulating layer. A crystalline silicon layer formed above the gate electrode, an amorphous silicon layer formed on both sides of the crystalline silicon layer on the gate insulating layer, and formed on the crystalline silicon layer A crystalline control layer, and an upper surface of an end portion of the crystalline control layer, a side surface of the crystalline control layer, and an upper surface of the non-crystalline silicon layer along the upper surface of the non-crystalline silicon layer. And the drain electrode formed above the other of the amorphous silicon layer, and the thickness of the crystalline silicon layer and the thickness of the amorphous silicon layer are the same. Special To.
 本発明によれば、優れたオン特性と優れたオフ特性とを両立させることができ、電気特性がソース電極およびドレイン電極の入れ替えに対して対称となる薄膜トランジスタおよびその製造方法ならびに表示装置を提供することができる。 According to the present invention, there are provided a thin film transistor, a manufacturing method thereof, and a display device, which can achieve both excellent on characteristics and excellent off characteristics, and whose electrical characteristics are symmetrical with respect to replacement of a source electrode and a drain electrode. be able to.
図1は、本発明の第1の実施形態に係る薄膜トランジスタの構成を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film transistor according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る薄膜トランジスタの製造方法における各工程の構成を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a thin film transistor according to the first embodiment of the present invention. 図3は、チャネル層の結晶性を変化させたときの薄膜トランジスタの電流電圧特性の変化を示す図である。FIG. 3 is a diagram illustrating a change in current-voltage characteristics of the thin film transistor when the crystallinity of the channel layer is changed. 図4Aは、レーザーアニールにおいて、非結晶性シリコン層のレーザー光の吸収率と、レーザー光のスキャンスピードとを変化させたときの結晶性シリコン層の結晶性の変化を示す図である。FIG. 4A is a diagram showing a change in crystallinity of the crystalline silicon layer when the laser light absorptance of the amorphous silicon layer and the scan speed of the laser light are changed in laser annealing. 図4Bは、非結晶性シリコン層への光吸収率の計算方法を説明するための図である。FIG. 4B is a diagram for explaining a method of calculating the light absorption rate into the amorphous silicon layer. 図5Aは、レーザーアニールにおいて、非結晶性シリコン層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 5A is a contour diagram showing the calculation result of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. . 図5Bは、レーザーアニールにおいて、非結晶性シリコン層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 5B is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. . 図5Cは、レーザーアニールにおいて、非結晶性シリコン層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 5C is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. . 図5Dは、レーザーアニールにおいて、非結晶性シリコン層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 5D is a contour diagram showing calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. . 図5Eは、レーザーアニールにおいて、非結晶性シリコン層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 5E is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. . 図5Fは、レーザーアニールにおいて、非結晶性シリコン層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 5F is a contour diagram showing calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. . 図6Aは、レーザーアニールにおいて、ゲート絶縁層の膜厚にゲート絶縁層の屈折率を積算した値であるゲート絶縁層の光学膜厚を、レーザー光の波長で除算した値を0.330(波長532nmで酸化シリコン層膜厚が120nmに対応)としたときの非結晶性シリコン層の吸収率の変化を示す図である。FIG. 6A shows a value obtained by dividing the optical film thickness of the gate insulating layer, which is a value obtained by adding the refractive index of the gate insulating layer to the film thickness of the gate insulating layer in laser annealing, by dividing the wavelength of the laser beam by 0.330 (wavelength It is a figure which shows the change of the absorptivity of an amorphous silicon layer when it is set as a silicon oxide layer film thickness corresponding to 120 nm at 532 nm. 図6Bは、図5A~図5Fの横軸の値を非結晶性シリコン層の膜厚に変換した値の例を示す図である。FIG. 6B is a diagram showing an example of a value obtained by converting the value on the horizontal axis of FIGS. 5A to 5F into the film thickness of the amorphous silicon layer. 図6Cは、図5A~図5Fの縦軸の値を酸化シリコン層、または窒化シリコン層の膜厚に変換した値の例を示す図である。FIG. 6C is a diagram illustrating an example of a value obtained by converting the value on the vertical axis in FIGS. 5A to 5F into the film thickness of the silicon oxide layer or the silicon nitride layer. 図7は、レーザーアニールにおいて、チャネル保護層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、チャネル保護層下方の非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 7 is a contour line showing the calculation results of the absorptivity of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer and the thickness of the gate insulating layer are changed in laser annealing. FIG. 図8Aは、チャネル保護層の膜厚を変化させた場合の、チャネル保護層下方の非結晶性シリコン層の吸収率の変化を示す図である。FIG. 8A is a diagram showing a change in the absorptance of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer is changed. 図8Bは、チャネル保護層の膜厚を変化させた場合の、チャネル保護層下方の非結晶性シリコン層の吸収率の変化を示す図である。FIG. 8B is a diagram showing a change in the absorptance of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer is changed. 図8Cは、チャネル保護層の膜厚を変化させた場合の、チャネル保護層下方の非結晶性シリコン層の吸収率の変化を示す図である。FIG. 8C is a diagram showing a change in the absorptance of the amorphous silicon layer below the channel protective layer when the thickness of the channel protective layer is changed. 図9は、本発明の第2の実施形態に係る薄膜トランジスタの構成を模式的に示した断面図である。FIG. 9 is a cross-sectional view schematically showing the configuration of the thin film transistor according to the second embodiment of the present invention. 図10は、本発明の第2の実施形態に係る薄膜トランジスタの製造方法における各工程の構成を模式的に示した断面図である。FIG. 10 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a thin film transistor according to the second embodiment of the present invention. 図11は、本発明の第1および第2の実施形態の変形例に係る薄膜トランジスタの構成を模式的に示した断面図である。FIG. 11 is a cross-sectional view schematically showing a configuration of a thin film transistor according to a modification of the first and second embodiments of the present invention. 図12は、レーザーアニールにおいて、非結晶性シリコン層のレーザー光の吸収率と、レーザー光のスキャンスピードとを変化させたときの結晶性シリコン層の結晶性の変化を示す図である。FIG. 12 is a diagram showing a change in crystallinity of the crystalline silicon layer when the laser light absorption rate of the amorphous silicon layer and the scan speed of the laser light are changed in laser annealing. 図13Aは、レーザーアニールにおいて、非結晶性シリコン層の膜厚と、ゲート絶縁層の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層の吸収率の計算結果を示す等高線図である。FIG. 13A is a contour diagram showing the calculation results of the absorptivity of the amorphous silicon layer when the thickness of the amorphous silicon layer and the thickness of the gate insulating layer are changed in laser annealing. . 図13Bは、図13Aの縦軸の値を、ゲート絶縁層120を構成する酸化シリコン層と窒化シリコン層の膜厚に変換した値の例を示す図である。FIG. 13B is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIG. 13A into the thicknesses of the silicon oxide layer and the silicon nitride layer included in the gate insulating layer 120. 図13Cは、図13Aの縦軸の値を、ゲート絶縁層120を構成する酸化シリコン層と窒化シリコン層の膜厚に変換した値の例を示す図である。FIG. 13C is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIG. 13A into the thicknesses of the silicon oxide layer and the silicon nitride layer included in the gate insulating layer 120. 図13Dは、図13Aの縦軸の値を、ゲート絶縁層120を構成する酸化シリコン層と窒化シリコン層の膜厚に変換した値の例を示す図である。FIG. 13D is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIG. 13A into the thicknesses of the silicon oxide layer and the silicon nitride layer included in the gate insulating layer 120. 図14は、本発明の第1および第2の実施形態の比較例に係る薄膜トランジスタの構成を模式的に示した断面図である。FIG. 14 is a cross-sectional view schematically showing a configuration of a thin film transistor according to a comparative example of the first and second embodiments of the present invention. 図15は、本発明の第3の実施形態に係る表示装置の外観図である。FIG. 15 is an external view of a display device according to the third embodiment of the present invention. 図16は、本発明の第3の実施形態に係る有機ELパネルの一部切り欠き斜視図である。FIG. 16 is a partially cutaway perspective view of an organic EL panel according to the third embodiment of the present invention. 図17は、本発明の第3の実施形態に係る有機ELパネルの画素の回路構成を示す図である。FIG. 17 is a diagram showing a circuit configuration of a pixel of an organic EL panel according to the third embodiment of the present invention. 図18Aは、本発明の実施形態に係るレーザー光の照射の様子を示す上面図である。FIG. 18A is a top view showing a state of laser light irradiation according to the embodiment of the present invention. 図18Bは、本発明の実施形態に係る非結晶性シリコン層の盛り上がりを示す断面図である。FIG. 18B is a cross-sectional view showing the rising of the amorphous silicon layer according to the embodiment of the present invention. 図18Cは、本発明の実施形態に係るレーザー光の投入エネルギーに対する非結晶性シリコン層の盛り上がり量の変化を示す図である。FIG. 18C is a diagram showing a change in the amount of swelling of the amorphous silicon layer with respect to the input energy of the laser beam according to the embodiment of the present invention.
 上記目的を達成するために、本発明の一態様に係る薄膜トランジスタは、基板と、前記基板上に形成されたゲート電極と、前記ゲート電極上に形成されたゲート絶縁層と、前記ゲート絶縁層上であって、前記ゲート電極の上方に形成された結晶性シリコン層と、前記ゲート絶縁層上であって、前記結晶性シリコン層の両側に形成された非結晶性シリコン層と、前記結晶性シリコン層上に形成された結晶化制御層と、前記結晶化制御層の端部の上面、前記結晶化制御層の側面、および前記非結晶性シリコン層の上面に沿って、前記非結晶性シリコン層の一方の上方に形成されたソース電極および前記非結晶性シリコン層の他方の上方に形成されたドレイン電極とを備え、前記結晶性シリコン層の膜厚と前記非結晶性シリコン層の膜厚は同一であることを特徴とする。 In order to achieve the above object, a thin film transistor according to one embodiment of the present invention includes a substrate, a gate electrode formed over the substrate, a gate insulating layer formed over the gate electrode, and the gate insulating layer. A crystalline silicon layer formed above the gate electrode; an amorphous silicon layer formed on both sides of the crystalline silicon layer on the gate insulating layer; and the crystalline silicon A crystallization control layer formed on the layer; and the amorphous silicon layer along an upper surface of an end portion of the crystallization control layer, a side surface of the crystallization control layer, and an upper surface of the amorphous silicon layer. A source electrode formed on one side of the first electrode and a drain electrode formed on the other side of the non-crystalline silicon layer, and the thickness of the crystalline silicon layer and the thickness of the non-crystalline silicon layer are Same And wherein the Rukoto.
 ここで、前記結晶性シリコン層に含まれる結晶の平均粒径が10nm以上1μm以下であってもよい。 Here, the average grain size of crystals contained in the crystalline silicon layer may be 10 nm or more and 1 μm or less.
 また、前記結晶性シリコン層の両端部と前記結晶化制御層の両端部とが前記半導体基板上の同一の位置に配置されていてもよい。 Further, both ends of the crystalline silicon layer and both ends of the crystallization control layer may be arranged at the same position on the semiconductor substrate.
 また、前記結晶性シリコン層と前記ソース電極とは、オーバーラップする領域を有し、前記結晶性シリコン層と前記ドレイン電極とは、オーバーラップする領域を有してもよい。 Further, the crystalline silicon layer and the source electrode may have an overlapping region, and the crystalline silicon layer and the drain electrode may have an overlapping region.
 本態様によると、結晶化制御層の下に形成された結晶性シリコン層と、結晶性シリコン層の両側に形成された非結晶性シリコン層とからチャネル層を形成している。結晶性シリコン層は結晶化制御層の下に形成され、結晶化制御層の幅で定義されるチャネル長のうち、全てを結晶性シリコン層が占めるため、非結晶性シリコン層によるチャネル層の水平方向の抵抗成分は減少する。このように、結晶化制御層の幅で定義されるチャネル長のうち、全てを結晶性シリコン層に占めさせるとともに、非結晶性シリコン層によるチャネル層の水平な抵抗成分を減少させるため、オン特性を著しく向上させることができる。 According to this aspect, the channel layer is formed from the crystalline silicon layer formed under the crystallization control layer and the amorphous silicon layers formed on both sides of the crystalline silicon layer. The crystalline silicon layer is formed under the crystallization control layer, and the crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. The direction resistance component decreases. In this way, all of the channel length defined by the width of the crystallization control layer is occupied by the crystalline silicon layer, and the horizontal resistance component of the channel layer due to the amorphous silicon layer is reduced, so that the on-characteristic Can be significantly improved.
 また、本態様によると、チャネル層の結晶性シリコン層の両側の部分は非結晶性シリコン層からなるので、チャネルの結晶性シリコン層の両側の部分が結晶性シリコン層からなる場合よりチャネル層の結晶性シリコン層の両側の部分のバンドギャップが大きくなる。従って、熱生成電流およびトンネル電流を大幅に抑制でき、オフ特性を大幅に下げることができる。 In addition, according to this aspect, since the portions on both sides of the crystalline silicon layer of the channel layer are made of an amorphous silicon layer, the portion of the channel layer is made more than when the portions on both sides of the crystalline silicon layer of the channel are made of a crystalline silicon layer. The band gap on both sides of the crystalline silicon layer is increased. Therefore, the heat generation current and the tunnel current can be greatly suppressed, and the off characteristics can be greatly reduced.
 これらの作用により、優れたオン特性とオフ特性とを両立させることができる。 These actions make it possible to achieve both excellent on and off characteristics.
 さらに、本態様では、前述したように、結晶化制御層の幅で定義されるチャネル長のうち、全てを結晶性シリコン層が占める。従って、ソース電極とドレイン電極とが下層の結晶化制御層に対して不均一に配置された場合でも、チャネル経路における結晶性シリコン層からソース電極までの距離と、チャネル経路における結晶性シリコン層からドレイン電極までの距離とが均等となり、異なる基板間における薄膜トランジスタの特性ばらつきを抑えることができる。また、同一の基板内においても、ソース電極とドレイン電極とを入れ替えて動作させる場合、電気特性がソース電極とドレイン電極との入れ替えに対して対称となり、薄膜トランジスタにより構成される駆動回路の動作において、電気特性の非対称性に付随する問題の発生を抑えることができる。 Furthermore, in this embodiment, as described above, the crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the underlying crystallization control layer, the distance from the crystalline silicon layer to the source electrode in the channel path and the crystalline silicon layer in the channel path The distance to the drain electrode becomes uniform, and variations in characteristics of thin film transistors between different substrates can be suppressed. Further, even when the source electrode and the drain electrode are exchanged in the same substrate, the electrical characteristics are symmetric with respect to the exchange of the source electrode and the drain electrode. Occurrence of problems associated with asymmetry of electrical characteristics can be suppressed.
 また、本発明の一態様に係る薄膜トランジスタは、基板と、前記基板上に形成されたゲート電極と、前記ゲート電極上に形成されたゲート絶縁層と、前記ゲート絶縁層上であって、前記ゲート電極の上方に形成された第1結晶性シリコン層と、前記ゲート絶縁層上であって、前記第1結晶性シリコン層の両側に形成された第2結晶性シリコン層と、前記第1結晶性シリコン層上に形成された結晶化制御層と、前記結晶化制御層の端部の上面、前記チャネル保護層の側面、および前記第2結晶性シリコン層の上面に沿って、前記第2結晶性シリコン層の一方の上方に形成されたソース電極および前記第2結晶性シリコン層の他方の上方に形成されたドレイン電極とを備え、前記第1結晶性シリコン層に含まれる結晶の平均粒径が、前記第2結晶性シリコン層に含まれる結晶の平均粒径より大きく、前記第1結晶性シリコン層の膜厚と前記第2結晶性シリコン層の膜厚は同一であることを特徴とする。 The thin film transistor according to one embodiment of the present invention includes a substrate, a gate electrode formed over the substrate, a gate insulating layer formed over the gate electrode, and the gate insulating layer. A first crystalline silicon layer formed above the electrode; a second crystalline silicon layer formed on both sides of the first crystalline silicon layer on the gate insulating layer; and the first crystalline A crystallization control layer formed on the silicon layer; an upper surface of an end of the crystallization control layer; a side surface of the channel protective layer; and a second crystallinity along the upper surface of the second crystalline silicon layer. A source electrode formed on one side of the silicon layer and a drain electrode formed on the other side of the second crystalline silicon layer, wherein an average grain size of crystals contained in the first crystalline silicon layer is The second result Greater than the average grain size of crystals contained in sexual silicon layer, the thickness of the film thickness of the first crystalline silicon layer and the second crystalline silicon layer is characterized by the same.
 ここで、前記第1結晶性シリコン層に含まれる結晶の平均粒径は40nm以上1μm以下であり、前記第2結晶性シリコン層に含まれる結晶の平均粒径は10nm以上40nm未満であってもよい。 Here, the average grain size of the crystals contained in the first crystalline silicon layer is 40 nm or more and 1 μm or less, and the average grain size of the crystals contained in the second crystalline silicon layer is 10 nm or more and less than 40 nm. Good.
 また、前記第1結晶性シリコン層の両端部と前記結晶化制御層の両端部とが前記半導体基板上の同一の位置に配置されていてもよい。 Further, both end portions of the first crystalline silicon layer and both end portions of the crystallization control layer may be arranged at the same position on the semiconductor substrate.
 また、前記第1結晶性シリコン層と前記ソース電極とは、オーバーラップする領域を有し、前記第1結晶性シリコン層と前記ドレイン電極とは、オーバーラップする領域を有してもよい。 Further, the first crystalline silicon layer and the source electrode may have an overlapping region, and the first crystalline silicon layer and the drain electrode may have an overlapping region.
 本態様によれば、結晶化制御層の下に形成された低抵抗の第1結晶性シリコン層と、第1結晶性シリコン層の両側に形成された、第1結晶性シリコン層に比べ結晶の平均粒径が小さく高抵抗の第2結晶性シリコン層とからチャネル層を形成している。従って、第1結晶性シリコン層は結晶化制御層の下に形成され、結晶化制御層の幅で定義されるチャネル長のうち、全てを低抵抗の結晶性シリコン層が占めるため、高抵抗の結晶性シリコン層によるチャネル層の水平方向の抵抗成分は減少する。このように、結晶化制御層の幅で定義されるチャネル長のうち、全てを低抵抗の結晶性シリコン層に占めさせるとともに、高抵抗の結晶性シリコン層によるチャネル層の水平な抵抗成分を減少させるため、オン特性を著しく向上させることができる。 According to this aspect, the first crystalline silicon layer having a low resistance formed under the crystallization control layer and the crystalline structure of the first crystalline silicon layer formed on both sides of the first crystalline silicon layer are compared with each other. A channel layer is formed from the second crystalline silicon layer having a small average grain size and high resistance. Therefore, the first crystalline silicon layer is formed under the crystallization control layer, and the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. The horizontal resistance component of the channel layer due to the crystalline silicon layer is reduced. In this way, all of the channel length defined by the width of the crystallization control layer is occupied by the low-resistance crystalline silicon layer, and the horizontal resistance component of the channel layer is reduced by the high-resistance crystalline silicon layer. Therefore, the on-characteristic can be remarkably improved.
 また、本態様によると、チャネル層の第1結晶性シリコン層の両側の部分は結晶の平均粒径が小さい結晶性シリコン層からなるので、チャネル層の第1結晶性シリコン層の両側の部分が結晶の平均粒径が大きい結晶性シリコン層からなる場合より結晶性が低く、バンドギャップが大きな非結晶性シリコンの成分が多くなる。従って、熱生成電流およびトンネル電流を大幅に抑制でき、オフ特性を大幅に下げることができる。 In addition, according to this aspect, the portions on both sides of the first crystalline silicon layer of the channel layer are made of crystalline silicon layers having a small average crystal grain size, so the portions on both sides of the first crystalline silicon layer of the channel layer are There are more components of amorphous silicon having lower crystallinity and a larger band gap than in the case of a crystalline silicon layer having a large average crystal grain size. Therefore, the heat generation current and the tunnel current can be greatly suppressed, and the off characteristics can be greatly reduced.
 これらの作用により、優れたオン特性とオフ特性とを両立させることができる。 These actions make it possible to achieve both excellent on and off characteristics.
 さらに、本態様では、前述したように、結晶化制御層の幅で定義されるチャネル長のうち、全てを低抵抗の結晶性シリコン層が占める。従って、ソース電極とドレイン電極とが下層の結晶化制御層に対して不均一に配置された場合でも、チャネル経路における低抵抗の結晶性シリコン層からソース電極までの距離と、チャネル経路における低抵抗の結晶性シリコン層からドレイン電極までの距離とが均等となり、異なる基板間における薄膜トランジスタの特性ばらつきを抑えることができる。また、同一の基板内においても、ソース電極とドレイン電極とを入れ替えて動作させる場合、電気特性がソース電極とドレイン電極との入れ替えに対して対称となり、薄膜トランジスタにより構成される駆動回路の動作において、電気特性の非対称性に付随する問題の発生を抑えることができる。 Furthermore, in this embodiment, as described above, the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the lower crystallization control layer, the distance from the low resistance crystalline silicon layer to the source electrode in the channel path and the low resistance in the channel path. Thus, the distance from the crystalline silicon layer to the drain electrode becomes uniform, and variations in characteristics of the thin film transistor between different substrates can be suppressed. Further, even when the source electrode and the drain electrode are exchanged in the same substrate, the electrical characteristics are symmetric with respect to the exchange of the source electrode and the drain electrode. Occurrence of problems associated with asymmetry of electrical characteristics can be suppressed.
 さらにまた、本態様によれば、第2結晶性シリコン層を結晶の平均粒径が小さな結晶性シリコン層まで作り分ける自由度がある。従って、チャネル層の第1結晶性シリコン層と、その両側の部分の第2結晶性シリコン層とのそれぞれの結晶性を、オン電流を重視する、あるいはオフ電流を重視する等、所望の薄膜トランジスタの設計に応じて作り分けることができる。 Still further, according to this aspect, there is a degree of freedom in forming the second crystalline silicon layer up to a crystalline silicon layer having a small average crystal grain size. Accordingly, the crystallinity of each of the first crystalline silicon layer of the channel layer and the second crystalline silicon layers on both sides of the channel layer is determined by placing importance on on-current or off-current. Can be made according to the design.
 また、本発明の一態様に係る薄膜トランジスタの製造方法は、基板を準備する第1工程と、前記基板上にゲート電極を形成する第2工程と、前記ゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非結晶性シリコン層を形成する第4工程と、前記非結晶性シリコン層上に結晶化制御層を形成する第5工程と、前記結晶化制御層を、前記ゲート電極の上方の領域を残すようにパターニングする第6工程と、レーザー光をパターニングされた前記結晶化制御層と前記結晶化制御層が形成されていない前記非結晶性シリコン層とに連続して照射して、前記結晶化制御層が形成された前記非結晶性シリコン層を結晶性シリコン層とし、前記結晶化制御層が形成されていない前記非結晶性シリコン層を非結晶性シリコン層のまま残す第7工程と、前記パターニングされた結晶化制御層の端部の上面、前記パターニングされた結晶化制御層の側面、および前記非結晶性シリコン層の上面に沿って、前記非結晶性シリコン層の一方の上方にソース電極を形成し、前記非結晶性シリコン層の他方の上方にドレイン電極を形成する第8工程とを含むことを特徴とする。 The thin film transistor manufacturing method according to one embodiment of the present invention includes a first step of preparing a substrate, a second step of forming a gate electrode over the substrate, and a gate insulating layer formed over the gate electrode. Three steps, a fourth step of forming an amorphous silicon layer on the gate insulating layer, a fifth step of forming a crystallization control layer on the amorphous silicon layer, and the crystallization control layer. A sixth step of patterning so as to leave a region above the gate electrode, a laser beam is continuously applied to the patterned crystallization control layer and the non-crystalline silicon layer on which the crystallization control layer is not formed. The amorphous silicon layer in which the crystallization control layer is formed is used as a crystalline silicon layer, and the non-crystalline silicon layer in which the crystallization control layer is not formed is used as an amorphous silicon layer. Ma A seventh step to leave, and the non-crystalline silicon layer along the upper surface of the end portion of the patterned crystallization control layer, the side surface of the patterned crystallization control layer, and the upper surface of the non-crystalline silicon layer. And an eighth step of forming a drain electrode above the other of the non-crystalline silicon layer.
 ここで、前記第7工程において、前記レーザー光の照射により、平均粒径が10nm以上1μm以下の結晶を含む前記結晶性シリコン層を形成してもよい。 Here, in the seventh step, the crystalline silicon layer containing crystals having an average particle diameter of 10 nm or more and 1 μm or less may be formed by irradiation with the laser beam.
 また、前記第7工程において、前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率は、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率より大きくてもよい。 In the seventh step, the absorptance of the amorphous silicon layer in which the crystallization control layer is formed with respect to the laser light is the same as that in the amorphous silicon layer in which the crystallization control layer is not formed. It may be larger than the absorptance with respect to laser light.
 本態様によれば、結晶化制御層、非結晶性シリコン層およびゲート絶縁層の内部におけるレーザー光の干渉効果と、非結晶性シリコン層およびゲート絶縁層の内部におけるレーザー光の干渉効果とを利用して結晶性シリコン層を形成する。すなわち、結晶化制御層下の非結晶性シリコン層をレーザー光の吸収率が高くなる構成とし、結晶化制御層下の非結晶性シリコン層の両側に存在する非結晶性シリコン層をレーザー光の吸収率が低くなる構成とした上でレーザー光を照射して結晶性シリコン層を形成する。結晶化制御層下の非結晶性シリコン層はレーザー光の吸収率が高くなる構成であるため、レーザー光を照射すると非結晶性シリコン層は結晶性シリコン層として結晶化される。一方、結晶化制御層下の非結晶性シリコン層の両側に存在する非結晶性シリコン層はレーザー光の吸収率が低くなる構成であるため、レーザー光を照射しても非結晶性シリコン層のままチャネル層として残る。従って、結晶性シリコン層と、結晶性シリコン層の両側に形成された非結晶性シリコン層とからなるチャネル層を形成できる。その結果、優れたオン特性とオフ特性とを両立させることができる。 According to this aspect, the laser beam interference effect inside the crystallization control layer, the amorphous silicon layer and the gate insulating layer and the laser beam interference effect inside the amorphous silicon layer and the gate insulating layer are utilized. Thus, a crystalline silicon layer is formed. That is, the non-crystalline silicon layer under the crystallization control layer is configured to increase the laser light absorption rate, and the non-crystalline silicon layers existing on both sides of the non-crystalline silicon layer under the crystallization control layer are A crystalline silicon layer is formed by irradiating a laser beam after having a structure with low absorptance. Since the amorphous silicon layer under the crystallization control layer has a structure in which the absorptance of laser light is increased, the amorphous silicon layer is crystallized as a crystalline silicon layer when irradiated with laser light. On the other hand, the non-crystalline silicon layers existing on both sides of the non-crystalline silicon layer under the crystallization control layer have a structure in which the absorption rate of the laser light is low. It remains as a channel layer. Therefore, a channel layer composed of a crystalline silicon layer and an amorphous silicon layer formed on both sides of the crystalline silicon layer can be formed. As a result, both excellent on characteristics and off characteristics can be achieved.
