WO2013015494A1 - 기판 제조방법 - Google Patents

기판 제조방법 Download PDF

Info

Publication number
WO2013015494A1
WO2013015494A1 PCT/KR2011/008982 KR2011008982W WO2013015494A1 WO 2013015494 A1 WO2013015494 A1 WO 2013015494A1 KR 2011008982 W KR2011008982 W KR 2011008982W WO 2013015494 A1 WO2013015494 A1 WO 2013015494A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
abrasive
grinding
substrate manufacturing
sides
Prior art date
Application number
PCT/KR2011/008982
Other languages
English (en)
French (fr)
Inventor
강진기
김정환
김상현
박홍진
김찬호
Original Assignee
한솔테크닉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한솔테크닉스(주) filed Critical 한솔테크닉스(주)
Publication of WO2013015494A1 publication Critical patent/WO2013015494A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes

Definitions

  • the present invention relates to a substrate manufacturing method for a semiconductor device, and more particularly, to a substrate manufacturing method that can be used for a high brightness light emitting diode (LED).
  • LED light emitting diode
  • Light emitting diodes have advantages in comparison with conventional light sources (fluorescent lamps, incandescent lamps), which are superior in brightness and power consumption, and have a small volume, a thin thickness, and no harmful substances such as mercury.
  • the light emitting diode is a directional light source, which enables selective illumination for each area. Therefore, the light emitting diode is used in various lightings, traffic lights, electronic signs, and the like.
  • light emitting diodes are now widely used as back light units (BLUs) for displays such as mobile phones and LCDs.
  • BLUs back light units
  • Such a light emitting diode is manufactured by epitaxially growing an active layer on a wafer (substrate) of a cier system, and a method of manufacturing a sapphire substrate to be used at this time has been disclosed in Korean Patent Laid-Open No. 10-2011-0009799.
  • a wafer includes a process of cutting an ingot into a wafer form, a double-side lapping process, a heat treatment process, an edge machining process, and a mirror polishing process (S9). It is manufactured through.
  • the mirror polishing step (S9) will be described. First, after wax-mounting the wafer, the entire surface of the wafer is polished using a surface plate while supplying the slurry diamond abrasive, and then the polishing pad is used to The process of polishing the front surface is performed.
  • waste slurries (lapping and diamond abrasives) are generated every time the wafer is polished, thereby increasing costs and causing environmental problems due to waste slurries.
  • a substrate manufacturing method comprises the steps of slicing ingot (ingot) in the form of a wafer, lapping the both sides of the cut wafer, and Grinding the front surface with a diamond wheel, and polishing the surface of the ground wafer with a polishing pad.
  • the method may further include sand blasting by spraying an abrasive on the rear surface of both surfaces of the wafer, and further heat treating the sand blasted wafer.
  • the substrate manufacturing method according to the present invention comprises the steps of slicing the ingot (ingot) in the form of a wafer, grinding the both sides of the cut wafer with a diamond wheel (grinding), and the front surface of both sides of the ground wafer And polishing with a polishing pad.
  • the wafer may include at least one of sapphire, LiTaO 3 and LiNbO 3 .
  • the sand blasting may be performed using an abrasive comprising at least one of SiC, B 4 C, CeO 2 , SiO 2 , Al 2 O 3, and metal particles.
  • the abrasive is preferably sprayed at a pressure of 0.25MPa ⁇ 0.35MPa.
  • the diameter of the said abrasive grain is 50 micrometers-100 micrometers.
  • the present invention it is possible not only to manufacture a wafer having excellent flatness, but also to reduce the amount of slurry generated during wafer manufacture and to increase production efficiency.
  • FIG. 1 is a schematic flowchart of a conventional substrate manufacturing method according to the present invention.
  • FIG. 2 is a schematic flowchart of a substrate manufacturing method according to an embodiment of the present invention.
  • 3 to 6 are graphs for explaining the effect of the substrate manufacturing method according to this embodiment.
  • FIG. 7 is a flowchart of a substrate manufacturing method according to another embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a substrate manufacturing method according to an embodiment of the present invention.
  • an ingot is sliced into a wafer form (S10).
  • the ingot may be made of at least one of sapphire, LiTaO 3 and LiNbO 3 .
  • This cutting step can be performed via a wire saw.
  • the wire saw used may be a multi wire saw.
  • both sides of the wafer are wrapped (S20). Since the wafer formed in the cutting step has a serious variation in thickness and warpage according to each point, it becomes a flat substrate through double-sided lapping (S20). And it removes the cutting traces generated during ingot cutting (S10) through the double-sided wrapping (S20).
  • the front surface of the wafer is ground (grinding) with a diamond wheel (S30).
  • a diamond wheel Referring to the grinding process of the diamond wheel, the back surface of the wafer is fixed using a vacuum chuck, and the front surface of the wafer is ground by contacting the front surface of the wafer while rotating the diamond wheel. At this time, water may be supplied to a coolant.
