WO2013015233A1 - Thermally conductive composition and thermally conductive sheet formed by processing same - Google Patents

Thermally conductive composition and thermally conductive sheet formed by processing same Download PDF

Info

Publication number
WO2013015233A1
WO2013015233A1 PCT/JP2012/068555 JP2012068555W WO2013015233A1 WO 2013015233 A1 WO2013015233 A1 WO 2013015233A1 JP 2012068555 W JP2012068555 W JP 2012068555W WO 2013015233 A1 WO2013015233 A1 WO 2013015233A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
mass
parts
conductive composition
heat
Prior art date
Application number
PCT/JP2012/068555
Other languages
French (fr)
Japanese (ja)
Inventor
栗田 澄彦
和輝 小林
一瀬 正信
Original Assignee
Kurita Sumihiko
Kobayashi Kazuki
Ichinose Masanobu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Sumihiko, Kobayashi Kazuki, Ichinose Masanobu filed Critical Kurita Sumihiko
Publication of WO2013015233A1 publication Critical patent/WO2013015233A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Definitions

  • the present invention relates to a heat conductive composition used for heat conducting parts such as semiconductor products, heat resistant parts, electrical insulating parts, electrical conducting parts and the like, and more specifically, polytetrafluoroethylene and polyvinyl fluoride.
  • the present invention relates to a heat conductive composition having a particularly high heat conductivity by adding a filler to a fluororesin that can be melt-extruded, and a heat conductive sheet obtained by processing the heat conductive composition.
  • Semiconductor products such as computers (CPUs), transistors, light emitting diodes (LEDs), and thyristors generate heat during use, and the performance of these semiconductor products may be reduced due to the heat. For this reason, the semiconductor product that generates heat is attached with a radiator such as a heat sink with a heat dissipation material interposed therebetween, so that the semiconductor product is cooled.
  • a radiator such as a heat sink with a heat dissipation material interposed therebetween
  • Patent Document 1 adds boron nitride, which is a highly thermally conductive filler, to the rubber material, thereby reducing the amount of filler added, resulting in reduced heat resistance and hardness. A thermally conductive composition that prevents this is described.
  • Patent Document 2 discloses a heat conductive composition which is soft by improving the heat resistance by adding a filler in which nitride or carbide and a basic metal oxide are used in combination to silicone rubber having good heat resistance. Is described.
  • Patent Document 3 a heat-resistant silicone rubber is added with a carbon filler that does not promote thermal degradation of the silicone rubber even at high temperatures, and cerium oxide is added as a heat-resistant improver to improve heat resistance.
  • a heat conductive composition that is softened is described.
  • Patent Document 4 also describes a heat conductive composition that has high heat resistance and is soft by adding boron nitride as a filler to a fluororesin having good heat resistance.
  • Boron nitride in the heat conductive composition of Patent Document 1 is excellent as a filler for heat conductive compositions with good heat resistance because it requires less amount to be added to the rubber material.
  • boron nitride is difficult to add to the rubber material, and it is difficult to improve the thermal conductivity.
  • Patent Document 2 in order to increase the thermal conductivity of silicone rubber having good heat resistance, the addition of a large amount of filler using a combination of nitride or carbide and a basic metal oxide results in a decrease in the heat resistance of the silicone rubber. There are difficulties.
  • Patent Document 3 there is a difficulty that the effect of improving the heat resistance of cerium oxide is reduced by adding a large amount of carbon filler without adding a large amount of carbon filler as expected without the carbon filler improving the thermal conductivity.
  • Patent Document 4 directly adds boron nitride, which is a filler, to the fluororesin, the addition work is difficult, and the fluororesin is difficult to melt, so that it is difficult to process the sheet and obtain a thin sheet. Have difficulty.
  • the problem to be solved by the present invention is to eliminate the drawbacks of the above conventional heat conductive polymer materials, which are easy to manufacture, improve the thermal conductivity, have good heat resistance, and Another object of the present invention is to provide a heat conductive composition capable of obtaining a thin sheet with high flexibility.
  • the thermal conductivity is in the range of 0.5 to 400 W / m ⁇ K.
  • a thermal conductive composition is provided.
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • the fluororesin is used as a dispersion in which a dispersant is mixed in an aqueous solution.
  • the heat conductive composition which made heat-resistant temperature 180 degreeC or more is provided by adding a heat-resistant filler to the said fluororesin.
  • the heat conductive composition which added the electroconductive filler to the said fluororesin is provided.
  • 1 or more types of fillers in a woven fabric, a nonwoven fabric, and a heat-resistant film can be used as a reinforcing material of a heat conductive composition.
  • a filler having various characteristics can be easily added in large quantities to a fluororesin that can be melt-extruded, so that it is easy to manufacture and easily reveal the characteristics of the added filler.
  • the thermal conductivity can be improved, the heat dissipation is excellent, the heat resistance and the durability are good, and a thin sheet with high flexibility can be obtained.
  • the polymer material used as the base of the heat conductive composition of the present invention is a fluororesin that can be melt-extruded (hereinafter simply referred to as “fluororesin material”).
  • fluororesin material perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE). ), Tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), etc., and any other fluororesin that can be melt-extruded except PTFE and PVF.
  • PFA perfluoroalkoxyalkane
  • FEP perfluoroethylene propene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotriflu
  • the fluororesin material is a dispersion solution in which the fluororesin material is dispersed in a solution containing a dispersant, and the fluororesin material concentration is preferably in the range of 10 to 90% by mass, more preferably It is in the range of 40 to 70% by mass.
  • examples of fillers that can improve thermal conductivity and heat resistance used in the present invention include metal oxides, nitrides, carbides, metal powders, carbon, carbon nanotubes, graphite, and carbon fibers.
  • Examples of the metal oxide include aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, and silicon oxide.
  • Examples of the nitride include boron nitride, aluminum nitride, and silicon nitride.
  • Examples of the carbide include silicon carbide, Examples of the metal powder include silver, gold, copper, and aluminum, and one or a mixture of two or more thereof can be used.
  • those imparting electrical conductivity are metal powder, carbon, and graphite, and are selected based on superiority or inferiority in electrical conductivity. Further, the filler to be added is one or more of these. It is good also as a mixture of 2 or more types.
  • the filler particle shape for enhancing the thermal conductivity may be either spherical or fibrous, and the average particle size of the thermally conductive filler is 0.02 to 200 ⁇ m. It is a range. Further, when the shape of the thermally conductive filler is fibrous, the fiber length distribution is in the range of 0.01 to 1500 ⁇ m, and the average fiber length is preferably in the range of 0.05 to 300 ⁇ m. The average fiber diameter is preferably in the range of 0.01 to 15 ⁇ m.
  • the shape of the heat conductive filler does not need to be unified into one type of spherical or fibrous, and the average particle size at that time may be used in combination of two or more types as necessary.
  • the heat conductive filler described above is added in the range of 30 to 1500 parts by mass with respect to 100 parts by mass of the fluororesin material, and more preferably in the range of 50 to 1200 parts by mass with respect to 100 parts by mass of the fluororesin material.
  • the filler added to the fluororesin material should be surface-treated to improve compatibility with the fluororesin as the base material.
  • a silane coupling agent, titanium coupling agent, aluminum Examples include coupling agents, fluorine-based coupling agents, higher alcohols, fluorine-containing higher alcohols, higher fatty acids, fluorine-containing higher fatty acids, fluorine-containing benzoic acids, fluorine-containing benzoic acid derivatives, and polydimethylsiloxane.
  • concentration of these surface treatment agents is in the range of 0.1 to 5% by mass with respect to the filler.
  • it is good to change a surface treating agent for every kind of filler, and the processing method can use well-known methods, such as a dry method, a wet method, and an integral method.
  • Main fillers that increase the mechanical strength include woven fabrics, non-woven fabrics, and heat-resistant films. These materials preferably have a heat-resistant temperature of 200 ° C. or higher. Specific materials include glass fiber, polyphenylene sulfide. , Polyamide, polyimide, tetrafluoroethylene and the like can be exemplified, but are not limited to these examples.
  • the woven fabric includes plain weave and twill weave, and any of them may be used, but plain weave is particularly preferable.
  • the thickness of these woven fabrics, nonwoven fabrics, and heat resistant films is preferably in the range of 2 to 100 ⁇ m, and more preferably in the range of 4 to 50 ⁇ m.
  • the polymer material alone or the compound of the polymer material with filler added is diluted with a solvent in advance to make a paint, and the woven or non-woven fabric is dipped quickly into this paint to remove excess paint. It is better to dry and harden after scraping.
  • the filler is added in the range of 30 to 1500 parts by mass with respect to 100 parts by mass of the fluororesin material, and mixing at this time is well-known such as pot mill, planetary mixer, two rolls, three rolls, etc.
  • the target heat conductive composition can be obtained by using the apparatus.
  • thermoformings of the obtained heat conductive composition such as calendar molding, screen printing, press molding, extrusion molding, and coating, and any of them may be used.
  • the heat conductive composition 1 is interposed between the semiconductor product 2 and the aluminum plate 3 as shown in FIGS. 1 and 2, for example. It is provided and electrically insulates between the semiconductor product 2 and the aluminum plate 3, conducts heat from the semiconductor product 2 to the aluminum plate 3, and dissipates heat by the heat sink 4.
  • a heat conductive sheet 1A is further laid under the metal substrate 6 laid under the LED element 5, and a heat sink 4A is further provided thereunder.
  • the metal substrate 6 and the heat sink 4A are electrically insulated from each other, and the heat from the LED element 5 is conducted to the metal substrate 6 to be radiated by the heat sink 4A.
  • Example 1 A dispersion solution (manufactured by Mitsui DuPont Polychemical Co., Ltd.) having a perfluoroethylene-propene copolymer (FEP) component of 56% by mass (hereinafter simply referred to as “56% FEP dispersion solution”) was oxidized to 178.5 parts by mass. 250 parts by mass of aluminum (AA-3 manufactured by Sumitomo Chemical Co., Ltd.) (hereinafter simply referred to as “aluminum oxide”) and 800 parts by mass of a solvent were added, and kneaded in a pot mill to obtain a coating material.
  • FEP perfluoroethylene-propene copolymer
  • This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. And the upper and lower sides were pinched
  • Example 2 To 178.5 parts by mass of the 56% FEP dispersion solution, 500 parts by mass of aluminum oxide and 1000 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
  • Example 3 178.5 parts by mass of 56% FEP dispersion solution, 250 parts by mass of aluminum oxide, silane coupling agent (KBM-3063, manufactured by Shin-Etsu Chemical Co., Ltd.) (hereinafter simply referred to as “silane coupling agent”) 2.5 Mass parts and 800 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
  • silane coupling agent KBM-3063, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 4 To 178.5 parts by mass of 56% FEP dispersion solution, 500 parts by mass of aluminum oxide, 5.0 parts by mass of silane coupling agent, and 1000 parts by mass of solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
  • Example 5 Pot mill was added to 178.5 parts by mass of 56% FEP dispersion solution by adding 56 parts by mass of boron nitride (HP-40, manufactured by Mizushima Alloy Co., Ltd.) (hereinafter simply referred to as “boron nitride”) and 150 parts by mass of solvent. Kneaded into a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
  • boron nitride HP-40, manufactured by Mizushima Alloy Co., Ltd.
  • Example 6 To 178.5 parts by mass of the 56% FEP dispersion solution, 85 parts by mass of boron nitride and 200 parts by mass of the solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
  • Example 7 To 178.5 parts by mass of 56% FEP dispersion solution, 230 parts by mass of graphite powder (CGC-50, manufactured by Nippon Graphite Industry Co., Ltd.) (hereinafter simply referred to as “graphite powder”), thickener solution (external discount 2%) CMC solution, carboxymethyl cellulose ammonium powder, manufactured by Wako Pure Chemical Industries, Ltd. (hereinafter simply referred to as “thickener solution”) 12 parts by mass, 580 parts by mass of solvent, and kneaded in a pot mill to form a coating material I made it. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
  • Example 8 To 178.5 parts by mass of 56% FEP dispersion solution, 400 parts by mass of graphite powder, 12 parts by mass of thickener solution, and 1000 parts by mass of solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
  • Example 9 56% FEP dispersion solution (Mitsui / DuPont Polychemical Co., Ltd.) 178.5 parts by mass Zinc oxide 150 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 600 parts by mass (LPZINC -11 Sakai Chemical Industry Co., Ltd.), 2.5 parts by mass of a silane coupling agent (KBM-3063) and 1000 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material.
  • This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. Further, the film was sandwiched between imide films by thermocompression bonding at a temperature of 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute to obtain a thermally conductive composition having a thickness of 0.2 mm.
  • Example 10 56% FEP dispersion solution (Mitsui / DuPont Polychemical Co., Ltd.) 178.5 parts by mass Zinc oxide 300 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 1200 parts by mass (LPZINC -11 Sakai Chemical Industry Co., Ltd.), 5.0 parts by mass of a silane coupling agent (KBM-3063) and 1200 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material.
  • This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. Further, the film was sandwiched between imide films by thermocompression bonding at a temperature of 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute to obtain a thermally conductive composition having a thickness of 0.2 mm.
  • thermal conductivity was measured according to ASTM D5470.
  • Bending characteristics ⁇ When the thermally conductive sheet is not cracked using a pin gauge of ⁇ 1 ⁇ : When the thermally conductive sheet is not cracked using a pin gauge of ⁇ 1.1 to 2 ⁇ : ⁇ 2.1 to 3
  • heat conductive sheet is not cracked using a pin gauge of ⁇ : When the heat conductive sheet is cracked using a pin gauge of ⁇ 3.1 or more
  • Heat-resistant heat conductive sheet is 300 in a hot air circulation oven Exposure at ° C x 24 hours.
  • Silicone rubber (SE1183U manufactured by Toray Dow Corning Co., Ltd.) 100 parts by mass of zinc oxide 300 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 1200 parts by mass (LPZINC-11 Sakai Chemical Industry Co., Ltd.) Company), 5.0 parts by mass of a silane coupling agent (KBM-3063), and 100 parts by mass of a solvent were added and kneaded with a planetary mixer to obtain a coating material.
  • This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off, followed by secondary vulcanization at 200 ° C. for 4 hours to obtain a thermally conductive composition having a thickness of 0.2 mm.
  • thermocompression bonding apparatus 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute.
  • a 0.2 mm thick heat conductive sheet could not be obtained. It was.
  • Comparative Example 11 an attempt was made to knead the filler directly into PTFE, but it could not be kneaded. Further, Comparative Example 12 was a 56% PTFE dispersion solution corresponding to the 56% FEP dispersion solution of Example 1. It could not be held in a shape, and thermocompression work could not be performed. Therefore, physical properties of Comparative Examples 11 and 12 could not be evaluated.
  • the heat conductive composition of the present invention and the heat conductive sheet processed from the heat conductive composition are easy to manufacture, and of course the improvement of the heat conductivity is excellent, the heat resistance is good, and the sheet is rich and flexible. When it is desired to obtain it, its availability becomes extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a thermally conductive composition to which a large amount of a filler for improving thermal conductivity can be added and which has high thermal conductivity and formability. The thermally conductive composition is formed by adding 30-1500 parts by mass of the filler to 100 parts by mass of a fluororesin that can be used for melt extrusion molding, and the thermal conductivity of the thermally conductive composition is within the range of 0.5-400W/m·K.

