WO2013016943A1 - 一种内分液罩式冷凝换热管 - Google Patents

一种内分液罩式冷凝换热管 Download PDF

Info

Publication number
WO2013016943A1
WO2013016943A1 PCT/CN2012/000274 CN2012000274W WO2013016943A1 WO 2013016943 A1 WO2013016943 A1 WO 2013016943A1 CN 2012000274 W CN2012000274 W CN 2012000274W WO 2013016943 A1 WO2013016943 A1 WO 2013016943A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange tube
tube
liquid separation
cover
Prior art date
Application number
PCT/CN2012/000274
Other languages
English (en)
French (fr)
Inventor
陈宏霞
徐进良
王伟
Original Assignee
华北电力大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北电力大学 filed Critical 华北电力大学
Priority to US13/984,659 priority Critical patent/US9097470B2/en
Publication of WO2013016943A1 publication Critical patent/WO2013016943A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means

Definitions

  • the invention belongs to the technical field of enhanced heat transfer, and relates to an inner liquid-shielded condensing heat exchange tube for improving the heat transfer efficiency of a condensed phase in a pipe.
  • the condensing phase change heat exchanger (ie, condenser) is widely used in refrigeration, air conditioning, power generation, petrochemical and other fields due to the high efficiency of phase change heat transfer.
  • condenser in some applications, such as the use of low-grade heat source to drive the ORC cycle, it is necessary to minimize the temperature and pressure in the condenser in the Rankine cycle, so that the condenser is in a small temperature difference (the temperature difference between the organic working fluid in the pipe and the outside air or cooling water is small)
  • Driving work resulting in an increase in heat exchange area and an increase in investment costs.
  • Condensation phase transition is an important phase transition process in the two-phase flow discipline.
  • the gas-liquid content changes gradually from the vapor state to the condensed liquid state in the condensation process in the tube, which makes it appear from the whole vapor state to the full liquid state.
  • Different flow patterns such as wet steam flow, annular flow, stratified flow, slug flow, plug flow, bubble flow.
  • the liquid due to the continuous emergence and accumulation of the condensate, the liquid gradually forms a thin liquid film on the wall from the starting small droplets in the condensation tube, and the thick liquid film on the wall reaches the liquid bridge and finally reaches the liquid state.
  • the liquid film having a certain thermal resistance must have an optimum thickness value.
  • the annular flow in the thin liquid membrane state has the highest heat transfer efficiency, that is, the flow pattern changes from the annular flow to the stratified flow and the slug flow throughout the condensation process.
  • the plug flow the liquid film accumulates from the thin liquid film to the thick liquid film or even to the liquid bridge state, and the liquid film thermal resistance increases remarkably, which leads to the gradual decrease of the heat transfer coefficient in the condensation process and the deterioration of the heat transfer effect. .
  • the evolution of the flow pattern during the condensation process is the root cause of the deterioration and attenuation of the heat transfer efficiency of the condenser.
  • the domestic and international condensing heat transfer is mainly used in various forms of reinforced tubes, such as micro-fin tubes, groove tubes, corrugated tubes, and reinforced tubes with inserts.
  • the micro finned tube generally enhances the condensation heat transfer coefficient of the smooth tube by 80-180% by enhancing the blending of the condensate film and causing disturbance of the fluid in the tube.
  • the strengthening effect is affected by the mass flow velocity. The higher the mass velocity, the faster the condensate is discharged, and the stronger the strengthening effect.
  • the node-enhanced tube generally increases the heat transfer coefficient of the smooth tube by 50%; in addition, the tube-inserted double-spiral wire structure strengthens the tube to significantly enhance the condensation heat transfer in the vertical tube.
  • the condensing-enhanced tubes currently used fail to notice the condensate flow: the change of the type, the fundamental evolution of the flow pattern, but only the displacement of the central fluid and the wall fluid by causing the swirling flow and the secondary flow, destroying The development of the boundary layer enhances condensation within the tube. It has the following in common: (1) The inner wall fine structure mainly changes the flow and heat transfer performance of the near wall area, and the flow plough cannot be regulated as a whole. (2) Although the inner wall strengthening structure has a strengthening effect, it does not solve the evolution characteristics of the heat transfer performance attenuation in the long direction of the condensation heat exchange tube. (3) Strengthening the tube increases the manufacturing difficulty and the condenser cost increases.
  • the inverse of the power quantitatively reveals the objective fact that the condensation heat transfer coefficient decreases with the increase of the length of the heat exchange tube; and uses the short tube effect to abandon the subsequent low heat transfer flow pattern of the condensing heat transfer tube, retaining the initial process high pass
  • the thermal performance flow type at the same time, the short-tube outlet uses the gravity to separate the vapor phase obtained by the vapor-liquid separation into the next short tube to continue the condensation, so that the condensing flow pattern is always maintained in the annular flow method, the condensing heat exchange tube is significantly improved. Heat transfer efficiency.
  • the invention is based on the characteristics of liquid film thickening and thermal resistance increase during the evolution of the flow pattern, and proposes a new internal liquid-shielded condensing heat exchange tube which is different from Professor Peng Xiaofeng's technology, and timely detaches and separates the condensate.
  • a high-efficiency condensing heat exchange tube that regulates the flow pattern and fundamentally improves the condensation heat exchange efficiency is achieved.
  • the object of the present invention is to change the situation of flow pattern and heat transfer separation in the conventional enhanced heat transfer method, and to solve the key problem of forming a thick liquid film along the length direction of the tube to deteriorate heat transfer in the condensation heat transfer, and provide a different kind of difference.
  • the condensing heat exchange tube is based on a new idea of regulating the condensation heat transfer flow pattern to improve the complete condensation heat transfer flow and heat transfer performance, and is capable of condensing physical processes. Starting from the flow control, the efficiency of condensation phase change heat transfer is fundamentally and greatly improved.
  • An inner liquid-shielded condensing heat exchange tube comprises an outer heat exchange tube, and an inner liquid-distributing cover coaxial with the inner heat-exchange tube cavity is arranged, and the inner liquid-distributing cover is hollow with a porous wall structure a tube, the porous structure means that a plurality of micropores or slits are distributed on the wall surface, and the plurality of fingers mean two or more, and the equivalent diameter of the micropores or slits is d, ⁇ 1.83 I ⁇ , wherein: ⁇ is a condensate Surface tension, g is the acceleration of gravity, the density of the condensate, and the density of the vapor phase.