  • the roughness of the polished wafer can be determined by changing the diamond particle size of the diamond wheel or by providing a plurality of grinding steps for each diamond particle size (ie, varying the size of the diamond particle).
  • the thickness of the wafer may be measured and controlled in real time while the wafer is polished.
  • the wafer may be directly fixed to the vacuum chuck, but after the wax mounting process, the ceramic block on which the wafer is mounted may be fixed to the vacuum chuck.
  • the back of the wafer is sandblasted (S40).
  • S40 sand blasting step
  • Sandblasting step (S40) is performed by spraying the abrasive on the back of the wafer at a predetermined pressure through a nozzle (gun) while rotating the wafer to be processed.
  • the abrasive may be SiC, B 4 C, CeO 2 , SiO 2 , Al 2 O 3 , metal particles and combinations thereof.
  • the injected abrasive is recovered and circulated back to the injector, to separate the small or broken particles from the filter of the dust collector during the circulation process, and a new abrasive equal to the amount of the separated abrasive is introduced into the equipment, The amount of abrasive is maintained at a certain level.
  • the sand blasting step (S40) by spraying the abrasive on the back of the wafer at a predetermined pressure can make the back of the wafer to a uniform roughness.
  • the sand blasting step S40 will be described in more detail.
  • the wafer to be processed is mounted on a vacuum suction table, and the vacuum suction table is rotated at a constant speed of 150 rpm or more and 2400 rpm or less.
  • the high pressure spray nozzle Gun sprays the abrasive at a constant pressure of 0.25 MPa to 0.35 MPa at a position about 10 to 20 cm away from the substrate.
  • the diameter of abrasive grains is 50 micrometers-100 micrometers.
  • the thickness of the wafer and the substrate The roughness of can be adjusted.
  • the roughness of the back surface of the wafer after the sand blasting process is preferably about Ra0.6 ⁇ m to Ra1.2 ⁇ m.
  • the wafer is heat treated (S50).
  • the diamond wheel grinding and sand blasted wafers have a processing stress, and this processing stress needs to be eliminated.
  • heat treatment (S50) is performed.
  • Heat treatment step (S50) is preferably carried out in a temperature range of about 900 ⁇ 1600 °C.
  • edge of the heat-treated wafer is processed (edge grinding) (S60).
  • the wafer is wax mounted (S70), and then a pad polishing process (CMP) is performed (S80).
  • CMP pad polishing process
  • the front surface of the wafer is polished with a polishing pad to remove stresses generated in the diamond wheel grinding process, and microscratch, particles, and stains on the front surface of the wafer. Defects, such as pit, are removed, and the surface roughness is minimized by minimizing the roughness of the surface.
  • the process is then completed by demounting the wafer.
  • the total thickness variation (TTV) and the local thickness variation (LTV) of the wafers when processed by the diamond wheel grinding method (indicated by the dotted line) are higher than when diamond abrasives (indicated by the solid line) are used.
  • the max, NTV, and BOW values are generally good, and it can be seen that the flatness of the wafer is excellent overall when diamond wheel grinding is performed.
  • the roughness of the front surface of the diamond wheel grinding was measured at about Ra 0.131 nm, and the roughness of the front surface of the wafer using diamond abrasive was about Ra 0.185 nm. In this example, the roughness of the front surface of the wafer was lower. have.
  • TTV means the difference between the maximum point and the minimum point of the wafer thickness
  • LTV is the difference between the maximum point and the minimum point of the wafer thickness in one cell when the wafer is divided into a plurality of cells
  • LTV max is Is the maximum value
  • NTV (GFLR) means that the total measurement point data is obtained by the least-squares method within the measurement range of the wafer, and means the maximum value and the minimum value of the difference with each measurement point data in the virtual plane.
  • BOW shows the height difference value with respect to the center of a wafer with respect to the center of a wafer in the state in which the wafer was not adsorbed.
  • all the BOWs have a constant ( ⁇ ) value as the directional control becomes easier when processing with diamond wheel grinding.
  • the BOW has a positive value ( ⁇ ). You can see that there are also points with).
  • the flatness of the processed wafer is better overall, the roughness of the front surface of the wafer is lowered, and the wafer production speed is improved.
  • FIG. 7 is a schematic flowchart of a substrate manufacturing method according to another embodiment of the present invention.
  • the present embodiment proceeds to the following process.
  • the ingot is cut into a wafer form (S110).
  • both surfaces of the wafer are ground with a diamond wheel (S120 to S150).
  • heat treatment is performed on the wafer (S170).
  • the edge of the wafer is processed (S180), and the entire surface of the wafer is pad polished (S190).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