Description

熱伝導性組成物及びこれを加工した熱伝導性シートThermally conductive composition and thermally conductive sheet processed from the same
 本発明は、半導体製品などの熱伝導用部品、耐熱用部品、電気絶縁用部品、電気伝導用部品などに利用される熱伝導性組成物に関し、詳しくは、ポリテトラフルオロエチレン及びポリフッ化ビニルを除く溶融押し出し成形が可能なフッ素樹脂に、フィラーを添加することで、特に熱伝導率を高めた熱伝導性組成物及びこれを加工した熱伝導性シートに関する。 The present invention relates to a heat conductive composition used for heat conducting parts such as semiconductor products, heat resistant parts, electrical insulating parts, electrical conducting parts and the like, and more specifically, polytetrafluoroethylene and polyvinyl fluoride. The present invention relates to a heat conductive composition having a particularly high heat conductivity by adding a filler to a fluororesin that can be melt-extruded, and a heat conductive sheet obtained by processing the heat conductive composition.
 コンピュータ(CPU)、トランジスタ、発光ダイオード(LED)、サイリスタなどの半導体製品は、使用中に発熱し、その熱のためこれら半導体製品の性能が低下することがある。このため、このように発熱する半導体製品には、放熱材料を挟んでヒートシンクなどの放熱器が取り付けられ、半導体製品が冷却されるようになっている。 Semiconductor products such as computers (CPUs), transistors, light emitting diodes (LEDs), and thyristors generate heat during use, and the performance of these semiconductor products may be reduced due to the heat. For this reason, the semiconductor product that generates heat is attached with a radiator such as a heat sink with a heat dissipation material interposed therebetween, so that the semiconductor product is cooled.
 また、近年、パワーエレクトロニクス化が進み、上記半導体製品は無論、モジュールとしても発熱量が膨大になってきている。加えて、モジュールが小型化し、それに伴い放熱器も小型化して、冷却効率を良くするためにモジュールに直接接する放熱材料も高熱伝導率を要求されるようになった。 Also, in recent years, power electronics have progressed, and of course, the amount of heat generated by the semiconductor products has become enormous as a module. In addition, the module has been downsized, and the heat sink has also been downsized. Accordingly, in order to improve the cooling efficiency, the heat dissipating material directly in contact with the module has been required to have high thermal conductivity.
一般的に、放熱材料の熱伝導率を上げるには、素材である高分子材料にフィラーを多く添加することが必要になる。しかしながら、高分子材料にフィラーを多く添加すると、耐熱性が低下することが多く、且つ硬くなり加工性や耐久性が低下してしまうという問題がある。 In general, in order to increase the thermal conductivity of the heat dissipation material, it is necessary to add a large amount of filler to the polymer material as the material. However, when a large amount of filler is added to the polymer material, there is a problem that the heat resistance often decreases and becomes hard and the workability and durability decrease.
このような状況から、さまざまな提案がなされ、例えば、特許文献1には、ゴム材料に高熱伝導性フィラーである窒化ホウ素を添加することで、フィラー添加量を減らし、耐熱性の低下と硬くなることを防いだ熱伝導性組成物が記載されている。 Under such circumstances, various proposals have been made. For example, Patent Document 1 adds boron nitride, which is a highly thermally conductive filler, to the rubber material, thereby reducing the amount of filler added, resulting in reduced heat resistance and hardness. A thermally conductive composition that prevents this is described.
また、特許文献2には、耐熱性のよいシリコーンゴムに、窒化物あるいは炭化物と塩基性金属酸化物とを併用したフィラーを添加して、耐熱性を向上させ、軟質とした熱伝導性組成物が記載されている。 In addition, Patent Document 2 discloses a heat conductive composition which is soft by improving the heat resistance by adding a filler in which nitride or carbide and a basic metal oxide are used in combination to silicone rubber having good heat resistance. Is described.
また、特許文献3には、耐熱性のよいシリコーンゴムに、高温下でもシリコーンゴムの熱劣化を助長しないカーボンフィラーを添加し、さらに、耐熱向上剤として酸化セリウムを添加して、耐熱性を向上させ、軟質とした熱伝導性組成物が記載されている。 In Patent Document 3, a heat-resistant silicone rubber is added with a carbon filler that does not promote thermal degradation of the silicone rubber even at high temperatures, and cerium oxide is added as a heat-resistant improver to improve heat resistance. A heat conductive composition that is softened is described.
またさらには、特許文献4には、耐熱性のよいフッ素樹脂に、フィラーである窒化ホウ素を添加して、耐熱性が高く、軟質とした熱伝導性組成物も記載されている。 Furthermore, Patent Document 4 also describes a heat conductive composition that has high heat resistance and is soft by adding boron nitride as a filler to a fluororesin having good heat resistance.
特開2005-343728号公報JP 2005-343728 A 特開平09-151324号公報JP 09-151324 A 特開平07-119010号公報Japanese Unexamined Patent Publication No. 07-111010 特開2010-137562号公報JP 2010-137562 A
特許文献1の熱伝導性組成物における窒化ホウ素は、ゴム材料に添加する量が少なくてすむから、耐熱性の良好な熱伝導性組成物のフィラーとして優れている。しかしながら、窒化ホウ素は、上記ゴム材料に添加するのが難しく、熱伝導率の改善につながりづらく、加えて、価格が高いという難点がある。 Boron nitride in the heat conductive composition of Patent Document 1 is excellent as a filler for heat conductive compositions with good heat resistance because it requires less amount to be added to the rubber material. However, boron nitride is difficult to add to the rubber material, and it is difficult to improve the thermal conductivity. In addition, there is a problem that the price is high.
特許文献2は、耐熱性の良いシリコーンゴムの熱伝導率を高めるため、窒化物あるいは炭化物と塩基性金属酸化物とを併用したフィラーを多く添加する結果、シリコーンゴムの耐熱性が低下してしまう難点がある。 In Patent Document 2, in order to increase the thermal conductivity of silicone rubber having good heat resistance, the addition of a large amount of filler using a combination of nitride or carbide and a basic metal oxide results in a decrease in the heat resistance of the silicone rubber. There are difficulties.
特許文献3は、カーボンフィラーが期待ほどシリコーンゴムの熱伝導率を向上させることがなく、多量のカーボンフィラーを添加することで、酸化セリウムの耐熱性向上の効果が薄れてしまう難点がある。 In Patent Document 3, there is a difficulty that the effect of improving the heat resistance of cerium oxide is reduced by adding a large amount of carbon filler without adding a large amount of carbon filler as expected without the carbon filler improving the thermal conductivity.
さらに、特許文献4は、フッ素樹脂にフィラーである窒化ホウ素を直接添加しているため、添加作業が困難であり、また、フッ素樹脂は溶融しづらいから、シート加工が難しく薄いシートを得ることが困難である。 Furthermore, since Patent Document 4 directly adds boron nitride, which is a filler, to the fluororesin, the addition work is difficult, and the fluororesin is difficult to melt, so that it is difficult to process the sheet and obtain a thin sheet. Have difficulty.
 そこで、本発明の解決課題は、上記従来の熱伝導性高分子材料の欠点を解消することにあって、製造が容易であり、熱伝導率を改善させるとともに、耐熱性が良好で、その上、柔軟性に富み薄いシートを得ることができる熱伝導性組成物を提供することにある。 Therefore, the problem to be solved by the present invention is to eliminate the drawbacks of the above conventional heat conductive polymer materials, which are easy to manufacture, improve the thermal conductivity, have good heat resistance, and Another object of the present invention is to provide a heat conductive composition capable of obtaining a thin sheet with high flexibility.
 本発明は、熱可塑性であって溶融押し出し成形が可能なフッ素樹脂100質量部に、フィラー30ないし1500質量部を添加することによって、熱伝導率が0.5ないし400W/m・Kの範囲にある熱伝導性組成物を提供するものである。 In the present invention, by adding 30 to 1500 parts by mass of filler to 100 parts by mass of a fluororesin that is thermoplastic and can be melt-extruded, the thermal conductivity is in the range of 0.5 to 400 W / m · K. A thermal conductive composition is provided.
 したがって、フッ素系樹脂であっても、溶融押し出し成形がスムーズに行うことができないポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニール(PVF)は、本発明の対象から除外される。 Therefore, polytetrafluoroethylene (PTFE) and polyvinyl fluoride (PVF), which cannot be smoothly melt-extruded even with a fluororesin, are excluded from the object of the present invention.
 本発明によれば、前記フッ素樹脂は、水溶液中に分散剤を配合したディスパージョンとして使用される。 According to the present invention, the fluororesin is used as a dispersion in which a dispersant is mixed in an aqueous solution.