 また、本態様によれば、結晶化制御層の幅で定義されるチャネル長のうち、全てを低抵抗の結晶性シリコン層が占める。従って、ソース電極とドレイン電極とが下層の結晶化制御層に対して不均一に配置された場合でも、チャネル経路における低抵抗の結晶性シリコン層からソース電極までの距離と、チャネル経路における低抵抗の結晶性シリコン層からドレイン電極までの距離とが均等となり、電気特性をソース電極およびドレイン電極の入れ替えに対して対称とすることができる。 Also, according to this aspect, the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the lower crystallization control layer, the distance from the low resistance crystalline silicon layer to the source electrode in the channel path and the low resistance in the channel path. The distance from the crystalline silicon layer to the drain electrode becomes uniform, and the electrical characteristics can be made symmetrical with respect to the replacement of the source electrode and the drain electrode.
 また、前記第7工程において、前記レーザー光の波長が473nm以上561nm以下であってもよい。 Further, in the seventh step, the wavelength of the laser beam may be not less than 473 nm and not more than 561 nm.
 本態様によれば、結晶化制御層、非結晶性シリコン層およびゲート絶縁層に内部におけるレーザー光の干渉効果を容易に生じさせることができ、チャネル層の結晶化制御層が形成された部分とその両側の部分とでのレーザー光の吸収率の違いを容易に生じさせることができる。 According to this aspect, the laser beam interference effect can be easily generated in the crystallization control layer, the amorphous silicon layer, and the gate insulating layer, and the portion of the channel layer where the crystallization control layer is formed It is possible to easily cause a difference in the absorption rate of the laser light between the portions on both sides.
 また、本発明の一態様に係る薄膜トランジスタの製造方法は、基板を準備する第1工程と、前記基板上にゲート電極を形成する第2工程と、前記ゲート電極上にゲート絶縁層を形成する第3工程と、前記ゲート絶縁層上に非結晶性シリコン層を形成する第4工程と、前記非結晶性シリコン層上に結晶化制御層を形成する第5工程と、前記結晶化制御層を、前記ゲート電極の上方の領域を残すようにパターニングする第6工程と、レーザー光をパターニングされた前記結晶化制御層と前記結晶化制御層が形成されていない前記非結晶性シリコン層とに連続して照射して、前記結晶化制御層が形成された前記非結晶性シリコン層を第1結晶性シリコン層とし、前記結晶化制御層が形成されていない前記非結晶性シリコン層を第2結晶性シリコン層とする第7工程と、前記パターニングされた結晶化制御層の端部の上面、前記パターニングされた結晶化制御層の側面、および前記第2結晶性シリコン層の上面に沿って、前記第2結晶性シリコン層の一方の上方にソース電極を形成し、前記第2結晶性シリコン層の他方の上方にドレイン電極を形成する第8工程とを含み、前記第7工程において、前記第2結晶性シリコン層に含まれる結晶の平均粒径より大きい平均粒径の結晶を含む前記第1結晶性シリコン層を形成することを特徴とする。 The thin film transistor manufacturing method according to one embodiment of the present invention includes a first step of preparing a substrate, a second step of forming a gate electrode over the substrate, and a gate insulating layer formed over the gate electrode. Three steps, a fourth step of forming an amorphous silicon layer on the gate insulating layer, a fifth step of forming a crystallization control layer on the amorphous silicon layer, and the crystallization control layer. A sixth step of patterning so as to leave a region above the gate electrode, a laser beam is continuously applied to the patterned crystallization control layer and the non-crystalline silicon layer on which the crystallization control layer is not formed. The non-crystalline silicon layer with the crystallization control layer formed as a first crystalline silicon layer and the non-crystalline silicon layer without the crystallization control layer with a second crystalline property silicon And the second crystal along the upper surface of the end portion of the patterned crystallization control layer, the side surface of the patterned crystallization control layer, and the upper surface of the second crystalline silicon layer. An eighth step of forming a source electrode above one of the crystalline silicon layers and forming a drain electrode above the other of the second crystalline silicon layers, and in the seventh step, the second crystalline silicon The first crystalline silicon layer including crystals having an average grain size larger than an average grain size of crystals contained in the layer is formed.
 ここで、前記第1結晶性シリコン層に含まれる結晶の平均粒径は40nm以上、1μm以下であり、前記第2結晶性シリコン層に含まれる結晶の平均粒径は10nm以上、40nm未満であってもよい。 Here, the average grain size of the crystals contained in the first crystalline silicon layer is 40 nm or more and 1 μm or less, and the average grain size of the crystals contained in the second crystalline silicon layer is 10 nm or more and less than 40 nm. May be.
 また、前記第7工程において、前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率は、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率より大きくてもよい。 In the seventh step, the absorptance of the amorphous silicon layer in which the crystallization control layer is formed with respect to the laser light is the same as that in the amorphous silicon layer in which the crystallization control layer is not formed. It may be larger than the absorptance with respect to laser light.
 本態様によれば、第1結晶性シリコン層つまり結晶性の高いチャネル層を形成する非結晶性シリコン層の結晶化制御層が形成された部分だけでなく、第2結晶性シリコン層つまり結晶性の低いチャネル層を形成する非結晶性シリコン層の結晶化制御層が形成されていない部分にもレーザーを照射する。従って、レーザー光の強度と膜厚構成とを適切に選べば、低結晶性のチャネル層を結晶の平均粒径が小さな結晶性シリコン層まで作り分ける自由度がある。チャネル層において、第2結晶性シリコン層は第1結晶性シリコン層に比べ結晶の平均粒径が小さく抵抗が大きいため、チャネル層の全領域が第1結晶性シリコン層の平均粒径を有する場合に比べて、オフ特性を低減することができる。また、第1結晶性シリコン層は第2結晶性シリコン層に比べ結晶の平均粒径が大きく抵抗が小さいため、チャネル層の全領域が第2結晶性シリコン層の平均粒径を有する場合に比べて、横断抵抗が低くし、オン電流を増大させることができる。従って、チャネル層において平均粒径が大きな領域と、平均粒径が小さな領域とを、オン電流を重視する、あるいはオフ電流を重視する等、所望の薄膜トランジスタの設計に応じて作り分けることができる。その結果、優れたオン特性とオフ特性とを両立させることができる。 According to this aspect, not only the portion of the first crystalline silicon layer, that is, the amorphous silicon layer that forms the highly crystalline channel layer, in which the crystallization control layer is formed, but also the second crystalline silicon layer, that is, the crystalline property. A portion of the amorphous silicon layer that forms a low channel layer where the crystallization control layer is not formed is also irradiated with laser. Therefore, if the intensity of the laser beam and the film thickness are appropriately selected, there is a degree of freedom in forming a low crystalline channel layer up to a crystalline silicon layer having a small average crystal grain size. In the channel layer, since the second crystalline silicon layer has a smaller average crystal grain size and higher resistance than the first crystalline silicon layer, the entire region of the channel layer has the average grain size of the first crystalline silicon layer. Compared to the above, off characteristics can be reduced. In addition, since the first crystalline silicon layer has a larger average crystal grain size and lower resistance than the second crystalline silicon layer, the entire region of the channel layer has an average grain size of the second crystalline silicon layer. Thus, the transverse resistance can be lowered and the on-current can be increased. Therefore, a region having a large average particle size and a region having a small average particle size in the channel layer can be formed according to a desired thin film transistor design, such as emphasizing on-current or emphasizing off-current. As a result, both excellent on characteristics and off characteristics can be achieved.
 また、本態様によれば、結晶化制御層の幅で定義されるチャネル長のうち、全てを低抵抗の結晶性シリコン層が占める。従って、ソース電極とドレイン電極とが下層の結晶化制御層に対して不均一に配置された場合でも、チャネル経路における低抵抗の結晶性シリコン層からソース電極までの距離と、チャネル経路における低抵抗の結晶性シリコン層からドレイン電極までの距離とが均等となり、電気特性をソース電極およびドレイン電極の入れ替えに対して対称とすることができる。 Also, according to this aspect, the low resistance crystalline silicon layer occupies all of the channel length defined by the width of the crystallization control layer. Therefore, even when the source electrode and the drain electrode are non-uniformly arranged with respect to the lower crystallization control layer, the distance from the low resistance crystalline silicon layer to the source electrode in the channel path and the low resistance in the channel path. The distance from the crystalline silicon layer to the drain electrode becomes uniform, and the electrical characteristics can be made symmetrical with respect to the replacement of the source electrode and the drain electrode.
 また、前記第7工程において、前記レーザー光の波長が473nm以上561nm以下であってもよい。 Further, in the seventh step, the wavelength of the laser beam may be not less than 473 nm and not more than 561 nm.
 本態様によれば、結晶化制御層、非結晶性シリコン層およびゲート絶縁層に内部におけるレーザー光の干渉効果を容易に生じさせることができ、チャネル層の結晶化制御層が形成された部分とその両側の部分とでのレーザー光の吸収率の違いを容易に生じさせることができる。 According to this aspect, the laser beam interference effect can be easily generated in the crystallization control layer, the amorphous silicon layer, and the gate insulating layer, and the portion of the channel layer where the crystallization control layer is formed It is possible to easily cause a difference in the absorption rate of the laser light between the portions on both sides.
 また、前記第7工程において、前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率と、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率との差分は、7%以上であってもよい。 In the seventh step, the laser light absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed, and the non-crystalline silicon layer in which the crystallization control layer is not formed The difference from the absorption rate with respect to the laser beam may be 7% or more.
 本態様によれば、チャネル層の結晶化制御層が形成された部分を多結晶性シリコン層とし、チャネル層の結晶化制御層が形成されていない部分を微結晶シリコン層とすることもできる。 According to this aspect, the portion of the channel layer where the crystallization control layer is formed can be a polycrystalline silicon layer, and the portion of the channel layer where the crystallization control layer is not formed can be a microcrystalline silicon layer.
 また、前記第7工程において、前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率と、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率との差分は、1%以上であってもよい。 In the seventh step, the laser light absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed, and the non-crystalline silicon layer in which the crystallization control layer is not formed The difference from the absorption rate with respect to the laser light may be 1% or more.
 本態様によれば、チャネル層の結晶化制御層が形成された部分を多結晶性シリコン層とし、チャネル層の結晶化制御層が形成されていない部分を非結晶性シリコン層又は微結晶シリコン層とすることもできる。 According to this aspect, the portion of the channel layer where the crystallization control layer is formed is a polycrystalline silicon layer, and the portion of the channel layer where the crystallization control layer is not formed is an amorphous silicon layer or a microcrystalline silicon layer. It can also be.
 また、前記第7工程において、lおよびmを0から始まる整数とし、前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚に前記非結晶性シリコン層の屈折率を積算した値である前記非結晶性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとし、前記Xおよび前記Yは、下記の(式1)および(式2)を満たしてもよい。 In the seventh step, l and m are integers starting from 0, and the refractive index of the amorphous silicon layer is set to a film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer. The value obtained by dividing the optical film thickness of the amorphous silicon layer, which is the integrated value, by the wavelength of the laser beam is X, and the value obtained by integrating the refractive index of the gate insulating layer to the film thickness of the gate insulating layer. A value obtained by dividing the optical film thickness of a certain gate insulating layer by the wavelength of the laser beam may be Y, and X and Y may satisfy the following (Expression 1) and (Expression 2).
 (式1)0.50m≦Y≦0.40+0.50m
 (式2)-3.75(X-0.50l)+1.83+0.50m≦Y≦-3.75(X-0.50l)+0.35+0.50m
(Formula 1) 0.50 m ≦ Y ≦ 0.40 + 0.50 m
(Formula 2) -3.75 (X-0.50 l) + 1.83 + 0.50 m ≦ Y ≦ −3.75 (X-0.50 l) + 0.35 + 0.50 m
 本態様によれば、非結晶性シリコンの結晶化制御層が形成された部分のレーザー光の吸収率を最大の吸収率を含むようにし、例えば50%以上にすることができる。 According to this aspect, the absorption rate of the laser beam in the portion where the crystallization control layer of amorphous silicon is formed can include the maximum absorption rate, for example, 50% or more.
 また、前記第3工程において、窒化シリコン層と、前記窒化シリコン層上に形成された酸化シリコン層とから構成される前記ゲート絶縁層を形成してもよい。具体的には、前記ゲート絶縁層は、前記窒化シリコン層および前記酸化シリコン層が構成する直列キャパシタの有する静電容量と、膜厚が100nm以上140nm以下の単層の酸化シリコン層の静電容量とが等しくなるような膜厚で形成されてもよい。 In the third step, the gate insulating layer composed of a silicon nitride layer and a silicon oxide layer formed on the silicon nitride layer may be formed. Specifically, the gate insulating layer includes a capacitance of a series capacitor formed by the silicon nitride layer and the silicon oxide layer, and a capacitance of a single silicon oxide layer having a thickness of 100 nm to 140 nm. May be formed in such a film thickness that becomes equal to each other.
 本態様によれば、ゲート絶縁層を2層構造とし、非結晶性シリコンの結晶化制御層が形成された部分のレーザー光の吸収率を増大させることができる。これにより、例えばチャネル層の結晶化制御層が形成された部分の結晶の平均粒径を大きくして、オン電流を増大させることができる。 According to this aspect, the gate insulating layer has a two-layer structure, and the absorptance of the laser beam in the portion where the amorphous silicon crystallization control layer is formed can be increased. Thereby, for example, the average grain size of the crystal in the portion where the crystallization control layer of the channel layer is formed can be increased, and the on-current can be increased.
 また、前記第7工程において、nを0から始まる整数とし、前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚に前記非結晶性シリコン層の屈折率を積算した値である前記非結晶性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、窒化シリコン層と酸化シリコン層とで構成されるゲート絶縁層を酸化シリコン層の屈折率で換算した光学膜厚を、酸化シリコン層の屈折率とレーザー光の波長とを積算した値で除算した値をYとし、前記Xおよび前記Yは、下記の(式3)および(式4)、又は(式5)および(式6)を満たしてもよい。 In the seventh step, n is an integer starting from 0, and the refractive index of the amorphous silicon layer is added to the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer. The value obtained by dividing the optical film thickness of the amorphous silicon layer by the wavelength of the laser beam is X, and the gate insulating layer composed of the silicon nitride layer and the silicon oxide layer is used as the refractive index of the silicon oxide layer. The value obtained by dividing the optical film thickness converted by (1) by the value obtained by integrating the refractive index of the silicon oxide layer and the wavelength of the laser beam is defined as Y, where X and Y are the following (Expression 3) and (Expression 4). Or (Equation 5) and (Equation 6) may be satisfied.
 (式3)0.226≦Y≦0.26
 (式4)-2.90(X-0.5n)+1.39≦Y≦-2.90(X-0.5n)+1.97
 (式5)0.340≦Y≦0.543
 (式6)-2.90(X-0.5n)+1.70≦Y≦-2.90(X-0.5n)+2.28
(Formula 3) 0.226 ≦ Y ≦ 0.26
(Formula 4) -2.90 (X-0.5n) + 1.39≤Y≤-2.90 (X-0.5n) +1.97
(Formula 5) 0.340 ≦ Y ≦ 0.543
(Formula 6) -2.90 (X-0.5n) + 1.70 ≦ Y ≦ -2.90 (X-0.5n) +2.28
 本態様によれば、ゲート絶縁層が2層構造を有する構成において、非結晶性シリコンの結晶化制御層が形成された部分のレーザー光の吸収率を最大の吸収率を含むようにし、例えば50%以上にすることができる。 According to this aspect, in the configuration in which the gate insulating layer has a two-layer structure, the absorption rate of the laser beam in the portion where the crystallization control layer of amorphous silicon is formed includes the maximum absorption rate, for example, 50 % Or more.
 また、前記第5工程において、前記結晶化制御層の膜厚に前記結晶化制御層の屈折率を積算した値である前記結晶化制御層の光学膜厚を、前記レーザー光の波長で除算した値をZとし、kを0から始まる整数とし、前記Zは、下記の(式7)を満たしてもよい。 In the fifth step, the optical thickness of the crystallization control layer, which is a value obtained by integrating the refractive index of the crystallization control layer to the thickness of the crystallization control layer, is divided by the wavelength of the laser beam. The value may be Z, k may be an integer starting from 0, and the Z may satisfy (Equation 7) below.
 (式7)0.5×(k+0.3)≦Z≦0.5×(k+0.7)  (Expression 7) 0.5 × (k + 0.3) ≦ Z ≦ 0.5 × (k + 0.7)
 本態様によれば、結晶化制御層はレーザー光の反射防止膜の機能を果たし、非結晶性シリコンのレーザー光吸収率を増大させることができる。吸収率の増大具合は結晶化制御層の膜厚に対して周期的に変動するが、吸収率が特に増大する範囲は結晶化制御層の光学膜厚を用いて(式7)で表される。従って、(式7)を満たす結晶化制御層を形成することで、チャネル層の下方のレーザー光の吸収効率を増大させることができる。 According to this aspect, the crystallization control layer functions as an antireflection film for laser light, and can increase the laser light absorption rate of amorphous silicon. The degree of increase in the absorptance periodically varies with the film thickness of the crystallization control layer, but the range in which the absorptance particularly increases is expressed by (Equation 7) using the optical film thickness of the crystallization control layer. . Therefore, by forming the crystallization control layer that satisfies (Equation 7), the absorption efficiency of the laser light below the channel layer can be increased.
 また、前記第4工程において、前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚が100nm以下であるように前記非結晶性シリコン層を形成してもよい。 In the fourth step, the amorphous silicon layer may be formed so that the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer is 100 nm or less.
 非結晶性シリコン層が極端に厚い場合、レーザー光が非結晶性シリコン層を厚さ方向に透過し、電流経路となるゲート絶縁層の直上に届くまでに減衰してしまう。しかし、非結晶性シリコン層の膜厚を100nm以下とすることで、レーザー光が非結晶性シリコン層に深く侵入し、電流経路となるゲート絶縁層の直上の非結晶性シリコン層まで結晶化することができる。これにより、薄膜トランジスタのサブスレショルドスイング特性を向上させることができる。 When the amorphous silicon layer is extremely thick, the laser light passes through the amorphous silicon layer in the thickness direction and attenuates until reaching the position directly above the gate insulating layer serving as a current path. However, by setting the film thickness of the amorphous silicon layer to 100 nm or less, the laser light penetrates deeply into the amorphous silicon layer and crystallizes to the amorphous silicon layer directly above the gate insulating layer serving as a current path. be able to. Thereby, the subthreshold swing characteristic of the thin film transistor can be improved.
 また、前記第4工程において、前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚が10nm以上であるように前記非結晶性シリコン層を形成してもよい。 In the fourth step, the amorphous silicon layer may be formed so that the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer is 10 nm or more.
 非結晶性シリコン層が極端に薄い場合、非結晶性シリコン層によるレーザー光の吸収率が低くなるため、非結晶性シリコン層を透過したレーザー光のエネルギーの大部分はゲート電極に投入され、ゲート電極が損傷してしまう。しかし、非結晶性シリコン層の膜厚を10nm以上とすることで、過剰なレーザー光によるゲート電極の損傷を防ぐことができる。 When the amorphous silicon layer is extremely thin, the absorption rate of the laser beam by the amorphous silicon layer is low. Therefore, most of the energy of the laser beam transmitted through the amorphous silicon layer is input to the gate electrode, and the gate The electrode will be damaged. However, by setting the thickness of the amorphous silicon layer to 10 nm or more, damage to the gate electrode due to excessive laser light can be prevented.
 また、前記第1工程において、表面にアンダーコート層が形成された前記基板を準備し、前記第2工程では、前記アンダーコート層上に前記ゲート電極を形成してもよい。 In the first step, the substrate having an undercoat layer formed on the surface may be prepared, and in the second step, the gate electrode may be formed on the undercoat layer.
 本態様によれば、基板の中に含まれる不純物のチャネル層への侵入を抑えることができる。 According to this aspect, the intrusion of impurities contained in the substrate into the channel layer can be suppressed.
 また、前記第2工程において、Mo又はMoWを含む高融点金属または当該高融点金属の合金からなる金属膜を前記ゲート電極として形成してもよい。 In the second step, a metal film made of a refractory metal containing Mo or MoW or an alloy of the refractory metal may be formed as the gate electrode.
 また、前記第3工程において、前記レーザー光の波長に対して消衰係数が0.01以下である膜を前記ゲート絶縁層として形成してもよい。 In the third step, a film having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser beam may be formed as the gate insulating layer.
 本態様によれば、ゲート絶縁層によるレーザー光の光吸収を抑え、非結晶性シリコンのレーザー光の吸収率を増大させることができる。 According to this aspect, the light absorption of the laser light by the gate insulating layer can be suppressed, and the absorption rate of the amorphous silicon laser light can be increased.
 また、前記第3工程において、酸化シリコン層を前記ゲート絶縁層として形成してもよい。 In the third step, a silicon oxide layer may be formed as the gate insulating layer.
 また、前記第3工程において、窒化シリコン層を前記ゲート絶縁層として形成してもよい。 In the third step, a silicon nitride layer may be formed as the gate insulating layer.
 また、前記第5工程において、前記レーザー光の波長に対して消衰係数が0.01以下である膜を前記結晶化制御層として形成してもよい。 In the fifth step, a film having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser beam may be formed as the crystallization control layer.
 本態様によれば、結晶化制御層によるレーザー光の光吸収を抑え、非結晶性シリコンの結晶化制御層が形成された部分のレーザー光の吸収率を増大させることができる。 According to this aspect, it is possible to suppress the light absorption of the laser light by the crystallization control layer and increase the absorption rate of the laser light in the portion where the crystallization control layer of amorphous silicon is formed.
 また、前記第5工程において、酸化シリコン層を結晶化制御層として形成してもよい。 In the fifth step, a silicon oxide layer may be formed as a crystallization control layer.
 また、前記第5工程において、窒化シリコン層を結晶化制御層として形成してもよい。 In the fifth step, a silicon nitride layer may be formed as a crystallization control layer.
 また、前記第7工程において、前記レーザー光は、連続発振モードまたは擬似連続発振モードの光であってもよい。 Further, in the seventh step, the laser light may be light in a continuous oscillation mode or a pseudo continuous oscillation mode.
 また、前記第7工程において、前記レーザー光は、固体レーザー装置から発せられた光であってもよい。 In the seventh step, the laser light may be light emitted from a solid-state laser device.
 また、前記第7工程において、前記レーザー光は、半導体レーザー素子を用いたレーザー装置から発せられた光であってもよい。 In the seventh step, the laser light may be light emitted from a laser device using a semiconductor laser element.
 また、前記第7工程において、前記レーザー光の前記非結晶性シリコン層上における照射エネルギー密度の変動は、5%未満であってもよい。 In the seventh step, the fluctuation of the irradiation energy density of the laser light on the amorphous silicon layer may be less than 5%.
 本態様によれば、レーザー光に起因するチャネル層の特性のばらつきを抑えることができる。 According to this aspect, it is possible to suppress variations in channel layer characteristics caused by laser light.
 また、前記第7工程において、レーザー光を一定のスキャンスピードで、前記結晶化制御層が形成された前記非結晶性シリコン層と前記結晶化制御層が形成されていない前記非結晶性シリコン層とに連続して照射してもよい。 In the seventh step, the non-crystalline silicon layer on which the crystallization control layer is formed and the non-crystalline silicon layer on which the crystallization control layer is not formed at a constant scan speed with laser light May be continuously irradiated.
 また、本発明の一態様に係る表示装置は、液晶パネル又は有機ELパネルを備える表示装置であって、上記薄膜トランジスタを備え、前記薄膜トランジスタは、前記表示装置が前記液晶パネルを備える場合に前記液晶パネルを駆動させ、前記表示装置が前記有機ELパネルを備える場合に前記有機ELパネルを駆動させることを特徴とする。 A display device according to one embodiment of the present invention is a display device including a liquid crystal panel or an organic EL panel, and includes the thin film transistor. The thin film transistor includes the liquid crystal panel when the display device includes the liquid crystal panel. The organic EL panel is driven when the display device includes the organic EL panel.
 本態様によれば、優れたオン特性と優れたオフ特性とを両立させ、電気特性をソース電極およびドレイン電極の入れ替えに対して対称とすることができる。 According to this aspect, it is possible to achieve both excellent on-characteristics and excellent off-characteristics and to make the electrical characteristics symmetrical with respect to the replacement of the source electrode and the drain electrode.
 以下、本発明の実施形態における薄膜トランジスタおよびその製造方法ならびに表示装置について、図面を参照しながら説明する。 Hereinafter, a thin film transistor, a manufacturing method thereof, and a display device according to an embodiment of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 まず、本発明の第1の実施形態に係る薄膜トランジスタについて、以下で説明する。
(First embodiment)
First, the thin film transistor according to the first embodiment of the present invention will be described below.
 図1は、本実施形態に係る薄膜トランジスタの構成を模式的に示した断面図である。 FIG. 1 is a cross-sectional view schematically showing a configuration of a thin film transistor according to the present embodiment.
 この薄膜トランジスタは、表示装置用のチャネル保護型でボトムゲート型の薄膜トランジスタであって、基板100と、基板100上に形成されたゲート電極110と、ゲート電極110上に形成されたゲート絶縁層120と、ゲート絶縁層120上であって、ゲート電極110の上方に形成された結晶性シリコン層131と、ゲート絶縁層120上であって、結晶性シリコン層131の両側に形成された非結晶性シリコン層(アモルファスシリコン)130と、結晶性シリコン層131上に形成されたチャネル保護層140と、チャネル保護層140の端部の上面、チャネル保護層140の側面、および非結晶性シリコン層130の上面に沿って、非結晶性シリコン層130の一方の上方に形成されたソース電極171および非結晶性シリコン層130の他方の上方に形成されたドレイン電極172とを備え、結晶性シリコン層131の膜厚と非結晶性シリコン層130の膜厚とは同一である。さらに、非結晶性シリコン層130とソース電極171との間に形成されたコンタクト層162と、非結晶性シリコン層130とドレイン電極172との間に形成されたコンタクト層161とを備える。 This thin film transistor is a channel protection type bottom gate thin film transistor for a display device, and includes a substrate 100, a gate electrode 110 formed on the substrate 100, a gate insulating layer 120 formed on the gate electrode 110, A crystalline silicon layer 131 formed on the gate insulating layer 120 and above the gate electrode 110; and an amorphous silicon layer formed on both sides of the crystalline silicon layer 131 on the gate insulating layer 120. Layer (amorphous silicon) 130, channel protective layer 140 formed on crystalline silicon layer 131, the upper surface of the end of channel protective layer 140, the side surface of channel protective layer 140, and the upper surface of amorphous silicon layer 130 A source electrode 171 formed on one side of the amorphous silicon layer 130 and the amorphous silicon layer And a drain electrode 172 formed on the other of the upper con layer 130 is identical to the thickness of each of the crystalline silicon layer 131 and the amorphous silicon layer 130. Furthermore, a contact layer 162 formed between the amorphous silicon layer 130 and the source electrode 171 and a contact layer 161 formed between the amorphous silicon layer 130 and the drain electrode 172 are provided.