본 발명은 평탄도가 우수한 웨이퍼를 제작할 수 있을 뿐 아니라, 웨이퍼 제작시 슬러리의 발생량을 감소시키며 생산효율을 증가시킬 수 있는 기판 제조방법에 관한 것이다. 본 발명에 따른 기판 제조방법은 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)하는 단계와, 절단된 웨이퍼의 양면을 랩핑하는 단계와, 웨이퍼의 양면 중 전면을 다이아몬드 휠로 그라인딩(grinding)하는 단계와, 그라인딩 된 웨이퍼의 면을 연마패드로 연마하는(polishing) 단계를 포함한다.

Description

기판 제조방법
본 발명은 반도체 소자용 기판 제조방법에 관한 것으로서, 보다 상세하게는 고휘도 발광다이오드(LED)에 사용될 수 있는 기판 제조방법에 관한 것이다.
발광다이오드(light emitting diode, LED)는 기존 조명용 광원(형광등, 백열등)과 비교하여 소비전력 대비 밝기가 우수하며, 부피가 작고, 두께가 얇고, 수은 등의 유해 물질이 포함되지 않는 장점이 있다. 그리고 발광다이오드는 방향성 광원으로 영역별 선택 조명이 가능하므로, 각종 조명, 신호등, 전광판 등에 이용되고 있다. 또한, 발광다이오드는 현재 휴대폰과 LCD 등의 디스플레이이의 백라이트유닛(back light unit, BLU)으로 널리 이용되고 있다.
이러한 발광 다이오드는 사이이어 계통의 웨이퍼(기판) 상에 활성층을 에피 성장시켜 제조되는데, 이때 이용되는 사파이어 기판을 제조하는 방법에 관해서는, 공개특허 10-2011-0009799호 등에 개시된 바 있다.
도 1을 참조하여 종래의 사파이어 기판(웨이퍼)을 제조하는 방법에 관하여 설명하면, 웨이퍼는, 잉곳을 웨이퍼 형태로 절단하는 공정, 양면 랩핑 공정, 열처리 공정, 모서리 가공공정 및 경면 연마공정(S9)을 통해 제조된다. 여기서, 경면 연마공정(S9)에 관해 설명하면, 먼저 웨이퍼를 왁스 마운팅 한 후, 슬러리 형태의 다이아몬드 연마재를 웨이퍼로 공급하면서 정반을 이용하여 웨이퍼의 전면을 연마한 후, 연마패드를 이용하여 웨이퍼의 전면을 폴리싱(polishing)하는 과정을 거치게 된다.
하지만, 종래의 경우 웨이퍼를 연마할 때마다 폐 슬러리(랩핑 및 다이아몬드 연마재)가 발생하여, 비용이 증가할 뿐 아니라 폐 슬러리로 인한 환경 문제가 발생하게 되는 문제점이 있다.
본 발명의 목적은 평탄도가 우수한 웨이퍼를 제작할 수 있을 뿐 아니라, 웨이퍼 제작시 슬러리의 발생량을 감소시키며 생산효율을 증가시킬 수 있는 기판 제조방법을 제공하는 데에 있다.
상기의 기술적 과제를 해결하기 위한, 본 발명에 따른 기판 제조방법은 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)하는 단계와, 상기 절단된 웨이퍼의 양면을 랩핑하는 단계와, 상기 웨이퍼의 양면 중 전면을 다이아몬드 휠로 그라인딩(grinding)하는 단계와, 상기 그라인딩 된 웨이퍼의 면을 연마패드로 연마하는(polishing) 단계;를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 상기 웨이퍼를 그라인딩 한 후 상기 웨이퍼의 양면 중 후면에 연마재를 분사하여 샌드 블라스팅(sand blasting)하는 단계와, 상기 샌드 블라스팅 된 웨이퍼를 열처리하는 단계를 더 포함하는 것이 바람직하다.