また、本発明によれば、前記フッ素樹脂に耐熱性フィラーを添加することによって、耐熱温度を180℃以上とした熱伝導性組成物が提供される。 Moreover, according to this invention, the heat conductive composition which made heat-resistant temperature 180 degreeC or more is provided by adding a heat-resistant filler to the said fluororesin.
また、本発明によれば、前記フッ素樹脂に電気伝導性フィラーを添加した熱伝導性組成物が提供される。 Moreover, according to this invention, the heat conductive composition which added the electroconductive filler to the said fluororesin is provided.
また、本発明によれば、熱伝導性組成物の強化材として織布、不織布、耐熱フィルムの中の1種以上のフィラーを用いることができる。 Moreover, according to this invention, 1 or more types of fillers in a woven fabric, a nonwoven fabric, and a heat-resistant film can be used as a reinforcing material of a heat conductive composition.
本発明によれば、溶融押し出し成形が可能なフッ素樹脂に、種々の特性を有するフィラーを大量に且つ容易に添加できるため、まず、製造が容易であり、添加したフィラーの特性を顕在化させ易く、とくに、熱伝導率の改善を図れて放熱性に優れ、耐熱性や耐久性も良好であり、柔軟性に富み薄いシートも得ることができる。 According to the present invention, a filler having various characteristics can be easily added in large quantities to a fluororesin that can be melt-extruded, so that it is easy to manufacture and easily reveal the characteristics of the added filler. In particular, the thermal conductivity can be improved, the heat dissipation is excellent, the heat resistance and the durability are good, and a thin sheet with high flexibility can be obtained.
本発明の熱伝導性組成物の利用形態を示す正面図である。It is a front view which shows the utilization form of the heat conductive composition of this invention. 本発明の熱伝導性組成物の利用形態を示す側面図である。It is a side view which shows the utilization form of the heat conductive composition of this invention. 本発明の熱伝導性シートをLED電球に適用した状態を示す側面図である。It is a side view which shows the state which applied the heat conductive sheet of this invention to the LED bulb.
本発明の熱伝導性組成物のベースとして使われる高分子材料は、溶融押し出し成形が可能なフッ素樹脂(以下、単に「フッ素樹脂材料」という)である。 具体的には、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレンコポリマー(ECTFE)、テトラフルオロエチレン-パーフルオロジイオキソールコポリマー(TFE/PDD)などであり、これ以外にもPTFE及びPVFを除く溶融押し出し成形が可能なフッ素樹脂であればよく、これらから1種あるいは2種以上の混合物を使用することができる。さらに、上記のフッ素樹脂材料あるいはフッ素樹脂材料を主体とする混合物に、これらのフッ素樹脂材料以外の耐熱性のある高分子材料を混合したものでもよい。 The polymer material used as the base of the heat conductive composition of the present invention is a fluororesin that can be melt-extruded (hereinafter simply referred to as “fluororesin material”). Specifically, perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE). ), Tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), etc., and any other fluororesin that can be melt-extruded except PTFE and PVF. Mixtures of the above can be used. Furthermore, the above fluororesin material or a mixture mainly composed of the fluororesin material may be mixed with a heat-resistant polymer material other than these fluororesin materials.
そして、上記のフッ素樹脂材料は、分散剤を配合した溶液にフッ素樹脂材料が分散したディスパージョン溶液であり、そのフッ素樹脂材料濃度は10ないし90質量%の範囲であることが好ましく、より好ましくは40ないし70質量%の範囲である。 The fluororesin material is a dispersion solution in which the fluororesin material is dispersed in a solution containing a dispersant, and the fluororesin material concentration is preferably in the range of 10 to 90% by mass, more preferably It is in the range of 40 to 70% by mass.
また、本発明に使われる熱伝導性と耐熱性向上を兼ねたフィラーとしては、金属酸化物、窒化物、炭化物、金属粉、カーボン、カーボンナノチューブ、グラファイト、炭素繊維などが挙げられる。 In addition, examples of fillers that can improve thermal conductivity and heat resistance used in the present invention include metal oxides, nitrides, carbides, metal powders, carbon, carbon nanotubes, graphite, and carbon fibers.
 上記の金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化珪素などがあり、窒化物としては、窒化ホウ素、窒化アルミニウム、窒化珪素などがあり、炭化物としては、炭化珪素、炭化ホウ素などがあり、さらに、金属粉としては、銀、金、銅、アルミニウムなどがあり、これらから1種あるいは2種以上の混合物も使用できる。 Examples of the metal oxide include aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, and silicon oxide. Examples of the nitride include boron nitride, aluminum nitride, and silicon nitride. Examples of the carbide include silicon carbide, Examples of the metal powder include silver, gold, copper, and aluminum, and one or a mixture of two or more thereof can be used.
なお、上記各種フィラーのうち、特に電気伝導性を付与するものとしては、金属粉、カーボン、グラファイトであり、これらから電気伝導性の優劣で選択され、さらに、添加するフィラーはこれらから1種あるいは2種以上の混合物としてもよい。 Of the various fillers, those imparting electrical conductivity are metal powder, carbon, and graphite, and are selected based on superiority or inferiority in electrical conductivity. Further, the filler to be added is one or more of these. It is good also as a mixture of 2 or more types.
本発明のフッ素樹脂材料に添加して、例えば、熱伝導性を高めるためのフィラーの粒子形状は、球状あるいは繊維状いずれでもよく、この熱伝導性フィラーの平均粒径は0.02ないし200μmの範囲である。 また、熱伝導性フィラーの形状が繊維状である場合は、繊維長分布0.01ないし1500μmの範囲であり、平均繊維長は、0.05ないし300μmの範囲であることが好ましく、この場合の平均繊維径は、0.01ないし15μmの範囲であることが好ましい。 In addition to the fluororesin material of the present invention, for example, the filler particle shape for enhancing the thermal conductivity may be either spherical or fibrous, and the average particle size of the thermally conductive filler is 0.02 to 200 μm. It is a range. Further, when the shape of the thermally conductive filler is fibrous, the fiber length distribution is in the range of 0.01 to 1500 μm, and the average fiber length is preferably in the range of 0.05 to 300 μm. The average fiber diameter is preferably in the range of 0.01 to 15 μm.
なお、熱伝導性フィラーの形状は、球状あるいは繊維状の1種類に統一する必要はなく、その際の平均粒径も必要に応じて、2種類以上を組み合わせて使用してもよい。 The shape of the heat conductive filler does not need to be unified into one type of spherical or fibrous, and the average particle size at that time may be used in combination of two or more types as necessary.
上記した熱伝導性フィラーは、フッ素樹脂材料100質量部に対して30ないし1500質量部の範囲で添加され、より好ましくはフッ素樹脂材料100質量部に対して50ないし1200質量部の範囲である。 The heat conductive filler described above is added in the range of 30 to 1500 parts by mass with respect to 100 parts by mass of the fluororesin material, and more preferably in the range of 50 to 1200 parts by mass with respect to 100 parts by mass of the fluororesin material.
また、フッ素樹脂材料に添加するフィラーは、基材であるフッ素樹脂との馴染み性改善のために表面処理をするのがよく、この表面処理剤として、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、フッ素系カップリング剤、高級アルコール、含フッ素高級アルコール、高級脂肪酸、含フッ素高級脂肪酸、含フッ素安息香酸、含フッ素安息香酸誘導体、ポリジメチルシロキサンなどが例示でき、これらの例示に拘束されない。 これらの表面処理剤の濃度は、フィラーに対して0.1ないし5質量%の範囲である。なお、表面処理剤は、フィラーの種類毎に変えるのがよく、その処理方法は乾式法、湿式法、インテグラル法など公知の方法を使用することができる。 In addition, the filler added to the fluororesin material should be surface-treated to improve compatibility with the fluororesin as the base material. As this surface-treating agent, a silane coupling agent, titanium coupling agent, aluminum Examples include coupling agents, fluorine-based coupling agents, higher alcohols, fluorine-containing higher alcohols, higher fatty acids, fluorine-containing higher fatty acids, fluorine-containing benzoic acids, fluorine-containing benzoic acid derivatives, and polydimethylsiloxane. Not. The concentration of these surface treatment agents is in the range of 0.1 to 5% by mass with respect to the filler. In addition, it is good to change a surface treating agent for every kind of filler, and the processing method can use well-known methods, such as a dry method, a wet method, and an integral method.
 主に機械的強度を高めるフィラーとしては、織布、不織布、耐熱フィルムなどがあるが、これらの材料の耐熱温度は200℃以上あることが望ましく、具体的な材質としては、硝子繊維、ポリフェニレンスルフィド、ポリアミド、ポリイミド、テトラフルオロエチレンなどを例示できるが、これらの例示に限定されるものではない。 Main fillers that increase the mechanical strength include woven fabrics, non-woven fabrics, and heat-resistant films. These materials preferably have a heat-resistant temperature of 200 ° C. or higher. Specific materials include glass fiber, polyphenylene sulfide. , Polyamide, polyimide, tetrafluoroethylene and the like can be exemplified, but are not limited to these examples.