  • the working principle of the invention is as follows: since the characteristic dimension of the micropores or slits on the inner liquid separation cover is less than or equal to the main surface of the liquid surface tension, when the vapor-liquid mixture is in the annular gap between the outer heat exchange tube and the inner liquid separation cover During the internal flow, under the action of the surface tension of the liquid, the vapor-liquid two-phase flow is separated, and the condensate liquid formed by the heat exchange process is captured by the microporous or slit structure of the inner liquid separation cover, and enters through the above micropores or slits.
  • the liquid separation cover the condensate flows in the inner liquid separation cover and discharges the condensation heat exchange tube through the inner liquid separation cover in time, and the steam is retained in the gap between the outer heat exchange tube and the inner liquid separation cover, so that the inner wall of the outer heat exchange tube is the largest
  • the limit is connected with the steam, and a thin liquid film is formed on the inner wall of the outer heat exchange tube, thereby regulating the flow pattern to ensure the height along the entire length of the tube. Thin film heat transfer, significantly improve the condensation heat transfer coefficient.
  • the outer heat exchange tube is an ordinary condensing heat exchange tube, and may be all types of heat exchange tubes in current research and application, such as a smooth heat exchange tube, or a vertical fin tube, a spiral fin tube, a groove tube A heat exchange tube having an expanded heating surface, such as a bellows.
  • the inner liquid separation cover can be divided into two parts: a drag reducing cover and a main liquid separating cover.
  • the inner liquid separating cover is mainly based on the principle of capillary effect or liquid surface tension, and uses the wall micropore or slit structure to timely condensate and guide the condensate. It is transmitted to the end of the condensing heat exchange tube, thereby realizing a high-efficiency condensing heat exchange tube that regulates the flow pattern and fundamentally improves the condensation heat exchange efficiency.
  • the inner liquid hood is designed to be a drag reducing hood having an inclined angle along the fluid flow direction in a portion close to the gas inlet of the condensing heat exchange tube, and the shape of the drag reducing hood may be a hollow truncated cone shape.
  • Conical or other streamlined shape that gradually expands in the direction of fluid flow, the length of which corresponds to the sum of the lengths of all flow patterns before the annular flow pattern of the condensation process.
  • the end of the drag reducing hood is connected to the beginning of the main liquid separation hood, and the main liquid hood is in the shape of a circular tube, and the gap between the outer diameter of the tube and the outer heat exchange tube is slightly larger than the wall thickness of the annular fluid film.
  • the end of the main liquid separation hood is flush with the end of the outer heat exchange tube, and the separated condensate is immediately discharged through the end of the main liquid separation hood to discharge the condensing heat exchange tube.
  • the micropores or slits on the wall of the inner liquid separation cover tube may be round holes, square holes or slits, etc., and the scales thereof may be the same or different, and may be distributed in various forms such as uniform, non-uniform, parallel, staggered or intersected.
  • the porous structure of the inner liquid separation cover can be processed by the wall surface of the metal light pipe, or can be directly processed into an inner liquid separation cover by using a porous material such as a wire mesh, a metal foam tube or even a porous ceramic, and the cost is low, the material is widely used, and the processing is performed. simple.
  • the specific pore size and distribution are related to the surface tension and condensation of the condensate; for different condensation working substances, the equivalent diameter d ⁇ 1 of the micropores or slits of the inner liquid separation cover, where ⁇ is the surface tension of the condensate,
  • the porous structure of the inner liquid separation cover can timely separate and export the liquid film of the thick liquid film and the elastic flow in the stratified flow in the condensing process, and can also effectively correct the horizontal heat exchange tube.
  • the flow pattern asymmetry, thereby regulating the flow pattern, optimizing the flow pattern, and improving the condensation heat transfer effect, and providing a plurality of brackets between the inner wall of the outer heat exchange tube and the inner liquid separation cover, like the inner liquid separation cover, the bracket in the invention is also It is a porous structure that can be widely used.
  • the equivalent diameter of the porous structure also satisfies the formula
  • the first function of the bracket is to support the inner liquid separation cover, and the inner liquid separation cover is symmetric
  • the second function is the liquid-collecting action, that is, the condensed liquid in the near wall area of the outer heat-exchange tube is sucked into the liquid-distributing hood through the micro-hole of the bracket in time by the capillary porous structure, further The separation efficiency of the liquid separation hood is improved.
  • the condensate in the near wall area is taken away in time to increase the renewal rate of the condensate in the near wall area, and the degree of subcooling of the condensing wall surface is maintained.
  • the effects and benefits of the present invention are as follows: (1) The inner liquid separation hood condensation heat exchange tube separates the condensed liquid in the condensation process in time through the inner liquid separation cover, thereby effectively reducing the stratified liquid film and eliminating the slug flow liquid. Bridge; transforming a slug flow or a thick liquid film that causes heat transfer deterioration into an annular flow with efficient heat transfer; the method of strengthening condensation of the condensing heat exchange tube is based on the basic physical process of condensation, and fundamentally solves from a scientific point of view The problem of deterioration of the condensation heat transfer process.
  • the use of capillary force or liquid surface tension to derive a liquid is a passive process that does not require energy consumption, and the effect is not affected by gravity, that is, it is not limited by the inclination angle of the condensation heat exchange tube, and thus, the structure is not only It can be applied to ordinary condensation heat transfer and steam condensation, and can also be extended to condensation heat transfer under microgravity conditions. It significantly increases the heat transfer efficiency of the condensing phase shift heat pipe without increasing the resistance.
  • FIG. 1 is a schematic structural view of an inner liquid-shielded condensing heat exchange tube of a microporous wall surface
  • FIG. 2 is a schematic structural view of an inner liquid-shielded condensing heat exchange tube of a slit wall surface
  • 3 is a schematic structural view of an inner liquid-shielded condensing heat exchange tube of a wire mesh structure
  • 4 is a schematic structural view of a bracket of an inner liquid-shield condensing heat exchange tube, wherein (a) a hole structure bracket, (b) a wire mesh structure bracket, and (c) a duct structure bracket;
  • the labels are: (1) outer heat exchange tube, (2) inner liquid separation cover, (3) support, (4) drag reduction cover, (5) main liquid separation cover, (6) porous structure, (7) vertical Channel, (8) parallel channel, (9) direction of condensate flow in the inner shroud, (10) direction of fluid flow in the gap between the outer heat transfer tube and the inner shroud.