본 발명에 따른 기판 제조방법은 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)하는 단계와, 상기 절단된 웨이퍼의 양면을 다이아몬드 휠로 그라인딩(grinding)하는 단계와, 상기 그라인딩 된 웨이퍼의 양면 중 전면을 연마패드로 연마하는(polishing) 단계를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 상기 그라인딩 된 웨이퍼의 양면 중 후면에 연마재를 분사하여 샌드 블라스팅(sand blasting)하는 단계와, 상기 샌드 블라스팅 된 웨이퍼를 열처리하는 단계를 더 포함하는 것이 바람직하다.
본 발명에 따르면, 상기 웨이퍼는 사파이어, LiTaO3 및 LiNbO3 중 적어도 하나를 포함하여 이루어질 수 있다.
상기 샌드 블라스팅은 SiC, B4C, CeO2, SiO2, Al2O3 및 금속 입자 중 적어도 하나를 포함하여 이루어진 연마재를 이용하여 수행될 수 있다.
상기 연마재는 0.25MPa ~ 0.35MPa의 압력으로 분사되는 것이 바람직하다.
상기 연마재 입자의 지름은 50μm ~ 100μm인 것이 바람직하다.
본 발명에 따르면, 평탄도가 우수한 웨이퍼를 제작할 수 있을 뿐 아니라, 웨이퍼 제작시 슬러리의 발생량을 감소시키며 생산효율을 증가시킬 수 있다.
도 1은 본 발명에 따른 종래의 기판 제조방법의 개략적인 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 기판 제조방법의 개략적인 흐름도이다.
도 3 내지 도 6은 본 실시예에 따른 기판 제조방법의 효과를 설명하기 위한 그래프이다.
도 7은 본 발명의 다른 실시예에 따른 기판 제조방법의 흐름도이다.
이하에서 첨부된 도면들을 참조하여 본 발명에 따른 기판 제조방법의 바람직한 실시예에 대해 상세하게 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 2는 본 발명의 일 실시예에 따른 기판 제조방법의 개략적인 흐름도이다.
도 2를 참조하면, 본 실시예에 따른 기판 제조방법(M100)은 우선, 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)한다(S10). 잉곳은 사파이어, LiTaO3 및 LiNbO3 중 적어도 하나로 이루어질 수 있다. 이 절단단계는 와이어 쏘(wire saw)를 통해 수행될 수 있다. 이때 사용되는 와이어 쏘는 멀티 와이어 쏘(multi wire saw)일 수 있다.
다음으로, 웨이퍼의 양면을 랩핑(lapping)한다(S20). 절단단계에서 형성된 웨이퍼는 각 지점에 따라 두께의 편차 및 휘어짐이 심하므로, 양면 랩핑(S20)을 통해 평탄한 기판이 되도록 한다. 그리고 양면 랩핑(S20)을 통해 잉곳 절단(S10)시 발생된 절단 흔적을 제거한다.
다음으로, 웨이퍼의 전면을 다이아몬드 휠로 그라인딩(grinding)한다(S30). 다이아몬드 휠의 연마 과정에 관하여 설명하면, 웨이퍼의 후면을 진공 척을 이용하여 고정하고, 다이아몬드 휠을 회전시키면서 웨이퍼의 전면에 접촉시켜 웨이퍼의 전면을 그라인딩 한다. 이때, 냉각제(coolant)로 물이 공급될 수 있다.