 ここで、結晶性シリコン層131の両端部とチャネル保護層140の両端部とは基板100上の同一の位置に配置されている。そして、結晶性シリコン層131とソース電極171とは、オーバーラップする領域を有し、結晶性シリコン層131とドレイン電極172とは、オーバーラップする領域を有する。 Here, both ends of the crystalline silicon layer 131 and both ends of the channel protective layer 140 are disposed at the same position on the substrate 100. The crystalline silicon layer 131 and the source electrode 171 have an overlapping region, and the crystalline silicon layer 131 and the drain electrode 172 have an overlapping region.
 次に、図1の薄膜トランジスタについて詳細に説明する。 Next, the thin film transistor of FIG. 1 will be described in detail.
 基板100は、例えば、石英ガラス、無アルカリガラスおよび高耐熱性ガラス等のガラス材料からなるガラス基板である。なお、ガラス基板の中に含まれるナトリウムやリン等の不純物が結晶性シリコン層131および非結晶性シリコン層130に侵入することを防止するために、表面に窒化シリコン(SiNx)、酸化シリコン(SiOy)又はシリコン酸窒化膜(SiOyNx)等からなるアンダーコート層が形成された基板を用いてもよい。また、アンダーコート層は、レーザーアニール等の高温熱処理プロセスにおいて、基板100への熱の影響を緩和させる役割を担うこともある。アンダーコート層の膜厚は、例えば、100nm~2000nm程度とする。 The substrate 100 is a glass substrate made of a glass material such as quartz glass, non-alkali glass, and high heat resistance glass. Note that in order to prevent impurities such as sodium and phosphorus contained in the glass substrate from entering the crystalline silicon layer 131 and the amorphous silicon layer 130, silicon nitride (SiNx), silicon oxide (SiOy) is formed on the surface. Or a substrate on which an undercoat layer made of silicon oxynitride film (SiOyNx) or the like is formed. In addition, the undercoat layer may play a role of reducing the influence of heat on the substrate 100 in a high-temperature heat treatment process such as laser annealing. The thickness of the undercoat layer is, for example, about 100 nm to 2000 nm.
 ゲート電極110は、シリコンの融点温度に耐えられる導電性材料又はその合金等の単層構造又は多層構造からなり、例えば、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、タングステン(W)、Ta(タンタル)、Nb(ニオブ)、Ni(ニッケル)、チタン(Ti)、クロム(Cr)、又はモリブデンタングステン(MoW)等を基板100上に形成し、これを所定形状にパターニングすることで形成される。ゲート電極110の膜厚は、好ましくは30nm以上300nm以下であり、より好ましくは、50nm以上100nm以下である。これは、ゲート電極110の膜厚が薄いと、ゲート電極110の透過率が増加してしまい、レーザー光の反射が低下しやすくなるからである。一方、ゲート電極110の膜厚が厚いとゲート絶縁層120のカバレッジが低下してしまい、特にはゲート電極110の端部でゲート絶縁層120が段切れしてしまう等、薄膜トランジスタの特性が劣化しやすくなるからである。 The gate electrode 110 has a single layer structure or a multilayer structure such as a conductive material that can withstand the melting point temperature of silicon or an alloy thereof. For example, molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W) , Ta (tantalum), Nb (niobium), Ni (nickel), titanium (Ti), chromium (Cr), molybdenum tungsten (MoW), etc. are formed on the substrate 100 and patterned into a predetermined shape. It is formed. The thickness of the gate electrode 110 is preferably 30 nm to 300 nm, more preferably 50 nm to 100 nm. This is because if the thickness of the gate electrode 110 is small, the transmittance of the gate electrode 110 increases, and the reflection of the laser beam is likely to decrease. On the other hand, when the thickness of the gate electrode 110 is large, the coverage of the gate insulating layer 120 is lowered, and in particular, the characteristics of the thin film transistor are deteriorated such that the gate insulating layer 120 is disconnected at the end of the gate electrode 110. This is because it becomes easier.
 結晶性シリコン層131および非結晶性シリコン層130は、ゲート絶縁層120上に形成される半導体層であって、ゲート電極110の電圧によってキャリアの移動が制御されるチャネル層を構成する。結晶性シリコン層131は、多結晶性シリコン層等の結晶性のシリコン層からなり、非結晶性シリコン層130の非晶質のシリコンの一部をレーザー照射することにより多結晶質化(微結晶化も含む)することで形成される。なお、結晶性シリコン層131は、非結晶性のシリコンと結晶性のシリコン層との混晶構造を有するシリコン層とすることができる。 The crystalline silicon layer 131 and the amorphous silicon layer 130 are semiconductor layers formed on the gate insulating layer 120 and constitute a channel layer whose carrier movement is controlled by the voltage of the gate electrode 110. The crystalline silicon layer 131 is formed of a crystalline silicon layer such as a polycrystalline silicon layer, and is made polycrystalline by irradiating a part of amorphous silicon of the amorphous silicon layer 130 with a laser. Formed). Note that the crystalline silicon layer 131 can be a silicon layer having a mixed crystal structure of amorphous silicon and a crystalline silicon layer.
 なお、結晶性シリコン層131に含まれる結晶の平均粒径は10nm以上1μm以下である。 Note that the average particle diameter of crystals contained in the crystalline silicon layer 131 is 10 nm or more and 1 μm or less.
 チャネル層において、チャネル層の結晶性シリコン層131の底面および非結晶性シリコン層130の底面は面一で同一平面を形成し、結晶性シリコン層131の上面および非結晶性シリコン層130の上面も同様に面一で同一平面を形成する。さらに、結晶性シリコン層131は、ゲート電極110の上方に位置し、その両端がゲート電極110の両端より内側に位置する。すなわち、ゲート電極110のゲート長(チャネル長)は、チャネル層のゲート長方向の長さよりも長い。これにより、チャネル層の結晶性シリコン層131の両側、つまりチャネル層の非結晶性シリコン層130は、電荷の移動経路となる。 In the channel layer, the bottom surface of the crystalline silicon layer 131 of the channel layer and the bottom surface of the amorphous silicon layer 130 are flush and form the same plane, and the top surface of the crystalline silicon layer 131 and the top surface of the amorphous silicon layer 130 are also formed. Similarly, the same plane is formed on the same plane. Further, the crystalline silicon layer 131 is located above the gate electrode 110, and both ends thereof are located inside the both ends of the gate electrode 110. That is, the gate length (channel length) of the gate electrode 110 is longer than the length of the channel layer in the gate length direction. Thus, both sides of the crystalline silicon layer 131 of the channel layer, that is, the amorphous silicon layer 130 of the channel layer serve as a charge transfer path.
 ゲート絶縁層120は、例えば、酸化シリコン、窒化シリコン、シリコン酸窒化膜、酸化アルミニウム(AlOz)、酸化タンタル(TaOw)又はその積層膜等からなり、基板100上のゲート電極110を覆うように、基板100およびゲート電極110の上に形成される。 The gate insulating layer 120 is made of, for example, silicon oxide, silicon nitride, silicon oxynitride film, aluminum oxide (AlOz), tantalum oxide (TaOw), or a laminated film thereof, and covers the gate electrode 110 on the substrate 100 so as to cover it. It is formed on the substrate 100 and the gate electrode 110.
 なお、チャネル層に結晶シリコンを用いているので、ゲート絶縁層120を酸化シリコンで構成することが好ましい。これは、TFTにおける良好な閾値電圧特性を維持するためにはチャネル層とゲート絶縁層120との界面状態を良好なものにすることが好ましいからである。 Note that since crystalline silicon is used for the channel layer, the gate insulating layer 120 is preferably formed of silicon oxide. This is because it is preferable to make the interface state between the channel layer and the gate insulating layer 120 good in order to maintain good threshold voltage characteristics in the TFT.
 チャネル保護層140は、結晶性シリコン層131の形成において非結晶性シリコンからの結晶化の程度を制御する光透過性の結晶化制御層であり、かつチャネル層を保護する保護膜であって、チャネル層の結晶性シリコン層131の上面上に形成される。チャネル保護層140の側面と結晶性シリコン層131の側面とは面一である。チャネル保護層140は、一対のコンタクト層161および162を形成するときのエッチング処理時において、チャネル層がエッチングされてしまうことを防止するためのチャネルエッチングストッパ(CES)層として機能する。しかし、コンタクト層161および162をパターニングするときのエッチングによってチャネル保護層140の上部はエッチングされる(不図示)。 The channel protective layer 140 is a light-transmitting crystallization control layer that controls the degree of crystallization from amorphous silicon in the formation of the crystalline silicon layer 131, and is a protective film that protects the channel layer, It is formed on the upper surface of the crystalline silicon layer 131 of the channel layer. The side surface of the channel protective layer 140 and the side surface of the crystalline silicon layer 131 are flush with each other. The channel protective layer 140 functions as a channel etching stopper (CES) layer for preventing the channel layer from being etched during the etching process when forming the pair of contact layers 161 and 162. However, the upper portion of the channel protective layer 140 is etched by etching when patterning the contact layers 161 and 162 (not shown).
 チャネル保護層140は、酸化シリコンや窒化シリコン等の無機材料を主成分とする無機材料層である。なお、チャネル保護層140は、絶縁性を有し、一対のコンタクト層161および162同士は電気的に接続されていない。 The channel protective layer 140 is an inorganic material layer mainly composed of an inorganic material such as silicon oxide or silicon nitride. Note that the channel protective layer 140 has an insulating property, and the pair of contact layers 161 and 162 are not electrically connected to each other.
 一対のコンタクト層161および162は、不純物を高濃度に含む非晶質半導体層、または不純物を高濃度に含む多結晶半導体層からなり、その一部がチャネル層の上方にチャネル保護層140を介して形成され、他部がチャネル層の上に接して形成される。また、一対のコンタクト層161および162は、チャネル保護層140上において所定の間隔をあけて対向配置されている。 The pair of contact layers 161 and 162 is made of an amorphous semiconductor layer containing impurities at a high concentration or a polycrystalline semiconductor layer containing impurities at a high concentration, and a part of the contact layers 161 and 162 is located above the channel layer with a channel protection layer 140 interposed therebetween. The other part is formed on and in contact with the channel layer. Further, the pair of contact layers 161 and 162 are arranged to face each other with a predetermined interval on the channel protective layer 140.
 一対のコンタクト層161および162のそれぞれは、チャネル保護層140の上面からチャネル層の非結晶性シリコン層130までを跨るようにして形成されており、チャネル保護層140の上面および側面、ならびに、チャネル層の結晶性シリコン層131の側面および非結晶性シリコン層130の上面を覆うように形成されている。より具体的には、2つのコンタクト層161および162は、チャネル層の結晶性シリコン層131の両側に別々に設けられ、チャネル保護層140の端部の上面および側面、チャネル保護層140の側面につらなるチャネル層の非結晶性シリコン層130の上面上に形成されている。 Each of the pair of contact layers 161 and 162 is formed so as to extend from the upper surface of the channel protective layer 140 to the amorphous silicon layer 130 of the channel layer. It is formed so as to cover the side surface of the crystalline silicon layer 131 and the upper surface of the amorphous silicon layer 130. More specifically, the two contact layers 161 and 162 are separately provided on both sides of the crystalline silicon layer 131 of the channel layer, and are formed on the upper surface and side surface of the end portion of the channel protective layer 140 and on the side surface of the channel protective layer 140. It is formed on the upper surface of the amorphous silicon layer 130 of the sparse channel layer.
 一対のコンタクト層161および162は、例えば、非結晶性シリコンに不純物としてリン(P)をドーピングしたn型半導体層であって、1×1019[atm/cm]以上の高濃度の不純物を含むn層である。コンタクト層161および162のそれぞれ膜厚は、例えば5nm~100nmとすることができる。 The pair of contact layers 161 and 162 is, for example, an n-type semiconductor layer in which amorphous silicon is doped with phosphorus (P) as an impurity, and a high-concentration impurity of 1 × 10 19 [atm / cm 3 ] or more is formed. Including n + layer. Each of the contact layers 161 and 162 can have a film thickness of, for example, 5 nm to 100 nm.
 一対のソース電極171およびドレイン電極172は、チャネル保護層140の端部の上面および側面、チャネル保護層140の側面につらなるチャネル層の非結晶性シリコン層130の上面に沿って形成されている。また、一対のソース電極171およびドレイン電極172は、離間して設けられている。 The pair of source electrode 171 and drain electrode 172 are formed along the upper surface and side surface of the end portion of the channel protective layer 140 and the upper surface of the non-crystalline silicon layer 130 of the channel layer connected to the side surface of the channel protective layer 140. In addition, the pair of source electrode 171 and drain electrode 172 are provided to be separated from each other.
 一対のソース電極171およびドレイン電極172は、チャネル層の上方に形成されており、それぞれ対応するコンタクト層161又は162上に形成される。すなわち、ソース電極171は、一対のコンタクト層162上に形成されており、ドレイン電極172は、コンタクト層161上に形成されている。 The pair of source electrode 171 and drain electrode 172 is formed above the channel layer, and is formed on the corresponding contact layer 161 or 162, respectively. That is, the source electrode 171 is formed on the pair of contact layers 162, and the drain electrode 172 is formed on the contact layer 161.
 ソース電極171およびドレイン電極172は、それぞれ導電性材料又はこれらの合金等からなる単層構造又は多層構造とすることができ、例えば、アルミニウム(Al)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、銀(Ag)、銅(Cu)、チタン(Ti)又はクロム(Cr)等の材料により構成される。また、ソース電極171およびドレイン電極172は、MoW/Al/MoWの三層構造とすることもできる。なお、ソース電極171およびドレイン電極172の膜厚は、例えば、100nm~500nm程度とする。 The source electrode 171 and the drain electrode 172 can each have a single layer structure or a multilayer structure made of a conductive material or an alloy thereof, for example, aluminum (Al), tantalum (Ta), molybdenum (Mo), tungsten (W), silver (Ag), copper (Cu), titanium (Ti), or chromium (Cr). Further, the source electrode 171 and the drain electrode 172 can have a three-layer structure of MoW / Al / MoW. The film thickness of the source electrode 171 and the drain electrode 172 is, for example, about 100 nm to 500 nm.
 以下、本実施形態に係る薄膜トランジスタの製造方法について、図2を用いて説明する。図2は、本実施形態に係る薄膜トランジスタの製造方法における各工程の構成を模式的に示した断面図である。 Hereinafter, a method of manufacturing the thin film transistor according to the present embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method of manufacturing a thin film transistor according to the present embodiment.
 この薄膜トランジスタの製造方法は、基板100を準備する第1工程と、基板100上にゲート電極110を形成する第2工程と、ゲート電極110上にゲート絶縁層120を形成する第3工程と、ゲート絶縁層120上に非結晶性シリコン層130を形成する第4工程と、非結晶性シリコン層130上にチャネル保護層140を形成する第5工程と、チャネル保護層140をゲート電極110の上方の領域を残すようにパターニングする第6工程と、レーザー光をパターニングされたチャネル保護層140とチャネル保護層140が形成されていない非結晶性シリコン層130とに連続して照射して、パターニングされたチャネル保護層140が形成された非結晶性シリコン層130を結晶性シリコン層131とし、チャネル保護層140が形成されていない非結晶性シリコン層130を非結晶性シリコン層130のまま残す第7工程と、チャネル保護層140の端部の上面、チャネル保護層140の側面、および非結晶性シリコン層130の上面に沿って、非結晶性シリコン層130の一方の上方にソース電極171を形成し、非結晶性シリコン層130の他方の上方にドレイン電極172を形成する第8工程とを含む。 The thin film transistor manufacturing method includes a first step of preparing the substrate 100, a second step of forming the gate electrode 110 on the substrate 100, a third step of forming the gate insulating layer 120 on the gate electrode 110, a gate A fourth step of forming the amorphous silicon layer 130 on the insulating layer 120, a fifth step of forming the channel protective layer 140 on the amorphous silicon layer 130, and the channel protective layer 140 over the gate electrode 110; Patterning was performed by continuously irradiating the patterned channel protective layer 140 and the amorphous silicon layer 130 where the channel protective layer 140 is not formed with a sixth step of patterning so as to leave a region. The amorphous silicon layer 130 on which the channel protective layer 140 is formed is referred to as a crystalline silicon layer 131, and the channel protective layer 14 A seventh step of leaving the amorphous silicon layer 130 on which the layer is not formed as the amorphous silicon layer 130, the upper surface of the end portion of the channel protective layer 140, the side surface of the channel protective layer 140, and the amorphous silicon layer 130 And an eighth step of forming a source electrode 171 above one of the amorphous silicon layers 130 and a drain electrode 172 above the other of the amorphous silicon layers 130.
 ここで、第7工程において、チャネル保護層140が形成された非結晶性シリコン層130のレーザー光に対する吸収率は、チャネル保護層140が形成されていない非結晶性シリコン層130のレーザー光に対する吸収率より大きい。 Here, in the seventh step, the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is formed with respect to the laser light is the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is not formed with respect to the laser light. Greater than rate.
 次に、図2の薄膜トランジスタの製造方法について詳細に説明する。 Next, a method for manufacturing the thin film transistor of FIG. 2 will be described in detail.
 まず、図2(a)に示すように、基板100としてガラス基板を準備する。なお、ゲート電極110を形成する前に、プラズマCVD(Chemical Vapor Deposition)等によって基板100の表面にシリコン窒化膜、シリコン酸化膜、およびシリコン酸窒化膜等からなるアンダーコート層を形成してもよい。アンダーコート層は、1.5<y<2.0のシリコン酸化膜(SiOy)で、300nm以上1500nm以下の膜厚で構成されるのが好ましい。より好ましいアンダーコート層の膜厚範囲は、500nm以上1000nm以下である。これは、アンダーコート層の厚みを厚くすると基板100への熱負荷を低減できるが、厚すぎると膜剥がれやクラックが発生してしまうことによる。 First, a glass substrate is prepared as a substrate 100 as shown in FIG. Before forming the gate electrode 110, an undercoat layer made of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, or the like may be formed on the surface of the substrate 100 by plasma CVD (Chemical Vapor Deposition) or the like. . The undercoat layer is preferably a silicon oxide film (SiOy) of 1.5 <y <2.0, and has a thickness of 300 nm to 1500 nm. A more preferable thickness range of the undercoat layer is 500 nm or more and 1000 nm or less. This is because if the thickness of the undercoat layer is increased, the thermal load on the substrate 100 can be reduced, but if it is too thick, film peeling or cracking occurs.
 次に、図2(b)に示すように、基板100上に所定形状のゲート電極110を形成する。例えば、基板100上にMo又はMoWを含む高融点金属または当該高融点金属の合金からなるゲート金属膜をゲート電極110としてスパッタによって成膜し、フォトリソグラフィ法およびウェットエッチング法を用いてゲート金属膜をパターニングすることにより、所定形状のゲート電極110を形成することができる。MoWのウェットエッチングは、例えば、リン酸(HPO)、硝酸(HNO)、酢酸(CHCOOH)および水を所定の配合で混合した薬液を用いて行うことができる。なお、基板100の表面にアンダーコート層が形成されている場合には、アンダーコート層上にゲート電極110を形成する。 Next, as shown in FIG. 2B, a gate electrode 110 having a predetermined shape is formed on the substrate 100. For example, a gate metal film made of a refractory metal containing Mo or MoW or an alloy of the refractory metal is formed on the substrate 100 by sputtering as the gate electrode 110, and the gate metal film is formed using a photolithography method and a wet etching method. The gate electrode 110 having a predetermined shape can be formed by patterning. MoW wet etching can be performed using, for example, a chemical solution in which phosphoric acid (HPO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH) and water are mixed in a predetermined composition. In the case where an undercoat layer is formed on the surface of the substrate 100, the gate electrode 110 is formed on the undercoat layer.
 次に、図2(c)に示すように、ゲート電極110を覆って基板100およびゲート電極110上にゲート絶縁層120を形成する。例えば、プラズマCVD法により、ゲート電極110の上にゲート絶縁層120として酸化シリコン層又は窒化シリコン層を成膜する。 Next, as shown in FIG. 2C, a gate insulating layer 120 is formed on the substrate 100 and the gate electrode 110 so as to cover the gate electrode 110. For example, a silicon oxide layer or a silicon nitride layer is formed as the gate insulating layer 120 over the gate electrode 110 by a plasma CVD method.
 次に、図2(d)に示すように、ゲート絶縁層120上に、非結晶性シリコンからなる非結晶性シリコン層130をプラズマCVD等によってゲート絶縁層120の成膜と連続的に成膜する。 Next, as shown in FIG. 2D, an amorphous silicon layer 130 made of amorphous silicon is continuously formed on the gate insulating layer 120 by plasma CVD or the like. To do.
 次に、図2(e)に示すように、非結晶性シリコン層130上に、酸化シリコンからなるチャネル保護層140をプラズマCVD等によって成膜する。 Next, as shown in FIG. 2E, a channel protective layer 140 made of silicon oxide is formed on the amorphous silicon layer 130 by plasma CVD or the like.
 次に、図2(f)に示すように、チャネル保護層140の一部をエッチング除去する。 Next, as shown in FIG. 2F, a part of the channel protective layer 140 is removed by etching.
 次に、図2(g)に示すように、非結晶性シリコン層130をレーザーアニール法により結晶性シリコン層131にする。具体的には、所定のレーザー光を基板100に対して一定の方向に相対移動させて、レーザー光を用いて非結晶性シリコン層130を結晶化させて結晶性シリコン層131を生成する。より具体的には、先ず、形成された非結晶性シリコン層130に対して脱水素処理(非結晶性シリコン層130から水素が抜ける温度である400℃以上の温度での脱水素アニール処理)を実施する。その後、非結晶性シリコン層130をレーザーアニール法により多結晶質(微結晶を含む)にすることにより結晶性シリコン層131を形成する。 Next, as shown in FIG. 2G, the amorphous silicon layer 130 is made into a crystalline silicon layer 131 by laser annealing. Specifically, a predetermined laser beam is moved relative to the substrate 100 in a certain direction, and the amorphous silicon layer 130 is crystallized using the laser beam to generate the crystalline silicon layer 131. More specifically, first, the formed amorphous silicon layer 130 is subjected to dehydrogenation treatment (dehydrogenation annealing treatment at a temperature of 400 ° C. or higher, which is a temperature at which hydrogen escapes from the amorphous silicon layer 130). carry out. After that, the amorphous silicon layer 130 is made polycrystalline (including microcrystals) by laser annealing to form a crystalline silicon layer 131.
 このとき、レーザー光は、非結晶性シリコン層130のチャネル保護層140が形成されていない部分、非結晶性シリコン層130のチャネル保護層140が形成された部分および非結晶性シリコン層130のチャネル保護層140が形成されていない部分の順に非結晶性シリコン層130をスキャンするが、チャネル保護層140が形成されていない部分のレーザー光の吸収率は低い。従って、非結晶性シリコン層130において、チャネル保護層140が形成された部分は結晶化されて結晶性シリコン層131が形成されるが、チャネル保護層140が形成されていない部分は結晶化されずに非結晶性シリコン層130のまま残る。その結果、非結晶性シリコン層130のチャネル保護層140が形成された部分のみを選択的に結晶化し、非結晶性シリコン層130のチャネル保護層140が形成された部分のみに選択的に結晶性シリコン層131を形成することができる。 At this time, the laser light is emitted from the portion of the amorphous silicon layer 130 where the channel protective layer 140 is not formed, the portion of the amorphous silicon layer 130 where the channel protective layer 140 is formed, and the channel of the amorphous silicon layer 130. The amorphous silicon layer 130 is scanned in the order of the portion where the protective layer 140 is not formed, but the absorption rate of the laser light in the portion where the channel protective layer 140 is not formed is low. Therefore, in the amorphous silicon layer 130, the portion where the channel protective layer 140 is formed is crystallized to form the crystalline silicon layer 131, but the portion where the channel protective layer 140 is not formed is not crystallized. The amorphous silicon layer 130 remains. As a result, only the portion of the amorphous silicon layer 130 where the channel protective layer 140 is formed is selectively crystallized, and only the portion of the amorphous silicon layer 130 where the channel protective layer 140 is formed is selectively crystalline. A silicon layer 131 can be formed.
 また、レーザー光のレーザー光源は、可視光領域の波長のレーザーである。この可視光領域の波長のレーザーは、約380nm~780nmの波長のレーザーであり、好ましくは473nm以上561nm以下の波長のグリーンレーザーである。また、この可視光領域の波長のレーザー光は、連続発振モードまたは擬似連続発振モードの光であれば好ましい。なぜなら、可視光領域の波長のレーザー光が連続発振モードまたは擬似連続発振モード以外の発振モードのパルス発振モードである場合、非結晶性シリコン層130にレーザー光を非連続に照射することになるため、非結晶性シリコン層130を常時溶融状態に保持することできないからである。また、擬似連続の発振モードも含まれる理由は、非結晶性シリコン層130がその融点以下まで冷却しないうちにパルスを当てて再加熱させることにより、その溶融状態を維持できるからである。従って、擬似連続発振モードの好ましい態様は、非結晶性シリコン層130がその融点以下まで冷却しないうちにパルスを当てて再加熱させることができ、かつ、その溶融状態を維持できるものである。また、可視光領域の波長のレーザー光は、固体レーザー装置から発せられた光であってもよく、半導体レーザー素子を用いたレーザー装置から発せられた光であってもよい。いずれにせよ、レーザー光を精度よく制御できるため好ましい。さらに、可視光領域の波長のレーザー光は、結晶ムラのない結晶性シリコン層131を形成するため、非結晶性シリコン層130上に照射したときのレーザー光の非結晶性シリコン層130上における照射エネルギー密度の変動が5%未満であれば好ましい。結晶ムラのない結晶性シリコン層131を形成することにより、薄膜トランジスタの当初設計特性が達成でき、また、特性の均一化が実現できる。 Further, the laser light source of the laser light is a laser having a wavelength in the visible light region. The laser having a wavelength in the visible light region is a laser having a wavelength of about 380 nm to 780 nm, and preferably a green laser having a wavelength of 473 nm to 561 nm. The laser light having a wavelength in the visible light region is preferably light in a continuous oscillation mode or a pseudo continuous oscillation mode. This is because when the laser light having a wavelength in the visible light region is in a pulse oscillation mode other than the continuous oscillation mode or the pseudo continuous oscillation mode, the amorphous silicon layer 130 is irradiated with the laser light discontinuously. This is because the amorphous silicon layer 130 cannot always be kept in a molten state. The reason why the quasi-continuous oscillation mode is also included is that the amorphous silicon layer 130 can be maintained in its molten state by applying a pulse and reheating it before it is cooled to below its melting point. Therefore, a preferred mode of the quasi-continuous oscillation mode is one in which the amorphous silicon layer 130 can be reheated by applying a pulse before it is cooled to below its melting point, and the molten state can be maintained. Further, the laser light having a wavelength in the visible light region may be light emitted from a solid-state laser device or light emitted from a laser device using a semiconductor laser element. In any case, it is preferable because laser light can be controlled with high accuracy. Further, the laser light having a wavelength in the visible light region is irradiated on the non-crystalline silicon layer 130 with the laser light when irradiated on the non-crystalline silicon layer 130 in order to form the crystalline silicon layer 131 without crystal unevenness. It is preferable if the fluctuation of the energy density is less than 5%. By forming the crystalline silicon layer 131 having no crystal unevenness, the initial design characteristics of the thin film transistor can be achieved, and the characteristics can be made uniform.