織布は、平織、綾織などがあり、いずれを用いてもよいが、特に平織が好ましい。これらの織布、不織布、耐熱フィルムの厚みは2ないし100μmの範囲であることが好ましく、より好ましい厚みは、4ないし50μmの範囲である。さらに、フィラーとして織布、不織布を使用する場合は、これらに存在する編み目、空隙を埋めておくのが電気絶縁性を向上させる点で好ましい。 これら編み目、空隙を埋める作業は、事前に高分子材料単独あるいはフィラー添加の高分子材料のコンパウンドを溶剤で希釈して塗料を作り、この塗料中に織布、不織布をさっと漬けて余分な塗料を掻き取ったあと乾燥硬化させるのがよい。 The woven fabric includes plain weave and twill weave, and any of them may be used, but plain weave is particularly preferable. The thickness of these woven fabrics, nonwoven fabrics, and heat resistant films is preferably in the range of 2 to 100 μm, and more preferably in the range of 4 to 50 μm. Furthermore, when a woven fabric or a non-woven fabric is used as the filler, it is preferable to fill the stitches and voids existing in the filler from the viewpoint of improving electrical insulation. To fill these stitches and voids, the polymer material alone or the compound of the polymer material with filler added is diluted with a solvent in advance to make a paint, and the woven or non-woven fabric is dipped quickly into this paint to remove excess paint. It is better to dry and harden after scraping.
また、上述のように、フッ素樹脂材料100質量部に対してフィラー30ないし1500質量部の範囲で添加されるが、この際の混合は、ポットミル、プラネタリミキサー、二本ロール、3本ロールなど公知の装置を使用して行われ、目的とする熱伝導性組成物を得ることができる。 Further, as described above, the filler is added in the range of 30 to 1500 parts by mass with respect to 100 parts by mass of the fluororesin material, and mixing at this time is well-known such as pot mill, planetary mixer, two rolls, three rolls, etc. The target heat conductive composition can be obtained by using the apparatus.
 さらに、得られた熱伝導性組成物のシート成形は、カレンダー成形、スクリーン印刷、プレス成形、押し出し成形、コーティングなど種々あり、どれを用いてもよい。 Furthermore, there are various sheet moldings of the obtained heat conductive composition, such as calendar molding, screen printing, press molding, extrusion molding, and coating, and any of them may be used.
なお、熱伝導性組成物1は、例えば、図1、2に示すように、半導体製品2とアルミ板3との間に密着した状態で介在し、さらに、アルミ板3の下にヒートシンク4が設けられていて、半導体製品2とアルミ板3との間を電気絶縁すると共に、アルミ板3に半導体製品2からの熱を伝導して、ヒートシンク4により放熱する。 The heat conductive composition 1 is interposed between the semiconductor product 2 and the aluminum plate 3 as shown in FIGS. 1 and 2, for example. It is provided and electrically insulates between the semiconductor product 2 and the aluminum plate 3, conducts heat from the semiconductor product 2 to the aluminum plate 3, and dissipates heat by the heat sink 4.
また、LED電球では、例えば、図3に示すように、LED素子5の下に敷かれた金属基板6の下に、さらに熱伝導性シート1Aが敷かれ、さらに、その下にヒートシンク4Aが設けられて、金属基板6とヒートシンク4Aとの間を電気絶縁すると共に、金属基板6にLED素子5からの熱を伝導して、ヒートシンク4Aにより放熱する。 In the LED bulb, for example, as shown in FIG. 3, a heat conductive sheet 1A is further laid under the metal substrate 6 laid under the LED element 5, and a heat sink 4A is further provided thereunder. Thus, the metal substrate 6 and the heat sink 4A are electrically insulated from each other, and the heat from the LED element 5 is conducted to the metal substrate 6 to be radiated by the heat sink 4A.
以下に、本発明の熱伝導性組成物及びこれを加工した熱伝導性シートの優位性を検証したので、その状況を詳述する。 Below, since the superiority of the heat conductive composition of this invention and the heat conductive sheet which processed this was verified, the situation is explained in full detail.
[実施例1]
パーフルオロエチレン-プロペンコポリマー(FEP)成分が56質量%のディスパージョン溶液(三井・デュポンポリケミカル株式会社製)(以下、単に「56%FEPディスパージョン溶液」という)178.5質量部に、酸化アルミニウム(AA-3住友化学社製)(以下、単に「酸化アルミニウム」という)250質量部、溶剤800質量部を添加して、ポットミルにて混練りして塗材にした。この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに、120℃、1時間の条件で乾燥機にて乾燥させた。そして、イミドフィルムで上下を挟み、熱圧着装置にて300℃、50kg/cm2の圧力で1分間熱圧着して、0.2mm厚みの熱伝導性シートを得た。
[Example 1]
A dispersion solution (manufactured by Mitsui DuPont Polychemical Co., Ltd.) having a perfluoroethylene-propene copolymer (FEP) component of 56% by mass (hereinafter simply referred to as “56% FEP dispersion solution”) was oxidized to 178.5 parts by mass. 250 parts by mass of aluminum (AA-3 manufactured by Sumitomo Chemical Co., Ltd.) (hereinafter simply referred to as “aluminum oxide”) and 800 parts by mass of a solvent were added, and kneaded in a pot mill to obtain a coating material. This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. And the upper and lower sides were pinched | interposed with the imide film, and it heat-pressed for 1 minute at 300 degreeC and the pressure of 50 kg / cm < 2 > with the thermocompression bonding apparatus, and obtained the 0.2-mm-thick heat conductive sheet.
[実施例2]
56%FEPディスパージョン溶液178.5質量部に、酸化アルミニウム500質量部、溶剤1000質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 2]
To 178.5 parts by mass of the 56% FEP dispersion solution, 500 parts by mass of aluminum oxide and 1000 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
[実施例3]
56%FEPディスパージョン溶液178.5質量部に、酸化アルミニウム250質量部、シランカップリング剤(KBM-3063、信越化学工業株式会社製)(以下、単に「シランカップリング剤」という)2.5質量部、溶剤800質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 3]
178.5 parts by mass of 56% FEP dispersion solution, 250 parts by mass of aluminum oxide, silane coupling agent (KBM-3063, manufactured by Shin-Etsu Chemical Co., Ltd.) (hereinafter simply referred to as “silane coupling agent”) 2.5 Mass parts and 800 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
[実施例4]
56%FEPディスパージョン溶液178.5質量部に、酸化アルミニウム500質量部、シランカップリング剤5.0質量部、溶剤1000質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 4]
To 178.5 parts by mass of 56% FEP dispersion solution, 500 parts by mass of aluminum oxide, 5.0 parts by mass of silane coupling agent, and 1000 parts by mass of solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
[実施例5]
56%FEPディスパージョン溶液178.5質量部に、窒化ホウ素(HP-40、水島合金株式会社製)(以下、単に「窒化ホウ素」という)56質量部、溶剤150質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 5]
Pot mill was added to 178.5 parts by mass of 56% FEP dispersion solution by adding 56 parts by mass of boron nitride (HP-40, manufactured by Mizushima Alloy Co., Ltd.) (hereinafter simply referred to as “boron nitride”) and 150 parts by mass of solvent. Kneaded into a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
[実施例6]
56%FEPディスパージョン溶液178.5質量部に、窒化ホウ素85質量部、溶剤200質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 6]
To 178.5 parts by mass of the 56% FEP dispersion solution, 85 parts by mass of boron nitride and 200 parts by mass of the solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
[実施例7]
56%FEPディスパージョン溶液178.5質量部に、グラファイト粉(CGC-50、日本黒鉛工業株式会社製)(以下、単に「グラファイト粉」という)230質量部、増粘剤溶液(外割2%CMC溶液、カルボキシメチルセルロースアンモニウム粉末、和光純薬工業株式会社製)(以下、単に「増粘剤溶液」という)12質量部、溶剤580質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 7]
To 178.5 parts by mass of 56% FEP dispersion solution, 230 parts by mass of graphite powder (CGC-50, manufactured by Nippon Graphite Industry Co., Ltd.) (hereinafter simply referred to as “graphite powder”), thickener solution (external discount 2%) CMC solution, carboxymethyl cellulose ammonium powder, manufactured by Wako Pure Chemical Industries, Ltd. (hereinafter simply referred to as “thickener solution”) 12 parts by mass, 580 parts by mass of solvent, and kneaded in a pot mill to form a coating material I made it. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
[実施例8]
56%FEPディスパージョン溶液178.5質量部に、グラファイト粉400質量部、増粘剤溶液12質量部、溶剤1000質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 8]