한편, 그라인딩 공정 중 진공 척에 웨이퍼의 후면이 완전히 흡착되므로, 진공 척의 평탄도가 웨이퍼의 평탄도로 직결되게 된다. 따라서, 진공 척의 평탄도를 우수하게 하면, 웨이퍼의 평탄도가 우수해지는 장점이 있다. 그리고, 다이아몬드 휠의 다이아몬드 입자 크기를 변경하거나, 다이아몬드 입자의 크기 별로(즉, 다이아몬드 입자의 크기를 달리함) 복수의 그라인딩 단계를 마련함으로써 연마된 웨이퍼의 거칠기 등을 결정할 수 있다.
또한, 웨이퍼의 후면이 진공 척이 고정된 상태에서 웨이퍼의 전면이 연마되므로, 웨이퍼가 연마되는 과정에서 실시간으로 웨이퍼의 두께를 측정 및 제어할 수 있다.
한편, 그라인딩 공정에서 웨이퍼를 진공 척에 직접 고정할 수 있으나, 왁스 마운팅 공정 이후 웨이퍼가 마운팅 된 세라믹 블록을 진공 척에 고정할 수도 있다.
이후, 웨이퍼의 후면을 샌드 블라스팅한다(S40). 샌드 블라스팅 단계(S40)를 통해, 웨이퍼를 목적하는 두께가 되도록 하며, 웨이퍼의 후면을 원하는 거칠기가 되도록 한다.
샌드 블라스팅 단계(S40)는 가공할 웨이퍼를 회전시키면서, 노즐(gun)을 통해 일정 압력으로 웨이퍼의 후면에 연마재를 분사하여 수행한다. 이때 연마재는 SiC, B4C, CeO2, SiO2, Al2O3, 금속 입자 및 이들의 조합이 이용될 수 있다. 그리고, 분사된 연마재는 분사장치로 다시 회수되어 순환되며, 순환과정 중 집진기의 필터에서 작아졌거나 깨진 입자들을 분리시켜주고, 분리된 연마재의 양과 동일한 새 연마재가 장비 내에 투입되어, 연마재의 입자크기와 연마재의 양은 일정 수준으로 유지된다.
한편, 샌드 블라스팅 단계(S40)를 통해 웨이퍼의 후면에 일정 압력으로 연마재를 분사함으로써 웨이퍼의 후면을 균일한 거칠기로 만들 수 있다.
샌드 블라스팅 단계(S40)에 대하여, 보다 더 구체적으로 설명하면, 가공할 웨이퍼를 진공 흡착 테이블에 장착하고, 150rpm이상 2400rpm이하의 일정 속도로 진공 흡착 테이블을 회전시킨다. 동시에 고압 분사 노즐(Gun)은 기판에서 10~20 cm 정도 떨어진 위치에서, 0.25MPa ~ 0.35MPa의 일정 압력으로 연마재를 분사한다. 여기서, 연마재 입자의 지름은 50μm ~ 100μm인 것이 바람직하다. 이때, 연마재 입자의 종류, 연마재 입자의 크기, 연마재 입자의 분사 압력, 고압 분사 노즐에서 나오는 연마재의 분사 범위 등의 조건과, 진공 흡착 테이블의 회전 속도 등의 조건을 조절하면, 웨이퍼의 두께 및 기판의 거칠기를 조절할 수 있다. 바람직하게는, 샌드 블라스팅 가공 이후에 웨이퍼 후면의 거칠기는 Ra0.6μm ~ Ra1.2μm 정도가 되는 것이 바람직하다.
다음으로, 웨이퍼를 열처리한다(S50). 다이아몬드 휠 그라인딩 및 샌드 블라스팅 된 웨이퍼는 가공응력을 갖게 되고, 이 가공응력을 해소시킬 필요가 있는데, 이를 위해 열처리(S50)를 수행한다. 열처리 단계(S50)는 900 ~ 1600℃ 정도의 온도 범위에서 수행되는 것이 바람직하다.
다음으로, 열처리된 웨이퍼의 모서리를 가공(edge grinding)한다(S60).
이후, 웨이퍼를 왁스 마운팅(S70) 한 후, 패드 폴리싱(chemical mechanical polishing, CMP) 공정(S80)을 진행한다. 패드 폴리싱(chemical mechanical polishing, CMP) 공정(S80)에서는 웨이퍼의 전면을 연마패드로 연마함으로써, 다이아몬드 휠 그라인딩 공정에서 발생한 응력을 제거하고, 웨이퍼 전면의 마이크로스크래치(microscratch), 파티클(particle), 얼룩, 피트(pit) 등의 결함을 제거하며, 표면의 거칠기를 최소화하여 웨이퍼의 전면이 경면화되도록 한다.