  • Fig. 1 is a schematic view showing the structure of the inner liquid-shielded condensing heat exchange tube of the microporous wall surface, which is composed of an outer heat exchange tube 1, an inner liquid-distributing cover 2 and a support 3.
  • the inner liquid separation cover 2 is a key core part of the condensation heat exchange tube, and is composed of a drag reducing cover 4 and a main liquid separation cover 5, and the drag reducing cover 4 and the main liquid separation cover 5 are both porous structures 6 .
  • Porous structure 6 is a wall microporous form that can be directly punched into the wall of the inner liquid separation cover 2 or made of a porous material such as metal or porous ceramic.
  • the micropores can be evenly distributed in the tube body; they can also be sparse in the annular flow region according to the condensing flow pattern of different working fluids, and are densely distributed in the slug flow and the plug flow region.
  • Fig. 2 is a schematic view showing the structure of the inner liquid-shielded condensing heat exchange tube of the slit wall surface, which is composed of the outer heat exchange tube 1, the inner liquid-distributing cover 2 and the bracket 3.
  • the inner liquid separation cover 2 is divided into two parts: the drag reducing cover 4 and the main liquid separating cover 5, and the drag reducing cover 4 and the main liquid separating cover 5 are both porous structure 6, but the multiple 3 ⁇ 4 ⁇ structure 6 is a slit type.
  • the distribution of the slits can be parallel, staggered, and cross-distributed.
  • Figure 3 is an inner liquid-shielded condensing heat exchange tube of a wire mesh structure. It consists of an outer heat exchange tube 1, an inner liquid separation cover 2 and a support 3. The inner liquid separation cover 2 is divided into a drag reducing cover 4 and a main liquid separating cover. Both the drag mask 4 and the main liquid separation cover 5 are porous structures 6, and the inner liquid separation cover 2 is formed by using a wire mesh which is not observable. '
  • FIG. 4 is a schematic structural view of a bracket of an inner liquid-shielded condensing heat exchange tube, comprising (a) a hole structure bracket, (b) a wire mesh structure bracket, and (c) a duct structure bracket.
  • the three bracket structures are composed of a plurality of brackets, and a bracket is disposed in the gap between the inner liquid separation cover 2 and the outer heat exchange tube 1 at intervals of the length of the tube.
  • each bracket of the hole structure bracket is composed of three legs, and the legs are porous.
  • the three legs are symmetrically distributed on a plane perpendicular to the length of the tube.
  • the pore structure can be formed by directly perforating the material along the length of the tube and the length of the vertical tube.
  • Each bracket of the wire mesh structure bracket is composed of three legs, and the legs are a mesh porous structure.
  • the three legs are symmetrically distributed on a plane perpendicular to the length of the tube.
  • the wire mesh structure bracket is formed by vertical cross-welding of a multi-layer wire mesh.
  • the porous structure of the pore structure support and the wire mesh structure support form two channels perpendicular to the condensation heat exchange tube and parallel to the heat exchange tube: vertical channel 7 and parallel channel 8.
  • Each of the stents of the catheter structure support is a stent having a ring-shaped catheter, and the annular catheter sleeve is disposed on the inner liquid separation cover 2, and is in contact with the outer heat exchange tube 1, but is not in contact with the inner liquid separation cover 2, and the annular catheter Connected to the inner liquid separation hood 2 through a series of short conduits, the annular conduits are provided with micropores at positions corresponding to the direction of the short conduits, forming a vertical passage 7, and adjacent vertical passages 7 on the annular conduit are also disposed The micropores form a parallel channel 8.
  • the vertical passages 7 of the three brackets are mainly used to timely separate the condensate in the near wall region of the outer heat exchange tube 1 and increase the renewal rate of the condensate in the near wall region.
  • the parallel passages 8 are mainly used to assist the main liquid separation hood 5 from the parallel direction to extract the main volume liquid in the thick liquid membrane zone and the liquid bridge zone.
  • the pore size of the porous structure 6 of the inner liquid separation cover 2 and the stent 3 is related to the surface tension of the condensate.
  • the equivalent diameter of the micropores (or slits) is determined by the surface tension of the condensate ( ),
  • micropores are only allowed to enter by the pressure differential of the curved surface.
  • the invention is applicable to any occasion where steam condensation is required, and can be used in a single tube, in multiple tubes in parallel, or in the assembly of a condensing heat exchange tube into a new condenser.
  • the invention adopts a capillary structure to realize steam in the condensation heat exchange tube
  • the liquid separation, forming different flow channels of vapor and liquid, is not affected by gravity, and can significantly increase the condensation heat transfer coefficient in both ground and micro-heavy environments.
  • a 50cm long ⁇ 12mm X lmm ordinary smooth copper tube is selected as the outer heat exchange tube 1; a wire mesh with a mesh number of 14, a wire diameter of 0.4mm and a hole diameter of 1.4mm is selected, and the length is 35cm.
  • a rectangular wire mesh having a width of 18.84 mm is rolled into a cylindrical main liquid separation cover 5 of the inner liquid separation cover 2 of ⁇ 6 ⁇ and length 35cm. Take the same wire mesh, cut a trapezoidal roll to make a round-shaped drag reducing cover 4 side, a circle as a drag reducing cover 4 top cover.
  • the drag reducing cover 4, the main liquid separation cover 5 and the wire mesh support 3 are welded into one body, and placed in the smooth outer heat exchange tube 1 to obtain an inner liquid separation cover type condensation heat exchange tube of the wire mesh structure.
  • the inner liquid separation cover 2 composed of the drag reducing cover 4 and the main liquid separation cover 5 is coaxial with the outer heat exchange tube 1 and has the same length, and penetrates the outer heat exchange tube 1, and the inner, outer and outer portions of the inner liquid separation cover 2 are exchanged.
  • the port of the heat pipe 1 is flush, and the length of the drag mask 4 is 15 cm (i.e., equal to the sum of the lengths of all the flow patterns before the annular flow pattern of the condensation process).
  • the beginning end of the drag reducing cover 4 (the end with a small cross section) is located on the gas inlet side of the condensation heat exchange tube, and the end of the drag reducing cover 4 is connected to the beginning of the main liquid separation cover 5, and the gap between the inner and outer tubes of the condensation heat exchange tube is 2 mm.
  • the porous structure 6 of the inner liquid separation cover 2 and the support 3 has a pore diameter of 1.4 mm, and the condensing medium is water.
  • 0.06794 N/m
  • g 9.8 m/s 2
  • Pf 987.99kg / m 3 , equal to 4.8mm
  • 1.4mm ⁇ 4.8mm so that the pore structure can make the liquid water in the condensation phase change process
  • the condensation heat exchange tube is led out in time, so that the inner liquid separation cover 2 is a liquid flow, and the annular gap between the outer heat exchange tube 1 and the inner liquid separation cover 2 is a vapor flow, thereby improving the phase change.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种内分液罩式冷凝换热管,包括外换热管(1)以及设置在外换热管(1)腔内与外换热管(1)同轴的内分液罩(2)。该内分液罩(2)是壁面分布有多个微孔或缝隙的中空管。换热过程形成的冷凝液通过该微孔或缝隙,在液体表面张力的作用下被及时抽吸至内分液罩(2)并通过内分液罩(2)排出换热管。蒸汽被保留在外换热管(1)与内分液罩(2)之间的间隙内流动,使外换热管(1)内壁最大限度地与蒸汽接触,并在外换热管(1)内壁面上形成薄液膜,从而提高冷凝传热系数。