To 178.5 parts by mass of 56% FEP dispersion solution, 400 parts by mass of graphite powder, 12 parts by mass of thickener solution, and 1000 parts by mass of solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.
[実施例9]
 56%FEPディスパージョン溶液(三井・デュポンポリケミカル株式会社製)178.5質量部に対して酸化亜鉛 150質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 600質量部(LPZINC-11 堺化学工業株式会社製)、シランカップリング剤2.5質量部(KBM-3063)、溶剤1000質量部を添加してポットミルにて混練りし塗材にした。
 この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに120℃、1時間の条件で乾燥機にて乾燥させた。更にイミドフィルムで上下挟み熱圧着装置にて温度300℃、加圧50kg/cmで1分間熱圧着し厚み0.2mmの熱伝導性組成物を得た。
[Example 9]
56% FEP dispersion solution (Mitsui / DuPont Polychemical Co., Ltd.) 178.5 parts by mass Zinc oxide 150 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 600 parts by mass (LPZINC -11 Sakai Chemical Industry Co., Ltd.), 2.5 parts by mass of a silane coupling agent (KBM-3063) and 1000 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material.
This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. Further, the film was sandwiched between imide films by thermocompression bonding at a temperature of 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute to obtain a thermally conductive composition having a thickness of 0.2 mm.
[実施例10]
 56%FEPディスパージョン溶液(三井・デュポンポリケミカル株式会社製)178.5質量部に対して酸化亜鉛 300質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 1200質量部(LPZINC-11 堺化学工業株式会社製)、シランカップリング剤5.0質量部(KBM-3063)、溶剤1200質量部を添加してポットミルにて混練りし塗材にした。
 この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに120℃×1時間の条件で乾燥機にて乾燥させた。更にイミドフィルムで上下挟み熱圧着装置にて温度300℃、加圧50kg/cmで1分間熱圧着し厚み0.2mmの熱伝導性組成物を得た。
[Example 10]
56% FEP dispersion solution (Mitsui / DuPont Polychemical Co., Ltd.) 178.5 parts by mass Zinc oxide 300 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 1200 parts by mass (LPZINC -11 Sakai Chemical Industry Co., Ltd.), 5.0 parts by mass of a silane coupling agent (KBM-3063) and 1200 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material.
This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. Further, the film was sandwiched between imide films by thermocompression bonding at a temperature of 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute to obtain a thermally conductive composition having a thickness of 0.2 mm.
 以上の実施例で得られたシート及び組成物について、熱伝導率、曲げ特性、耐熱性を以下の方法にて測定した。
(1)熱伝導率ASTMD5470に準じて測定した。
(2)曲げ特性
◎:φ1のピンゲージを使用して熱伝導性シートが割れない場合
○:φ1.1ないし2のピンゲージを使用して熱伝導性シートが割れない場合
△:φ2.1ないし3のピンゲージを使用して熱伝導性シートが割れない場合
×:φ3.1以上のピンゲージを使用して熱伝導性シートが割れる場合
(3)耐熱性
熱伝導性シートを熱風循環式オーブンにて300°C×24時間曝露する。まず、曝露する前の熱伝導性シートが割れない最少径のピンゲージを探査する。次に、曝露したあとの熱伝導性シートが割れない最少径のピンゲージを探査する。そして、曝露前後のピンゲージの径の差により耐熱性を判定する。
◎:ピンゲージ径の差がφ0ないし1.0の場合
○:ピンゲージ径の差がφ1.1ないし2の場合
△:ピンゲージ径の差がφ2.1ないし3の場合
×:ピンゲージ径の差がφ3.1以上の場合
 その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
About the sheet | seat and composition obtained by the above Example, thermal conductivity, a bending characteristic, and heat resistance were measured with the following method.
(1) Thermal conductivity was measured according to ASTM D5470.
(2) Bending characteristics ◎: When the thermally conductive sheet is not cracked using a pin gauge of φ1 ○: When the thermally conductive sheet is not cracked using a pin gauge of φ1.1 to 2 Δ: φ2.1 to 3 When the heat conductive sheet is not cracked using a pin gauge of ×: When the heat conductive sheet is cracked using a pin gauge of φ3.1 or more (3) Heat-resistant heat conductive sheet is 300 in a hot air circulation oven Exposure at ° C x 24 hours. First, a pin gauge with the smallest diameter that does not break the thermal conductive sheet before exposure is searched. Next, a pin gauge of the smallest diameter that does not break the thermally conductive sheet after exposure is searched. And heat resistance is determined by the difference in the diameter of the pin gauge before and after exposure.
◎: When the difference in pin gauge diameter is φ0 to 1.0 ○: When the difference in pin gauge diameter is φ1.1 to 2, Δ: When the difference in pin gauge diameter is φ2.1 to 3, ×: The difference in pin gauge diameter is φ3 .1 or more The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
[比較例1]
シリコーンゴム(SE1183U、東レ・ダウコーニング株式会社製)(以下、単に「シリコーンゴム」という)100質量部に、酸化アルミニウム250質量部、加硫剤(RC-1東レ・ダウコーニング社製)(以下、単に「加硫剤」という)4質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに、100℃×30分間の条件で熱風循環式オーブンで硬化させた。ポリエステルフィルムを剥がして、0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 1]
100 parts by mass of silicone rubber (SE1183U, manufactured by Toray Dow Corning Co., Ltd.) (hereinafter simply referred to as “silicone rubber”), 250 parts by mass of aluminum oxide, and a vulcanizing agent (manufactured by RC-1 Toray Dow Corning Co., Ltd.) 4 parts by weight and simply 100 parts by weight of xylene were added and kneaded with a planetary mixer to form a coating material. This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off to obtain a 0.2 mm thick thermally conductive sheet.
[比較例2]
シリコーンゴム100質量部に、酸化アルミニウム250質量部、加硫剤6質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 2]
To 100 parts by mass of silicone rubber, 250 parts by mass of aluminum oxide, 6 parts by mass of vulcanizing agent, and 100 parts by mass of xylene were added and kneaded with a planetary mixer to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 1.
[比較例3]
シリコーンゴム100質量部に、酸化アルミニウム250質量部、シランカップリング剤2.5質量部、加硫剤4質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 3]
To 100 parts by mass of silicone rubber, 250 parts by mass of aluminum oxide, 2.5 parts by mass of silane coupling agent, 4 parts by mass of vulcanizing agent, and 100 parts by mass of xylene are added and kneaded with a planetary mixer to form a coating material. did. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 1.
[比較例4]
シリコーンゴム100質量部に、酸化アルミニウム500質量部、シランカップリング剤5.0質量部、加硫剤6質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 4]
To 100 parts by mass of silicone rubber, 500 parts by mass of aluminum oxide, 5.0 parts by mass of silane coupling agent, 6 parts by mass of vulcanizing agent, and 100 parts by mass of xylene are added and kneaded with a planetary mixer to form a coating material. did. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 1.
[比較例5]
シリコーンゴム100質量部に、窒化ホウ素56質量部、加硫剤4質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに、100℃×30分間の条件で熱風循環式オーブンで硬化させた。ポリエステルフィルムを剥がし、さらに、200℃×4時間の二次加硫をして0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 5]
To 100 parts by mass of silicone rubber, 56 parts by mass of boron nitride, 4 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off, and further subjected to secondary vulcanization at 200 ° C. for 4 hours to obtain a 0.2 mm thick heat conductive sheet.
[比較例6]
シリコーンゴム100質量部に、窒化ホウ素85質量部、加硫剤6質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例5と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 6]
To 100 parts by mass of silicone rubber, 85 parts by mass of boron nitride, 6 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 5.
[比較例7]
シリコーンゴム100質量部に、グラファイト粉230質量部、加硫剤4質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材をポリエステルフィルムにコーティングして室温で24時間風乾したのち、もう1枚のポリエステルフィルムを被せ、100℃×30分間の条件でプレス加工により硬化させた。ポリエステルフィルムを剥がし、さらに、200℃×4時間の二次加硫をして0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 7]