 また、非結晶性シリコン層130が極端に厚い場合、レーザー光が非結晶性シリコン層130を厚さ方向に透過し、電流経路となるゲート絶縁層120の直上に届くまでに減衰してしまう。しかし、非結晶性シリコン層130の膜厚を100nm以下とすることで、レーザー光が非結晶性シリコン層130に深く侵入し、電流経路となるゲート絶縁層120の直上の非結晶性シリコン層130まで結晶化することができる。従って、図2(d)の工程では、非結晶性シリコン層130の底面から非結晶性シリコン層130の上面までの膜厚が100nm以下であるように非結晶性シリコン層130が形成されることが好ましい。 In addition, when the amorphous silicon layer 130 is extremely thick, the laser light is transmitted through the amorphous silicon layer 130 in the thickness direction and attenuated until it reaches directly above the gate insulating layer 120 serving as a current path. However, by setting the film thickness of the amorphous silicon layer 130 to 100 nm or less, the laser light penetrates deeply into the amorphous silicon layer 130 and the amorphous silicon layer 130 immediately above the gate insulating layer 120 serving as a current path. Can be crystallized. Therefore, in the process of FIG. 2D, the amorphous silicon layer 130 is formed so that the film thickness from the bottom surface of the amorphous silicon layer 130 to the top surface of the amorphous silicon layer 130 is 100 nm or less. Is preferred.
 また、非結晶性シリコン層130が極端に薄い場合、レーザー光の非結晶性シリコン層130による吸収率が低くなる。よって、非結晶性シリコン層130を透過したレーザー光のエネルギーの大部分はゲート電極110に投入され、ゲート電極110が損傷してしまう。しかし、非結晶性シリコン層130の膜厚を10nm以上とすることで、過剰なレーザー光によるゲート電極の損傷を防ぐことができる。従って、図2(d)の工程では、非結晶性シリコン層130の底面から非結晶性シリコン層130の上面までの膜厚が10nm以上であるように非結晶性シリコン層130が形成されることが好ましい。 In addition, when the amorphous silicon layer 130 is extremely thin, the absorption rate of the laser light by the amorphous silicon layer 130 is lowered. Therefore, most of the energy of the laser light transmitted through the amorphous silicon layer 130 is input to the gate electrode 110, and the gate electrode 110 is damaged. However, by setting the thickness of the amorphous silicon layer 130 to 10 nm or more, damage to the gate electrode due to excessive laser light can be prevented. Therefore, in the process of FIG. 2D, the amorphous silicon layer 130 is formed so that the film thickness from the bottom surface of the amorphous silicon layer 130 to the top surface of the amorphous silicon layer 130 is 10 nm or more. Is preferred.
 また、レーザー光がゲート絶縁層120により光吸収されるのを抑え、非結晶性シリコン層130のレーザー光の吸収率を増大させるため、図2(c)の工程では、図2(g)のレーザー光の波長に対して消衰係数が0.01以下である酸化シリコン又は窒化シリコンなどの膜をゲート絶縁層120として形成することが好ましい。 Further, in order to suppress the laser light from being absorbed by the gate insulating layer 120 and increase the absorption rate of the laser light of the amorphous silicon layer 130, the process of FIG. A film such as silicon oxide or silicon nitride having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser light is preferably formed as the gate insulating layer 120.
 また、レーザー光がチャネル保護層140により光吸収されるのを抑え、非結晶性シリコン層130のレーザー光の吸収率を増大させるため、図2(e)の工程では、図2(g)のレーザー光の波長に対して消衰係数が0.01以下である酸化シリコン又は窒化シリコンなどの膜をチャネル保護層140として形成することが好ましい。 Further, in order to prevent the laser light from being absorbed by the channel protective layer 140 and increase the absorptance of the laser light of the amorphous silicon layer 130, in the step of FIG. 2E, the step of FIG. A film such as silicon oxide or silicon nitride having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser light is preferably formed as the channel protective layer 140.
 なお、線状に集光されたレーザー光を非結晶性シリコン層130に照射するが、照射の方法は例えば2つあり、1つは線状に集光されたレーザー光の照射位置は固定であり、非結晶性シリコン層130の形成された基板100が載せられたステージを移動させる方法、もう1つは、ステージは固定であり、レーザー光の照射位置が移動する方法である。何れの方法においても、レーザー光が非結晶性シリコン層130に対して相対的に移動しながら照射される。このように、レーザー光が照射された非結晶性シリコン層130は、レーザー光のエネルギーを吸収し温度上昇して結晶化されることにより結晶性シリコン層131になる。 The amorphous silicon layer 130 is irradiated with linearly focused laser light. There are, for example, two irradiation methods, one of which is a fixed irradiation position of the linearly focused laser light. There is a method of moving the stage on which the substrate 100 on which the amorphous silicon layer 130 is formed is moved, and the other is a method in which the stage is fixed and the irradiation position of the laser beam is moved. In any method, the laser beam is irradiated while moving relative to the amorphous silicon layer 130. As described above, the amorphous silicon layer 130 irradiated with the laser light absorbs the energy of the laser light and rises in temperature to be crystallized to become the crystalline silicon layer 131.
 次に、図2(h)に示すように、チャネル保護層140の上面から非結晶性シリコン層130までを跨るようにして、コンタクト層161および162となるコンタクト層160を形成する。具体的には、チャネル保護層140の上面および側面上と、非結晶性シリコン層130の上面上とを覆うようにして、例えばプラズマCVDによってリン等の5価元素の不純物をドープした非結晶性シリコンからなるコンタクト層160を成膜する。 Next, as shown in FIG. 2 (h), a contact layer 160 to be the contact layers 161 and 162 is formed so as to extend from the upper surface of the channel protective layer 140 to the amorphous silicon layer 130. Specifically, the noncrystalline property doped with an impurity of a pentavalent element such as phosphorus by plasma CVD so as to cover the upper surface and side surfaces of the channel protective layer 140 and the upper surface of the amorphous silicon layer 130. A contact layer 160 made of silicon is formed.
 次に、図2(i)に示すように、コンタクト層160を覆うようにして、ソース電極171およびドレイン電極172となるソースドレイン金属膜170を形成する。例えば、スパッタによって、MoW/Al/MoWの三層構造のソースドレイン金属膜170を成膜する。 Next, as shown in FIG. 2I, a source / drain metal film 170 to be the source electrode 171 and the drain electrode 172 is formed so as to cover the contact layer 160. For example, the source / drain metal film 170 having a three-layer structure of MoW / Al / MoW is formed by sputtering.
 次に、図示しないが、所定形状のソース電極171およびドレイン電極172を形成するために、ソースドレイン金属膜170上にレジスト材料を塗布し、露光および現像を行って、所定形状にパターニングされたレジストを形成する。その後、図2(j)に示すように、このレジストをマスクとしてエッチングを施してソースドレイン金属膜170をパターニングすることにより所定形状のソース電極171およびドレイン電極172を形成する。このとき、コンタクト層160がエッチングストッパとして機能する。その後、ソース電極171およびドレイン電極172上のレジストを除去し、ソース電極171およびドレイン電極172をマスクとしてドライエッチングを施すことにより、コンタクト層160をパターニングするとともにチャネル層を島状にパターニングする。これにより、所定形状の一対のコンタクト層161および162と島状のチャネル層とを形成することができる。 Next, although not shown, in order to form the source electrode 171 and the drain electrode 172 having a predetermined shape, a resist material is applied onto the source / drain metal film 170, exposed and developed, and then patterned into a predetermined shape. Form. Thereafter, as shown in FIG. 2J, etching is performed using this resist as a mask to pattern the source / drain metal film 170, thereby forming a source electrode 171 and a drain electrode 172 having predetermined shapes. At this time, the contact layer 160 functions as an etching stopper. Thereafter, the resist on the source electrode 171 and the drain electrode 172 is removed, and dry etching is performed using the source electrode 171 and the drain electrode 172 as a mask, thereby patterning the contact layer 160 and patterning the channel layer in an island shape. Thereby, a pair of contact layers 161 and 162 having a predetermined shape and an island-shaped channel layer can be formed.
 以下、本実施形態に係る薄膜トランジスタの特性について、図3~図8Cを用いて説明する。 Hereinafter, characteristics of the thin film transistor according to the present embodiment will be described with reference to FIGS. 3 to 8C.
 図3は、チャネル層の結晶性を変化させたときの薄膜トランジスタの電流電圧特性の変化を示す図である。なお、図3は、ソース・ドレイン間に12Vの電圧が印加された場合の特性を示しており、横軸はゲート・ソース電圧、縦軸はソース・ドレイン電流を示している。 FIG. 3 is a diagram showing changes in the current-voltage characteristics of the thin film transistor when the crystallinity of the channel layer is changed. FIG. 3 shows the characteristics when a voltage of 12 V is applied between the source and drain, the horizontal axis shows the gate-source voltage, and the vertical axis shows the source-drain current.
 図1の薄膜トランジスタでは、チャネル層が非結晶性シリコン層130と結晶性シリコン層131とから構成されるが、非結晶性シリコン層130のみでチャネル層を構成した場合と結晶性シリコン層131のみでチャネル層を構成した場合とでチャネル層は異なる特性を示す。つまり、図3に示されるように、非結晶性シリコン層130のみでチャネル層を構成した場合には、オフ特性は良いが、オン特性は悪い。一方、結晶性シリコン層131のみでチャネル層を構成した場合には、オフ特性は悪いが、オン特性は良い。 In the thin film transistor of FIG. 1, the channel layer is composed of the amorphous silicon layer 130 and the crystalline silicon layer 131. However, the channel layer is composed of only the amorphous silicon layer 130 and only the crystalline silicon layer 131. The channel layer exhibits different characteristics when the channel layer is configured. That is, as shown in FIG. 3, when the channel layer is formed of only the amorphous silicon layer 130, the off characteristics are good, but the on characteristics are bad. On the other hand, when the channel layer is composed of only the crystalline silicon layer 131, the off characteristics are poor, but the on characteristics are good.
 図1の薄膜トランジスタは、図3の結晶性の違いによる特性の変化を利用して良好なオフ特性とオン特性とを両立させるものである。つまり、チャネル層のチャネル保護層140下方の部分を全て結晶性シリコン層131としてオン電流を増加させつつ、その両側の部分を非結晶性シリコン層130としてオフ電流(リーク電流)を低減するものである。 The thin film transistor shown in FIG. 1 achieves both good off-characteristics and on-characteristics by utilizing the change in characteristics due to the difference in crystallinity shown in FIG. In other words, the portion below the channel protective layer 140 in the channel layer is all made of the crystalline silicon layer 131 to increase the on-current, and the portions on both sides thereof are made to be the amorphous silicon layer 130 to reduce the off-current (leakage current). is there.
 図4Aは、図2(g)の工程のレーザーアニールにおいて、非結晶性シリコン層130のレーザー光の吸収率と、レーザー光のスキャンスピードとを変化させたときの結晶性シリコン層131の結晶性の変化を示す図である。 FIG. 4A shows the crystallinity of the crystalline silicon layer 131 when the laser light absorptivity of the amorphous silicon layer 130 and the scan speed of the laser light are changed in the laser annealing in the step of FIG. It is a figure which shows the change of.
 なお、非結晶性シリコン層130の吸収率を変化させることは、非結晶性シリコン層130の膜厚つまりチャネル層の膜厚を変化させることで実現している。 Note that changing the absorptance of the amorphous silicon layer 130 is realized by changing the thickness of the amorphous silicon layer 130, that is, the thickness of the channel layer.
 また、図4Aの測定では、レーザー出力が60kW/cm、ゲート電極110が膜厚50nmのMoW、ゲート絶縁層120が膜厚120nmの酸化シリコンからなるサンプルを用いている。 4A, a sample is used in which the laser output is 60 kW / cm 2 , the gate electrode 110 is 50 nm thick MoW, and the gate insulating layer 120 is 120 nm thick silicon oxide.
 また、図4Aの「a-Si」は結晶性シリコン層131が結晶性シリコンとして結晶化せず、非結晶性シリコンとなることを示し、「SPC」は結晶性シリコン層131の結晶の平均粒径が25nm以上35nm以下程度であることを示し、「Ex&.SPC」は結晶性シリコン層131の平均粒径が40nm以上60nm未満程度であることを示し、「p―Si」は結晶性シリコン層131の平均粒径が60nm以上1μm以下程度であることを示し、「abration」は結晶性シリコン層131がチャネル層として機能しなくなることを示している。 In FIG. 4A, “a-Si” indicates that the crystalline silicon layer 131 does not crystallize as crystalline silicon but becomes amorphous silicon, and “SPC” indicates the average grain size of the crystalline silicon layer 131. “Ex & .SPC” indicates that the average particle diameter of the crystalline silicon layer 131 is approximately 40 nm or more and less than 60 nm, and “p-Si” indicates the crystalline silicon layer. The average particle size of 131 is about 60 nm or more and 1 μm or less, and “abration” indicates that the crystalline silicon layer 131 does not function as a channel layer.
 図4Aに示されるように、レーザーアニールのスキャンスピードおよび非結晶性シリコン層130の吸収率を変化させることで異なる結晶性のシリコン層を形成できる。そして、スキャンスピードを一定とした場合でも、図2(f)の工程において、チャネル保護層140が形成された非結晶性シリコン層130のチャネル保護層140下方の部分のレーザー光に対する吸収率と、その両側の部分(チャネル保護層140が形成されていない非結晶性シリコン層130の部分)のレーザー光に対する吸収率との差分を1%以上とすることで、非結晶性のシリコン層と結晶性のシリコン層とを1回のレーザースキャンで同時に形成でき、チャネル層の結晶性シリコン層131とその両側の非結晶性シリコン層130とを形成できる。 As shown in FIG. 4A, different crystalline silicon layers can be formed by changing the scanning speed of laser annealing and the absorption rate of the amorphous silicon layer 130. Even in the case where the scanning speed is constant, in the step of FIG. 2F, the absorptance with respect to the laser light of the portion below the channel protective layer 140 of the amorphous silicon layer 130 in which the channel protective layer 140 is formed, The difference between the absorption ratio to the laser light of the portions on both sides (the portion of the amorphous silicon layer 130 where the channel protective layer 140 is not formed) is set to 1% or more, so that the amorphous silicon layer and the crystalline The silicon layer can be formed simultaneously by one laser scan, and the crystalline silicon layer 131 of the channel layer and the amorphous silicon layers 130 on both sides thereof can be formed.
 なお、非結晶性シリコン層130の吸収率は、チャネル保護層140の構成、膜厚および光学定数、非結晶性シリコン層130の膜厚および光学定数、ゲート絶縁層120の構成、膜厚および光学定数、さらに下地のゲート電極110を形成する金属材料の光学定数をパラメータとして、レーザー光の多重干渉を考慮した光学計算により導かれる。以下、光学計算の実施例を詳細に説明する。 Note that the absorptance of the amorphous silicon layer 130 depends on the configuration, thickness and optical constant of the channel protective layer 140, the thickness and optical constant of the amorphous silicon layer 130, the configuration, thickness and optical constant of the gate insulating layer 120. It is derived by optical calculation taking into account multiple interference of laser light, using the constant and the optical constant of the metal material forming the underlying gate electrode 110 as parameters. Hereinafter, examples of optical calculation will be described in detail.
 図4Bは、非結晶性シリコン層130の光吸収率の計算方法を説明するための図である。 FIG. 4B is a diagram for explaining a method for calculating the light absorption rate of the amorphous silicon layer 130.
 図4Bは、図1に示す薄膜トランジスタの構造をモデル化した多層構造のモデル構造を示している。図4Bに示すモデル構造では、複素屈折率Nの層401と、複素屈折率Nの402と、複素屈折率Nの層403と、複素屈折率Nの層404と、複素屈折率Nの基板405とを備える。このモデル構造では、層404、層403、層402及び層401がこの順に基板405上に積層されたものを示している。また、図中に示す複素屈折率Nの領域は、モデル構造の外部であり、レーザー光がモデル構造に入射される側を示している。この領域は、例えば空気であり、その場合、屈折率1、消衰係数0である。 FIG. 4B shows a model structure of a multilayer structure in which the structure of the thin film transistor shown in FIG. 1 is modeled. In the model structure shown in FIG. 4B, a layer 401 of the complex refractive index N 1, and 402 of the complex refractive index N 2, a layer 403 of the complex refractive index N 3, a layer 404 of the complex refractive index N 4, the complex index of refraction N 5 substrate 405. In this model structure, a layer 404, a layer 403, a layer 402, and a layer 401 are stacked on the substrate 405 in this order. Further, the region of the complex refractive index N 0 shown in the figure is outside the model structure and indicates the side on which the laser light is incident on the model structure. This region is, for example, air. In this case, the refractive index is 1 and the extinction coefficient is 0.
 基板405は、例えば透明なガラスまたは石英からなる絶縁基板であり、例えば屈折率1.46を有し、図1に示す基板100に対応する。層404は、例えば屈折率3.47、消衰係数3.78の50nmのMoWで構成されており、図1に示すゲート電極110に対応する。層403は、例えば屈折率1.467、消衰係数0の酸化シリコンで構成されており、図1に示すゲート絶縁層120に対応している。層402は、例えば屈折率5.074、消衰係数0.621の非結晶性シリコン層130に対応する。層401は、例えば屈折率1.467、消衰係数0の酸化シリコンで構成されており、図1に示すチャネル保護層140に対応している。 The substrate 405 is an insulating substrate made of, for example, transparent glass or quartz, and has a refractive index of 1.46, for example, and corresponds to the substrate 100 shown in FIG. The layer 404 is made of, for example, 50 nm MoW having a refractive index of 3.47 and an extinction coefficient of 3.78, and corresponds to the gate electrode 110 shown in FIG. The layer 403 is made of, for example, silicon oxide having a refractive index of 1.467 and an extinction coefficient of 0, and corresponds to the gate insulating layer 120 shown in FIG. The layer 402 corresponds to the amorphous silicon layer 130 having a refractive index of 5.074 and an extinction coefficient of 0.621, for example. The layer 401 is made of, for example, silicon oxide having a refractive index of 1.467 and an extinction coefficient of 0, and corresponds to the channel protective layer 140 shown in FIG.
 図4Bに示すように、外部から層401へ入射される光に対する振幅反射係数をr01、層401から層402へ入射される光に対する振幅反射係数をr12、層402から層403へ入射される光に対する振幅反射係数をr23、層403から層404へ入射される光に対する振幅反射係数をr34としている。また、外部から層401へ入射される光の振幅透過係数をt01、層401から層402へ入射される光の振幅透過係数をt12、層402から層403へ入射される光の振幅透過係数をt23、層403から層404へ入射される光の振幅透過係数をt34としている。 As shown in FIG. 4B, the amplitude reflection coefficient for light incident on the layer 401 from the outside is r 01 , the amplitude reflection coefficient for light incident on the layer 402 from the layer 401 is r 12 , and the amplitude reflection coefficient is incident on the layer 403 from the layer 402. R 23 is the amplitude reflection coefficient with respect to the incident light, and r 34 is the amplitude reflection coefficient with respect to the light incident on the layer 404 from the layer 403. Further, the amplitude transmission coefficient of light incident on the layer 401 from the outside is t 01 , the amplitude transmission coefficient of light incident on the layer 402 from the layer 401 is t 12 , and the amplitude transmission of light incident on the layer 402 from the layer 402 The coefficient is t 23 , and the amplitude transmission coefficient of light incident on the layer 404 from the layer 403 is t 34 .
 さらに、ゲート電極110に対応する層404が形成されている領域上方の各層全体の振幅反射係数をそれぞれr01234(R1)、r1234(R2)、r234(R3)としている。具体的には、層404及び層403を1層とみなしたときの振幅反射係数をr234(R3)としている。同様に、層404、層403及び層402を1層とみなしたときの振幅反射係数をr1234(R2)とし、層404、層403、層402及び層401を1層とみなしたときの振幅反射係数をr01234(R1)としている。また、第1領域の各層全体の振幅透過係数をそれぞれt01234(T1)、t1234(T2)、t234(T3)としている。具体的には、層404、層403を1層とみなしたときの振幅透過係数をt234(T3)としている。同様に、層404、層403及び層402を1層とみなしたときの振幅透過係数をt1234(T2)とし、層404及び層403、層402及び層401を1層とみなしたときの振幅透過係数をt01234(T1)としている。 Further, the amplitude reflection coefficients of the entire layers above the region where the layer 404 corresponding to the gate electrode 110 is formed are r 01234 (R1), r 1234 (R2), and r 234 (R3), respectively. Specifically, the amplitude reflection coefficient when the layers 404 and 403 are regarded as one layer is r 234 (R3). Similarly, the amplitude reflection coefficient when the layer 404, the layer 403, and the layer 402 are regarded as one layer is r 1234 (R2), and the amplitude when the layer 404, the layer 403, the layer 402, and the layer 401 are regarded as one layer. The reflection coefficient is r 01234 (R1). In addition, the amplitude transmission coefficients of the entire layers in the first region are t 01234 (T1), t 1234 (T2), and t 234 (T3), respectively. Specifically, the amplitude transmission coefficient when the layers 404 and 403 are regarded as one layer is t 234 (T3). Similarly, t 1234 (T2) is an amplitude transmission coefficient when the layer 404, the layer 403, and the layer 402 are regarded as one layer, and the amplitude when the layer 404, the layer 403, the layer 402, and the layer 401 are regarded as one layer. The transmission coefficient is t 01234 (T1).
 そして、第1領域の各層全体の振幅反射係数、振幅透過係数は、下記の(式12)~(式17)で表すことができる。 The amplitude reflection coefficient and amplitude transmission coefficient of each layer in the first region can be expressed by the following (Expression 12) to (Expression 17).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、第2領域の各層全体の振幅反射係数、振幅透過係数は、下記の(式18)~(式23)で表すことができる。 Also, the amplitude reflection coefficient and amplitude transmission coefficient of each layer in the second region can be expressed by the following (Equation 18) to (Equation 23).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、 here,
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
であり、dは各層の膜厚、θは各層での入射角・透過角、λはレーザー光の波長である。
Figure JPOXMLDOC01-appb-M000015
Where d is the film thickness of each layer, θ is the incident angle / transmission angle in each layer, and λ is the wavelength of the laser beam.
 また、θは下式のスネルの法則より以下に示す通りに算出できる。 In addition, θ can be calculated as shown below from Snell's law of the following equation.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 また、各層それぞれの振幅反射係数r01、r12、r23、r34、r35及び振幅透過係数t01、t12、t12、t34、t35は下記の(式24)~(式33)を用いて算出できる。 The amplitude reflection coefficients r 01 , r 12 , r 23 , r 34 , r 35 and the amplitude transmission coefficients t 01 , t 12 , t 12 , t 34 , t 35 of each layer are expressed by the following (formula 24) to (formula). 33).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 なお、ここで光は単色レーザー光であり、その偏光はP偏光を仮定している。 Here, the light is monochromatic laser light, and the polarization is assumed to be P-polarized light.
 次に、以上の式を用いて、次のようにして第1領域における各層全体の振幅反射係数、振幅透過係数を算出する。すなわち、まず、r234を、(式14)に(式26)及び(式27)を代入することにより算出する。次いで、r1234を、(式13)に(式25)及びr234を代入することにより算出する。次いで、r01234を、(式12)に(式24)及びr1234を代入することにより算出する。次いで、t234を、(式17)に(式26)、(式27)、(式31)及び(式32)を代入することにより算出する。次いで、t1234を、(式16)に(式25)、(式30)、r234及びt234を代入することにより算出する。次いで、t01234を、(式15)に(式24)、(式29)、r1234及びt1234を代入することにより算出する。 Next, using the above equations, the amplitude reflection coefficient and amplitude transmission coefficient of the entire layer in the first region are calculated as follows. That is, first, r 234 is calculated by substituting (Equation 26) and (Equation 27) into (Equation 14). Next, r 1234 is calculated by substituting (Equation 25) and r 234 into (Equation 13). Next, r 01234 is calculated by substituting (Equation 24) and r 1234 into (Equation 12). Next, t 234 is calculated by substituting (Equation 26), (Equation 27), (Equation 31), and (Equation 32) into (Equation 17). Next, t 1234 is calculated by substituting (Equation 25), (Equation 30), r 234 and t 234 into (Equation 16). Next, t 01234 is calculated by substituting (Equation 24), (Equation 29), r 1234 and t 1234 into (Equation 15).
 次に、各層での反射率R1、R2及びR3、透過率T1、T2及びT3を(式34)~(式39)により算出する。 Next, the reflectances R1, R2 and R3 and the transmittances T1, T2 and T3 in each layer are calculated by (Expression 34) to (Expression 39).
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 最後に、(式40)によって、非結晶性シリコン層への光吸収率ASiを算出することができる。 Finally, the light absorption rate A Si for the amorphous silicon layer can be calculated by (Equation 40).
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 次に、上述した計算方法を用いて、図4Bに示すモデル構造に対して垂直に、すなわちθ0=0、またはsinθ0=0が近似的に成り立つ範囲の入射角θ0において波長473nm以上561nm以下のグリーンレーザー光を入射した場合に、非結晶性シリコン層130のレーザー光の吸収率を計算した。また、この場合、レーザー光の偏光がS偏光としても計算結果は同じである。 Next, using the calculation method described above, perpendicular to the model structure shown in FIG. 4B, ie theta 0 = 0 or sin [theta 0 = 0 is longer than the wavelength 473nm at an incident angle theta 0 range holds an approximation, 561 nm When the following green laser light was incident, the absorptance of the laser light of the amorphous silicon layer 130 was calculated. In this case, the calculation result is the same even if the polarization of the laser beam is S polarization.