Description

一种内分液罩式冷凝换热管
技术领域
本发明属于强化传热技术领域,涉及一种提高管内冷凝相变换热效率的内分 液罩式冷凝换热管。
背景技术
冷凝相变换热器(即冷凝器)由于相变传热的高效性广泛应用在制冷、空调、 发电、 石化等领域。 在一些应用场合, 比如利用低品位热源驱动 ORC循环中需 要尽量降低朗肯循环中冷凝器内的温度和压力, 使得冷凝器在小温差(管内有机 工质与管外空气或冷却水温差小)驱动下工作, 导致换热面积的增大及投资成本 的提高。 同时在制冷、 空调、 石化等领域, 进一步提高冷凝换热效率, '能够大幅 度降低成本, 具有显著的降级效益和社会效益。 这为高效冷凝器的设计、 制造和 运行提出了重大需求。
冷凝相变是两相流学科中一个重要的相变过程, 管内的冷凝过程从汽态到冷 凝液态的不断演变过程中气液的含量逐渐变化, 使得从全汽态到全液态过程中呈 现了湿蒸汽流、 环状流、 分层流、 弹状流、 塞状流、 泡状流等不同流型。 同时, 由于冷凝液的不断出现和集聚, 液体在冷凝管内从开始的小液滴逐渐形成壁面薄 液膜、 壁面厚液膜到液桥最后到全液状态。 如果说环状流时壁面冷凝液薄液膜的 形成, 增大了汽固之间的换热系数; 那这种同时具有一定热阻的液膜必定存在最 佳厚度值。 根据国内外研究学者报道, 并己达成共识, 薄液膜状态的环状流具有 最高的传热效率,即在整个冷凝过程中随着流型从环状流转变到分层流、弹状流、 塞状流, 液膜在壁面由薄液膜聚集到厚液膜甚至到液桥状态, .其液膜热阻显著增 加, 从而导致冷凝过程传热系数逐渐降低、 传热效果明显恶化的现状。 因此冷凝 过程中的流型演变才是冷凝管换热效率恶化、 衰减的根本原因。 目前国内外强化冷凝换热方面主要采用各种形式的强化管,'如微翅管、 凹槽 管、 波节管、 及安装插入物的强化管。 从强化效果来讲, 微翅片管通过增强冷凝 液膜的掺混、 引起管内流体的扰动, 一般比凹槽管的强化效果明显, 能够将光滑 管的冷凝传热系数提高 80-180%。 而对于不同倾斜角度的凹槽管, 且其强化效果 受质流速度的影响, 质速越大、 冷凝液导出越快, 强化效果越明显。 波节强化管 一般可将光滑管的传热系数提高 50%; 另外管内插入双螺旋丝结构的强化管, 亦 能显著强化竖直管内冷凝换热。 但目前采用的冷凝强化管, 均未能注意到冷凝流: 型的变化、 从流型演变的根本出发, 而只是通过引起旋转流、 二次流, 使中心流 体与管壁流体产生置换, 破坏边界层的发展, 从而强化管内冷凝。 具有以下共同 点: (1 ) 内壁微细结构主要改变了近壁区的流动和传热性能, 不能从整体上调控 流犁。 (2)内壁强化结构虽具有强化效果但并未解决冷凝换热管管长方向上换热 性能衰减的演变特征。 (3 ) 强化管增加了制造难度, 冷凝器成本增大。
2007年,清华大学相变与界面传递实验室彭晓峰教授(彭晓峰,吴迪,张扬, 高性能冷凝器技术原理与实践, 化工进展, 2007,26(1):97-104. ) 将整个管内冷凝 近似为薄液膜冷凝, 根据努赛尔层流、 膜状凝结分析解知冷凝换热液膜厚度与管 长的 1/4次方成正比、 平均表面传热系数与整个管长的 1/4次方成反比, 定量的 揭示了冷凝传热系数随换热管长度的增大而衰减的客观事实; 并利用短管效应, 舍弃冷凝换热管后续低传热流型, 保留初始过程高传热性能流型; 同时将短管出 口利用重力将汽液分离后得到的汽相再进入下一短管继续冷凝, 使冷凝流型始终 维持在环状流的方法显著提高了冷凝换热管的传热效率。其基于对冷凝各流型传 热性能的认识, 从冷凝科学过程的角度强化传热; 但其出发点是直接避开传热效 果差的流型, 缩短换热管长度; 同时, 利用重力进行汽液分离的方法使得冷凝器 在不同倾角换热器下的设计必须不同, 在微重力条件下的应用具有一定局限性。 综上所述, 显著提高冷凝传热效率必须从冷凝的科学过程出发, 调控流型, 才能从根本上提高其换热性能, 解决其沿管长恶化的现状。 本发明即根据流型演 变过程中液膜增厚、 热阻增大的特征, 提出一种有别于彭小峰教授技术的新型内 分液罩式冷凝换热管, 及时疏导、 分离冷凝液, 从而达到调控流型、 从根本上提 高冷凝换热效率的高效冷凝换热管。
发明内容
本发明的目的在于改变传统强化传热方法中流型和传热分离的局面, 解决冷. 凝传热中沿管长方向形成厚液膜使传热恶化的的关键问题, 提供了一种有别于现 有技术的内分液罩式冷凝换热管, 此种冷凝换热管是基于调控冷凝传热流型以改 进完整冷凝传热流动与传热性能的新思想, 能够从冷凝的物理过程出发, 从流型 控制出发, 根本上、 大幅度提高冷凝相变传热的效率。
一种内分液罩式冷凝换热管, 包括外换热管, 在所述外换热管腔内设置一个 与其同轴的内分液罩, 内分液罩是壁面为多孔结构的中空管, 所述多孔结构指壁 面上分布有多个微孔或缝隙, 所述多个指两个以上, 所述微孔或缝隙的当量直径 为 d, < 1.83 I σ , 其中: σ为冷凝液表面张力, g为重力加速度, 为冷 凝液密度, 为汽相密度。
本发明的工作原理为: 由于内分液罩上的微孔或缝隙的特征尺度小于等于液 体表面张力起主要作用的尺度, 当汽液混合物在外换热管与内分液罩之间的环形 间隙内流动时, 在液体表面张力作用下, 进行汽液两相流分离, 换热过程形成的 冷凝液液体被内分液罩的微孔或缝隙结构所捕获, 并通过上述微孔或缝隙进入内 分液罩, 冷凝液在内分液罩内流动并通过内分液罩及时排出冷凝换热管, 蒸汽被 保留在外换热管与内分液罩的间隙内流动, 使外换热管内壁最大限度的与蒸汽接- 触, 并在外换热管内壁面上形成薄液膜, 从而调控流型保证沿整个管长方向的高 效薄液膜换热, 显著提高冷凝传热系数。
所述的外换热管为普通的冷凝换热管,可以是目前研究、应用中的所有换热 管类型, 比如光滑换热管, 或是垂直翅片管、 螺旋翅片管、 凹槽管、 波节管等具 有扩展受热面的换热管。
所述内分液罩可分为减阻罩和主分液罩两部分, 内分液罩主要基于毛细效 应或液体表面张力原理, 利用其壁面微孔或缝隙结构进行冷凝液的及时疏导并远 传至冷凝换热管的末端, 从而实现调控流型、 从根本上提高冷凝换热效率的高效 冷凝换热管。