To 100 parts by mass of silicone rubber, 230 parts by mass of graphite powder, 4 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. This coating material was coated on a polyester film and air-dried at room temperature for 24 hours, and then covered with another polyester film and cured by press processing at 100 ° C. for 30 minutes. The polyester film was peeled off, and further subjected to secondary vulcanization at 200 ° C. for 4 hours to obtain a 0.2 mm thick heat conductive sheet.
[比較例8]
シリコーンゴム100質量部に、グラファイト粉400質量部、加硫剤4質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例7と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 8]
To 100 parts by mass of silicone rubber, 400 parts by mass of graphite powder, 4 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 7.
[比較例9]
 シリコーンゴム(SE1183U 東レ・ダウコーニング株式会社製) 100質量部に対して酸化亜鉛 150質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 600質量部(LPZINC-11 堺化学工業株式会社製)、シランカップリング剤2.5質量部(KBM-3063)、溶剤100質量部を添加してプラネタのミキサーにて混練りし塗材にした。
 この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに100℃×30分の条件で熱風循環式のオーブンで硬化させた。ポリエステルフィルムをはがし、さらに、200℃×4時間の二次加硫して厚み0.2mmの熱伝導性組成物を得た。
[Comparative Example 9]
Silicone rubber (SE1183U manufactured by Toray Dow Corning Co., Ltd.) Zinc oxide 150 parts by mass (Zinc oxide 1 type, manufactured by Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 600 parts by mass (LPZINC-11, Sakai Chemical Industry Co., Ltd.) Company), 2.5 parts by mass of a silane coupling agent (KBM-3063) and 100 parts by mass of a solvent were added and kneaded with a planetary mixer to obtain a coating material.
This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off, followed by secondary vulcanization at 200 ° C. for 4 hours to obtain a thermally conductive composition having a thickness of 0.2 mm.
[比較例10]
 シリコーンゴム(SE1183U 東レ・ダウコーニング株式会社製) 100質量部に対して酸化亜鉛 300質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 1200質量部(LPZINC-11 堺化学工業株式会社製)、シランカップリング剤5.0質量部(KBM-3063)、溶剤100質量部を添加してプラネタのミキサーにて混練りし塗材にした。
 この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに100℃×30分の条件で熱風循環式のオーブンで硬化させた。ポリエステルフィルムをはがし、さらに、200℃×4時間の二次加硫して厚み0.2mmの熱伝導性組成物を得た。
[Comparative Example 10]
Silicone rubber (SE1183U manufactured by Toray Dow Corning Co., Ltd.) 100 parts by mass of zinc oxide 300 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 1200 parts by mass (LPZINC-11 Sakai Chemical Industry Co., Ltd.) Company), 5.0 parts by mass of a silane coupling agent (KBM-3063), and 100 parts by mass of a solvent were added and kneaded with a planetary mixer to obtain a coating material.
This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off, followed by secondary vulcanization at 200 ° C. for 4 hours to obtain a thermally conductive composition having a thickness of 0.2 mm.
 以下、ポリテトラフルオロエチレン(PTFE)を使用した場合の比較例を開示する。
[比較例11]
ポリテトラフルオロエチレン(PTFE)パウダー品100質量部に、酸化アルミニウム250質量部を添加して、320℃の条件にて2軸混練装置にて混練りを試みたが、混練りすることが出来ず、0.2mm厚みの熱伝導性シートは得られなかった。
Hereinafter, a comparative example when polytetrafluoroethylene (PTFE) is used will be disclosed.
[Comparative Example 11]
250 parts by mass of aluminum oxide was added to 100 parts by mass of a polytetrafluoroethylene (PTFE) powder product, and kneading was attempted with a biaxial kneader at 320 ° C., but kneading was not possible. A heat conductive sheet having a thickness of 0.2 mm was not obtained.
[比較例12]
ポリテトラフルオロエチレン(PTFE)パウダー品56質量部に対して、2-プロパノール44質量部を加え攪拌して、実施例1の56%FEPディスパージョン溶液に相当する、56%PTFEディスパージョン溶液を作製した。この56%PTFEディスパージョン溶液178.5質量部に、酸化アルミニウム250質量部、溶剤800質量部を添加して、ポットミルにて混練りして塗材にした。この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに、120℃、1時間の条件で乾燥機にて乾燥させた。そして、イミドフィルムで上下を挟み、熱圧着装置にて300℃、50kg/cm2 の圧力で1分間熱圧着したが、この場合も、0.2mm厚みの熱伝導性シートを得ることが出来なかった。
[Comparative Example 12]
To 56 parts by mass of polytetrafluoroethylene (PTFE) powder, 44 parts by mass of 2-propanol was added and stirred to produce a 56% PTFE dispersion solution corresponding to the 56% FEP dispersion solution of Example 1. did. To 178.5 parts by mass of this 56% PTFE dispersion solution, 250 parts by mass of aluminum oxide and 800 parts by mass of solvent were added and kneaded in a pot mill to obtain a coating material. This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. And the upper and lower sides were sandwiched between imide films, and thermocompression bonded with a thermocompression bonding apparatus at 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute. In this case as well, a 0.2 mm thick heat conductive sheet could not be obtained. It was.
以上の方法で得られたシート及び組成物を上記実施例と同様の測定方法で評価し、その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
The sheets and compositions obtained by the above methods were evaluated by the same measurement method as in the above Examples, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
実施例1ないし10と比較例1ないし10の結果の対比から理解されるように、本発明の実施例に示したPTFE及びPVFを除く溶融押し出し成形が可能な所謂「フッ素樹脂材料」は、比較例のシリコーンゴムよりフィラーを多く添加でき、同量のフィラー添加であれば、実施例の方が比較例よりも曲げ特性が良好であることが分かる。
また、実施例3、4のように表面処理をしたフィラーを使用すると、表面処理をしていない実施例1、2よりも、曲げ特性が良くなっている。これは表面処理をしたフィラーがフッ素樹脂材料との親和性が向上したことを示している。
なお、比較例11は、PTFEに直接フィラーを練り込もうとしたが、練り込み出来なかった。また、比較例12は、実施例1の56%FEPディスパージョン溶液に相当する、56%PTFEディスパージョン溶液としたが、一時的にフィラーを充填できても、乾燥して溶剤がなくなると、シート状に保持することができず、熱圧着作業ができなかった。
 そのため、比較例11,12については物性の評価ができなかった。
As can be understood from the comparison between the results of Examples 1 to 10 and Comparative Examples 1 to 10, the so-called “fluororesin material” capable of melt extrusion excluding PTFE and PVF shown in the examples of the present invention is compared. It can be seen that more filler can be added than the silicone rubber of the example, and if the same amount of filler is added, the bending property of the example is better than that of the comparative example.
Moreover, when the filler which surface-treated like Example 3 and 4 is used, a bending characteristic is improved rather than Example 1 and 2 which is not surface-treated. This indicates that the surface-treated filler has improved affinity with the fluororesin material.
In Comparative Example 11, an attempt was made to knead the filler directly into PTFE, but it could not be kneaded. Further, Comparative Example 12 was a 56% PTFE dispersion solution corresponding to the 56% FEP dispersion solution of Example 1. It could not be held in a shape, and thermocompression work could not be performed.
Therefore, physical properties of Comparative Examples 11 and 12 could not be evaluated.
 以上、本発明の実施例を説明したが、具体的な構成はこれに限定されず、さらに本発明の要旨を逸脱しない範囲での変更は、適宜可能であることが理解されるべきである。 Although the embodiments of the present invention have been described above, it should be understood that the specific configuration is not limited to this, and that modifications within the scope of the present invention can be made as appropriate.
本発明の熱伝導性組成物及びこれを加工した熱伝導性シートは、製造が容易であり、熱伝導率の改善は無論のこと、耐熱性が良好で、その上、柔軟性に富み薄いシートを得たいような場合に、その利用可能性が極めて高くなる。 The heat conductive composition of the present invention and the heat conductive sheet processed from the heat conductive composition are easy to manufacture, and of course the improvement of the heat conductivity is excellent, the heat resistance is good, and the sheet is rich and flexible. When it is desired to obtain it, its availability becomes extremely high.
1    熱伝導性組成物
1A   熱伝導性シート
2    半導体製品
3    アルミ板
4、4A ヒートシンク
5    LED素子
6    金属基板
DESCRIPTION OF SYMBOLS 1 Thermal conductive composition 1A Thermal conductive sheet 2 Semiconductor product 3 Aluminum board 4, 4A Heat sink 5 LED element 6 Metal substrate