이후, 웨이퍼를 디마운팅 하면 공정이 완료된다.
한편, 본 실시예와 같이 다이아몬드 휠 그라인딩 방법으로 웨이퍼를 가공하였을 때와, 종래와 같이 다이아몬드 연마재 및 정반을 이용하여 웨이퍼를 연마하였을 때의 웨이퍼의 품질을 비교해 보았으며, 그 결과가 도 3 내지 도 6에 그래프로 나타나 있다.
도 3 내지 도 6을 참조하면, 다이아몬드 휠 그라인딩(점선으로 표시) 방식으로 가공하였을 때가, 다이아몬드 연마재(실선으로 표시)를 이용하였을 때보다, 웨이퍼의 TTV(total thickness variation), LTV(local thickness variation) max, NTV, BOW 수치가 전체적으로 양호함을 확인할 수 있으며, 이를 통해 다이아몬드 휠 그라인딩을 할 경우 웨이퍼의 평탄도가 전체적으로 우수해짐을 확인할 수 있다.
또한, 다이아몬드 휠 그라인딩 한 웨이퍼 전면의 거칠기는 약 Ra 0.131nm로 측정되었으며, 다이아몬드 연마재를 이용한 웨이퍼 전면의 거칠기는 약 Ra 0.185nm로, 본 실시예를 이용한 경우 웨이퍼 전면의 거칠기가 더 낮음을 확인할 수 있다.
여기서, TTV는 웨이퍼 두께의 최대지점과 최소지점의 차이를 의미하며, LTV는 웨이퍼를 다수의 셀로 나누었을 때, 하나의 셀 내에서 웨이퍼 두께의 최대지점과 최소지점의 차이이고, LTV max는 그 중 최대값을 말한다. 그리고, NTV(GFLR)란 웨이퍼의 측정범위 내에서 전측정점 데이터를 최소2승법에 의하여 구하고, 가상평면에서의 각 측정점 데이터와의 차이의 최대값과 최소값을 의미한다.
또한, BOW란 웨이퍼가 비흡착된 상태에서 웨이퍼의 중심에 대하여, 중심 이외의 지점과의 높이 차이값을 나타낸 것이다. 도 6을 참조하면, 다이아몬드 휠 그라인딩으로 가공할 경우 방향성 컨트롤이 용이해 짐에 따라 BOW가 모두 일정하게 (-)값을 가지지만, 종래의 경우에는 BOW가 (+)값을 가지는 점도 있고 (-)값을 가지는 지점도 있음을 확인할 수 있다.
상술한 바와 같이, 본 발명에 따르면 종래와 같이 다이아몬드 슬러리를 사용하지 않으므로, 폐 다이아몬드 슬러리로 인한 환경오염 및 비용증가의 문제가 발생되는 것이 방지된다.
또한, 가공된 웨이퍼의 평탄도가 전체적으로 더 우수해지고, 웨이퍼 전면의 거칠기는 더 낮아지게 될 뿐 아니라, 웨이퍼의 생산속도가 향상된다.
도 7은 본 발명의 다른 실시예에 따른 기판 제조방법의 개략적인 흐름도이다.
도 7을 참조하면, 본 실시예의 경우 다음과 같은 공정으로 진행된다. 먼저, 잉곳을 웨이퍼 형태로 절단한다(S110). 그리고, 웨이퍼의 양면을 다이아몬드 휠로 그라인딩 한다(S120~S150). 이후, 웨이퍼의 후면을 샌드 블라스팅 한 후(S160), 웨이퍼에 대해 열처리를 진행한다(S170). 이후, 웨이퍼의 모서리를 가공하고(S180), 웨이퍼의 전면을 패드 폴리싱(S190) 한다.
본 실시예의 경우에도, 앞서 설명한 실시예처럼 다이아몬드 연마재와 정반을 사용하지 않으므로, 앞서 설명한 실시예와 동일한 효과를 얻을 수 있을 뿐만 아니라, 양면 랩핑 공정을 추가적으로 대체할 수 있는 장점이 있다.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (9)