为了减小冷凝气体在进口的阻力, 内分液罩在靠近冷凝换热管气体入口的 部分设计为沿着流体流动方向具有倾斜角度的减阻罩, 减阻罩形状可以为中空的 圆台形、 圆锥形或其它沿流体流动方向逐渐扩张的流线形, 其长度对应于冷凝过 程环状流型之前的所有流型长度之和。 减阻罩末端和主分液罩始端相连, 主分液 罩为圆管形, 其管外径与外换热管的间隙略大于环状流液膜壁厚。 主分液罩末端 与外换热管末端平齐, 分离的冷凝液及时通过主分液罩末端导出, 从而排出冷凝 换热管。
内分液罩管壁面上的微孔或缝隙可以是圆孔、 方孔或狭缝等, 其尺度可相同 也可不同, 可以均匀、—非均匀、 平行、 交错或交叉等多种形式分布。 内分液罩的 多孔结构可通过在金属光管壁面加工而成, 也可以利用金属丝网、 泡沫金属管甚 至是多孔陶瓷等多孔材料直接加工成内分液罩,成本低廉、取材广泛、加工简单。 其具体孔径尺寸、 分布与冷凝液表面张力和冷凝量有关; 对于不同冷凝工质, 内 分液罩的微孔或缝隙的当量直径 d≤1 , 其中 σ为冷凝液表面张力,
Figure imgf000006_0001
g为重力加速度, P/为冷凝液密度, pg为汽相密度。 冷凝工质表面张力大, 当量 直径略大, 反之略小。对于水, 毛细孔的直径可在 1〜2 mm之间, 对应不同工质 及混合物的毛细孔直径可类比。本发明中内分液罩的多孔结构可以将冷凝过程中 分层流中的厚液膜、 弹状流的液桥通过内分液罩及时分离、 导出, 还可以有效的 校正水平换热管内的流型不对称性, 从而调控流型、 优化流型, 提高冷凝传热效 在外换热管内壁与内分液罩之间设置若干支架, 同内分液罩一样, 本发明中 所述支架亦为可广泛取材的多孔结构。 多孔结构的当量直径也满足公式
, 支架的第一个作用是用以支撑内分液罩, 将内分液罩对称均
Figure imgf000007_0001
匀的分布在外换热管内, 第二个作用是引液作用, 即利用毛细多孔结构将外换热 管内壁近壁区的冷凝液体通过支架的微孔及时被抽吸到分液罩内, 进一步提高分 液罩的分离效率, 同时, 及时将近壁区冷凝液引走提高了近壁区冷凝液的更新速 率, 维持了冷凝壁面的过冷度。
本发明的效果和益处是: (1 ) 内分液罩式冷凝换热管通过内分液罩及时将冷 凝过程的冷凝液分离, 可有效减薄分层流液膜、 消除弹状流的液桥; 将导致传热 恶化的弹状流或厚液膜转变成高效传热的环状流; 此冷凝换热管强化冷凝的方法 是从冷凝的基本物理过程出发, 从科学的角度根本上解决了冷凝传热过程恶化的 问题。 (2)本发明中利用毛细力或液体表面张力导出液体是无需耗能的非能动过- 程, 其效果不受重力影响, 即不受冷凝换热管倾斜角的限制, 因而, 该结构不仅 可应用于普通冷凝传热及存在蒸气冷凝的场合, 还可推广于微重力条件下的冷凝 传热。 使其在不增大阻力的情况下显著提高冷凝相变换热管道的传热效率。
附图说明
图 1是微孔壁面的内分液罩式冷凝换热管结构示意图;
图 2是狭缝壁面的内分液罩式冷凝换热管结构示意图;
图 3是丝网结构的内分液罩式冷凝换热管结构示意图; 图 4为内分液罩式冷凝换热管的支架结构示意图, 其中 (a) 孔结构支架, (b) 丝网结构支架, (c) 导管结构支架;
图中标号: (1 ) 外换热管, (2) 内分液罩, (3 ) 支架, (4) 减阻罩, (5 ) 主 分液罩, (6 ) 多孔结构, (7) 垂直通道, (8 ) 平行通道, (9) 内分液罩内冷凝液 流动方向, (10) 外换热管与内分液罩的间隙中的流体流动方向。
具体实施方式
以下结合附图对本发明进行说明, 但不以任何方式限制本发明。
图 1为微孔壁面的内分液罩式冷凝换热管结构示意图, 由外换热管 1、 内分 液罩 2和支架 3组成。 - 其中内分液罩 2为冷凝换热管的关键核心部分, 由减阻罩 4和主分液罩 5组 成, 减阻罩 4和主分液罩 5都为多孔结构 6。 - 多孔结构 6为壁面微孔形式, 可以在内分液罩 2壁面直接打孔, 或利用泡沬' 金属、 多孔陶瓷等多孔材质加工而成。 微孔在管体可均匀分布; 亦可根据不同工 质的冷凝流型在环状流区稀疏, 在弹状流和塞状流区域较密集的非均匀分布。
图 2为狭缝壁面的内分液罩式冷凝换热管结构示意图, 由外换热管 1、 内分 液罩 2和支架 3组成。 内分液罩 2分为减阻罩 4和主分液罩 5两部分, 减阻罩 4 和主分液罩 5都为多孔结构 6, 但其多 ¾^结构 6为狭缝式。 其细缝的分布形式可 平行、 交错、 交叉分布。
图 3为丝网结构的内分液罩式冷凝换热管。 由外换热管 1、 内分液罩 2和支 架 3组成。 内分液罩 2分为减阻罩 4和主分液罩.5两部分。 减阻罩 4和主分液罩 5都为多孔结构 6, 此内分液罩 2利用不伺目数的金属丝网编制而成。 '
图 4为内分液罩式冷凝换热管的支架结构示意图,包括(a)孔结构支架、(b) 丝网结构支架和 (c) 导管结构支架。 这三种支架结构都由多个支架组成, 沿管长方向每隔一段距离在内分液罩 2 与外换热管 1的间隙中设置一个支架。
其中, 孔结构支架的每个支架由三个支腿组成, 支腿为多孔结构。 三个支腿 对称的分布在同管长方向垂直的面上。孔结构可通过在材料上沿管长方向和垂直 管长方向上直接打孔加工而成。
丝网结构支架的每个支架由三个支腿组成, 支腿为丝网多孔结构。 三个支腿 对称的分布在同管长方向垂直的面上。丝网结构支架是利用多层金属丝网垂直交 叉焊接而成。
孔结构支架和丝网结构支架的多孔结构形成了垂直于冷凝换热管和平行于 换热管的两种通道: 垂直通道 7和平行通道 8。 导管结构支架的每个支架为一个主体为环状导管的支架, 环状导管套在内分 液罩 2上, 与外换热管 1接触, 但不与内分液罩 2接触, 环状导管通过一系列短 导管与内分液罩 2相连, 环状导管与短导管方向对应的位置上设有微孔, 形成了 垂直通道 7, 环状导管上的相邻垂直通道 7之间也设置有微孔, 形成了平行通道 8。 三种支架的垂直通道 7主要用于及时分离外换热管 1近壁区的冷凝液, 提高 近壁区冷凝液的更新速率。平行通道 8主要用于从平行方向协助主分液罩 5导出 厚液膜区和液桥区的主体积液。