 なお、本例では、MoWからなるゲート電極110、酸化シリコンからなるゲート絶縁層120、非結晶性シリコン130、酸化シリコンからなるチャネル保護層140からなるモデル構造の実施例を示したが、ゲート絶縁膜120が酸化シリコンと窒化シリコンとの積層構造からなる場合やチャネル保護層140が存在しない場合などの変形ケースも図4Bのモデル構造を適切に変形することで同様に計算できる。ゲート電極110の材質を変更する場合(ゲート電極110の材質を例えばCu(屈折率1.04、消衰係数2.59)、Al(屈折率0.867、消衰係数6.42)、Mo(屈折率3.61、消衰係数3.79)、W(屈折率3.48、消衰係数2.72)とする場合)、ゲート絶縁層120やチャネル保護層140の材質を変更する場合(ゲート絶縁層120やチャネル保護層140の材質を例えば窒化シリコン(屈折率1.947、消衰係数0)とする場合)も物性値を適宜変更することで、同様に計算できる図5A~図5Fは、図2(g)の工程のレーザーアニールにおいて、非結晶性シリコン層130の膜厚と、ゲート絶縁層120の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層130の吸収率の計算結果を示す等高線図である。図6Aは、図5Dおよび図5Fにおいて酸化シリコンからなるゲート絶縁層120の膜厚を120nmとしたときの非結晶性シリコン層130の吸収率の変化を示す図である。 In this example, an example of a model structure including the gate electrode 110 made of MoW, the gate insulating layer 120 made of silicon oxide, the amorphous silicon 130, and the channel protective layer 140 made of silicon oxide is shown. Modification cases such as a case where the film 120 has a laminated structure of silicon oxide and silicon nitride or a case where the channel protective layer 140 is not present can be similarly calculated by appropriately modifying the model structure of FIG. 4B. When the material of the gate electrode 110 is changed (for example, the material of the gate electrode 110 is Cu (refractive index 1.04, extinction coefficient 2.59), Al (refractive index 0.867, extinction coefficient 6.42), Mo. (When the refractive index is 3.61, extinction coefficient is 3.79), W (refractive index is 3.48, extinction coefficient is 2.72), and the material of the gate insulating layer 120 and the channel protective layer 140 is changed. (When the material of the gate insulating layer 120 and the channel protective layer 140 is, for example, silicon nitride (refractive index 1.947, extinction coefficient 0)) can be calculated in the same manner by appropriately changing the physical property values. 5F shows the absorption of the amorphous silicon layer 130 when the thickness of the amorphous silicon layer 130 and the thickness of the gate insulating layer 120 are changed in the laser annealing in the step of FIG. Show rate calculation results, etc. It is a diagrammatic view. 6A is a diagram showing a change in the absorptance of the amorphous silicon layer 130 when the thickness of the gate insulating layer 120 made of silicon oxide is 120 nm in FIGS. 5D and 5F.
 なお、図5A~図5Fでは、下の横軸は、非結晶性シリコン層130の光学膜厚、すなわち非結晶性シリコン層130の膜厚に非結晶性シリコン層130の屈折率を積算した値を、レーザー光の波長で除算した値を示している。左の縦軸は、ゲート絶縁層120の光学膜厚、すなわちゲート絶縁層120の膜厚にゲート絶縁層120の屈折率を積算した値を、レーザー光の波長で除算した値を示している。参考までに、レーザー光の波長で規格化することなくレーザー光の波長を532nmとしたときの非結晶性シリコン層130の膜厚を上の横軸に、ゲート絶縁層120の膜厚を右の縦軸に示している。また、図6Aでは、非結晶性シリコン層130の光学膜厚をレーザー光の波長で除算した値を横軸に、非結晶性シリコン層130の吸収率を縦軸に示している。 5A to 5F, the lower horizontal axis represents the optical film thickness of the amorphous silicon layer 130, that is, the value obtained by adding the refractive index of the amorphous silicon layer 130 to the film thickness of the amorphous silicon layer 130. Is divided by the wavelength of the laser beam. The left vertical axis indicates the optical film thickness of the gate insulating layer 120, that is, the value obtained by dividing the refractive index of the gate insulating layer 120 by the film thickness of the gate insulating layer 120 and dividing it by the wavelength of the laser beam. For reference, the film thickness of the amorphous silicon layer 130 when the wavelength of the laser light is 532 nm without being normalized by the wavelength of the laser light is shown on the horizontal axis, and the film thickness of the gate insulating layer 120 is shown on the right side. It is shown on the vertical axis. In FIG. 6A, the value obtained by dividing the optical film thickness of the amorphous silicon layer 130 by the wavelength of the laser beam is shown on the horizontal axis, and the absorptance of the amorphous silicon layer 130 is shown on the vertical axis.
 また、図5Aの計算では、ゲート電極110がCuからなり、ゲート絶縁層120が酸化シリコンからなり、チャネル保護層140が0nmである(チャネル保護層140が形成されていない)モデルを用いている。図5Bの計算では、ゲート電極110がAlからなり、ゲート絶縁層120が酸化シリコンからなり、チャネル保護層140が0nmであるモデルを用いている。図5Cの計算では、ゲート電極110がMoからなり、ゲート絶縁層120が酸化シリコンからなり、チャネル保護層140が0nmであるモデルを用いている。図5Dの計算では、ゲート電極110がMoWからなり、ゲート絶縁層120が酸化シリコンからなり、チャネル保護層140が0nmであるモデルを用いている。図5Eの計算では、ゲート電極110がWからなり、ゲート絶縁層120が酸化シリコンからなり、チャネル保護層140が0nmであるモデルを用いている。図5Fの計算では、ゲート電極110がMoWからなり、ゲート絶縁層120が酸化シリコンからなり、チャネル保護層140が275nmの酸化シリコンからなるモデルを用いている。 5A uses a model in which the gate electrode 110 is made of Cu, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm (the channel protective layer 140 is not formed). . The calculation in FIG. 5B uses a model in which the gate electrode 110 is made of Al, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm. The calculation in FIG. 5C uses a model in which the gate electrode 110 is made of Mo, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm. 5D uses a model in which the gate electrode 110 is made of MoW, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm. 5E uses a model in which the gate electrode 110 is made of W, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is 0 nm. 5F uses a model in which the gate electrode 110 is made of MoW, the gate insulating layer 120 is made of silicon oxide, and the channel protective layer 140 is made of 275 nm silicon oxide.
 ところで、例えば、波長532nmのときの非結晶性シリコン層130の屈折率を用いると、図5A~図5Fの横軸の値を非結晶性シリコン層130の膜厚に変換することができる。図6Bは、図5A~図5Fの横軸の値を非結晶性シリコン層130の膜厚に変換した値の例を示す図である。図6Bには、波長532nmのとき、波長473nmのとき、及び波長569nmのときの、図5A~図5Fの横軸の値を非結晶性シリコン層130の膜厚に変換した値を示している。 By the way, for example, when the refractive index of the amorphous silicon layer 130 at a wavelength of 532 nm is used, the values on the horizontal axis in FIGS. 5A to 5F can be converted into the film thickness of the amorphous silicon layer 130. FIG. 6B is a diagram illustrating an example of a value obtained by converting the value on the horizontal axis of FIGS. 5A to 5F into the film thickness of the amorphous silicon layer 130. FIG. 6B shows values obtained by converting the values on the horizontal axis of FIGS. 5A to 5F into the film thickness of the amorphous silicon layer 130 at the wavelength of 532 nm, the wavelength of 473 nm, and the wavelength of 569 nm. .
 同様に、例えば、波長532nmのときのゲート絶縁層120の屈折率を用いると、図5A~図5Fの縦軸の値をゲート絶縁層120の膜厚に変換することができる。図6Cは、図5A~図5Fの縦軸の値を酸化シリコンからなるゲート絶縁層120、または窒化シリコンからなるゲート絶縁層120の膜厚に変換した値の例を示す図である。図6Cには、波長532nmのとき、波長473nmのとき、及び波長569nmのときの、図5A~図5Fの縦軸の値をゲート絶縁層120の膜厚に変換した値を示している。なお、図6Cは後述する図7において、横軸と縦軸の値を酸化シリコン、または窒化シリコンからなるチャネル保護層140の膜厚、またはゲート絶縁層120の膜厚に変換した値の例を示す図としても適用できる。 Similarly, for example, when the refractive index of the gate insulating layer 120 at a wavelength of 532 nm is used, the value on the vertical axis in FIGS. 5A to 5F can be converted into the film thickness of the gate insulating layer 120. FIG. 6C is a diagram illustrating an example of values obtained by converting the values on the vertical axis in FIGS. 5A to 5F into the thickness of the gate insulating layer 120 made of silicon oxide or the gate insulating layer 120 made of silicon nitride. FIG. 6C shows values obtained by converting the values on the vertical axis in FIGS. 5A to 5F into the film thickness of the gate insulating layer 120 when the wavelength is 532 nm, the wavelength is 473 nm, and the wavelength is 569 nm. 6C shows an example of values obtained by converting the values on the horizontal axis and the vertical axis into the film thickness of the channel protective layer 140 made of silicon oxide or silicon nitride or the film thickness of the gate insulating layer 120 in FIG. 7 described later. It can also be applied as a diagram shown.
 図5A~図5Fから、ゲート電極110の材料およびチャネル保護層140の膜厚によらず、図2(f)の工程において、lおよびmを0から始まる整数とし、非結晶性シリコン層130の底面から非結晶性シリコン層130の上面までの膜厚に非結晶性シリコン層130の屈折率を積算した値である非結晶性シリコン層130の光学膜厚を、レーザー光の波長で除算した値をXとし、ゲート絶縁層120の膜厚にゲート絶縁層120の屈折率を積算した値であるゲート絶縁層120の光学膜厚を、レーザー光の波長で除算した値をYとし、XおよびYが下記の(式1)および(式2)を満たせば、非結晶性シリコン層130のレーザー光の吸収率を最大の吸収率を含むようにし、例えば50%以上とすることができる。なお、図5A~図5FのAは、それぞれXおよびYが下記の(式1)および(式2)を満たす範囲を示している。 5A to 5F, regardless of the material of the gate electrode 110 and the film thickness of the channel protective layer 140, in the step of FIG. 2F, l and m are integers starting from 0, and the amorphous silicon layer 130 A value obtained by dividing the optical film thickness of the amorphous silicon layer 130 by the wavelength of the laser beam, which is a value obtained by adding the refractive index of the amorphous silicon layer 130 to the film thickness from the bottom surface to the upper surface of the amorphous silicon layer 130. Is X, Y is a value obtained by dividing the optical film thickness of the gate insulating layer 120 by the film thickness of the gate insulating layer 120 and the refractive index of the gate insulating layer 120 by the wavelength of the laser beam, and X and Y If the following (Equation 1) and (Equation 2) are satisfied, the absorption rate of the laser light of the amorphous silicon layer 130 includes the maximum absorption rate, for example, 50% or more. 5A to 5F indicate ranges where X and Y satisfy the following (formula 1) and (formula 2), respectively.
 (式1)0.50m≦Y≦0.40+0.50m
 (式2)-3.75(X-0.50l)+1.83+0.50m≦Y≦-3.75(X-0.50l)+0.35+0.50m
(Formula 1) 0.50 m ≦ Y ≦ 0.40 + 0.50 m
(Formula 2) -3.75 (X-0.50 l) + 1.83 + 0.50 m ≦ Y ≦ −3.75 (X-0.50 l) + 0.35 + 0.50 m
 図7は、図2(g)の工程のレーザーアニールにおいて、チャネル保護層140の膜厚と、ゲート絶縁層120の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層130のチャネル保護層140下方の部分の吸収率の計算結果を示す等高線図である。図8A~図8Cは、チャネル保護層140の膜厚を変化させた場合の、非結晶性シリコン層130のチャネル保護層140下方の部分の吸収率の変化を示す図である。 FIG. 7 shows channel protection of the amorphous silicon layer 130 when the thickness of the channel protective layer 140 and the thickness of the gate insulating layer 120 are changed in the laser annealing in the step of FIG. FIG. 6 is a contour diagram showing the calculation result of the absorptance of the portion below the layer 140. 8A to 8C are diagrams showing changes in the absorptance of the portion of the amorphous silicon layer 130 below the channel protective layer 140 when the film thickness of the channel protective layer 140 is changed.
 なお、図7では、下の横軸は、チャネル保護層140の光学膜厚、すなわちチャネル保護層140の膜厚にチャネル保護層140の屈折率を積算した値を、レーザー光の波長で除算した値を示している。左の縦軸は、ゲート絶縁層120の光学膜厚、すなわちゲート絶縁層120の膜厚にゲート絶縁層120の屈折率を積算した値を、レーザー光の波長で除算した値を示している。参考までに、レーザー光の波長で規格化することなくレーザー光の波長を532nmとしたときのチャネル保護層140の膜厚を上の横軸に、ゲート絶縁層120の膜厚を右の縦軸に示している。また、図8A~図8Cでは、チャネル保護層140の光学膜厚をレーザー光の波長で除算した値を横軸に、非結晶性シリコン層130のチャネル保護層140下方の部分の吸収率を縦軸に示している。 In FIG. 7, the lower horizontal axis represents the optical film thickness of the channel protective layer 140, that is, the value obtained by adding the refractive index of the channel protective layer 140 to the film thickness of the channel protective layer 140 divided by the wavelength of the laser beam. The value is shown. The left vertical axis indicates the optical film thickness of the gate insulating layer 120, that is, the value obtained by dividing the refractive index of the gate insulating layer 120 by the film thickness of the gate insulating layer 120 and dividing it by the wavelength of the laser beam. For reference, the film thickness of the channel protective layer 140 when the wavelength of the laser light is 532 nm without being normalized by the wavelength of the laser light is shown on the horizontal axis, and the film thickness of the gate insulating layer 120 is shown on the right vertical axis. It shows. 8A to 8C, the horizontal axis represents the value obtained by dividing the optical film thickness of the channel protective layer 140 by the wavelength of the laser beam, and the absorptance of the portion below the channel protective layer 140 of the amorphous silicon layer 130 is represented vertically. Shown on the axis.
 また、図7の計算では、ゲート電極110がMoWからなり、ゲート絶縁層120が酸化シリコンからなり、非結晶性シリコン層130の光学膜厚、すなわち非結晶性シリコン層130の膜厚に非結晶性シリコン層130の屈折率を積算した値を、レーザー光の波長で除算した値が0.477(波長532nmで非結晶性シリコン層膜厚が50nmに対応)からなり、チャネル保護層140が酸化シリコンの場合からなるモデルを用いている。 Further, in the calculation of FIG. 7, the gate electrode 110 is made of MoW, the gate insulating layer 120 is made of silicon oxide, and the optical film thickness of the amorphous silicon layer 130, that is, the film thickness of the amorphous silicon layer 130 is amorphous. The value obtained by integrating the refractive index of the crystalline silicon layer 130 divided by the wavelength of the laser beam is 0.477 (corresponding to a wavelength of 532 nm and an amorphous silicon layer thickness of 50 nm), and the channel protective layer 140 is oxidized. A model consisting of silicon is used.
 また、図8Aの計算では、ゲート電極110がMoWからなり、ゲート絶縁層120の光学膜厚、すなわちゲート絶縁層120の膜厚にゲート絶縁層120の屈折率を積算した値を、レーザー光の波長で除算した値が0.331(波長532nmで酸化シリコン層膜厚が120nmに対応)からなり、チャネル保護層140が酸化シリコンの場合からなるモデルを用いている。そして、図8Aの破線、二点鎖線および実線は、それぞれ非結晶性シリコン層130の光学膜厚、すなわち非結晶性シリコン層130の膜厚に非結晶性シリコン層130の屈折率を積算した値を、レーザー光の波長で除算した値が0.286(波長532nmで非結晶性シリコン層膜厚が30nmに対応)、0.763(波長532nmで非結晶性シリコン層膜厚が80nmに対応)および0.954(波長532nmで非結晶性シリコン層膜厚が100nmに対応)の場合の計算結果を示している。 8A, the gate electrode 110 is made of MoW, and the optical film thickness of the gate insulating layer 120, that is, the value obtained by adding the refractive index of the gate insulating layer 120 to the film thickness of the gate insulating layer 120, A model obtained by dividing the wavelength by 0.331 (corresponding to a wavelength of 532 nm and a silicon oxide layer thickness of 120 nm) is used, and the channel protective layer 140 is made of silicon oxide. 8A, the broken line, the alternate long and two short dashes line, and the solid line represent values obtained by adding the refractive index of the amorphous silicon layer 130 to the optical thickness of the amorphous silicon layer 130, that is, the thickness of the amorphous silicon layer 130, respectively. Is divided by the wavelength of the laser beam to be 0.286 (corresponding to a non-crystalline silicon layer thickness of 30 nm at a wavelength of 532 nm), 0.763 (corresponding to a non-crystalline silicon layer thickness of 80 nm at a wavelength of 532 nm) And 0.954 (wavelength of 532 nm and the amorphous silicon layer thickness corresponds to 100 nm).
 また、図8Bの計算では、ゲート電極110がMoWからなり、ゲート絶縁層120が酸化シリコンからなり、非結晶性シリコン層130の光学膜厚、すなわち非結晶性シリコン層130の膜厚に非結晶性シリコン層130の屈折率を積算した値を、レーザー光の波長で除算した値が0.477(波長532nmで非結晶性シリコン層膜厚が50nmに対応)からなり、チャネル保護層140が酸化シリコンの場合からなるモデルを用いている。そして、図8Bの破線、二点鎖線および実線は、それぞれゲート絶縁層120の光学膜厚、すなわちゲート絶縁層120の膜厚にゲート絶縁層120の屈折率を積算した値を、レーザー光の波長で除算した値が0.276(波長532nmで酸化シリコン層膜厚が100nmに対応)、0.552(波長532nmで酸化シリコン層膜厚が200nmに対応)および1.103(波長532nmで酸化シリコン層膜厚が400nmに対応)の場合の計算結果を示している。 Further, in the calculation of FIG. 8B, the gate electrode 110 is made of MoW, the gate insulating layer 120 is made of silicon oxide, and the amorphous film has an optical film thickness of the amorphous silicon layer 130, that is, the film thickness of the amorphous silicon layer 130. The value obtained by integrating the refractive index of the crystalline silicon layer 130 divided by the wavelength of the laser beam is 0.477 (corresponding to a wavelength of 532 nm and an amorphous silicon layer thickness of 50 nm), and the channel protective layer 140 is oxidized. A model consisting of silicon is used. 8B represents the optical film thickness of the gate insulating layer 120, that is, the value obtained by adding the refractive index of the gate insulating layer 120 to the film thickness of the gate insulating layer 120, respectively. The value divided by 0.276 (corresponding to a silicon oxide layer thickness of 100 nm at a wavelength of 532 nm), 0.552 (corresponding to a silicon oxide layer thickness of 200 nm at a wavelength of 532 nm) and 1.103 (silicon oxide at a wavelength of 532 nm). The calculation results when the layer thickness corresponds to 400 nm are shown.
 また、図8Cの計算では、ゲート絶縁層120が酸化シリコンからなり、非結晶性シリコン層130の光学膜厚、すなわち非結晶性シリコン層130の膜厚に非結晶性シリコン層130の屈折率を積算した値を、レーザー光の波長で除算した値が0.477(波長532nmで非結晶性シリコン層膜厚が50nmに対応)からなり、チャネル保護層140が酸化シリコンの場合からなるモデルを用いている。そして、図8Cの破線、二点鎖線および実線は、それぞれゲート電極110がCu、AlおよびMoWの場合の計算結果を示している。 In the calculation of FIG. 8C, the gate insulating layer 120 is made of silicon oxide, and the refractive index of the amorphous silicon layer 130 is set to the optical film thickness of the amorphous silicon layer 130, that is, the film thickness of the amorphous silicon layer 130. A value obtained by dividing the integrated value by the wavelength of the laser beam is 0.477 (corresponding to a wavelength of 532 nm and an amorphous silicon layer thickness of 50 nm), and a model is used in which the channel protective layer 140 is made of silicon oxide. ing. And the broken line of FIG. 8C, the dashed-two dotted line, and the continuous line have shown the calculation result in case the gate electrode 110 is Cu, Al, and MoW, respectively.
 図7~図8Cから、図2(f)の工程において、チャネル保護層140の光学膜厚をレーザー光の波長で除算した値をZとし、kを0から始まる整数とし、Zが下記の(式3)を満たせば、非結晶性シリコン層130のチャネル保護層140下方の部分のレーザー光の吸収効率を増大させることができる。なお、図7のAは、Zが下記の(式3)を満たす範囲を示している。また、図8A~図8Cのk=0、1、2はそれぞれ(式3)でk=0、1、2のときのZの範囲を示している。 From FIG. 7 to FIG. 8C, in the process of FIG. 2 (f), the value obtained by dividing the optical film thickness of the channel protective layer 140 by the wavelength of the laser beam is Z, and k is an integer starting from 0. If Expression 3) is satisfied, the absorption efficiency of the laser light in the portion below the channel protective layer 140 of the amorphous silicon layer 130 can be increased. In addition, A of FIG. 7 has shown the range where Z satisfy | fills the following (Formula 3). 8A to 8C, k = 0, 1, and 2 indicate the range of Z when k = 0, 1, and 2 in (Equation 3), respectively.
 (式3)0.5×(k+0.3)≦Z≦0.5×(k+0.7) (Formula 3) 0.5 × (k + 0.3) ≦ Z ≦ 0.5 × (k + 0.7)
 以上のように本実施形態の薄膜トランジスタによれば、チャネル層のチャネル保護層140下方の部分が結晶性シリコン層131で形成され、その両側が非結晶性シリコン層130で形成される。従って、優れたオン特性と優れたオフ特性とを両立させることができる。 As described above, according to the thin film transistor of the present embodiment, the portion of the channel layer below the channel protective layer 140 is formed of the crystalline silicon layer 131 and both sides thereof are formed of the amorphous silicon layer 130. Therefore, it is possible to achieve both excellent on characteristics and excellent off characteristics.
 また、ソース電極171とドレイン電極172とが下層のチャネル保護層140に対して不均一に配置された場合でも、チャネル経路における結晶性シリコン層131からソース電極171までの距離と、チャネル経路における結晶性シリコン層131からドレイン電極172までの距離とが均等となる。従って、電気特性をソース電極およびドレイン電極の入れ替えに対して対称とすることができる。 Even when the source electrode 171 and the drain electrode 172 are non-uniformly arranged with respect to the underlying channel protective layer 140, the distance from the crystalline silicon layer 131 to the source electrode 171 in the channel path and the crystal in the channel path The distance from the conductive silicon layer 131 to the drain electrode 172 is uniform. Therefore, the electrical characteristics can be symmetric with respect to the replacement of the source electrode and the drain electrode.
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る薄膜トランジスタについて、以下で説明する。
(Second Embodiment)
Next, a thin film transistor according to a second embodiment of the present invention will be described below.
 図9は、本実施形態に係る薄膜トランジスタの構成を模式的に示した断面図である。 FIG. 9 is a cross-sectional view schematically showing the configuration of the thin film transistor according to this embodiment.
 本実施形態に係る薄膜トランジスタは、非結晶性シリコン層130が第2結晶性シリコン層230に置き換えられ、結晶性シリコン層131が第1結晶性シリコン層231に置き換えられているという点で第1の実施形態の薄膜トランジスタと異なる。以下、第1の実施形態と異なる点を中心に説明する。 In the thin film transistor according to the present embodiment, the first crystalline silicon layer 130 is replaced with the second crystalline silicon layer 230, and the crystalline silicon layer 131 is replaced with the first crystalline silicon layer 231. Different from the thin film transistor of the embodiment. Hereinafter, a description will be given focusing on differences from the first embodiment.
 この薄膜トランジスタは、基板100と、基板100上に形成されたゲート電極110と、ゲート電極110上に形成されたゲート絶縁層120と、ゲート絶縁層120上であって、ゲート電極110の上方に形成された第1結晶性シリコン層231と、ゲート絶縁層120上であって、第1結晶性シリコン層231の両側に形成された第2結晶性シリコン層230と、第1結晶性シリコン層231上に形成されたチャネル保護層140と、チャネル保護層140の端部の上面、チャネル保護層140の側面、および第2結晶性シリコン層230の上面に沿って、第2結晶性シリコン層230の一方の上方に形成されたソース電極171および第2結晶性シリコン層230の他方の上方に形成されたドレイン電極172とを備え、第1結晶性シリコン層231に含まれる結晶の平均粒径が、第2結晶性シリコン層230に含まれる結晶の平均粒径より大きく、第1結晶性シリコン層231の膜厚と第2結晶性シリコン層の膜厚とは同一である。さらに、第2結晶性シリコン層230とソース電極171との間に形成されたコンタクト層162と、第2結晶性シリコン層230とドレイン電極172との間に形成されたコンタクト層161とを備える。 The thin film transistor is formed on the substrate 100, the gate electrode 110 formed on the substrate 100, the gate insulating layer 120 formed on the gate electrode 110, and the gate insulating layer 120 above the gate electrode 110. On the first crystalline silicon layer 231 and the gate insulating layer 120, the second crystalline silicon layer 230 formed on both sides of the first crystalline silicon layer 231 and the first crystalline silicon layer 231 The channel protective layer 140 formed on the upper surface of the channel protective layer 140, the side surface of the channel protective layer 140, and the upper surface of the second crystalline silicon layer 230. A source electrode 171 formed above the second crystalline silicon layer 230 and a drain electrode 172 formed above the other of the second crystalline silicon layer 230, and a first crystal The average grain size of crystals contained in the silicon layer 231 is larger than the average grain size of crystals contained in the second crystalline silicon layer 230, and the film thickness of the first crystalline silicon layer 231 and the film of the second crystalline silicon layer Thickness is the same. Further, a contact layer 162 formed between the second crystalline silicon layer 230 and the source electrode 171 and a contact layer 161 formed between the second crystalline silicon layer 230 and the drain electrode 172 are provided.
 ここで、結晶性シリコン層131の両端部とチャネル保護層140の両端部とは基板100上の同一の位置に配置されている。そして、第1結晶性シリコン層231とソース電極171とは、オーバーラップする領域を有し、第1結晶性シリコン層231とドレイン電極172とは、オーバーラップする領域を有する。 Here, both ends of the crystalline silicon layer 131 and both ends of the channel protective layer 140 are disposed at the same position on the substrate 100. The first crystalline silicon layer 231 and the source electrode 171 have an overlapping region, and the first crystalline silicon layer 231 and the drain electrode 172 have an overlapping region.
 次に、図9の薄膜トランジスタについて詳細に説明する。 Next, the thin film transistor of FIG. 9 will be described in detail.
 第1結晶性シリコン層231および第2結晶性シリコン層230は、ゲート絶縁層120上に形成される半導体層であって、ゲート電極110の電圧によってキャリアの移動が制御されるチャネル層を構成する。第1結晶性シリコン層231および第2結晶性シリコン層230は、結晶性のシリコン層からなり、それぞれ非結晶性シリコン層の非晶質のシリコンをレーザー照射することにより多結晶質化(微結晶化も含む)することで形成される。なお、第1結晶性シリコン層231および第2結晶性シリコン層230は、非結晶性のシリコンと結晶性のシリコン層との混晶構造を有するシリコン層とすることもできる。 The first crystalline silicon layer 231 and the second crystalline silicon layer 230 are semiconductor layers formed on the gate insulating layer 120 and constitute a channel layer whose carrier movement is controlled by the voltage of the gate electrode 110. . The first crystalline silicon layer 231 and the second crystalline silicon layer 230 are made of a crystalline silicon layer, and are made polycrystalline by irradiating the amorphous silicon of the amorphous silicon layer with laser. Formed). Note that the first crystalline silicon layer 231 and the second crystalline silicon layer 230 may be silicon layers having a mixed crystal structure of amorphous silicon and crystalline silicon layers.