  1. 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)하는 단계;
    상기 절단된 웨이퍼의 양면을 랩핑하는 단계;
    상기 웨이퍼의 양면 중 전면을 다이아몬드 휠로 그라인딩(grinding)하는 단계; 및
    상기 그라인딩 된 웨이퍼의 면을 연마패드로 연마하는(polishing) 단계;를 포함하는 것을 특징으로 하는 기판 제조방법.
  2. 제1항에 있어서,
    상기 웨이퍼를 그라인딩 한 후 상기 웨이퍼의 양면 중 후면에 연마재를 분사하여 샌드 블라스팅(sand blasting)하는 단계; 및
    상기 샌드 블라스팅 된 웨이퍼를 열처리하는 단계;를 더 포함하는 것을 특징으로 하는 기판 제조방법.
  3. 잉곳(ingot)을 웨이퍼 형태로 절단(slicing)하는 단계;
    상기 절단된 웨이퍼의 양면을 다이아몬드 휠로 그라인딩(grinding)하는 단계; 및
    상기 그라인딩 된 웨이퍼의 양면 중 전면을 연마패드로 연마하는(polishing) 단계;를 포함하는 것을 특징으로 하는 기판 제조방법.
  4. 제3항에 있어서,
    상기 그라인딩 된 웨이퍼의 양면 중 후면에 연마재를 분사하여 샌드 블라스팅(sand blasting)하는 단계; 및
    상기 샌드 블라스팅 된 웨이퍼를 열처리하는 단계;를 더 포함하는 것을 특징으로 하는 기판 제조방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 다이아몬드 휠로 그라인딩 하는 단계는, 상기 다이아몬드 휠에 포함된 다이아몬드 입자의 크기를 달리하여 복수의 단계로 이루어지는 것을 특징으로 하는 기판 제조방법.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 웨이퍼는 사파이어, LiTaO3 및 LiNbO3 중 적어도 하나를 포함하여 이루어진 것을 특징으로 하는 기판 제조방법.
  7. 제2항 또는 제4항에 있어서,
    상기 연마재는 0.25MPa ~ 0.35MPa의 압력으로 분사되는 것을 특징으로 하는 기판 제조방법.
  8. 제2항 또는 제4항에 있어서,
    상기 연마재 입자의 지름은 50μm ~ 100μm인 것을 특징으로 하는 기판 제조방법.
  9. 제2항 또는 제4항에 있어서,
    상기 연마재는 SiC, B4C, CeO2, SiO2, Al2O3 및 금속 입자 중 적어도 하나를 포함하여 이루어지는 것을 특징으로 하는 기판 제조방법.
PCT/KR2011/008982 2011-07-28 2011-11-23 기판 제조방법 WO2013015494A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0075300 2011-07-28
KR1020110075300A KR20130013577A (ko) 2011-07-28 2011-07-28 기판 제조방법