上述内分液罩 2及支架 3的多孔结构 6的孔径尺寸和冷凝液的表面张力有关。 微孔(或狭缝) 的当量直径根据冷凝液的表面张力确定 ( ), 使
Figure imgf000009_0001
得在曲面压差的推动下微孔 (或狭缝) 只允许液体进入。
. 本发明适用于任何需要蒸汽冷凝的场合, 可单管使用、 多管并联使用、 或将 冷凝换热管组装成新的冷凝器使用。本发明采用毛细结构实现冷凝换热管内的汽 液分离, 形成汽体和液体不同的流动通道, 不受重力影响, 在地面及微重 环境 下都可显著提高冷凝传热系数。
实施例 1: '
针对冷凝水换热过程, 选用长 50cm的 Φ 12mm X lmm的普通光滑铜管作为 外换热管 1 ;选用目数 14、丝径 0.4mm、孔径为 1.4mm的金属丝网,裁剪长 35cm、 宽度为 18.84mm (宽度等于主分液罩 5管圆周长)的长方形丝网,卷制成 Φ 6ηπη、 长 35cm的内分液罩 2的圆柱形主分液罩 5。 取同样丝网, 裁剪一梯形卷制成圆 台形减阻罩 4侧面, 一圆形做为减阻罩 4顶盖。 并裁剪多片扇形丝网做成高度为 2mm的丝网结构支架。 将减阻罩 4、 主分液罩 5和丝网支架 3焊接为一体, 放入 光滑外换热管 1中, 获得丝网结构的内分液罩式冷凝换热管。
由减阻罩 4和主分液罩 5组成的内分液罩 2与外换热管 1同轴、 长度相同, 且贯穿外换热管 1, 内分液罩 2的始、 末端与外换热管 1的端口平齐, 减阻罩 4 的长度为 15cm (即等于冷凝过程环状流型之前的所有流型长度之和)。 减阻罩 4 的始端 (截面小的一端)位于冷凝换热管的气体入口一侧, 减阻罩 4的末端与主 分液罩 5始端相连, 此冷凝换热管内外管间隙为 2mm。
内分液罩 2及支架 3的多孔结构 6的孔径 1.4mm, 冷凝工质为水, 在一个 大气压且温度为 50 °C时, σ =0.06794N/m, g=9.8m/s2Pf =987.99kg/m3, 等于 4.8mm, 而 1.4mm<4.8mm, 从而孔径 孔结构可使冷凝相变过程中的液态水进入内
Figure imgf000010_0001
分液罩 2中, 并及时导出冷凝换热管, 使得内分液罩 2内为液体流动, 而外换热 管 1与内分液罩 2间的环形间隙内为蒸汽流动, 从而提高相变传热的效率。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 该以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种内分液罩式冷凝换热管, 包括外换热管 (1 ), 其特征在于: 在所 述外换热管 (1 ) 腔内设置一个与其同轴的内分液罩 (2), 内分液罩 (2) 是壁面 为多孔结构(6)的中空管, 所述多孔结构(6)指壁面上分布有多个微孔或缝隙, 所述微孔或缝隙的当量直径为 , 1.83 / 一—, 其中: ^为冷凝液表面张
Figure imgf000012_0001
力, g为重力加速度, ^为冷凝液密度, 为汽相密度。
2、 根据权利要求 1所述的冷凝换热管, 其特征在于: 所述外换热管 (1 ) 是光滑换热管, 或是具有扩展受热面的换热管。
3、 根据权利要求 2所述的冷凝换热管, 其特征在于: 所述具有扩展受热 面的换热管为翅片管、 凹槽管或波节管。
4、 根据权利要求 1所述的冷凝换热管, 其特征在于: 所述内分液罩 (2) 分为减阻罩 (4) 和主分液罩 (5 ) 两部分, 且两部分均为多孔结构 (6), 减阻罩
(4) 位于靠近冷凝换热管气体入口的一侧, 减阻罩 (4) 形状为中空的圆台形、 圆锥形或其它沿流体流动方向逐渐扩张的流线形; 减阻罩 .(4) 末端和主分液罩
(5 ) 始端相连, 主分液罩 (5 ) 为圆管形。
5、 根据权利要求 4所述的冷凝换热管, 其特征在于: 冷凝液由主分液罩 (5 ) 的末端排出, 主分液罩 (5 ) 的末端与外换热管 (1 ) 的末端平齐。
6、 根据权利要求 1所述的冷凝换热管, 其特征在于: 内分液罩(2)采用 金属光管、 泡沫金属管、 金属丝网或多孔陶瓷材料加工而成。
7、 根据权利要求 1 所述的冷凝换热管, 其特征在于: 所述微孔或缝隙是 圆孔、 方孔或狭缝, 其尺寸为单一尺度或多种尺度。
8、 根据权利要求 1 所述的冷凝换热管, 其特征在于: 所述微孔或缝隙的 分布形式为均匀、 非均匀、 平行、 交错或交叉。
9、 根据权利要求 1所述的冷凝换热管, 其特征在于: 所述外换热管 (1) 和所述内分液罩 (2) 之间有支架 (3), 支架 (3) 用以支撑内分液罩 (2), 将内 分液罩 (2) 对称均匀的分布在外换热管 (1) 的腔内。
10、 根据权利要求 9所述的冷凝换热管, 其特征在于: 所述支架 (3) 为多 孔结构 (6), 多孔结构 (6) 形成了垂直于冷凝换热管和平行于冷凝换热管的两 种通道: 垂直通道 (7) 和平行通道 (8), 用以抽吸冷凝液至内分液罩 (2) 内。
PCT/CN2012/000274 2011-07-29 2012-03-05 一种内分液罩式冷凝换热管 WO2013016943A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/984,659 US9097470B2 (en) 2011-07-29 2012-03-05 Internal liquid separating hood-type condensation heat exchange tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110214877 CN102278904B (zh) 2011-07-29 2011-07-29 一种内分液罩式冷凝换热管
CN201110214877.7 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013016943A1 true WO2013016943A1 (zh) 2013-02-07

Family

ID=45104499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000274 WO2013016943A1 (zh) 2011-07-29 2012-03-05 一种内分液罩式冷凝换热管

Country Status (3)

Country Link
US (1) US9097470B2 (zh)
CN (1) CN102278904B (zh)
WO (1) WO2013016943A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776377A (zh) * 2021-09-30 2021-12-10 郑州轻工业大学 一种沸腾强化蒸发换热管及其制作装置与制作方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278904B (zh) * 2011-07-29 2013-03-06 华北电力大学 一种内分液罩式冷凝换热管
JP5743948B2 (ja) * 2012-04-12 2015-07-01 株式会社東芝 熱交換器
CN103245251B (zh) * 2013-05-28 2015-10-21 华北电力大学 内插丝网周期性强化换热管
CN103335549B (zh) * 2013-07-11 2015-06-10 华北电力大学 一种相分离微通道冷凝器
FR3023907B1 (fr) * 2014-07-16 2016-08-19 Valeo Systemes Thermiques Bouteille de condenseur adaptee pour une utilisation dans un circuit de climatisation, plus particulierement le circuit de climatisation d'un vehicule automobile
US10209017B2 (en) 2014-07-24 2019-02-19 University Of Florida Research Foundation, Inc. Cryogenic heat transfer by a nanoporous surface
CN104279912A (zh) * 2014-10-17 2015-01-14 中国石油大学(华东) 一种螺旋纽带装置及其强化换热管
CN104501614A (zh) * 2014-12-23 2015-04-08 苏州医电神空调设备工程有限公司 快速热交换的立式蒸汽换热器
GB201513415D0 (en) * 2015-07-30 2015-09-16 Senior Uk Ltd Finned coaxial cooler
EP3408014A1 (de) * 2016-01-29 2018-12-05 Basf Se Hohlraum-x-mischer-wärmetauscher
CN107144162B (zh) * 2017-07-18 2023-04-28 青岛大学 一种带环形元器件的重力热管
CN110145952A (zh) * 2019-05-15 2019-08-20 桂林电子科技大学 一种高温热管
US11656010B2 (en) 2020-06-02 2023-05-23 Hamilton Sundstrand Corporation Evaporator with feed tube flow distributors for random gravitation and acceleration fields
CN111863292B (zh) * 2020-07-16 2021-03-26 上海交通大学 减小冷凝冲击效应的鼓泡器优化方法
CN112203476B (zh) * 2020-10-12 2022-11-15 上海海事大学 一种多孔介质液膜小通道冷却装置
CN112581835B (zh) * 2020-12-07 2022-02-22 东北大学 一种液桥生成器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1430713A1 (ru) * 1987-01-09 1988-10-15 Ленинградский технологический институт холодильной промышленности Теплообменна труба
CN2101210U (zh) * 1991-09-24 1992-04-08 上海船用柴油机研究所 高效低阻换热器
JPH08151956A (ja) * 1994-11-29 1996-06-11 Sanyo Electric Co Ltd 再生サイクルを用いる外燃機関に装備されるシェル・アンド・チューブ式熱交換器
CN201293586Y (zh) * 2008-08-22 2009-08-19 湖南晟通科技集团有限公司 一种高效换热管
CN101762203A (zh) * 2008-12-23 2010-06-30 北京化工大学 一种换热管内边界层剪切扰动径向混流装置
CN102278904A (zh) * 2011-07-29 2011-12-14 华北电力大学 一种内分液罩式冷凝换热管

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537514A (en) * 1969-03-12 1970-11-03 Teledyne Inc Heat pipe for low thermal conductivity working fluids
FR2500143A1 (fr) * 1981-02-13 1982-08-20 Aragou Yvan Echangeurs de chaleur a structure capillaire, pour machines frigorifiques et/ou pompes a chaleur
JPS63189793A (ja) * 1987-02-02 1988-08-05 Mitsubishi Electric Corp 蒸発・凝縮用伝熱管
DE19744080C2 (de) * 1997-10-06 2000-09-14 Alfred Leipertz Verfahren zur gezielten Einstellung von Tropfenkondensation auf ionenimplantierten Metalloberflächen
CN2356281Y (zh) * 1998-12-18 1999-12-29 周明连 管壳式冷却净化器
US6644388B1 (en) * 2000-10-27 2003-11-11 Alcoa Inc. Micro-textured heat transfer surfaces
CN2551954Y (zh) * 2002-04-09 2003-05-21 鸿富锦精密工业(深圳)有限公司 热导管结构
CN201138911Y (zh) * 2008-01-10 2008-10-22 万忠民 实现高热流密度传热的散热装置
DE102008011341A1 (de) * 2008-02-27 2009-09-03 Evonik Röhm Gmbh Wärmetauscher zur Erwärmung von Temperatur- und Verweilzeitempfindlichen Produkten
EP2260937A1 (en) * 2009-06-12 2010-12-15 DSM IP Assets B.V. Device for processing and conditioning of material transported through the device
CN101893389B (zh) * 2010-07-15 2012-11-28 西安交通大学 一种纳米多孔结构烟气冷凝式换热器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1430713A1 (ru) * 1987-01-09 1988-10-15 Ленинградский технологический институт холодильной промышленности Теплообменна труба
CN2101210U (zh) * 1991-09-24 1992-04-08 上海船用柴油机研究所 高效低阻换热器
JPH08151956A (ja) * 1994-11-29 1996-06-11 Sanyo Electric Co Ltd 再生サイクルを用いる外燃機関に装備されるシェル・アンド・チューブ式熱交換器
CN201293586Y (zh) * 2008-08-22 2009-08-19 湖南晟通科技集团有限公司 一种高效换热管
CN101762203A (zh) * 2008-12-23 2010-06-30 北京化工大学 一种换热管内边界层剪切扰动径向混流装置
CN102278904A (zh) * 2011-07-29 2011-12-14 华北电力大学 一种内分液罩式冷凝换热管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776377A (zh) * 2021-09-30 2021-12-10 郑州轻工业大学 一种沸腾强化蒸发换热管及其制作装置与制作方法

Also Published As

Publication number Publication date
CN102278904B (zh) 2013-03-06
US20140138861A1 (en) 2014-05-22
CN102278904A (zh) 2011-12-14
US9097470B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
WO2013016943A1 (zh) 一种内分液罩式冷凝换热管
WO2017101235A1 (zh) 一种加强型螺旋管高效换热器
JP2004085170A (ja) 熱交換器
CN101334245A (zh) 侧置纵向涡发生器的管翅式换热器
CN101245974A (zh) 翅片式换热器
CN210400120U (zh) 管外具有螺旋t形翅片的螺旋扁管
CN201032418Y (zh) 一种板式蒸发式冷凝器
US11060801B2 (en) Microtube heat exchanger
CN102252549B (zh) 毛细结构分液式冷凝管
CN102162704B (zh) 一种辐射型三角小翼管翅强化换热表面结构
CN202692733U (zh) 带有吸液芯体的翅片冷凝管
CN105758245A (zh) 一种非连续外梯形纵肋管
CN102654372B (zh) 一种棱锥形翅片冷凝管
CN104457385A (zh) 一种管束自支承式换热器
CN205373466U (zh) 板片式换热器
CN101498532A (zh) 一种中央空调用蒸发管
RU2047081C1 (ru) Теплообменный аппарат
CN104623917B (zh) 一种小温差管壳程变空间的无折流板高效节能蒸发器
CN102636068B (zh) 非对称翅片冷凝管
CN105444594B (zh) 板片式换热器
CN205784016U (zh) 一种盘管式蒸发器
CN204495155U (zh) 一种卧式管壳冷凝器
CN107036464B (zh) 一种高效管壳式换热器
CN102636042A (zh) 带有吸液芯体的翅片冷凝管
CN219103817U (zh) 一种微通道换热器用环形微通道管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13984659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819565

Country of ref document: EP

Kind code of ref document: A1