 なお、第1結晶性シリコン層231に含まれる結晶の平均粒径は40nm以上1μm以下であり、第2結晶性シリコン層230に含まれる結晶の平均粒径は10nm以上40nm未満である。 The average grain size of crystals contained in the first crystalline silicon layer 231 is not less than 40 nm and not more than 1 μm, and the average grain size of crystals contained in the second crystalline silicon layer 230 is not less than 10 nm and less than 40 nm.
 チャネル層において、チャネル層の第1結晶性シリコン層231の底面および第2結晶性シリコン層230の底面は面一で同一平面を形成し、第1結晶性シリコン層231の上面および第2結晶性シリコン層230の上面も同様に面一で同一平面を形成する。さらに、第1結晶性シリコン層231は、ゲート電極110の上方に位置し、その両端がゲート電極110の両端より内側に位置する。 In the channel layer, the bottom surface of the first crystalline silicon layer 231 and the bottom surface of the second crystalline silicon layer 230 in the channel layer are flush and form the same plane, and the top surface of the first crystalline silicon layer 231 and the second crystalline silicon layer 231 are formed. Similarly, the upper surface of the silicon layer 230 is flush and forms the same plane. Further, the first crystalline silicon layer 231 is located above the gate electrode 110 and both ends thereof are located inside the both ends of the gate electrode 110.
 チャネル保護層140の側面と第1結晶性シリコン層231の側面とは面一である。 The side surface of the channel protective layer 140 and the side surface of the first crystalline silicon layer 231 are flush with each other.
 以下、本実施形態に係る薄膜トランジスタの製造方法について、図10を用いて説明する。図10は、本実施形態に係る薄膜トランジスタの製造方法における各工程の構成を模式的に示した断面図である。 Hereinafter, a method of manufacturing the thin film transistor according to the present embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view schematically showing the configuration of each step in the method of manufacturing a thin film transistor according to this embodiment.
 この薄膜トランジスタの製造方法は、基板100を準備する第1工程と、基板100上にゲート電極110を形成する第2工程と、ゲート電極110上にゲート絶縁層120を形成する第3工程と、ゲート絶縁層120上に非結晶性シリコン層330を形成する第4工程と、非結晶性シリコン層330上にチャネル保護層140を形成する第5工程と、チャネル保護層140を、ゲート電極110の上方の領域を残すようにパターニングする第6工程と、レーザー光をパターニングされたチャネル保護層140とチャネル保護層140が形成されていない非結晶性シリコン層330とに連続して照射して、チャネル保護層140が形成された非結晶性シリコン層330を第1結晶性シリコン層231とし、チャネル保護層140が形成されていない非結晶性シリコン層330を第2結晶性シリコン層230とする第7工程と、パターニングされたチャネル保護層140の端部の上面、パターニングされたチャネル保護層140の側面、および第2結晶性シリコン層230の上面に沿って、第2結晶性シリコン層230の一方の上方にソース電極171を形成し、第2結晶性シリコン層230の他方の上方にドレイン電極172を形成する第8工程とを含み、第7工程において、第2結晶性シリコン層230に含まれる結晶の平均粒径より大きい平均粒径の結晶を含む第1結晶性シリコン層231を形成する。 The thin film transistor manufacturing method includes a first step of preparing the substrate 100, a second step of forming the gate electrode 110 on the substrate 100, a third step of forming the gate insulating layer 120 on the gate electrode 110, a gate A fourth step of forming the amorphous silicon layer 330 on the insulating layer 120, a fifth step of forming the channel protective layer 140 on the amorphous silicon layer 330, and the channel protective layer 140 above the gate electrode 110. A sixth step of patterning so as to leave the region, and irradiating the patterned channel protective layer 140 and the non-crystalline silicon layer 330 on which the channel protective layer 140 is not formed with a laser beam continuously The amorphous silicon layer 330 on which the layer 140 is formed is used as the first crystalline silicon layer 231, and the channel protective layer 140 is formed. A seventh step in which the non-crystalline silicon layer 330 is the second crystalline silicon layer 230, the upper surface of the end portion of the patterned channel protective layer 140, the side surface of the patterned channel protective layer 140, and the second crystalline property An eighth step of forming a source electrode 171 above one of the second crystalline silicon layers 230 and forming a drain electrode 172 above the other of the second crystalline silicon layers 230 along the upper surface of the silicon layer 230; In the seventh step, the first crystalline silicon layer 231 containing crystals having an average grain size larger than the average grain size of crystals contained in the second crystalline silicon layer 230 is formed.
 ここで、第7工程において、チャネル保護層140が形成された非結晶性シリコン層330のレーザー光に対する吸収率は、チャネル保護層140が形成されていない非結晶性シリコン層330のレーザー光に対する吸収率より大きい。 Here, in the seventh step, the absorption rate of the amorphous silicon layer 330 in which the channel protective layer 140 is formed with respect to the laser beam is the absorption rate of the amorphous silicon layer 330 in which the channel protective layer 140 is not formed with respect to the laser beam. Greater than rate.
 次に、図10の薄膜トランジスタの製造方法について詳細に説明する。 Next, a method for manufacturing the thin film transistor of FIG. 10 will be described in detail.
 まず、図10(a)に示すように、基板100としてガラス基板を準備する。 First, a glass substrate is prepared as the substrate 100 as shown in FIG.
 次に、図10(b)に示すように、基板100上に所定形状のゲート電極110を形成する。 Next, as shown in FIG. 10B, a gate electrode 110 having a predetermined shape is formed on the substrate 100.
 次に、図10(c)に示すように、ゲート電極110を覆って基板100およびゲート電極110上にゲート絶縁層120を形成する。 Next, as shown in FIG. 10C, a gate insulating layer 120 is formed on the substrate 100 and the gate electrode 110 so as to cover the gate electrode 110.
 次に、図10(d)に示すように、ゲート絶縁層120上に、非結晶性シリコンからなる非結晶性シリコン層330をプラズマCVD等によってゲート絶縁層120の成膜と連続的に成膜する。なお、非結晶性シリコン層330は、非結晶性シリコン層130と同じ材料から構成される。 Next, as shown in FIG. 10D, an amorphous silicon layer 330 made of amorphous silicon is continuously formed on the gate insulating layer 120 by plasma CVD or the like. To do. Note that the amorphous silicon layer 330 is made of the same material as the amorphous silicon layer 130.
 次に、図10(e)に示すように、非結晶性シリコン層330上に、チャネル保護層140を成膜する。 Next, as shown in FIG. 10E, a channel protective layer 140 is formed on the amorphous silicon layer 330.
 次に、図10(f)に示すように、チャネル保護層140の一部をエッチング除去する。 Next, as shown in FIG. 10F, a part of the channel protective layer 140 is removed by etching.
 次に、図10(g)に示すように、非結晶性シリコン層330をレーザーアニール法により第1結晶性シリコン層231および第2結晶性シリコン層230にする。具体的には、所定のレーザー光を基板100に対して一定の方向に相対移動させて、レーザー光を用いて非結晶性シリコン層330を結晶化させて第1結晶性シリコン層231および第2結晶性シリコン層230を生成する。より具体的には、先ず、形成された非結晶性シリコン層330に対して脱水素処理を実施する。その後、非結晶性シリコン層330をレーザーアニール法により多結晶質(微結晶を含む)にすることにより第1結晶性シリコン層231および第2結晶性シリコン層230を形成する。 Next, as shown in FIG. 10G, the non-crystalline silicon layer 330 is formed into a first crystalline silicon layer 231 and a second crystalline silicon layer 230 by laser annealing. Specifically, a predetermined laser beam is moved relative to the substrate 100 in a certain direction, and the amorphous silicon layer 330 is crystallized using the laser beam, so that the first crystalline silicon layer 231 and the second crystalline silicon layer 231 A crystalline silicon layer 230 is generated. More specifically, first, a dehydrogenation process is performed on the formed amorphous silicon layer 330. Thereafter, the first crystalline silicon layer 231 and the second crystalline silicon layer 230 are formed by making the amorphous silicon layer 330 polycrystalline (including microcrystals) by laser annealing.
 このとき、レーザー光は、非結晶性シリコン層330のチャネル保護層140が形成されていない部分、非結晶性シリコン層330のチャネル保護層140が形成された部分および非結晶性シリコン層330のチャネル保護層140が形成されていない部分の順に非結晶性シリコン層330をスキャンするが、チャネル保護層140が形成されていない部分のレーザー光の吸収率は低い。従って、非結晶性シリコン層330において、チャネル保護層140が形成された部分には結晶の平均粒径が大きい第1結晶性シリコン層231が形成されるが、チャネル保護層140が形成されていない部分には結晶の平均粒径が小さい第2結晶性シリコン層230が形成される。 At this time, the laser beam is emitted from the portion of the amorphous silicon layer 330 where the channel protective layer 140 is not formed, the portion of the amorphous silicon layer 330 where the channel protective layer 140 is formed, and the channel of the amorphous silicon layer 330. The amorphous silicon layer 330 is scanned in the order of the portion where the protective layer 140 is not formed, but the absorption rate of the laser light in the portion where the channel protective layer 140 is not formed is low. Accordingly, in the amorphous silicon layer 330, the first crystalline silicon layer 231 having a large average crystal grain size is formed in the portion where the channel protective layer 140 is formed, but the channel protective layer 140 is not formed. A second crystalline silicon layer 230 having a small average crystal grain size is formed in the portion.
 また、レーザー光のレーザー光源は、可視光領域の波長のレーザーである。この可視光領域の波長のレーザーは、約380nm~780nmの波長のレーザーであり、好ましくは473nm以上561nm以下の波長のグリーンレーザーである。この可視光領域の波長のレーザー光は、連続発振モードまたは擬似連続発振モードの光であれば好ましい。なぜなら、可視光領域の波長のレーザー光が連続発振モードまたは擬似連続発振モード以外の発振モードのパルス発振モードである場合、非結晶性シリコン層330にレーザー光を非連続に照射することになるため、非結晶性シリコン層330を常時溶融状態に保持することできないからである。また、擬似連続発振モードも含まれる理由は、非結晶性シリコン層330がその融点以下まで冷却しないうちにパルスを当てて再加熱させることにより、その溶融状態を維持できるからである。従って、擬似連続発振モードの好ましい態様は、非結晶性シリコン層330がその融点以下まで冷却しないうちにパルスを当てて再加熱させることができ、かつ、その溶融状態を維持できるものである。また、可視光領域の波長のレーザー光は、固体レーザー装置から発せられた光であってもよく、半導体レーザー素子を用いたレーザー装置から発せられた光であってもよい。いずれにせよ、レーザー光を精度よく制御できるため好ましい。さらに、可視光領域の波長のレーザー光は、結晶ムラのない結晶性シリコン層を形成するため、非結晶性シリコン層330上に照射したときのレーザー光の非結晶性シリコン層330上における照射エネルギー密度の変動が5%未満であれば好ましい。結晶ムラのない第1結晶性シリコン層231および第2結晶性シリコン層230を形成することにより、薄膜トランジスタの当初設計特性が達成でき、また、特性の均一化が実現できる。 Further, the laser light source of the laser light is a laser having a wavelength in the visible light region. The laser having a wavelength in the visible light region is a laser having a wavelength of about 380 nm to 780 nm, and preferably a green laser having a wavelength of 473 nm to 561 nm. The laser light having a wavelength in the visible light region is preferably light in a continuous oscillation mode or a pseudo continuous oscillation mode. This is because when the laser light having a wavelength in the visible light region is in a pulse oscillation mode other than the continuous oscillation mode or the pseudo continuous oscillation mode, the amorphous silicon layer 330 is irradiated with the laser light discontinuously. This is because the amorphous silicon layer 330 cannot always be kept in a molten state. The reason why the pseudo continuous oscillation mode is also included is that the amorphous silicon layer 330 can be maintained in its molten state by being reheated by applying a pulse before it is cooled to below its melting point. Therefore, a preferred embodiment of the quasi-continuous oscillation mode is one in which the amorphous silicon layer 330 can be reheated by applying a pulse before it is cooled to below its melting point, and the molten state can be maintained. Further, the laser light having a wavelength in the visible light region may be light emitted from a solid-state laser device or light emitted from a laser device using a semiconductor laser element. In any case, it is preferable because laser light can be controlled with high accuracy. Furthermore, the irradiation energy of the laser light on the amorphous silicon layer 330 when the laser light having a wavelength in the visible light region is irradiated on the amorphous silicon layer 330 in order to form a crystalline silicon layer without crystal unevenness. A density variation of less than 5% is preferred. By forming the first crystalline silicon layer 231 and the second crystalline silicon layer 230 having no crystal unevenness, initial design characteristics of the thin film transistor can be achieved, and uniform characteristics can be realized.
 また、レーザー光がゲート絶縁層120の直上に届くまでに減衰してしまわないように、図10(d)の工程では、非結晶性シリコン層330の底面から非結晶性シリコン層330の上面までの膜厚が100nm以下であるように非結晶性シリコン層330が形成されることが好ましい。 Further, in the process of FIG. 10D, from the bottom surface of the non-crystalline silicon layer 330 to the top surface of the non-crystalline silicon layer 330 so that the laser beam does not attenuate until it reaches directly above the gate insulating layer 120. The amorphous silicon layer 330 is preferably formed so that the thickness of the amorphous silicon layer 330 is 100 nm or less.
 また、レーザー光が非結晶性シリコン層330を透過し、ゲート電極110を損傷することを抑えるため、図10(d)の工程では、非結晶性シリコン層330の底面から非結晶性シリコン層330の上面までの膜厚が10nm以上であるように非結晶性シリコン層330が形成されることが好ましい。 Further, in order to suppress the laser light from being transmitted through the amorphous silicon layer 330 and damaging the gate electrode 110, in the process of FIG. 10D, the amorphous silicon layer 330 starts from the bottom surface of the amorphous silicon layer 330. It is preferable that the amorphous silicon layer 330 is formed so that the film thickness up to the upper surface is 10 nm or more.
 また、レーザー光がゲート絶縁層120により光吸収されるのを抑えるため、図10(c)の工程では、図10(g)のレーザー光の波長に対して消衰係数が0.01以下である酸化シリコン又は窒化シリコンなどの膜をゲート絶縁層120として形成することが好ましい。 In addition, in order to prevent the laser light from being absorbed by the gate insulating layer 120, in the process of FIG. 10C, the extinction coefficient is 0.01 or less with respect to the wavelength of the laser light of FIG. A film such as silicon oxide or silicon nitride is preferably formed as the gate insulating layer 120.
 また、レーザー光がチャネル保護層140により光吸収されるのを抑えるため、図10(e)の工程では、図10(g)のレーザー光の波長に対して消衰係数が0.01以下である酸化シリコン又は窒化シリコンなどの膜をチャネル保護層140として形成することが好ましい。 Further, in order to prevent the laser light from being absorbed by the channel protective layer 140, in the process of FIG. 10E, the extinction coefficient is 0.01 or less with respect to the wavelength of the laser light of FIG. A film of silicon oxide or silicon nitride is preferably formed as the channel protective layer 140.
 なお、線状に集光されたレーザー光を非結晶性シリコン層330に照射するが、照射の方法は上述したように例えば2つある。 Note that the amorphous silicon layer 330 is irradiated with the laser beam condensed linearly, and there are, for example, two irradiation methods as described above.
 次に、図10(h)に示すように、チャネル保護層140の上面から第2結晶性シリコン層230までを跨るようにして、コンタクト層161および162となるコンタクト層160を形成する。具体的には、チャネル保護層140の上面および側面上と、第2結晶性シリコン層230の上面上とを覆うようにして、コンタクト層160を成膜する。 Next, as shown in FIG. 10 (h), a contact layer 160 to be the contact layers 161 and 162 is formed so as to straddle the upper surface of the channel protective layer 140 to the second crystalline silicon layer 230. Specifically, the contact layer 160 is formed so as to cover the upper surface and side surfaces of the channel protective layer 140 and the upper surface of the second crystalline silicon layer 230.
 次に、図10(i)に示すように、コンタクト層160を覆うようにして、ソース電極171およびドレイン電極172となるソースドレイン金属膜170を形成する。 Next, as shown in FIG. 10I, a source / drain metal film 170 to be the source electrode 171 and the drain electrode 172 is formed so as to cover the contact layer 160.
 次に、図10(j)に示すように、フォトリソグラフィ法およびエッチング法を用いて、ソース電極171およびドレイン電極172と、それぞれに対応するコンタクト層161および162とを形成する。 Next, as shown in FIG. 10J, a source electrode 171 and a drain electrode 172 and contact layers 161 and 162 corresponding to the source electrode 171 and the drain electrode 172 are formed by using a photolithography method and an etching method.
 ここで、図4Aから、図10(g)の工程において、スキャンスピードを一定とした場合でも、チャネル保護層140が形成された非結晶性シリコン層330のレーザー光に対する吸収率と、チャネル保護層140が形成されていない非結晶性シリコン層330のレーザー光に対する吸収率との差分を7%以上とすることで、結晶の平均粒径が異なるシリコン層を1回のレーザースキャンで同時に形成でき、チャネル層の第1結晶性シリコン層231と、その両側の第2結晶性シリコン層230とを形成できる。 Here, from FIG. 4A, even when the scan speed is constant in the process of FIG. 10G, the absorption rate of the amorphous silicon layer 330 on which the channel protective layer 140 is formed with respect to the laser beam, and the channel protective layer By making the difference between the absorptivity with respect to the laser light of the amorphous silicon layer 330 in which 140 is not formed 7% or more, silicon layers having different average grain sizes of crystals can be simultaneously formed by one laser scan, The first crystalline silicon layer 231 of the channel layer and the second crystalline silicon layers 230 on both sides thereof can be formed.
 以上のように本実施形態の薄膜トランジスタによれば、チャネル層のチャネル保護層140下方が結晶の平均粒径が大きい第1結晶性シリコン層231で形成され、その両側が結晶の平均粒径が小さい第2結晶性シリコン層230で形成される。従って、優れたオン特性と優れたオフ特性とを両立させることができる。 As described above, according to the thin film transistor of the present embodiment, the channel protective layer 140 below the channel layer is formed of the first crystalline silicon layer 231 having a large average crystal grain size, and both sides have a small average crystal grain size. A second crystalline silicon layer 230 is formed. Therefore, it is possible to achieve both excellent on characteristics and excellent off characteristics.
 また、ソース電極171とドレイン電極172とが下層のチャネル保護層140に対して不均一に配置された場合でも、チャネル経路における第1結晶性シリコン層231からソース電極171までの距離と、チャネル経路における第1結晶性シリコン層231からドレイン電極172までの距離とが均等となる。従って、電気特性をソース電極およびドレイン電極の入れ替えに対して対称とすることができる。 Even when the source electrode 171 and the drain electrode 172 are non-uniformly arranged with respect to the underlying channel protective layer 140, the distance from the first crystalline silicon layer 231 to the source electrode 171 in the channel path, and the channel path The distance from the first crystalline silicon layer 231 to the drain electrode 172 in FIG. Therefore, the electrical characteristics can be symmetric with respect to the replacement of the source electrode and the drain electrode.
 (変形例)
 次に、本発明の第1および第2の実施形態に係る薄膜トランジスタの変形例について、以下に説明する。なお、以下では、第1の実施形態に係る薄膜トランジスタの変形例を説明するが、第2の実施形態に係る薄膜トランジスタに適用可能であることはいうまでもない。
(Modification)
Next, modifications of the thin film transistor according to the first and second embodiments of the present invention will be described below. In the following, a modification of the thin film transistor according to the first embodiment will be described, but it is needless to say that the modification can be applied to the thin film transistor according to the second embodiment.
 図11は、本変形例に係る薄膜トランジスタの構成を模式的に示した断面図である。 FIG. 11 is a cross-sectional view schematically showing the configuration of the thin film transistor according to this modification.
 この薄膜トランジスタは、ゲート絶縁層120が2層構造を有し、窒化シリコン層121と、窒化シリコン層121上に形成された酸化シリコン層122とから構成されるという点で第1および第2の実施形態と異なる。以下、第1および第2の実施形態と異なる点を中心に説明する。 In this thin film transistor, the first and second embodiments are that the gate insulating layer 120 has a two-layer structure and includes a silicon nitride layer 121 and a silicon oxide layer 122 formed on the silicon nitride layer 121. Different from form. The following description will focus on differences from the first and second embodiments.
 この薄膜トランジスタは、基板100と、ゲート電極110と、ゲート絶縁層120と、結晶性シリコン層131と、非結晶性シリコン層130と、チャネル保護層140と、ソース電極171およびドレイン電極172と、コンタクト層162および161とを備える。 This thin film transistor includes a substrate 100, a gate electrode 110, a gate insulating layer 120, a crystalline silicon layer 131, an amorphous silicon layer 130, a channel protective layer 140, a source electrode 171 and a drain electrode 172, and contacts. Layers 162 and 161.
 ゲート絶縁層120は、窒化シリコン層121および酸化シリコン層122が構成する直列キャパシタの有する静電容量と、膜厚が100nm以上140nm以下の単層の酸化シリコン層122の静電容量とが等しくなるような膜厚を有する。 In the gate insulating layer 120, the capacitance of the series capacitor formed by the silicon nitride layer 121 and the silicon oxide layer 122 is equal to the capacitance of the single-layer silicon oxide layer 122 having a thickness of 100 nm to 140 nm. It has such a film thickness.
 本変形例の薄膜トランジスタの製造方法は、図2で示した製造方法と同様であるが、図2(c)の工程において、窒化シリコン層121と、窒化シリコン層121上に形成された酸化シリコン層122とから構成されるゲート絶縁層120を形成するという点で図2の製造方法と異なる。ゲート絶縁層120を2層構造とすることで、図2(g)におけるレーザーアニールのレーザー光をゲート絶縁層120が反射し易くなるため、非結晶性シリコン層130のレーザー光吸収率を増大させることができる。 The manufacturing method of the thin film transistor of this modification is the same as the manufacturing method shown in FIG. 2, but in the step of FIG. 2C, the silicon nitride layer 121 and the silicon oxide layer formed on the silicon nitride layer 121 are used. 2 is different from the manufacturing method of FIG. 2 in that a gate insulating layer 120 composed of 122 is formed. Since the gate insulating layer 120 has a two-layer structure, the laser light of the laser annealing in FIG. 2G is easily reflected by the gate insulating layer 120, so that the laser light absorption rate of the amorphous silicon layer 130 is increased. be able to.
 以下、本変形例に係る薄膜トランジスタの特性について、図12~図13Dを用いて説明する。 Hereinafter, characteristics of the thin film transistor according to this modification will be described with reference to FIGS. 12 to 13D.
 図12は、本変形例の図2(g)の工程において、非結晶性シリコン層130のレーザー光の吸収率と、レーザー光のスキャンスピードとを変化させたときの結晶性シリコン層131の結晶性の変化を示す図である。 FIG. 12 shows the crystal of the crystalline silicon layer 131 when the absorption rate of the laser beam of the amorphous silicon layer 130 and the scan speed of the laser beam are changed in the step of FIG. It is a figure which shows the change of sex.
 なお、非結晶性シリコン層130の吸収率を変化させることは、非結晶性シリコン層130の膜厚つまりチャネル層の膜厚を変化させることで実現している。 Note that changing the absorptance of the amorphous silicon layer 130 is realized by changing the thickness of the amorphous silicon layer 130, that is, the thickness of the channel layer.
 また、図12の測定では、レーザー出力が40kW/cm、ゲート電極110が膜厚50nmのMoW、ゲート絶縁層120が膜厚65nmの窒化シリコン層121と、膜厚85nmの酸化シリコン層122とからなるサンプルを用いている。 In the measurement of FIG. 12, the laser output is 40 kW / cm 2 , the gate electrode 110 is 50 nm thick MoW, the gate insulating layer 120 is 65 nm thick silicon nitride layer 121, and the 85 nm thick silicon oxide layer 122 is A sample consisting of
 また、図12の「a-Si」は結晶性シリコン層131が結晶性シリコンとして結晶化せず、非結晶性シリコンとなることを示し、「SPC」は結晶性シリコン層131の結晶の平均粒径が25nm以上35nm以下程度であることを示し、「Ex&.SPC」は結晶性シリコン層131の平均粒径が40nm以上60nm未満程度であることを示し、「p―Si」は結晶性シリコン層131の平均粒径が60nm以上1μm以下程度であることを示し、「abration」は結晶性シリコン層131がチャネル層として機能しなくなることを示している。 Further, “a-Si” in FIG. 12 indicates that the crystalline silicon layer 131 does not crystallize as crystalline silicon but becomes amorphous silicon, and “SPC” indicates the average grain size of the crystalline silicon layer 131. “Ex & .SPC” indicates that the average particle diameter of the crystalline silicon layer 131 is approximately 40 nm or more and less than 60 nm, and “p-Si” indicates the crystalline silicon layer. The average particle size of 131 is about 60 nm or more and 1 μm or less, and “abration” indicates that the crystalline silicon layer 131 does not function as a channel layer.
 図12に示されるように、レーザーアニールのスキャンスピードおよび非結晶性シリコン層130の吸収率を変化させることで非結晶性のシリコン層と結晶性のシリコン層とを形成できる。そして、スキャンスピードを一定とした場合でも、チャネル保護層140が形成された非結晶性シリコン層130の吸収率と、チャネル保護層140が形成されていない非結晶性シリコン層130の吸収率とに1%以上の差をつけることで、チャネル層の非結晶性シリコン層130と結晶性シリコン層131とを形成できる。なお、本変形例が第2の実施形態に係る薄膜トランジスタに適用された場合、チャネル保護層140が形成された非結晶性シリコン層330の吸収率と、チャネル保護層140が形成されていない非結晶性シリコン層330の吸収率とに7%以上の差をつけることで、チャネル層の第1結晶性シリコン層231とその両側の第2結晶性シリコン層230とを形成できる。 As shown in FIG. 12, an amorphous silicon layer and a crystalline silicon layer can be formed by changing the scanning speed of laser annealing and the absorptance of the amorphous silicon layer 130. Even when the scan speed is constant, the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is formed and the absorption rate of the amorphous silicon layer 130 in which the channel protective layer 140 is not formed are obtained. By making a difference of 1% or more, the amorphous silicon layer 130 and the crystalline silicon layer 131 of the channel layer can be formed. When this modification is applied to the thin film transistor according to the second embodiment, the absorptance of the amorphous silicon layer 330 on which the channel protective layer 140 is formed and the amorphous on which the channel protective layer 140 is not formed. By making a difference of 7% or more to the absorptivity of the crystalline silicon layer 330, the first crystalline silicon layer 231 of the channel layer and the second crystalline silicon layers 230 on both sides thereof can be formed.