Publications (1)

Publication Number Publication Date
WO2013015494A1 true WO2013015494A1 (ko) 2013-01-31

Family

ID=47601298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008982 WO2013015494A1 (ko) 2011-07-28 2011-11-23 기판 제조방법

Country Status (2)

Country Link
KR (1) KR20130013577A (ko)
WO (1) WO2013015494A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459605B1 (ko) * 2013-03-29 2014-11-07 한솔테크닉스(주) 기판 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060105249A (ko) * 2005-04-04 2006-10-11 삼성전자주식회사 웨이퍼 연마 장치
KR20090085692A (ko) * 2006-12-28 2009-08-07 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 사파이어 기판 연마 방법
KR20110009799A (ko) * 2009-07-23 2011-01-31 주식회사 크리스탈온 사파이어 기판 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060105249A (ko) * 2005-04-04 2006-10-11 삼성전자주식회사 웨이퍼 연마 장치
KR20090085692A (ko) * 2006-12-28 2009-08-07 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 사파이어 기판 연마 방법
KR20110009799A (ko) * 2009-07-23 2011-01-31 주식회사 크리스탈온 사파이어 기판 및 그 제조 방법

Also Published As

Publication number Publication date
KR20130013577A (ko) 2013-02-06

Similar Documents

Publication Publication Date Title
KR101643342B1 (ko) 사파이어 기판 및 그 제조 방법
CN113206007B (zh) 一种磷化铟衬底的制备方法
WO2013069938A1 (en) Surface treatment method of polishing pad and polishing method of wafer using the same
KR20140051209A (ko) 광변환용 세라믹 복합체의 제조방법
CN110539209A (zh) 一种薄型板状蓝宝石晶片的加工方法
CN110010458B (zh) 控制半导体晶圆片表面形貌的方法和半导体晶片
EP3093105B1 (en) Method for producing substrates
WO2013015494A1 (ko) 기판 제조방법
KR20050029645A (ko) 샌드 블래스트를 이용한 사파이어 웨이퍼의 분할 방법
KR101097178B1 (ko) 나노 다이아몬드를 포함하는 표면 연마제 제조 방법 및 이 방법에 의해 제조된 연마제, 그리고 이 연마제를 이용한 연마 방법
CN115938927B (zh) 一种超薄晶圆减薄工艺
KR101642671B1 (ko) 반도체용 복합 기판의 핸들 기판 및 반도체용 복합 기판
KR101525614B1 (ko) 기판 제조방법
CN106711032B (zh) 适用于硬脆易解理单晶氧化镓晶片的高效低损伤研磨方法
WO2012111869A1 (ko) 기판 제조방법
WO2010016510A1 (ja) 半導体ウェーハの製造方法
CN116246949A (zh) 一种单面磷化铟晶片的制备方法
WO2013089502A1 (en) Apparatus and method for polishing wafer
CN111975627B (zh) 非规则碲锌镉晶片的研磨方法
JP2007194556A (ja) 半導体ウェーハの製造方法
WO2012111868A1 (ko) 기판처리시스템
KR101139928B1 (ko) 기판 제조방법
KR20160114443A (ko) 기판제조방법
KR101292619B1 (ko) 기판 제조방법
KR20130027223A (ko) 기판 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A

122 Ep: pct application non-entry in european phase

Ref document number: 11869844

Country of ref document: EP

Kind code of ref document: A1