Claims (12)

  1.  溶融押し出し成形が可能なフッ素樹脂100質量部に、フィラー30ないし1500質量部を添加してなり、熱伝導率が0.5ないし400W/m・Kの範囲にある熱伝導性組成物。 A thermally conductive composition having a thermal conductivity in the range of 0.5 to 400 W / m · K, comprising 30 to 1500 parts by mass of filler added to 100 parts by mass of a fluororesin that can be melt-extruded.
  2.  前記溶融押し出し成形が可能なフッ素樹脂は、ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニール(PVF)を除く、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレンコポリマー(ECTFE)、テトラフルオロエチレン-パーフルオロジイオキソールコポリマー(TFE/PDD)のこれらから1種あるいは2種以上の混合物である請求項1に記載の熱伝導性組成物。 The fluoro-resin that can be melt-extruded is perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene, excluding polytetrafluoroethylene (PTFE) and polyvinyl fluoride (PVF). Copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), one or more of these The thermally conductive composition according to claim 1, which is a mixture.
  3.  フッ素樹脂材料は、そのフッ素樹脂材料濃度が10ないし90質量%の範囲であるディスパージョン溶液である請求項1に記載の熱伝導性組成物。 The thermally conductive composition according to claim 1, wherein the fluororesin material is a dispersion solution having a fluororesin material concentration in the range of 10 to 90% by mass.
  4.  フッ素樹脂材料に、これらのフッ素樹脂材料以外の耐熱性のある高分子材料を混合した混合物である請求項1に記載の熱伝導性組成物。 The heat conductive composition according to claim 1, which is a mixture obtained by mixing a fluororesin material with a heat-resistant polymer material other than these fluororesin materials.
  5.  フィラーの粒子形状は、球状あるいは繊維状であり、その粒径は0.02ないし200μmであり、かつ、繊維長さは、0.01ないし1500μmの範囲にある請求項1に記載の熱伝導性組成物。 2. The thermal conductivity according to claim 1, wherein a particle shape of the filler is spherical or fibrous, a particle diameter thereof is 0.02 to 200 μm, and a fiber length is in a range of 0.01 to 1500 μm. Composition.
  6.  フィラーが、電気伝導性フィラー、耐熱性フィラー、あるいは、機械的強度を高めるフィラーである請求項1に記載の熱伝導性組成物。 The heat conductive composition according to claim 1, wherein the filler is an electrically conductive filler, a heat resistant filler, or a filler that increases mechanical strength.
  7.  電気伝導性および耐熱性を高めるフィラーが、金属粉、カーボン、グラファイトの中の何れかである請求項5に記載の熱伝導性組成物。 6. The thermally conductive composition according to claim 5, wherein the filler for enhancing electrical conductivity and heat resistance is any one of metal powder, carbon, and graphite.
  8.  機械的強度を高めるフィラーが、耐熱温度は200℃以上、厚みは2ないし100μmの織布、不織布、耐熱フィルムの何れかである請求項5に記載の熱伝導性組成物。 The heat conductive composition according to claim 5, wherein the filler for increasing the mechanical strength is any one of a woven fabric, a nonwoven fabric, and a heat resistant film having a heat resistant temperature of 200 ° C or higher and a thickness of 2 to 100 µm.
  9.  フィラーが、表面処理したフィラーである請求項1に記載の熱伝導性組成物。 The heat conductive composition according to claim 1, wherein the filler is a surface-treated filler.
  10.  フィラーの表面処理剤が、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、フッ素系カップリング剤、高級アルコール、含フッ素高級アルコール、高級脂肪酸、含フッ素高級脂肪酸、含フッ素安息香酸、含フッ素安息香酸誘導体、ポリジメチルシロキサンの何れかである請求項5に記載の熱伝導性組成物。 The filler surface treatment agent is a silane coupling agent, titanium coupling agent, aluminum coupling agent, fluorine coupling agent, higher alcohol, fluorine-containing higher alcohol, higher fatty acid, fluorine-containing higher fatty acid, fluorine-containing benzoic acid, The heat conductive composition according to claim 5, which is either a fluorine benzoic acid derivative or polydimethylsiloxane.
  11.  フィラーの表面処理剤の濃度は、フィラーに対して0.1ないし5質量%の範囲にある請求項9に記載の熱伝導性組成物。 10. The thermally conductive composition according to claim 9, wherein the concentration of the surface treatment agent in the filler is in the range of 0.1 to 5% by mass relative to the filler.
  12. 請求項1に記載の熱伝導性組成物をシート状に加工してなる熱伝導性シート。 The heat conductive sheet formed by processing the heat conductive composition of Claim 1 in a sheet form.
PCT/JP2012/068555 2011-07-25 2012-07-23 Thermally conductive composition and thermally conductive sheet formed by processing same WO2013015233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-162382 2011-07-25
JP2011162382A JP2013023664A (en) 2011-07-25 2011-07-25 Thermal conductive composition and thermal conductive sheet obtained by treating the same

Publications (1)

Publication Number Publication Date
WO2013015233A1 true WO2013015233A1 (en) 2013-01-31

Family

ID=47601080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068555 WO2013015233A1 (en) 2011-07-25 2012-07-23 Thermally conductive composition and thermally conductive sheet formed by processing same

Country Status (2)

Country Link
JP (1) JP2013023664A (en)
WO (1) WO2013015233A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641276A (en) * 2017-07-17 2018-01-30 常州中英科技股份有限公司 One kind is without fibre-reinforced fluorine resin base copper-clad plate and preparation method thereof
JPWO2017187940A1 (en) * 2016-04-28 2019-02-28 積水ポリマテック株式会社 Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
CN110606761A (en) * 2019-11-01 2019-12-24 中国电子科技集团公司第四十六研究所 High-heat-stability and high-size-stability microwave composite dielectric substrate and preparation method thereof
CN111320801A (en) * 2020-04-24 2020-06-23 吉林美高管道系统有限公司 Crosslinked polyethylene heat-conducting pipe and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168783A (en) 2014-03-07 2015-09-28 三井・デュポンフロロケミカル株式会社 Highly thermal conductive resin composition
JP6453057B2 (en) * 2014-11-20 2019-01-16 三井・ケマーズ フロロプロダクツ株式会社 Heat-meltable fluororesin composition excellent in thermal conductivity, molded article produced from the composition, and method for producing the same
JP7076099B2 (en) * 2018-06-14 2022-05-27 東洋紡株式会社 Thermally conductive insulating elastomer composition, thermally conductive insulating elastomer molded product and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509253A (en) * 1995-07-12 1999-08-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Improved fluoropolymer adhesion
JP2001040102A (en) * 1999-07-27 2001-02-13 Nitto Denko Corp Tubular article
JP2002161244A (en) * 2000-11-27 2002-06-04 Jsr Corp Thermally conductive film, liquid for forming the same, substrate provided with thermally conductive film, method for producing the substrate, heat radiating plate and heat radiating structure
JP2005272814A (en) * 2004-02-23 2005-10-06 Nippon Shokubai Co Ltd Thermally conductive composition and thermally conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11509253A (en) * 1995-07-12 1999-08-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Improved fluoropolymer adhesion
JP2001040102A (en) * 1999-07-27 2001-02-13 Nitto Denko Corp Tubular article
JP2002161244A (en) * 2000-11-27 2002-06-04 Jsr Corp Thermally conductive film, liquid for forming the same, substrate provided with thermally conductive film, method for producing the substrate, heat radiating plate and heat radiating structure
JP2005272814A (en) * 2004-02-23 2005-10-06 Nippon Shokubai Co Ltd Thermally conductive composition and thermally conductive film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017187940A1 (en) * 2016-04-28 2019-02-28 積水ポリマテック株式会社 Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
EP3428221A4 (en) * 2016-04-28 2019-11-27 Sekisui Polymatech Co., Ltd. Thermally-conductive composition, thermally-conductive sheet, and method for producing thermally-conductive sheet
JP2020002368A (en) * 2016-04-28 2020-01-09 積水ポリマテック株式会社 Thermally conductive sheet
US11084965B2 (en) 2016-04-28 2021-08-10 Sekisui Polymatech Co., Ltd. Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
US11702579B2 (en) 2016-04-28 2023-07-18 Sekisui Polymatech Co., Ltd. Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
CN107641276A (en) * 2017-07-17 2018-01-30 常州中英科技股份有限公司 One kind is without fibre-reinforced fluorine resin base copper-clad plate and preparation method thereof
CN110606761A (en) * 2019-11-01 2019-12-24 中国电子科技集团公司第四十六研究所 High-heat-stability and high-size-stability microwave composite dielectric substrate and preparation method thereof
CN111320801A (en) * 2020-04-24 2020-06-23 吉林美高管道系统有限公司 Crosslinked polyethylene heat-conducting pipe and preparation method thereof
CN111320801B (en) * 2020-04-24 2022-09-13 吉林美高管道系统有限公司 Crosslinked polyethylene heat-conducting pipe and preparation method thereof

Also Published As

Publication number Publication date
JP2013023664A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
WO2013015233A1 (en) Thermally conductive composition and thermally conductive sheet formed by processing same
JP5395155B2 (en) Electrically insulating thermally conductive composition and electronic device
CN1893804A (en) Heat-radiating sheet and heat-radiating structure
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
JP4572056B2 (en) Thermally conductive silicone rubber composite sheet
TWI674315B (en) Method for producing thermally conductive resin molded article
JP6662458B2 (en) Thermal conductive silicone rubber composite sheet
JP2017038086A (en) Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member and semiconductor device
TW201536906A (en) Heat conductive composite sheet
JPH11209618A (en) Heat-conductive silicone rubber composition
JP3718350B2 (en) Thermally conductive and electrically insulating silicone rubber composition and silicone gel composition
TW201412967A (en) Thermal conductive sheet and electronic machines
JP2017208505A (en) Structure, and electronic component and electronic apparatus including the structure
TW201719104A (en) Heatsink
JP3216215U (en) Multi-layer composite heat conduction structure
TW201940596A (en) Silicone composition
JP6218594B2 (en) Sheet heater
WO2014104292A1 (en) Fluororesin sheet and method for producing same
JP2017092322A (en) High thermal conductivity, high insulation heat dissipation sheet
JP2002003717A (en) Heat conductive sheet
CN105086119B (en) Heat-radiating resin composition, and member and electronic device using same
CN117355561A (en) Heat conductive film and heat dissipation structure using same
JP2021155737A (en) Resin composition, thermally conductive resin sheet, laminated heat radiation sheet, heat dissipating circuit board and power semiconductor device
JP2009196126A (en) Resin-coated aluminum material excellent in machinability, electric conductivity, and radiation property
JP3825035B2 (en) Thermally conductive molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817448

Country of ref document: EP

Kind code of ref document: A1