 図13Aは、本変形例の図2(g)の工程において、非結晶性シリコン層130の膜厚と、ゲート絶縁層120の膜厚とをそれぞれ変化させた場合の、非結晶性シリコン層130の吸収率の計算結果を示す等高線図である。 FIG. 13A shows an amorphous silicon layer 130 when the thickness of the amorphous silicon layer 130 and the thickness of the gate insulating layer 120 are changed in the step of FIG. It is a contour map which shows the calculation result of the absorptivity.
 なお、図13Aでは、下の横軸は、非結晶性シリコン層130の光学膜厚、すなわち非結晶性シリコン層130の膜厚に非結晶性シリコン層130の屈折率を積算した値を、レーザー光の波長で除算した値を示している。左の縦軸は、窒化シリコン層121と酸化シリコン層122とで構成されるゲート絶縁層120を酸化シリコン層122の屈折率で換算した光学膜厚、すなわち窒化シリコン層121の膜厚に窒化シリコン層121の屈折率を積算した値と酸化シリコン層122の膜厚に酸化シリコン層122の屈折率を積算した値との和を、酸化シリコン層122の屈折率とレーザー光の波長とを積算した値で除算した値を示している。参考までに、レーザー光の波長で規格化することなくレーザー光の波長を532nmとしたときの非結晶性シリコン層130の膜厚を上の横軸に、ゲート絶縁層120の膜厚(膜厚120nmの単層の酸化シリコン層122の静電容量となる膜厚)を右の縦軸に示している。さらに、右の縦軸では、酸化シリコン層122および窒化シリコン層121の膜厚比も「酸化シリコン層122の膜厚/窒化シリコン層121の膜厚」により示している。 In FIG. 13A, the lower horizontal axis indicates the optical thickness of the amorphous silicon layer 130, that is, the value obtained by integrating the refractive index of the amorphous silicon layer 130 with the thickness of the amorphous silicon layer 130. The value divided by the wavelength of light is shown. The left vertical axis shows the optical thickness obtained by converting the gate insulating layer 120 composed of the silicon nitride layer 121 and the silicon oxide layer 122 by the refractive index of the silicon oxide layer 122, that is, the silicon nitride layer 121 has a thickness of silicon nitride. The sum of the value obtained by integrating the refractive index of the layer 121 and the value obtained by integrating the refractive index of the silicon oxide layer 122 with the thickness of the silicon oxide layer 122 is integrated with the refractive index of the silicon oxide layer 122 and the wavelength of the laser beam. The value divided by the value is shown. For reference, the film thickness (film thickness) of the gate insulating layer 120 is plotted with the film thickness of the amorphous silicon layer 130 when the laser beam wavelength is set to 532 nm without being normalized by the laser beam wavelength. The thickness of the 120 nm single-layer silicon oxide layer 122 is shown on the right vertical axis. Further, on the right vertical axis, the film thickness ratio of the silicon oxide layer 122 and the silicon nitride layer 121 is also indicated by “film thickness of the silicon oxide layer 122 / film thickness of the silicon nitride layer 121”.
 また、図13Aの計算では、ゲート電極110がMoWからなり、チャネル保護層140が0nmであるモデルを用いている。 In the calculation of FIG. 13A, a model is used in which the gate electrode 110 is made of MoW and the channel protective layer 140 is 0 nm.
 ところで、例えば波長532nmのとき、酸化シリコン層122と窒化シリコン層121のそれぞれの屈折率を用いることで、図13Aの縦軸の値からゲート絶縁層120を構成している酸化シリコン層122と窒化シリコン層121のそれぞれの膜厚を算出することができる。図13B~図13Dは、図13Aの縦軸の値を、ゲート絶縁層120を構成する酸化シリコン層122と窒化シリコン層121の膜厚に変換した値の例を示す図である。図13Bには、波長532nmのときの酸化シリコン層122と窒化シリコン層121のそれぞれの膜厚を算出した値を示している。同様に、図13C、図13Dにはそれぞれ、波長561nm、波長473nmのときの酸化シリコン層122と窒化シリコン層121のそれぞれの膜厚を算出した値を示している。ここで、酸化シリコン層122と窒化シリコン層121のそれぞれの比誘電率を4.1、7.9として算出している。なお、図中のCは、酸化シリコン層と窒化シリコン層で構成される積層膜のトータルキャパシタンスに対応する酸化シリコン層単層の膜厚を示しており、ゲート絶縁層120が膜厚Cの酸化シリコン層単層で構成されている場合のキャパシタンスの値に積層膜のトータルキャパシタンスが固定されていることを示している。例えば、C=140nmなら、ゲート絶縁層120のトータルキャパシタンスの値が140nmの酸化シリコン層単層のキャパシタンスの値であることを示している。同様に例えば、C=120nmまたはC=100nmのとき、ゲート絶縁層120のトータルキャパシタンスの値が120nmまたは100nmの酸化シリコン層単層のキャパシタンスの値であることを示している。 By the way, for example, when the wavelength is 532 nm, by using the respective refractive indexes of the silicon oxide layer 122 and the silicon nitride layer 121, the silicon oxide layer 122 and the nitride that constitute the gate insulating layer 120 from the values on the vertical axis in FIG. Each film thickness of the silicon layer 121 can be calculated. 13B to 13D are diagrams showing examples of values obtained by converting the values on the vertical axis in FIG. 13A into the film thicknesses of the silicon oxide layer 122 and the silicon nitride layer 121 included in the gate insulating layer 120. FIG. FIG. 13B shows values obtained by calculating the film thicknesses of the silicon oxide layer 122 and the silicon nitride layer 121 at a wavelength of 532 nm. Similarly, FIGS. 13C and 13D show values obtained by calculating the film thicknesses of the silicon oxide layer 122 and the silicon nitride layer 121 at wavelengths of 561 nm and 473 nm, respectively. Here, the relative dielectric constants of the silicon oxide layer 122 and the silicon nitride layer 121 are calculated as 4.1 and 7.9, respectively. Note that C in the figure indicates the film thickness of a single silicon oxide layer corresponding to the total capacitance of the laminated film composed of the silicon oxide layer and the silicon nitride layer, and the gate insulating layer 120 is oxidized with the film thickness C. It shows that the total capacitance of the laminated film is fixed to the capacitance value in the case of a single silicon layer. For example, if C = 140 nm, it indicates that the total capacitance value of the gate insulating layer 120 is the capacitance value of a single silicon oxide layer of 140 nm. Similarly, for example, when C = 120 nm or C = 100 nm, the value of the total capacitance of the gate insulating layer 120 is the value of the capacitance of a single silicon oxide layer of 120 nm or 100 nm.
 図12~図13Dから、ゲート電極110の材料およびチャネル保護層140の膜厚によらず、本変形例の図2(f)の工程において、nを0から始まる整数とし、非結晶性シリコン層130の膜厚に非結晶性シリコン層130の屈折率を積算した値である非結晶性シリコン層130の光学膜厚を、レーザー光の波長で除算した値をXとし、窒化シリコン層121と酸化シリコン層122とで構成されるゲート絶縁層120を酸化シリコン層122の屈折率で換算した光学膜厚、すなわち窒化シリコン層121の膜厚に窒化シリコン層121の屈折率を積算した値と酸化シリコン層122の膜厚に酸化シリコン層122の屈折率を積算した値との和を、酸化シリコン層122の屈折率とレーザー光の波長とを積算した値で除算した値をYとし、XおよびYが下記の(式4)および(式5)、又は(式6)および(式7)を満たせば、非結晶性シリコン層130のレーザー光の吸収率を最大の吸収率を含むようにし、例えば50%以上とすることができる。なお、図12のAはXおよびYが下記の(式4)および(式5)を満たす範囲を示し、図12のBはXおよびYが下記の(式6)および(式7)を満たす範囲を示している。 From FIG. 12 to FIG. 13D, regardless of the material of the gate electrode 110 and the thickness of the channel protective layer 140, in the process of FIG. The value obtained by dividing the optical film thickness of the amorphous silicon layer 130 by the wavelength of the laser beam, which is a value obtained by adding the refractive index of the amorphous silicon layer 130 to the film thickness of 130, is X, and the silicon nitride layer 121 is oxidized. An optical film thickness obtained by converting the gate insulating layer 120 composed of the silicon layer 122 by the refractive index of the silicon oxide layer 122, that is, a value obtained by adding the refractive index of the silicon nitride layer 121 to the film thickness of the silicon nitride layer 121 and silicon oxide A value obtained by dividing the sum of the film thickness of the layer 122 and the value obtained by integrating the refractive index of the silicon oxide layer 122 by the value obtained by integrating the refractive index of the silicon oxide layer 122 and the wavelength of the laser beam is Y. , X and Y satisfy the following (Expression 4) and (Expression 5), or (Expression 6) and (Expression 7), the absorption rate of the laser light of the amorphous silicon layer 130 includes the maximum absorption rate. For example, it can be 50% or more. 12A shows a range where X and Y satisfy the following (formula 4) and (formula 5), and B in FIG. 12 shows that X and Y satisfy the following (formula 6) and (formula 7). The range is shown.
 (式4)0.226≦Y≦0.26
 (式5)-2.90(X-0.5n)+1.39≦Y≦-2.90(X-0.5n)+1.97
 (式6)0.340≦Y≦0.543
 (式7)-2.90(X-0.5n)+1.70≦Y≦-2.90(X-0.5n)+2.28
(Formula 4) 0.226 ≦ Y ≦ 0.26
(Formula 5) -2.90 (X-0.5n) + 1.39≤Y≤-2.90 (X-0.5n) +1.97
(Formula 6) 0.340 ≦ Y ≦ 0.543
(Formula 7) -2.90 (X-0.5n) + 1.70 ≦ Y ≦ -2.90 (X-0.5n) +2.28
 以上のように、本変形例の薄膜トランジスタによれば、第1の実施形態と同様の理由により、優れたオン特性と優れたオフ特性とを両立させることができる。また、電気特性をソース電極およびドレイン電極の入れ替えに対して対称とすることができる。 As described above, according to the thin film transistor of the present modification, both excellent on characteristics and excellent off characteristics can be achieved for the same reason as in the first embodiment. Further, the electrical characteristics can be made symmetrical with respect to the replacement of the source electrode and the drain electrode.
 また、本変形例の薄膜トランジスタによれば、ゲート絶縁層120が2層構造を有するので、非結晶性シリコン層130のチャネル保護層140下方の部分のレーザー光の吸収率を増大させることができる。従って、例えばチャネル層のチャネル保護層140下方の部分の結晶の平均粒径を大きくして、オン電流を増大させることができる。 Further, according to the thin film transistor of this modification, since the gate insulating layer 120 has a two-layer structure, it is possible to increase the absorptance of the laser light in the portion below the channel protective layer 140 of the amorphous silicon layer 130. Therefore, for example, the average grain size of the crystal in the portion of the channel layer below the channel protective layer 140 can be increased to increase the on-current.
 (比較例)
 次に、本発明の第1および第2の実施形態に係る薄膜トランジスタの比較例について、以下で説明する。
(Comparative example)
Next, comparative examples of the thin film transistors according to the first and second embodiments of the present invention will be described below.
 図14は、本比較例に係る薄膜トランジスタの構成を模式的に示した断面図である。 FIG. 14 is a cross-sectional view schematically showing the configuration of the thin film transistor according to this comparative example.
 この薄膜トランジスタは、結晶性シリコン層131がソース電極171およびドレイン電極172をマスクとして、非結晶性シリコン層130にレーザー光を照射することにより形成されるという点で第1および第2の実施形態と異なる。 This thin film transistor is the same as the first and second embodiments in that the crystalline silicon layer 131 is formed by irradiating the amorphous silicon layer 130 with laser light using the source electrode 171 and the drain electrode 172 as a mask. Different.
 この薄膜トランジスタは、基板100と、ゲート電極110と、ゲート絶縁層120と、結晶性シリコン層131と、非結晶性シリコン層130と、チャネル保護層140と、ソース電極171およびドレイン電極172と、コンタクト層162および161とを備える。 This thin film transistor includes a substrate 100, a gate electrode 110, a gate insulating layer 120, a crystalline silicon layer 131, an amorphous silicon layer 130, a channel protective layer 140, a source electrode 171 and a drain electrode 172, and contacts. Layers 162 and 161.
 結晶性シリコン層131は、チャネル保護層140の下方の全領域に形成されておらず、一部の領域にのみ形成されている。従って、チャネル保護層140の幅で定義されるチャネル長のうち一部(図14のCおよびD)を高抵抗の非結晶性シリコン層130が占め、第1および第2の実施形態と比べ、チャネル層の水平方向の抵抗成分が増加する。 The crystalline silicon layer 131 is not formed in the entire region below the channel protective layer 140, but is formed only in a part of the region. Therefore, a part of the channel length defined by the width of the channel protective layer 140 (C and D in FIG. 14) is occupied by the high-resistance amorphous silicon layer 130. Compared to the first and second embodiments, The horizontal resistance component of the channel layer increases.
 ソース電極171およびドレイン電極172が下層のチャネル保護層140に対して不均一に配置されている。従って、チャネル経路(図14のB)における結晶性シリコン層131からソース電極171までの距離と、チャネル経路における結晶性シリコン層131からドレイン電極172までの距離とが不均等となる。その結果、ソース電極171およびドレイン電極172を入れ替えて動作させる場合、電気特性がソース電極171およびドレイン電極172の入れ替えに対して非対称となる。 The source electrode 171 and the drain electrode 172 are non-uniformly arranged with respect to the lower channel protective layer 140. Accordingly, the distance from the crystalline silicon layer 131 to the source electrode 171 in the channel path (B in FIG. 14) and the distance from the crystalline silicon layer 131 to the drain electrode 172 in the channel path are unequal. As a result, when the source electrode 171 and the drain electrode 172 are switched to operate, the electrical characteristics are asymmetric with respect to the replacement of the source electrode 171 and the drain electrode 172.
 以上より、第1および第2の実施形態に係る薄膜トランジスタは、本比較例に係る薄膜トランジスタと比べ優れたオン特性と優れたオフ特性とを実現でき、かつ電気特性をソース電極およびドレイン電極の入れ替えに対して対称とすることができる。 As described above, the thin film transistor according to the first and second embodiments can realize excellent on characteristics and excellent off characteristics as compared with the thin film transistor according to this comparative example, and the electrical characteristics can be switched between the source electrode and the drain electrode. It can be symmetric.
 (第3の実施形態)
 図15は、本発明の第3の実施形態に係る表示装置の外観図である。図16は、本実施形態に係る有機ELパネルの一部切り欠き斜視図である。
(Third embodiment)
FIG. 15 is an external view of a display device according to the third embodiment of the present invention. FIG. 16 is a partially cutaway perspective view of the organic EL panel according to the present embodiment.
 この表示装置340は、有機ELパネルを備える表示装置であって、第1又は第2の実施形態の薄膜トランジスタを備え、薄膜トランジスタは有機ELパネルを駆動させる。この表示装置340は、第1又は第2の実施形態の薄膜トランジスタを、アクティブマトリクス基板のスイッチングトランジスタ又は駆動トランジスタとして用いた有機ELパネル320を備える。 The display device 340 is a display device including an organic EL panel, and includes the thin film transistor of the first or second embodiment, and the thin film transistor drives the organic EL panel. The display device 340 includes an organic EL panel 320 using the thin film transistor of the first or second embodiment as a switching transistor or a driving transistor of an active matrix substrate.
 有機ELパネル320は、アクティブマトリクス基板321と、アクティブマトリクス基板321上にマトリクス状に複数配置された画素322と、画素322に接続され、アクティブマトリクス基板321上にアレイ状に複数配置された画素回路323と、画素322と画素回路323の上に順次積層された陽極324、有機EL層325および陰極326(透明電極)と、各画素回路323と制御回路(不図示)とを接続する複数本のソース線327およびゲート線328とを備える。有機EL層325は、電子輸送層、発光層、および正孔輸送層等の各層が積層されて構成されている。 The organic EL panel 320 includes an active matrix substrate 321, a plurality of pixels 322 arranged in a matrix on the active matrix substrate 321, and a pixel circuit connected to the pixels 322 and arranged in an array on the active matrix substrate 321. 323, an anode 324, an organic EL layer 325, and a cathode 326 (transparent electrode) sequentially stacked on the pixel 322 and the pixel circuit 323, and a plurality of pixels that connect each pixel circuit 323 and a control circuit (not shown). A source line 327 and a gate line 328 are provided. The organic EL layer 325 is configured by laminating layers such as an electron transport layer, a light emitting layer, and a hole transport layer.
 図17は、図16の有機ELパネル320の画素322の回路構成を示す図である。 FIG. 17 is a diagram showing a circuit configuration of the pixel 322 of the organic EL panel 320 of FIG.
 図17に示すように、画素322は、駆動トランジスタ331と、スイッチングトランジスタ332と、有機EL素子333と、コンデンサ334とを備える。駆動トランジスタ331は、有機EL素子333を駆動するトランジスタであり、また、スイッチングトランジスタ332は、画素322を選択するためのトランジスタである。 As shown in FIG. 17, the pixel 322 includes a driving transistor 331, a switching transistor 332, an organic EL element 333, and a capacitor 334. The drive transistor 331 is a transistor that drives the organic EL element 333, and the switching transistor 332 is a transistor for selecting the pixel 322.
 スイッチングトランジスタ332のソース電極332Sは、ソース線327に接続され、ゲート電極332Gは、ゲート線328に接続され、ドレイン電極332Dは、コンデンサ334および駆動トランジスタ331のゲート電極331Gに接続されている。 The source electrode 332S of the switching transistor 332 is connected to the source line 327, the gate electrode 332G is connected to the gate line 328, and the drain electrode 332D is connected to the capacitor 334 and the gate electrode 331G of the driving transistor 331.
 また、駆動トランジスタ331のドレイン電極331Dは、電源線335に接続され、ソース電極331Sは有機EL素子333のアノードに接続されている。 Also, the drain electrode 331D of the drive transistor 331 is connected to the power supply line 335, and the source electrode 331S is connected to the anode of the organic EL element 333.
 この構成において、ゲート線328にゲート信号が入力され、スイッチングトランジスタ332をオン状態にすると、ソース線327を介して供給された信号電圧がコンデンサ334に書き込まれる。そして、コンデンサ334に書き込まれた保持電圧は、1フレーム期間を通じて保持される。この保持電圧により、駆動トランジスタ331のコンダクタンスがアナログ的に変化し、発光階調に対応した駆動電流が、有機EL素子333のアノードからカソードへと流れる。これにより、有機EL素子333が発光し、画像として表示される。 In this configuration, when a gate signal is input to the gate line 328 and the switching transistor 332 is turned on, the signal voltage supplied through the source line 327 is written to the capacitor 334. Then, the holding voltage written in the capacitor 334 is held throughout one frame period. With this holding voltage, the conductance of the drive transistor 331 changes in an analog manner, and a drive current corresponding to the light emission gradation flows from the anode to the cathode of the organic EL element 333. Thereby, the organic EL element 333 emits light and is displayed as an image.
 なお、本実施形態において、有機ELパネルを用いた有機EL表示装置について説明したが、第1又は第2の実施形態の薄膜トランジスタは液晶表示装置の液晶パネルを駆動するトランジスタに適用することもできる。この場合、この表示装置は、液晶パネルを備える表示装置であって、第1又は第2の実施形態の薄膜トランジスタを備え、薄膜トランジスタは液晶パネルを駆動させる。 In the present embodiment, the organic EL display device using the organic EL panel has been described. However, the thin film transistor of the first or second embodiment can also be applied to a transistor that drives the liquid crystal panel of the liquid crystal display device. In this case, the display device includes a liquid crystal panel, and includes the thin film transistor according to the first or second embodiment, and the thin film transistor drives the liquid crystal panel.
 以上、本発明の薄膜トランジスタおよびその製造方法ならびに表示装置について、実施形態に基づいて説明したが、本発明は、これらの実施形態の限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。 As mentioned above, although the thin-film transistor, its manufacturing method, and the display apparatus of this invention were demonstrated based on embodiment, this invention is not limited of these embodiment. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention.
 例えば、上記実施形態の表示装置については、フラットパネルディスプレイとして利用することができ、テレビジョンセット、パーソナルコンピュータ、および携帯電話等のあらゆる表示部を有する電子機器に適用することができる。 For example, the display device of the above-described embodiment can be used as a flat panel display, and can be applied to an electronic apparatus having any display unit such as a television set, a personal computer, and a mobile phone.
 また、上記実施形態の薄膜トランジスタにおいて、結晶性シリコン層131の膜厚と非結晶性シリコン層130の膜厚とが同一、又は第1結晶性シリコン層231の膜厚と第2結晶性シリコン層の膜厚とは同一であるとしたが、このときの「同一」にはレーザー光の照射により形成された段差がある状態も含まれる。例えば、図18Aの上面図(図2(g)の工程の上面図)に示されるように、結晶性シリコン層131の形成においてレーザー光が非結晶性シリコン層130に照射されるが、このときレーザー光の照射エネルギーに応じた体積変化により盛り上がりが非結晶性シリコン層130の表面に形成される。非結晶性シリコン層130のチャネル保護層140下方の部分のレーザー光の吸収率は特に大きいため、図18Bの断面図(図2(g)の工程の断面図)に示されるように、結晶性シリコン層131の表面と非結晶性シリコン層130の表面との間に段差が形成される。従って、このような段差がある状態も本発明における「同一」に含まれることになる。なお、レーザー光の非結晶性シリコン層130への投入エネルギーに対する盛り上がり量の変化は図18Cに示すものとなる。 In the thin film transistor of the above embodiment, the thickness of the crystalline silicon layer 131 and the thickness of the amorphous silicon layer 130 are the same, or the thickness of the first crystalline silicon layer 231 and the thickness of the second crystalline silicon layer are the same. Although the film thickness is the same, the “same” at this time includes a state in which there is a step formed by laser light irradiation. For example, as shown in the top view of FIG. 18A (upper view of the step of FIG. 2G), the amorphous silicon layer 130 is irradiated with laser light in forming the crystalline silicon layer 131. A bulge is formed on the surface of the amorphous silicon layer 130 by a volume change according to the irradiation energy of the laser light. Since the absorption rate of the laser beam in the portion below the channel protective layer 140 of the amorphous silicon layer 130 is particularly large, as shown in the cross-sectional view of FIG. 18B (the cross-sectional view of the step of FIG. 2G), the crystalline property A step is formed between the surface of the silicon layer 131 and the surface of the amorphous silicon layer 130. Therefore, the state where there is such a step is also included in the “same” in the present invention. Note that the change in the bulge amount with respect to the input energy of the laser light to the amorphous silicon layer 130 is as shown in FIG. 18C.
 また、本発明によれば、チャネル層などの半導体層は、n型半導体としてもよいし、p型半導体であってもよいことは言うまでもない。 In addition, according to the present invention, it goes without saying that the semiconductor layer such as the channel layer may be an n-type semiconductor or a p-type semiconductor.
 本発明は、薄膜トランジスタおよびその製造方法ならびに表示装置に利用でき、特にテレビジョンセット、パーソナルコンピュータおよび携帯電話等の表示装置、又はその他薄膜トランジスタを有する様々な電気機器等に利用することができる。 The present invention can be used for a thin film transistor, a method for manufacturing the same, and a display device, and in particular, can be used for a display device such as a television set, a personal computer and a mobile phone, or various electric devices having a thin film transistor.
  100、405  基板
  110、331G、332G  ゲート電極
  120  ゲート絶縁層
  121  窒化シリコン層
  122  酸化シリコン層
  130、330  非結晶性シリコン層
  131  結晶性シリコン層
  140  チャネル保護層
  160、161、162  コンタクト層
  170  ソースドレイン金属膜
  171、331S、332S  ソース電極
  172、331D、332D  ドレイン電極
  230  第2結晶性シリコン層
  231  第1結晶性シリコン層
  320  有機ELパネル
  321  アクティブマトリクス基板
  322  画素
  323  画素回路
  324  陽極
  325  有機EL層
  326  陰極
  327  ソース線
  328  ゲート線
  331  駆動トランジスタ
  332  スイッチングトランジスタ
  333  有機EL素子
  334  コンデンサ
  335  電源線
  340  表示装置
  401、402、403、404  層
100, 405 Substrate 110, 331G, 332G Gate electrode 120 Gate insulating layer 121 Silicon nitride layer 122 Silicon oxide layer 130, 330 Amorphous silicon layer 131 Crystalline silicon layer 140 Channel protective layer 160, 161, 162 Contact layer 170 Source drain Metal film 171, 331S, 332S Source electrode 172, 331D, 332D Drain electrode 230 Second crystalline silicon layer 231 First crystalline silicon layer 320 Organic EL panel 321 Active matrix substrate 322 Pixel 323 Pixel circuit 324 Anode 325 Organic EL layer 326 Cathode 327 Source line 328 Gate line 331 Drive transistor 332 Switching transistor 333 Organic EL element 334 Capacitor 335 Power line 340 Display device 401, 402, 403, 404 layers

Claims (39)

  1.  基板と、
     前記基板上に形成されたゲート電極と、
     前記ゲート電極上に形成されたゲート絶縁層と、
     前記ゲート絶縁層上であって、前記ゲート電極の上方に形成された結晶性シリコン層と、
     前記ゲート絶縁層上であって、前記結晶性シリコン層の両側に形成された非結晶性シリコン層と、
     前記結晶性シリコン層上に形成された結晶化制御層と、
     前記結晶化制御層の端部の上面、前記結晶化制御層の側面、および前記非結晶性シリコン層の上面に沿って、前記非結晶性シリコン層の一方の上方に形成されたソース電極および前記非結晶性シリコン層の他方の上方に形成されたドレイン電極とを備え、
     前記結晶性シリコン層の膜厚と前記非結晶性シリコン層の膜厚とは同一である、
     薄膜トランジスタ。
    A substrate,
    A gate electrode formed on the substrate;
    A gate insulating layer formed on the gate electrode;
    A crystalline silicon layer formed on the gate insulating layer and above the gate electrode;
    An amorphous silicon layer formed on both sides of the crystalline silicon layer on the gate insulating layer;
    A crystallization control layer formed on the crystalline silicon layer;
    A source electrode formed above one of the non-crystalline silicon layers along an upper surface of an end portion of the crystallization control layer, a side surface of the crystallization control layer, and an upper surface of the non-crystalline silicon layer; A drain electrode formed on the other side of the amorphous silicon layer,
    The film thickness of the crystalline silicon layer and the film thickness of the amorphous silicon layer are the same.
    Thin film transistor.
  2.  前記結晶性シリコン層の両端部と前記結晶化制御層の両端部とが前記半導体基板上の同一の位置に配置されている、
     請求項1に記載の薄膜トランジスタ。
    Both ends of the crystalline silicon layer and both ends of the crystallization control layer are disposed at the same position on the semiconductor substrate.
    The thin film transistor according to claim 1.
  3.  前記結晶性シリコン層と前記ソース電極とは、オーバーラップする領域を有し、
     前記結晶性シリコン層と前記ドレイン電極とは、オーバーラップする領域を有する、
     請求項1又は2に記載の薄膜トランジスタ。
    The crystalline silicon layer and the source electrode have overlapping regions,
    The crystalline silicon layer and the drain electrode have overlapping regions;
    The thin film transistor according to claim 1 or 2.
  4.  前記結晶性シリコン層に含まれる結晶の平均粒径が10nm以上1μm以下である、
     請求項1~3のいずれか1項に記載の薄膜トランジスタ。
    The average particle size of crystals contained in the crystalline silicon layer is 10 nm or more and 1 μm or less.
    The thin film transistor according to any one of claims 1 to 3.
  5.  基板と、
     前記基板上に形成されたゲート電極と、
     前記ゲート電極上に形成されたゲート絶縁層と、
     前記ゲート絶縁層上であって、前記ゲート電極の上方に形成された第1結晶性シリコン層と、
     前記ゲート絶縁層上であって、前記第1結晶性シリコン層の両側に形成された第2結晶性シリコン層と、
     前記第1結晶性シリコン層上に形成された結晶化制御層と、
     前記結晶化制御層の端部の上面、前記結晶化制御層の側面、および前記第2結晶性シリコン層の上面に沿って、前記第2結晶性シリコン層の一方の上方に形成されたソース電極および前記第2結晶性シリコン層の他方の上方に形成されたドレイン電極とを備え、
     前記第1結晶性シリコン層に含まれる結晶の平均粒径が、前記第2結晶性シリコン層に含まれる結晶の平均粒径より大きく、
     前記第1結晶性シリコン層の膜厚と前記第2結晶性シリコン層の膜厚とは同一である、
     薄膜トランジスタ。
    A substrate,
    A gate electrode formed on the substrate;
    A gate insulating layer formed on the gate electrode;
    A first crystalline silicon layer formed on the gate insulating layer and above the gate electrode;
    A second crystalline silicon layer formed on both sides of the first crystalline silicon layer on the gate insulating layer;
    A crystallization control layer formed on the first crystalline silicon layer;
    A source electrode formed above one of the second crystalline silicon layers along the upper surface of the end portion of the crystallization control layer, the side surface of the crystallization control layer, and the upper surface of the second crystalline silicon layer And a drain electrode formed on the other side of the second crystalline silicon layer,
    An average grain size of crystals contained in the first crystalline silicon layer is larger than an average grain size of crystals contained in the second crystalline silicon layer;
    The film thickness of the first crystalline silicon layer and the film thickness of the second crystalline silicon layer are the same.
    Thin film transistor.
  6.  前記第1結晶性シリコン層の両端部と前記結晶化制御層の両端部とが前記半導体基板上の同一の位置に配置されている、
     請求項5に記載の薄膜トランジスタ。
    Both ends of the first crystalline silicon layer and both ends of the crystallization control layer are disposed at the same position on the semiconductor substrate.
    The thin film transistor according to claim 5.
  7.  前記第1結晶性シリコン層と前記ソース電極とは、オーバーラップする領域を有し、
     前記第1結晶性シリコン層と前記ドレイン電極とは、オーバーラップする領域を有する、
     請求項5又は6に記載の薄膜トランジスタ。
    The first crystalline silicon layer and the source electrode have overlapping regions;
    The first crystalline silicon layer and the drain electrode have overlapping regions;
    The thin film transistor according to claim 5 or 6.
  8.  前記第1結晶性シリコン層に含まれる結晶の平均粒径は40nm以上1μm以下であり、
     前記第2結晶性シリコン層に含まれる結晶の平均粒径は10nm以上40nm未満である、
     請求項5~7のいずれか1項に記載の薄膜トランジスタ。
    The average grain size of crystals contained in the first crystalline silicon layer is 40 nm or more and 1 μm or less,
    The average grain size of crystals contained in the second crystalline silicon layer is 10 nm or more and less than 40 nm,
    The thin film transistor according to any one of claims 5 to 7.
  9.  基板を準備する第1工程と、
     前記基板上にゲート電極を形成する第2工程と、
     前記ゲート電極上にゲート絶縁層を形成する第3工程と、
     前記ゲート絶縁層上に非結晶性シリコン層を形成する第4工程と、
     前記非結晶性シリコン層上に結晶化制御層を形成する第5工程と、
     前記結晶化制御層を、前記ゲート電極の上方の領域を残すようにパターニングする第6工程と、
     レーザー光をパターニングされた前記結晶化制御層と前記結晶化制御層が形成されていない前記非結晶性シリコン層とに連続して照射して、前記結晶化制御層が形成された前記非結晶性シリコン層を結晶性シリコン層とし、前記結晶化制御層が形成されていない前記非結晶性シリコン層を非結晶性シリコン層のまま残す第7工程と、
     前記パターニングされた結晶化制御層の端部の上面、前記パターニングされた結晶化制御層の側面、および前記非結晶性シリコン層の上面に沿って、前記非結晶性シリコン層の一方の上方にソース電極を形成し、前記非結晶性シリコン層の他方の上方にドレイン電極を形成する第8工程とを含む、
     薄膜トランジスタの製造方法。
    A first step of preparing a substrate;
    A second step of forming a gate electrode on the substrate;
    A third step of forming a gate insulating layer on the gate electrode;
    A fourth step of forming an amorphous silicon layer on the gate insulating layer;
    A fifth step of forming a crystallization control layer on the non-crystalline silicon layer;
    A sixth step of patterning the crystallization control layer so as to leave a region above the gate electrode;
    The non-crystalline property in which the crystallization control layer is formed by continuously irradiating the patterned crystallization control layer and the non-crystalline silicon layer in which the crystallization control layer is not formed. A seventh step in which the silicon layer is a crystalline silicon layer, and the non-crystalline silicon layer in which the crystallization control layer is not formed is left as an amorphous silicon layer;
    A source above one of the non-crystalline silicon layers along the upper surface of the edge of the patterned crystallization control layer, the side surface of the patterned crystallization control layer, and the upper surface of the non-crystalline silicon layer Forming an electrode and forming a drain electrode over the other of the non-crystalline silicon layer,
    A method for manufacturing a thin film transistor.
  10.  前記第7工程において、
     前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率は、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率より大きい、
     請求項9に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed is greater than the absorption rate of the non-crystalline silicon layer in which the crystallization control layer is not formed.
    A method for manufacturing the thin film transistor according to claim 9.
  11.  前記第7工程において、
     前記レーザー光の照射により、平均粒径が10nm以上1μm以下の結晶を含む前記結晶性シリコン層を形成する、
     請求項9又は10に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The crystalline silicon layer containing crystals having an average particle diameter of 10 nm or more and 1 μm or less is formed by the laser light irradiation.
    The manufacturing method of the thin-film transistor of Claim 9 or 10.
  12.  前記第7工程において、
     前記レーザー光の波長が473nm以上561nm以下である、
     請求項9~11のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The wavelength of the laser light is 473 nm or more and 561 nm or less,
    The method for producing a thin film transistor according to any one of claims 9 to 11.
  13.  基板を準備する第1工程と、
     前記基板上にゲート電極を形成する第2工程と、
     前記ゲート電極上にゲート絶縁層を形成する第3工程と、
     前記ゲート絶縁層上に非結晶性シリコン層を形成する第4工程と、
     前記非結晶性シリコン層上に結晶化制御層を形成する第5工程と、
     前記結晶化制御層を、前記ゲート電極の上方の領域を残すようにパターニングする第6工程と、
     レーザー光をパターニングされた前記結晶化制御層と前記結晶化制御層が形成されていない前記非結晶性シリコン層とに連続して照射して、前記結晶化制御層が形成された前記非結晶性シリコン層を第1結晶性シリコン層とし、前記結晶化制御層が形成されていない前記非結晶性シリコン層を第2結晶性シリコン層とする第7工程と、
     前記パターニングされた結晶化制御層の端部の上面、前記パターニングされた結晶化制御層の側面、および前記第2結晶性シリコン層の上面に沿って、前記第2結晶性シリコン層の一方の上方にソース電極を形成し、前記第2結晶性シリコン層の他方の上方にドレイン電極を形成する第8工程とを含み、
     前記第7工程において、
     前記第2結晶性シリコン層に含まれる結晶の平均粒径より大きい平均粒径の結晶を含む前記第1結晶性シリコン層を形成する、
     薄膜トランジスタの製造方法。
    A first step of preparing a substrate;
    A second step of forming a gate electrode on the substrate;
    A third step of forming a gate insulating layer on the gate electrode;
    A fourth step of forming an amorphous silicon layer on the gate insulating layer;
    A fifth step of forming a crystallization control layer on the non-crystalline silicon layer;
    A sixth step of patterning the crystallization control layer so as to leave a region above the gate electrode;
    The non-crystalline property in which the crystallization control layer is formed by continuously irradiating the patterned crystallization control layer and the non-crystalline silicon layer in which the crystallization control layer is not formed. A seventh step in which the silicon layer is a first crystalline silicon layer, and the non-crystalline silicon layer in which the crystallization control layer is not formed is a second crystalline silicon layer;
    An upper surface of an end portion of the patterned crystallization control layer, a side surface of the patterned crystallization control layer, and an upper surface of one of the second crystalline silicon layers along the upper surface of the second crystalline silicon layer Forming a source electrode, and forming a drain electrode above the other of the second crystalline silicon layers,
    In the seventh step,
    Forming the first crystalline silicon layer including crystals having an average grain size larger than an average grain size of crystals contained in the second crystalline silicon layer;
    A method for manufacturing a thin film transistor.
  14.  前記第7工程において、
     前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率は、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率より大きい、
     請求項13に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed is greater than the absorption rate of the non-crystalline silicon layer in which the crystallization control layer is not formed.
    A method for manufacturing the thin film transistor according to claim 13.
  15.  前記第1結晶性シリコン層に含まれる結晶の平均粒径は40nm以上、1μm以下であり、
     前記第2結晶性シリコン層に含まれる結晶の平均粒径は10nm以上、40nm未満である、
     請求項13又は14に記載の薄膜トランジスタの製造方法。
    The average grain size of crystals contained in the first crystalline silicon layer is 40 nm or more and 1 μm or less,
    The average grain size of crystals contained in the second crystalline silicon layer is 10 nm or more and less than 40 nm.
    15. A method for manufacturing a thin film transistor according to claim 13 or 14.
  16.  前記第7工程において、
     前記レーザー光の波長が473nm以上561nm以下である、
     請求項13~15のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The wavelength of the laser light is 473 nm or more and 561 nm or less,
    The method for producing a thin film transistor according to any one of claims 13 to 15.
  17.  前記第7工程において、
     前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率と、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率との差分は、7%以上である、
     請求項13~16のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The difference between the absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed with respect to the laser beam and the absorption rate of the non-crystalline silicon layer in which the crystallization control layer is not formed with respect to the laser beam Is 7% or more,
    The method for producing a thin film transistor according to any one of claims 13 to 16.
  18.  前記第7工程において、
     前記結晶化制御層が形成された前記非結晶性シリコン層の前記レーザー光に対する吸収率と、前記結晶化制御層が形成されていない前記非結晶性シリコン層の前記レーザー光に対する吸収率との差分は、1%以上である、
     請求項9~17のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The difference between the absorption rate of the non-crystalline silicon layer in which the crystallization control layer is formed with respect to the laser beam and the absorption rate of the non-crystalline silicon layer in which the crystallization control layer is not formed with respect to the laser beam Is 1% or more,
    The method for producing a thin film transistor according to any one of claims 9 to 17.
  19.  前記第7工程において、
     lおよびmを0から始まる整数とし、
     前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚に前記非結晶性シリコン層の屈折率を積算した値である前記非結晶性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、
     前記ゲート絶縁層の膜厚に前記ゲート絶縁層の屈折率を積算した値である前記ゲート絶縁層の光学膜厚を、前記レーザー光の波長で除算した値をYとし、
     前記Xおよび前記Yは、下記の(式1)および(式2)を満たす、
     請求項9~18のいずれか1項に記載の薄膜トランジスタの製造方法。
     (式1)0.50m≦Y≦0.40+0.50m
     (式2)-3.75(X-0.50l)+1.83+0.50m≦Y≦-3.75(X-0.50l)+0.35+0.50m
    In the seventh step,
    Let l and m be integers starting from 0,
    The optical film thickness of the amorphous silicon layer, which is a value obtained by integrating the refractive index of the amorphous silicon layer to the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer, Let X be the value divided by the wavelength of the laser beam,
    A value obtained by dividing the optical film thickness of the gate insulating layer, which is a value obtained by integrating the refractive index of the gate insulating layer with the film thickness of the gate insulating layer, is divided by the wavelength of the laser beam, and Y.
    X and Y satisfy the following (formula 1) and (formula 2).
    The method for producing a thin film transistor according to any one of claims 9 to 18.
    (Formula 1) 0.50 m ≦ Y ≦ 0.40 + 0.50 m
    (Formula 2) -3.75 (X-0.50 l) + 1.83 + 0.50 m ≦ Y ≦ −3.75 (X-0.50 l) + 0.35 + 0.50 m
  20.  前記第3工程において、
     窒化シリコン層と、前記窒化シリコン層上に形成された酸化シリコン層とから構成される前記ゲート絶縁層を形成する、
     請求項9~18のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the third step,
    Forming the gate insulating layer composed of a silicon nitride layer and a silicon oxide layer formed on the silicon nitride layer;
    The method for producing a thin film transistor according to any one of claims 9 to 18.
  21.  前記ゲート絶縁層は、前記窒化シリコン層および前記酸化シリコン層が構成する直列キャパシタの有する静電容量と、膜厚が100nm以上140nm以下の単層の酸化シリコン層の静電容量とが等しくなるような膜厚で形成される、
     請求項20に記載の薄膜トランジスタの製造方法。
    In the gate insulating layer, the capacitance of the series capacitor formed by the silicon nitride layer and the silicon oxide layer is equal to the capacitance of a single silicon oxide layer having a thickness of 100 nm to 140 nm. Formed with different film thickness,
    The manufacturing method of the thin-film transistor of Claim 20.
  22.  前記第7工程において、
     nを0から始まる整数とし、
     前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚に前記非結晶性シリコン層の屈折率を積算した値である前記非結晶性シリコン層の光学膜厚を、前記レーザー光の波長で除算した値をXとし、
     窒化シリコン層と酸化シリコン層とで構成されるゲート絶縁層を酸化シリコン層の屈折率で換算した光学膜厚を、酸化シリコン層の屈折率とレーザー光の波長とを積算した値で除算した値をYとし、
     前記Xおよび前記Yは、下記の(式3)および(式4)、又は(式5)および(式6)を満たす、
     請求項20又は21に記載の薄膜トランジスタの製造方法。
     (式3)0.226≦Y≦0.26
     (式4)-2.90(X-0.5n)+1.39≦Y≦-2.90(X-0.5n)+1.97
     (式5)0.340≦Y≦0.543
     (式6)-2.90(X-0.5n)+1.70≦Y≦-2.90(X-0.5n)+2.28
    In the seventh step,
    Let n be an integer starting from 0,
    The optical film thickness of the amorphous silicon layer, which is a value obtained by integrating the refractive index of the amorphous silicon layer to the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer, Let X be the value divided by the wavelength of the laser beam,
    A value obtained by dividing the optical film thickness obtained by converting the gate insulating layer composed of the silicon nitride layer and the silicon oxide layer by the refractive index of the silicon oxide layer by the sum of the refractive index of the silicon oxide layer and the wavelength of the laser beam. Is Y,
    X and Y satisfy the following (formula 3) and (formula 4), or (formula 5) and (formula 6).
    The manufacturing method of the thin-film transistor of Claim 20 or 21.
    (Formula 3) 0.226 ≦ Y ≦ 0.26
    (Formula 4) -2.90 (X-0.5n) + 1.39≤Y≤-2.90 (X-0.5n) +1.97
    (Formula 5) 0.340 ≦ Y ≦ 0.543
    (Formula 6) -2.90 (X-0.5n) + 1.70 ≦ Y ≦ -2.90 (X-0.5n) +2.28
  23.  前記第5工程において、
     前記結晶化制御層の膜厚に前記結晶化制御層の屈折率を積算した値である前記結晶化制御層の光学膜厚を、前記レーザー光の波長で除算した値をZとし、kを0から始まる整数とし、
     前記Zは、下記の(式7)を満たす、
     請求項9~22のいずれか1項に記載の薄膜トランジスタの製造方法。
     (式7)0.5×(k+0.3)≦Z≦0.5×(k+0.7) 
    In the fifth step,
    A value obtained by dividing the optical film thickness of the crystallization control layer by the film thickness of the crystallization control layer and the refractive index of the crystallization control layer divided by the wavelength of the laser light is Z, and k is 0. An integer starting from
    Said Z satisfies the following (formula 7):
    The method for producing a thin film transistor according to any one of claims 9 to 22.
    (Expression 7) 0.5 × (k + 0.3) ≦ Z ≦ 0.5 × (k + 0.7)
  24.  前記第4工程において、
     前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚が100nm以下であるように前記非結晶性シリコン層を形成する、
     請求項9~23のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the fourth step,
    Forming the amorphous silicon layer such that the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer is 100 nm or less;
    The method for producing a thin film transistor according to any one of claims 9 to 23.
  25.  前記第4工程において、
     前記非結晶性シリコン層の底面から前記非結晶性シリコン層の上面までの膜厚が10nm以上であるように前記非結晶性シリコン層を形成する、
     請求項9~24のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the fourth step,
    Forming the amorphous silicon layer so that the film thickness from the bottom surface of the amorphous silicon layer to the top surface of the amorphous silicon layer is 10 nm or more;
    The method for producing a thin film transistor according to any one of claims 9 to 24.
  26.  前記第1工程において、
     表面にアンダーコート層が形成された前記基板を準備し、
     前記第2工程では、
     前記アンダーコート層上に前記ゲート電極を形成する、
     請求項9~25のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the first step,
    Preparing the substrate having an undercoat layer formed on the surface;
    In the second step,
    Forming the gate electrode on the undercoat layer;
    The method for producing a thin film transistor according to any one of claims 9 to 25.
  27.  前記第2工程において、
     Mo又はMoWを含む高融点金属または当該高融点金属の合金からなる金属膜を前記ゲート電極として形成する、
     請求項9~26のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the second step,
    Forming a metal film made of a refractory metal containing Mo or MoW or an alloy of the refractory metal as the gate electrode;
    The method for producing a thin film transistor according to any one of claims 9 to 26.
  28.  前記第3工程において、
     前記レーザー光の波長に対して消衰係数が0.01以下である膜を前記ゲート絶縁層として形成する、
     請求項9~27のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the third step,
    A film having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser beam is formed as the gate insulating layer.
    The method for producing a thin film transistor according to any one of claims 9 to 27.
  29.  前記第3工程において、
     酸化シリコン層を前記ゲート絶縁層として形成する、
     請求項9~28のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the third step,
    Forming a silicon oxide layer as the gate insulating layer;
    The method for producing a thin film transistor according to any one of claims 9 to 28.
  30.  前記第3工程において、
     窒化シリコン層を前記ゲート絶縁層として形成する、
     請求項9~28のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the third step,
    Forming a silicon nitride layer as the gate insulating layer;
    The method for producing a thin film transistor according to any one of claims 9 to 28.
  31.  前記第5工程において、
     前記レーザー光の波長に対して消衰係数が0.01以下である膜を前記結晶化制御層として形成する、
     請求項9~30のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the fifth step,
    Forming a film having an extinction coefficient of 0.01 or less with respect to the wavelength of the laser light as the crystallization control layer;
    The method for producing a thin film transistor according to any one of claims 9 to 30.
  32.  前記第5工程において、
     酸化シリコン層を結晶化制御層として形成する、
     請求項31に記載の薄膜トランジスタの製造方法。
    In the fifth step,
    Forming a silicon oxide layer as a crystallization control layer;
    32. A method of manufacturing a thin film transistor according to claim 31.
  33.  前記第5工程において、
     窒化シリコン層を結晶化制御層として形成する、
     請求項31に記載の薄膜トランジスタの製造方法。
    In the fifth step,
    Forming a silicon nitride layer as a crystallization control layer;
    32. A method of manufacturing a thin film transistor according to claim 31.
  34.  前記第7工程において、
     前記レーザー光は、連続発振モードまたは擬似連続発振モードの光である
     請求項9~33のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The method of manufacturing a thin film transistor according to any one of claims 9 to 33, wherein the laser light is light in a continuous oscillation mode or a pseudo continuous oscillation mode.
  35.  前記第7工程において、
     前記レーザー光は、固体レーザー装置から発せられた光である
     請求項9~33のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The method of manufacturing a thin film transistor according to any one of claims 9 to 33, wherein the laser light is light emitted from a solid-state laser device.
  36.  前記第7工程において、
     前記レーザー光は、半導体レーザー素子を用いたレーザー装置から発せられた光である
     請求項9~33のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The method of manufacturing a thin film transistor according to any one of claims 9 to 33, wherein the laser light is light emitted from a laser device using a semiconductor laser element.
  37.  前記第7工程において、
     前記レーザー光の前記非結晶性シリコン層上における照射エネルギー密度の変動は、5%未満である
     請求項9~36のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The method of manufacturing a thin film transistor according to any one of claims 9 to 36, wherein a variation in irradiation energy density of the laser light on the amorphous silicon layer is less than 5%.
  38.  前記第7工程において、
     レーザー光を一定のスキャンスピードで、前記結晶化制御層が形成された前記非結晶性シリコン層と前記結晶化制御層が形成されていない前記非結晶性シリコン層とに連続して照射する
     請求項9~37のいずれか1項に記載の薄膜トランジスタの製造方法。
    In the seventh step,
    The laser light is continuously irradiated at a constant scanning speed to the amorphous silicon layer in which the crystallization control layer is formed and the amorphous silicon layer in which the crystallization control layer is not formed. The method for producing a thin film transistor according to any one of 9 to 37.
  39.  液晶パネル又は有機ELパネルを備える表示装置であって、
     請求項1~8のいずれか1項に記載の薄膜トランジスタを備え、
     前記薄膜トランジスタは、前記表示装置が前記液晶パネルを備える場合に前記液晶パネルを駆動させ、前記表示装置が前記有機ELパネルを備える場合に前記有機ELパネルを駆動させる
     表示装置。
    A display device comprising a liquid crystal panel or an organic EL panel,
    A thin film transistor according to any one of claims 1 to 8,
    The thin film transistor drives the liquid crystal panel when the display device includes the liquid crystal panel, and drives the organic EL panel when the display device includes the organic EL panel.
PCT/JP2011/004350 2011-07-29 2011-07-29 Thin film transistor and method for manufacturing same WO2013018123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004350 WO2013018123A1 (en) 2011-07-29 2011-07-29 Thin film transistor and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004350 WO2013018123A1 (en) 2011-07-29 2011-07-29 Thin film transistor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013018123A1 true WO2013018123A1 (en) 2013-02-07

Family

ID=47628705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004350 WO2013018123A1 (en) 2011-07-29 2011-07-29 Thin film transistor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013018123A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019527A (en) * 2004-07-01 2006-01-19 Dainippon Printing Co Ltd Manufacturing method for polycrystalline silicon thin film, manufacturing method for thin film transistor, and substrate with silicon thin film
JP2008311425A (en) * 2007-06-14 2008-12-25 Advanced Lcd Technologies Development Center Co Ltd Method of forming light-absorptive cap film, method of crystallizing semiconductor film and method of manufacturing thin-film transistor
JP2009290192A (en) * 2008-05-26 2009-12-10 Samsung Mobile Display Co Ltd Thin film transistor, method of fabricating the same, and organic electroluminescent display device
JP2010199529A (en) * 2009-01-30 2010-09-09 Sharp Corp Method for manufacturing thin film transistor
JP2011014595A (en) * 2009-06-30 2011-01-20 Casio Computer Co Ltd Thin film transistor and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019527A (en) * 2004-07-01 2006-01-19 Dainippon Printing Co Ltd Manufacturing method for polycrystalline silicon thin film, manufacturing method for thin film transistor, and substrate with silicon thin film
JP2008311425A (en) * 2007-06-14 2008-12-25 Advanced Lcd Technologies Development Center Co Ltd Method of forming light-absorptive cap film, method of crystallizing semiconductor film and method of manufacturing thin-film transistor
JP2009290192A (en) * 2008-05-26 2009-12-10 Samsung Mobile Display Co Ltd Thin film transistor, method of fabricating the same, and organic electroluminescent display device
JP2010199529A (en) * 2009-01-30 2010-09-09 Sharp Corp Method for manufacturing thin film transistor
JP2011014595A (en) * 2009-06-30 2011-01-20 Casio Computer Co Ltd Thin film transistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
WO2013005250A1 (en) Thin-film transistor, method of manufacturing thereof, and display apparatus
US8912054B2 (en) Thin-film semiconductor device and method of manufacturing the same
US8377760B2 (en) Thin film transistor
US8796692B2 (en) Thin-film semiconductor device and method for fabricating thin-film semiconductor device
WO2013021416A1 (en) Thin film semiconductor device and method for manufacturing thin film semiconductor device
KR20120063928A (en) Micro crystalline silicon thin film transistor, display device and manufacturing method of the same
WO2013118233A1 (en) Thin film semiconductor device manufacturing method and thin film semiconductor device
US20190243194A1 (en) Active matrix substrate and method for manufacturing same
JP5309387B2 (en) Semiconductor layer and semiconductor device and display device using the semiconductor layer
JP6085758B2 (en) THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
US9236254B2 (en) Substrate having thin film and method of thin film formation
WO2013001579A1 (en) Thin film transistor device and method for producing thin film transistor device
JP2013161963A (en) Thin film transistor, manufacturing method of thin film transistor and display device
US8530900B2 (en) Method for selectively forming crystalline silicon layer regions above gate electrodes
US8778746B2 (en) Thin-film transistor device manufacturing method, thin-film transistor, and display device
KR101457705B1 (en) Fabricating method of electric device
WO2013018126A1 (en) Thin film transistor and method for manufacturing same
WO2013018123A1 (en) Thin film transistor and method for manufacturing same
KR20100130523A (en) Array substrate including thin film transistor of polycrystalline silicon and method of fabricating the same
US7622739B2 (en) Thin film transistor for flat panel display and method of fabricating the same
WO2013118234A1 (en) Thin film semiconductor device manufacturing method and thin film semiconductor device
JPWO2013005250A1 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
KR20110075518A (en) Method of fabricating an array substrate
JP5342898B2 (en) Inverted staggered thin film transistor and manufacturing method thereof
WO2012060104A1 (en) Method for manufacturing transistor, transistor, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP