JP2002003717A - Heat conductive sheet - Google Patents
Heat conductive sheetInfo
- Publication number
- JP2002003717A JP2002003717A JP2000186193A JP2000186193A JP2002003717A JP 2002003717 A JP2002003717 A JP 2002003717A JP 2000186193 A JP2000186193 A JP 2000186193A JP 2000186193 A JP2000186193 A JP 2000186193A JP 2002003717 A JP2002003717 A JP 2002003717A
- Authority
- JP
- Japan
- Prior art keywords
- heat conductive
- volume
- conductive sheet
- graphitized carbon
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高い熱伝導性と電
気絶縁性が要求される熱伝導性シートに関する。さらに
詳しくは、電気製品に使用される各種半導体素子や電
源、光源、部品などから発生する熱を効果的に放散させ
る高い熱伝導性と電気絶縁性を兼ね備えた熱伝導性シー
トに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive sheet which requires high heat conductivity and electrical insulation. More specifically, the present invention relates to a heat conductive sheet having both high heat conductivity and electric insulation for effectively dissipating heat generated from various semiconductor elements, power supplies, light sources, components, and the like used in electric products.
【0002】[0002]
【従来の技術】従来より、発熱する電子部品と放熱させ
る部材とを接合させる目的でシリコーンゴム系の柔軟な
熱伝導性シートが使用されている。これらの熱伝導性シ
ートには、熱伝導性を高めるために、銀、銅、金、アル
ミニウム、ニッケルなどの熱伝導率の大きい金属や合
金、酸化アルミニウム、酸化マグネシウム、酸化ケイ
素、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化
ケイ素などのセラミックス製の粉末状や繊維状の熱伝導
率が大きい充填剤が充填されている。2. Description of the Related Art Conventionally, a flexible silicone rubber-based heat conductive sheet has been used for the purpose of joining a heat-generating electronic component to a heat-dissipating member. These heat conductive sheets include metals, alloys such as silver, copper, gold, aluminum, and nickel having a high heat conductivity, aluminum oxide, magnesium oxide, silicon oxide, boron nitride, and nitride to increase the heat conductivity. Fillers made of ceramics such as aluminum, silicon nitride, silicon carbide, and the like, which have a large thermal conductivity and are in a powdery or fibrous form are filled.
【0003】また、熱伝導率が大きい充填剤として炭素
繊維をシリコーンゴム等に配合した熱伝導性シートが公
知である。例えば、特開平9−283955号公報に、
特定の平均アスペクト比の黒鉛質炭素繊維をシリコーン
ゴムなどのマトリックス中に分散した熱伝導性シートが
提案されている。Further, a heat conductive sheet in which carbon fiber is blended with silicone rubber or the like as a filler having a high heat conductivity is known. For example, in Japanese Patent Application Laid-Open No. 9-283955,
A thermally conductive sheet in which a graphitic carbon fiber having a specific average aspect ratio is dispersed in a matrix such as silicone rubber has been proposed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の炭素繊維を分散した熱伝導性シートは導電性
があるため、電気絶縁性を要求される用途には使用でき
なかった。この問題点を解決するものとして、特許登録
第2695563号公報に、電気絶縁性を有する皮膜で
被覆された炭素繊維を、その皮膜に対して相溶性を有す
る合成樹脂に均一分散することによって電気絶縁性を有
する伝熱用材料が提唱されている。しかし、この方法で
は、炭素繊維を電気絶縁性被膜で被覆することが容易で
なく、かつ電気絶縁性被膜の組成、製造方法、電気的性
質等に関しては詳細が不明であり、十分な電気絶縁性と
熱伝導性の両方を要求される用途には利用することがで
きなかった。However, such a conventional heat conductive sheet in which carbon fibers are dispersed has conductivity and cannot be used for applications requiring electrical insulation. To solve this problem, Japanese Patent No. 2695563 discloses a method of electrically insulating carbon fibers coated with an electrically insulating film by uniformly dispersing the carbon fibers in a synthetic resin having compatibility with the film. A heat transfer material having properties has been proposed. However, in this method, it is not easy to coat the carbon fiber with an electric insulating film, and details of the composition, manufacturing method, electric properties, etc. of the electric insulating film are unknown, and sufficient electric insulating properties are not obtained. It cannot be used for applications requiring both thermal conductivity and thermal conductivity.
【0005】[0005]
【課題を解決するための手段】本発明は、上述の課題を
解決する目的で、電気製品に使用される半導体素子や電
源、光源などの部品から発生する熱を効果的に放散させ
る高い熱伝導性と電気絶縁性を兼ね備えた熱伝導性シー
トを提供するものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has a high heat conduction for effectively dissipating heat generated from components such as semiconductor elements, power supplies, and light sources used in electric appliances. An object of the present invention is to provide a heat conductive sheet having both properties and electrical insulation.
【0006】すなわち、シリコーンゴムからなるシート
中に、黒鉛化炭素繊維を濃度が5〜40体積%、電気絶
縁性熱伝導充填剤を濃度が30〜50体積%で含有させ
てなる、体積抵抗率が106Ω・cm以上の電気絶縁性
を有する熱伝導性シートである。さらに、黒鉛化炭素繊
維が、直径5〜20μm、長さ20〜800μm、繊維
長さ方向の熱伝導率200W/m・K以上であることを
特徴とする熱伝導性シートである。さらに、シートが、
アスカーC硬度50以下であることを特徴とする熱伝導
性シートである。That is, a sheet made of silicone rubber contains a graphitized carbon fiber at a concentration of 5 to 40% by volume and an electrically insulating heat conductive filler at a concentration of 30 to 50% by volume. Is a heat conductive sheet having an electrical insulation of 10 6 Ω · cm or more. Further, the heat conductive sheet is characterized in that the graphitized carbon fiber has a diameter of 5 to 20 μm, a length of 20 to 800 μm, and a thermal conductivity of 200 W / m · K or more in the fiber length direction. In addition, the sheet
A heat conductive sheet having an Asker C hardness of 50 or less.
【0007】本発明のシリコーンゴムに含有させる黒鉛
化炭素繊維の濃度は、5〜40体積%が好ましい。5体
積%よりも少ないと、得られる熱伝導性シートの熱伝導
率が低く、放熱特性が劣り、40体積%を越えると配合
組成物の粘度が増大して繊維を均一に分散させることが
困難になり、かつ、気泡の混入が避けられず好ましくな
い。好ましい黒鉛化炭素繊維の濃度は、5〜30体積%
である。[0007] The concentration of the graphitized carbon fibers contained in the silicone rubber of the present invention is preferably 5 to 40% by volume. If the amount is less than 5% by volume, the heat conductivity of the resulting heat conductive sheet is low, and the heat radiation property is inferior. If the amount exceeds 40% by volume, the viscosity of the compounded composition increases and it is difficult to uniformly disperse the fibers. And mixing of air bubbles is unavoidable, which is not preferable. A preferable concentration of the graphitized carbon fiber is 5 to 30% by volume.
It is.
【0008】本発明のシリコーンゴムに含有させる電気
絶縁性熱伝導充填剤の濃度は、30〜50体積%が好ま
しい。30体積%よりも少ないと体積抵抗率が小さく、
電気絶縁性の効果が低くなり、60体積%を越えると、
配合組成物の粘度が増大し、黒鉛化炭素繊維の充填が困
難になり、熱伝導率の低下が起き、放熱特性が劣ってし
まう。[0008] The concentration of the electrically insulating heat conductive filler contained in the silicone rubber of the present invention is preferably 30 to 50% by volume. If less than 30% by volume, the volume resistivity is small,
When the effect of electrical insulation is reduced and exceeds 60% by volume,
The viscosity of the blended composition increases, making it difficult to fill the graphitized carbon fibers, lowering the thermal conductivity, and deteriorating the heat radiation characteristics.
【0009】本発明は、熱伝導性シートが電気絶縁性を
有することが重要である。この電気絶縁性とは、体積抵
抗率が106Ω・cm以上であることを意味する。体積
抵抗率が106Ω・cm未満であると、電極やリード、
電気配線などがショートするなどの電気的なトラブルが
発生して電子機器が作動しなくなるので好ましくない。In the present invention, it is important that the heat conductive sheet has electrical insulation. This electrical insulation means that the volume resistivity is 10 6 Ω · cm or more. If the volume resistivity is less than 10 6 Ω · cm, electrodes and leads,
It is not preferable because the electronic device stops operating due to an electrical trouble such as a short-circuit of the electric wiring.
【0010】[0010]
【発明の実施の形態】以下に、本発明をさらに詳細に説
明する。本発明は、シリコーンゴムからなるシート中
に、黒鉛化炭素繊維を濃度が5〜40体積%、電気絶縁
性熱伝導充填剤を濃度が30〜50体積%で含有させて
なる、体積抵抗率が106Ω・cm以上の電気絶縁性を
有する熱伝導性シートである。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention provides a sheet made of silicone rubber containing a graphitized carbon fiber at a concentration of 5 to 40% by volume and an electrically insulating heat conductive filler at a concentration of 30 to 50% by volume. It is a heat conductive sheet having an electrical insulating property of 10 6 Ω · cm or more.
【0011】本発明の黒鉛化炭素繊維は、PAN系より
もピッチ系やメソフェーズピッチ系を主材料とし、溶融
紡糸、不溶化、炭化などの処理工程後に、2000〜3
000℃あるいは3000℃を越える高温で熱処理し、
黒鉛構造の発達したピッチ系炭素繊維とした。これは繊
維長さ方向の熱伝導率が大きくて好ましい。さらに気相
成長法によって得られるピッチ系の黒鉛化炭素繊維も好
適である。本発明の黒鉛化炭素繊維の繊維長さ方向の熱
伝導率は200W/m・K以上が好ましく、さらに好ま
しくは400W/m・K以上、さらには1000W/m・
K以上が好ましい。The graphitized carbon fiber of the present invention has a pitch-based or mesophase-pitch-based material as a main material rather than a PAN-based material.
Heat treatment at a high temperature exceeding 000 ° C or 3000 ° C,
A pitch-based carbon fiber having a developed graphite structure was used. This is preferable because the thermal conductivity in the fiber length direction is large. Further, pitch-based graphitized carbon fibers obtained by a vapor growth method are also suitable. The thermal conductivity in the fiber length direction of the graphitized carbon fiber of the present invention is preferably 200 W / m · K or more, more preferably 400 W / m · K or more, and even more preferably 1000 W / m · K.
K or more is preferable.
【0012】また、本発明の黒鉛化炭素繊維の形状につ
いては、短繊維、長繊維、織布、不織布、フェルト状、
マット状、紙状など特定するものではなくいずれの形状
の黒鉛化炭素繊維でも適応可能である。短繊維形状の場
合、黒鉛化炭素繊維の直径は、5〜20μm、さらに好
ましくは7〜14μm、長さは20〜800μm、さら
に好ましくは20〜500μmの範囲がシリコーンゴム
へ容易に充填することができ、得られる熱伝導性シート
の熱伝導率が大きくなるので好ましい。The graphitized carbon fibers of the present invention may be in the form of short fibers, long fibers, woven fabrics, non-woven fabrics, felts, or the like.
The shape is not limited to a mat shape or a paper shape, and any shape of graphitized carbon fiber is applicable. In the case of the short fiber shape, the diameter of the graphitized carbon fiber is 5 to 20 μm, more preferably 7 to 14 μm, and the length is 20 to 800 μm, more preferably 20 to 500 μm. It is preferable because the thermal conductivity of the resulting thermally conductive sheet is increased.
【0013】平均直径が5μmよりも小さい場合や、平
均長さが800μmよりも長い場合は、シリコーンゴム
に高濃度で配合することが困難になる。一方、黒鉛化炭
素の平均粒径が20μmを越えると、繊維生産性が低下
するので好ましくない。平均長さが20μmよりも短い
とかさ比重が小さくなり、製造工程中の取り扱い性や作
業性に問題が生じることがあるので好ましくない。When the average diameter is smaller than 5 μm or when the average length is longer than 800 μm, it becomes difficult to mix the silicone rubber with the silicone rubber at a high concentration. On the other hand, if the average particle size of the graphitized carbon exceeds 20 μm, the fiber productivity is undesirably reduced. If the average length is shorter than 20 μm, the bulk specific gravity becomes small, which may cause problems in handling and workability during the manufacturing process, which is not preferable.
【0014】本発明の黒鉛化炭素繊維表面は、あらかじ
め電解酸化などによる公知の酸化処理を施しておいても
良い。また、黒鉛化炭素繊維表面に金属やセラミックス
などを無電解メッキ法、電解メッキ法、真空蒸着やスパ
ッタリングなどによる物理的蒸着法、化学的蒸着法、塗
装、浸漬、微細粒子を機械的に固着させるメカニケミカ
ル法などの方法によって被覆することもできる。The surface of the graphitized carbon fiber of the present invention may be previously subjected to a known oxidation treatment such as electrolytic oxidation. In addition, electroless plating, electrolytic plating, physical vapor deposition by vacuum vapor deposition, sputtering, etc., chemical vapor deposition, painting, dipping, and mechanically fixing fine particles on the surface of graphitized carbon fiber The coating may be performed by a method such as a mechanical chemical method.
【0015】本発明の電気絶縁性熱伝導充填剤として
は、熱伝導率が大きい酸化アルミニウム、窒化ホウ素、
窒化アルミニウム、酸化亜鉛、炭化ケイ素、石英、水酸
化アルミニウムなどの金属酸化物、金属窒化物、金属炭
化物、金属水酸化物で、球状、紛状、繊維状、針状、鱗
片状、ウィスカー状などが挙げられ、充填率向上、粘
度、硬度の調整を目的とし、1種、または2種以上の選
択することができる。As the electrically insulating heat conductive filler of the present invention, aluminum oxide, boron nitride,
Metal oxides such as aluminum nitride, zinc oxide, silicon carbide, quartz and aluminum hydroxide, metal nitrides, metal carbides, metal hydroxides, spherical, powdery, fibrous, needle-like, scale-like, whisker-like, etc. One or two or more types can be selected for the purpose of improving the filling rate, adjusting the viscosity and the hardness.
【0016】本発明の熱伝導性シートの黒鉛化炭素繊維
および電気絶縁性熱伝導充填剤を充填するマトリックス
となるシリコーンゴムは、公知のオルガノポリシロキサ
ンを硬化することによって得られる。硬化方法について
は限定するものではなく、ビニル基を含むオルガノポリ
シロキサンとケイ素原子にハイドロジェン基を含むオル
ガノポリシロキサンと白金系触媒からなる付加反応タイ
プ、有機過酸化物によるラジカル反応タイプ、縮合反応
タイプ、紫外線や電子線による硬化タイプなどが挙げら
れる。なかでも、黒鉛化炭素繊維、電気絶縁性熱伝導充
填剤を充填しやすい液状の付加反応タイプのポリオルガ
ノシロキサンを用いることが好ましい。また、公知の補
強用シリカや難燃剤、着色剤、耐熱性向上剤、接着助
剤、粘着剤、オイル、可塑剤などを適宜配合することが
できる。The silicone rubber serving as a matrix for filling the graphitized carbon fibers and the electrically insulating heat conductive filler of the heat conductive sheet of the present invention can be obtained by curing a known organopolysiloxane. There is no limitation on the curing method, and an addition reaction type comprising an organopolysiloxane containing a vinyl group, an organopolysiloxane containing a hydrogen group on a silicon atom and a platinum catalyst, a radical reaction type using an organic peroxide, and a condensation reaction And a curing type using ultraviolet rays or electron beams. Among them, it is preferable to use a graphitized carbon fiber and a liquid addition reaction type polyorganosiloxane that is easy to fill with an electrically insulating heat conductive filler. In addition, known reinforcing silica, a flame retardant, a colorant, a heat resistance improver, an adhesion aid, a pressure-sensitive adhesive, an oil, a plasticizer, and the like can be appropriately compounded.
【0017】さらに、黒鉛化炭素繊維および電気絶縁性
熱伝導充填剤の表面処理を目的として、公知のカップリ
ング剤やサイジング剤で処理することによってマトリク
スのシリコーンゴムとの濡れ性や充填性を向上させたり
シリコーンゴムとの剥離強度を改善することが可能であ
る。また、組成物の粘度を低下させるためには、揮発し
やすい有機溶剤や反応性可塑剤を添加すると効果的であ
る。Further, for the purpose of surface treatment of the graphitized carbon fiber and the electrically insulating heat conductive filler, the matrix is treated with a known coupling agent or sizing agent to improve the wettability of the matrix with the silicone rubber and the filling property. It is possible to improve the peel strength with silicone rubber. Further, in order to lower the viscosity of the composition, it is effective to add an organic solvent or a reactive plasticizer which is easily volatilized.
【0018】硬化させた熱伝導性シートの硬度について
は、使用する用途に応じて決定されるが、使用時の応力
緩和性と追従性に関しては低硬度ほど有利である。具体
的な硬度としては、タイプA硬度で90以下、好ましく
は60以下の低硬度品が好適である。さらに図1のよう
に凹凸のある複数の半導体パッケージ5などの発熱する
電子部品と筐体6間に介在させて使用する際には、アス
カーC硬度が50以下のゲル状低硬度品が応力緩和性お
よび追従性の点から望ましい。本発明の熱伝導性シート
は、未硬化のシリコーンゴム中に黒鉛化炭素繊維および
電気絶縁性熱伝導充填剤を混入させ、その後シート状に
硬化させることにより得られる。The hardness of the cured thermally conductive sheet is determined according to the intended use, but the lower the hardness, the better the stress relaxation and follow-up properties during use. As a specific hardness, a low hardness product having a type A hardness of 90 or less, preferably 60 or less is suitable. Further, as shown in FIG. 1, when used while being interposed between a housing 6 and a heat-generating electronic component such as a plurality of uneven semiconductor packages 5, a gel-like low-hardness product having an Asker C hardness of 50 or less reduces stress. It is desirable from the viewpoints of responsiveness and followability. The heat conductive sheet of the present invention is obtained by mixing graphitized carbon fibers and an electrically insulating heat conductive filler into uncured silicone rubber, and thereafter curing the sheet into a sheet.
【0019】以下、実施例を挙げて説明する。なお本発
明において、体積抵抗率はJIS−K6911に準拠し
て測定し、アスカーC硬度はSRIS0101(日本ゴ
ム規格協会)に準拠してアスカーC硬度計にて測定し、
またタイプA硬度はJIS−K6253に準拠してタイ
プAデュロメータにて測定した。熱伝導率はレーザーフ
ラッシュ法によって測定した。Hereinafter, the present invention will be described with reference to examples. In the present invention, the volume resistivity is measured according to JIS-K6911, and the Asker C hardness is measured with an Asker C hardness meter according to SRIS0101 (Japan Rubber Standards Association).
The type A hardness was measured with a type A durometer according to JIS-K6253. Thermal conductivity was measured by the laser flash method.
【0020】[0020]
【実施例1】平均直径8μm、平均長さが80μm、繊
維方向の熱伝導率が1000W/m・Kの黒鉛化炭素繊
維5体積%、電気絶縁性熱伝導充填剤としてシランカッ
プリング剤で処理したアルミナ(昭和電工株式会社製)
を50体積%、および、付加型の液状シリコーンゴム
(東レ・ダウコーニングシリコーン株式会社製)45体
積%からなる組成物を混合分散し真空脱泡した組成物を
加熱プレス成形して厚み1mmの熱伝導性シートを作製
した。Example 1 5% by volume of graphitized carbon fiber having an average diameter of 8 μm, an average length of 80 μm and a thermal conductivity in the fiber direction of 1000 W / m · K, treated with a silane coupling agent as an electrically insulating heat conductive filler Alumina (Showa Denko KK)
Of 50% by volume and 45% by volume of an additional type liquid silicone rubber (manufactured by Dow Corning Toray Silicone Co., Ltd.). A conductive sheet was produced.
【0021】[0021]
【実施例2】実施例1同様の黒鉛化炭素繊維を40体積
%、実施例1同様の電気絶縁性熱伝導充填剤を30体積
%、および、実施例1同様の液状シリコーンゴム30%
からなる組成物を混合分散し、実施例1同様に厚み1m
mの熱伝導性シートを作製した。Example 2 40% by volume of the same graphitized carbon fiber as in Example 1, 30% by volume of the same electrically insulating heat conductive filler as in Example 1, and 30% of liquid silicone rubber as in Example 1
Was mixed and dispersed, and the thickness was 1 m as in Example 1.
m of a thermally conductive sheet was prepared.
【0022】[0022]
【実施例3】平均直径14μm、平均長さが450μ
m、繊維方向熱伝導率が1400W/m・Kの黒鉛化炭
素繊維5体積%、実施例1同様の電気絶縁性熱伝導充填
剤を50体積%、および、実施例1同様の液状シリコー
ンゴム45体積%からなる組成物を混合分散し、実施例
1同様に厚み1mmの熱伝導性シートを作製した。Example 3 Average diameter 14 μm, average length 450 μm
m, 5% by volume of graphitized carbon fiber having a fiber direction thermal conductivity of 1400 W / m · K, 50% by volume of the electrically insulating heat conductive filler as in Example 1, and liquid silicone rubber 45 as in Example 1. A 1% thick thermally conductive sheet was produced in the same manner as in Example 1 by mixing and dispersing the composition consisting of volume%.
【0023】[0023]
【実施例4】実施例3同様の黒鉛化炭素繊維を30体積
%、実施例1同様の電気絶縁性熱伝導充填剤を30体積
%、実施例1同様の液状シリコーンゴム30体積%から
なる組成物を混合分散し、実施例1同様に厚み1mmの
熱伝導性シートを作製した。EXAMPLE 4 A composition comprising 30% by volume of the same graphitized carbon fiber as in Example 3, 30% by volume of the electrically insulating heat conductive filler as in Example 1, and 30% by volume of liquid silicone rubber as in Example 1. The materials were mixed and dispersed to produce a heat conductive sheet having a thickness of 1 mm in the same manner as in Example 1.
【0024】[0024]
【実施例5】実施例3同様の黒鉛化炭素繊維を40体積
%、実施例1同様の電気絶縁性熱伝導充填剤を30体積
%、実施例1同様の液状シリコーンゴム30体積%から
なる組成物を混合分散し、実施例1同様に厚み1mmの
熱伝導性シートを作製した。EXAMPLE 5 A composition comprising 40% by volume of the same graphitized carbon fiber as in Example 3, 30% by volume of the electrically insulating heat conductive filler as in Example 1, and 30% by volume of liquid silicone rubber as in Example 1. The materials were mixed and dispersed to produce a heat conductive sheet having a thickness of 1 mm in the same manner as in Example 1.
【0025】[0025]
【実施例6】実施例3同様の黒鉛化炭素繊維を15体積
%、実施例1同様の電気絶縁性熱伝導充填剤を45体積
%、実施例1同様の液状シリコーンゴム40体積%から
なる組成物を混合分散し、実施例1同様に厚み1mmの
熱伝導性シートを作製した。Example 6 A composition comprising 15% by volume of the same graphitized carbon fiber as in Example 3, 45% by volume of the electrically insulating heat conductive filler as in Example 1, and 40% by volume of liquid silicone rubber as in Example 1. The materials were mixed and dispersed to produce a heat conductive sheet having a thickness of 1 mm in the same manner as in Example 1.
【0026】[0026]
【実施例7】平均直径11μm、平均長さが120μ
m、繊維方向熱伝導率が400W/m・Kの黒鉛化炭素
繊維15体積%、実施例1同様の電気絶縁性熱伝導充填
剤を45体積%、および実施例1同様の液状シリコーン
ゴム40体積%からなる組成物を混合分散し、実施例1
同様に厚み1mmの熱伝導性シートを作製した。Embodiment 7 The average diameter is 11 μm and the average length is 120 μm
m, 15% by volume of graphitized carbon fiber having a thermal conductivity in the fiber direction of 400 W / m · K, 45% by volume of the same electrically insulating heat conductive filler as in Example 1, and 40% by volume of liquid silicone rubber as in Example 1. % Was mixed and dispersed in Example 1.
Similarly, a heat conductive sheet having a thickness of 1 mm was produced.
【0027】[0027]
【実施例8】平均直径12μm、平均長さが200μ
m、繊維方向熱伝導率が700W/m・Kの黒鉛化炭素
繊維15体積%、実施例1同様の電気絶縁性熱伝導充填
剤を45体積%、および実施例1同様の液状シリコーン
ゴム40体積%からなる組成物を混合分散し、実施例1
同様に厚み1mmの熱伝導性シートを作製した。Embodiment 8 The average diameter is 12 μm and the average length is 200 μm.
m, 15% by volume of graphitized carbon fiber having a thermal conductivity in the fiber direction of 700 W / m · K, 45% by volume of the electrically insulating heat conductive filler as in Example 1, and 40% by volume of liquid silicone rubber as in Example 1. % Was mixed and dispersed in Example 1.
Similarly, a heat conductive sheet having a thickness of 1 mm was produced.
【0028】[0028]
【実施例9】平均直径12μm、平均長さが200μ
m、繊維方向熱伝導率が700W/m・Kの黒鉛化炭素
繊維15体積%、電気絶縁性熱伝導充填剤として窒化ホ
ウ素を30体積%、および実施例1同様の液状シリコー
ンゴム55体積%からなる組成物を混合分散し、実施例
1同様に厚み1mmの熱伝導性シートを作製した。Embodiment 9 The average diameter is 12 μm and the average length is 200 μm.
m, 15% by volume of graphitized carbon fiber having a thermal conductivity in the fiber direction of 700 W / m · K, 30% by volume of boron nitride as an electrically insulating heat conductive filler, and 55% by volume of liquid silicone rubber as in Example 1. The resulting composition was mixed and dispersed to produce a heat conductive sheet having a thickness of 1 mm in the same manner as in Example 1.
【0029】[0029]
【実施例10】平均直径12μm、平均長さが200μ
m、繊維方向熱伝導率が700W/m・Kの黒鉛化炭素
繊維15体積%、電気絶縁性熱伝導充填剤として窒化ア
ルミニウムを30体積%、および実施例1同様の液状シ
リコーンゴム55体積%からなる組成物を混合分散し、
実施例1同様に厚み1mmの熱伝導性シートを作製し
た。Embodiment 10 The average diameter is 12 μm and the average length is 200 μm.
m, 15% by volume of graphitized carbon fiber having a thermal conductivity in the fiber direction of 700 W / m · K, 30% by volume of aluminum nitride as an electrically insulating heat conductive filler, and 55% by volume of liquid silicone rubber as in Example 1. Mixing and dispersing the composition
In the same manner as in Example 1, a heat conductive sheet having a thickness of 1 mm was produced.
【0030】[0030]
【比較例1】平均直径8μm、平均長さが80μm、繊
維方向熱伝導率が1000W/m・Kの黒鉛化炭素繊維
40体積%、および実施例1同様の液状シリコーンゴム
60体積%からなる組成物を混合分散し、実施例1同様
に厚み1mmの熱伝導性シートを作製した。Comparative Example 1 A composition comprising 40% by volume of graphitized carbon fiber having an average diameter of 8 μm, an average length of 80 μm, a thermal conductivity in the fiber direction of 1000 W / m · K, and 60% by volume of liquid silicone rubber as in Example 1. The materials were mixed and dispersed to produce a heat conductive sheet having a thickness of 1 mm in the same manner as in Example 1.
【0031】[0031]
【比較例2】電気絶縁性熱伝導充填剤としてシランカッ
プリング剤で処理したアルミナ(昭和電工株式会社製)
を50体積%、および、実施例1同様の液状シリコーン
ゴム50体積%からなる組成物を混合分散し、実施例1
同様に厚み1mmの熱伝導性シートを作製した。Comparative Example 2 Alumina (Showa Denko KK) treated with a silane coupling agent as an electrically insulating heat conductive filler
And a composition comprising 50% by volume of the same liquid silicone rubber as in Example 1 was mixed and dispersed.
Similarly, a heat conductive sheet having a thickness of 1 mm was produced.
【0032】[0032]
【比較例3】平均直径8μm、平均長さが80μm、繊
維方向の熱伝導率が1000W/m・Kの黒鉛化炭素繊
維2体積%、実施例1同様の電気絶縁性熱伝導充填剤を
50体積%、および、実施例1同様の液状シリコーンゴ
ム体積48%からなる組成物を混合分散し、実施例1同
様に厚み1mmの熱伝導性シートを作製した。Comparative Example 3 2% by volume of graphitized carbon fiber having an average diameter of 8 μm, an average length of 80 μm, and a thermal conductivity of 1000 W / m · K in the fiber direction, and 50 electrically insulating heat conductive fillers as in Example 1 were used. A composition consisting of a volume% and a liquid silicone rubber volume of 48% as in Example 1 was mixed and dispersed to produce a heat conductive sheet having a thickness of 1 mm as in Example 1.
【0033】[0033]
【比較例4】平均直径8μm、平均長さが80μm、繊
維方向の熱伝導率が1000W/m・Kの黒鉛化炭素繊
維45体積%、実施例1同様の電気絶縁性熱伝導充填剤
を20体積%、および、実施例1同様の液状シリコーン
ゴム体積35%からなる組成物を混合分散し、実施例1
同様に厚み1mmの熱伝導性シートを作製した。COMPARATIVE EXAMPLE 4 45 volume% of graphitized carbon fibers having an average diameter of 8 μm, an average length of 80 μm, and a thermal conductivity in the fiber direction of 1000 W / m · K. % Of a composition containing 35% by volume of a liquid silicone rubber similar to that of Example 1.
Similarly, a heat conductive sheet having a thickness of 1 mm was produced.
【0034】本発明の実施例1から実施例10および比
較例1から比較例4にて得られた熱伝導性シートの特性
評価結果を表1に表す。Table 1 shows the results of evaluating the properties of the heat conductive sheets obtained in Examples 1 to 10 and Comparative Examples 1 to 4 of the present invention.
【0035】[0035]
【表1】 [Table 1]
【0036】実施例1から実施例10までに関しては、
熱伝導率、硬度、体積抵抗率のいずれも良好となった。
しかしながら、比較例1の様に黒鉛化炭素繊維のみを充
填させた場合においては、電気絶縁性を示す体積抵抗率
が小さくなってしまい、プリント基板等における実装時
には電気導通による誤動作、ショート等の不具合を発生
する可能性がある。比較例2の様に電気絶縁性熱伝導充
填剤のみを充填させた場合においては、十分な熱伝導率
が得られない。実施例3に関しては、黒鉛化炭素繊維を
2体積%充填させているものの、十分な熱伝導率が得ら
れない。また、実施例4では、電気絶縁性熱伝導充填剤
が20体積%充填されているが、体積抵抗率が小さくな
ってしまう。With respect to the first to tenth embodiments,
All of the thermal conductivity, hardness, and volume resistivity were good.
However, when only the graphitized carbon fiber is filled as in Comparative Example 1, the volume resistivity showing the electrical insulation becomes small, and when mounted on a printed circuit board or the like, malfunctions due to electrical continuity, short-circuits, etc. May occur. When only the electrically insulating heat conductive filler is filled as in Comparative Example 2, a sufficient heat conductivity cannot be obtained. In Example 3, although the graphitized carbon fibers were filled at 2% by volume, sufficient thermal conductivity was not obtained. Further, in Example 4, the electric insulating heat conductive filler is filled at 20% by volume, but the volume resistivity is reduced.
【0037】特に、実施例1、実施例3、実施例6、実
施例7、実施例8については、硬度がいずれもアスカー
Cにて50以下を示しており、図1に示すようなプリン
ト基板2上に高さの異なる複数の半導体素子を実装した
パッケージ5と伝熱部材となる筐体6に介在させる場合
には、追従性に優れ、良好となる。In particular, in Examples 1, 3, 6, 7, and 8, the hardness of the Asker C is 50 or less, and the printed circuit board as shown in FIG. When interposed between a package 5 on which a plurality of semiconductor elements having different heights are mounted on a housing 2 and a housing 6 serving as a heat transfer member, the followability is excellent and good.
【0038】さらに、実施例6、実施例7に関しては繊
維長さ方向の熱伝導率が大きい黒鉛化炭素繊維を充填さ
せた方が、熱伝導性シートの熱伝導率が大きく良好であ
る。また、本発明品を使用する際には、図1に示す設置
方法のほかにも図2から図4のように半導体パッケージ
3、放熱器4、プリント基板2等との組み合わせによ
り、様々な設置方法が考えられる。Furthermore, in Examples 6 and 7, the heat conductivity of the heat conductive sheet is larger and better when filled with graphitized carbon fibers having a higher heat conductivity in the fiber length direction. In addition, when using the product of the present invention, in addition to the installation method shown in FIG. 1, various installations may be made by combining the semiconductor package 3, the radiator 4, the printed circuit board 2 and the like as shown in FIGS. A method is conceivable.
【0039】[0039]
【発明の効果】本発明の実施例1から比較例10にて得
られたような熱伝導性シートは、熱伝導率が大きく、か
つ電気絶縁性に優れている。したがって、熱伝導率と電
気絶縁性の両方が要求される半導体素子と筐体、ヒート
シンク等の放熱器との隙間、あるいは半導体素子とプリ
ント基板やダイパッドとの隙間に介在させ、電気的な障
害を発生させることなく正常に作動することが可能な半
導体装置を提供することができる。また、本発明の熱伝
導性シートを応用して、射出成形や押し出し成形品、圧
縮成型品などの金属成形加工品にも適用することができ
る。The heat conductive sheets as obtained in Example 1 to Comparative Example 10 of the present invention have high thermal conductivity and excellent electrical insulation. Therefore, intervening in the gap between the semiconductor element that requires both thermal conductivity and electrical insulation and a radiator such as a housing or a heat sink, or the gap between the semiconductor element and a printed circuit board or die pad, an electrical obstacle is prevented. It is possible to provide a semiconductor device that can operate normally without causing any generation. Further, the heat conductive sheet of the present invention can be applied to metal molded products such as injection molded products, extrusion molded products, and compression molded products.
【図1】 本発明品の熱伝導性シートを使用した半導体
装置の例(複数の半導体パッケージ型の半導体パッケー
ジ5と筐体6の隙間に配置)FIG. 1 shows an example of a semiconductor device using the heat conductive sheet of the present invention (disposed in a gap between a plurality of semiconductor package type semiconductor packages 5 and a housing 6).
【図2】 本発明品の熱伝導性シートを使用した半導体
装置の例(ボールグリッドアレイ型の半導体パッケージ
3と放熱器4の隙間に配置)FIG. 2 shows an example of a semiconductor device using the heat conductive sheet of the present invention (disposed in a gap between a ball grid array type semiconductor package 3 and a radiator 4).
【図3】 本発明品の熱伝導性シートを使用した半導体
装置の例(チップサイズ型の半導体パッケージ3とプリ
ント基板2の隙間に配置)FIG. 3 shows an example of a semiconductor device using the heat conductive sheet of the present invention (disposed in a gap between a chip size semiconductor package 3 and a printed board 2).
【図4】 本発明品の熱伝導性シートを使用した半導体
装置の例(ピングリッドアレイ型の半導体パッケージ3
と放熱器4の隙間に配置)FIG. 4 shows an example of a semiconductor device using the thermally conductive sheet of the present invention (pin grid array type semiconductor package 3).
And the radiator 4)
1 本発明の熱伝導性シート 2 プリント基板 3 半導体パッケージ 4 放熱器 5 複数の半導体パッケージ 6 筐体 DESCRIPTION OF SYMBOLS 1 Thermal conductive sheet of this invention 2 Printed circuit board 3 Semiconductor package 4 Heat sink 5 Plural semiconductor packages 6 Housing
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年7月7日(2000.7.7)[Submission date] July 7, 2000 (200.7.7)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0008[Correction target item name] 0008
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0008】本発明のシリコーンゴムに含有させる電気
絶縁性熱伝導充填剤の濃度は、30〜50体積%が好ま
しい。30体積%よりも少ないと体積抵抗率が小さく、
電気絶縁性の効果が低くなり、50体積%を越えると、
配合組成物の粘度が増大し、黒鉛化炭素繊維の充填が困
難になり、熱伝導率の低下が起き、放熱特性が劣ってし
まう。[0008] The concentration of the electrically insulating heat conductive filler contained in the silicone rubber of the present invention is preferably 30 to 50% by volume. If less than 30% by volume, the volume resistivity is small,
When the effect of electrical insulation is reduced and exceeds 50% by volume,
The viscosity of the blended composition increases, making it difficult to fill the graphitized carbon fibers, lowering the thermal conductivity, and deteriorating the heat radiation characteristics.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0036[Correction target item name] 0036
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0036】実施例1から実施例10までに関しては、
熱伝導率、硬度、体積抵抗率のいずれも良好となった。
しかしながら、比較例1の様に黒鉛化炭素繊維のみを充
填させた場合においては、電気絶縁性を示す体積抵抗率
が小さくなってしまい、プリント基板等における実装時
には電気導通による誤動作、ショート等の不具合を発生
する可能性がある。比較例2の様に電気絶縁性熱伝導充
填剤のみを充填させた場合においては、十分な熱伝導率
が得られない。比較例3に関しては、黒鉛化炭素繊維を
2体積%充填させているものの、十分な熱伝導率が得ら
れない。また、比較例4では、電気絶縁性熱伝導充填剤
が20体積%充填されているが、体積抵抗率が小さくな
ってしまう。With respect to the first to tenth embodiments,
All of the thermal conductivity, hardness, and volume resistivity were good.
However, when only the graphitized carbon fiber is filled as in Comparative Example 1, the volume resistivity showing the electrical insulation becomes small, and when mounted on a printed circuit board or the like, malfunctions due to electrical continuity, short-circuits, etc. May occur. When only the electrically insulating heat conductive filler is filled as in Comparative Example 2, a sufficient heat conductivity cannot be obtained. In Comparative Example 3, although the graphitized carbon fibers were filled at 2% by volume, sufficient thermal conductivity was not obtained. In Comparative Example 4, the electric insulating heat conductive filler was filled at 20% by volume, but the volume resistivity was small.
【手続補正3】[Procedure amendment 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0039[Correction target item name] 0039
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0039】[0039]
【発明の効果】本発明の実施例1から実施例10にて得
られたような熱伝導性シートは、熱伝導率が大きく、か
つ電気絶縁性に優れている。したがって、熱伝導率と電
気絶縁性の両方が要求される半導体素子と筐体、ヒート
シンク等の放熱器との隙間、あるいは半導体素子とプリ
ント基板やダイパッドとの隙間に介在させ、電気的な障
害を発生させることなく正常に作動することが可能な半
導体装置を提供することができる。また、本発明の熱伝
導性シートを応用して、射出成形や押し出し成形品、圧
縮成型品などの金属成形加工品にも適用することができ
る。The heat conductive sheets obtained in Examples 1 to 10 of the present invention have high thermal conductivity and excellent electrical insulation. Therefore, intervening in the gap between the semiconductor element that requires both thermal conductivity and electrical insulation and a radiator such as a housing or a heat sink, or the gap between the semiconductor element and a printed circuit board or die pad, an electrical obstacle is prevented. It is possible to provide a semiconductor device that can operate normally without causing any generation. Further, the heat conductive sheet of the present invention can be applied to metal molded products such as injection molded products, extrusion molded products, and compression molded products.
フロントページの続き Fターム(参考) 4F071 AA67 AB03 AB18 AB26 AB27 AD01 AE22 AF25 AF25Y AF39 AF39Y AF44 AF44Y AH12 BA03 BB03 BC01 BC10 4J002 CP031 DA026 DE107 DE147 DF017 DJ007 DJ017 DK007 FA046 FD016 FD207 GQ00Continued on front page F-term (reference) 4F071 AA67 AB03 AB18 AB26 AB27 AD01 AE22 AF25 AF25Y AF39 AF39Y AF44 AF44Y AH12 BA03 BB03 BC01 BC10 4J002 CP031 DA026 DE107 DE147 DF017 DJ007 DJ017 DK007 FA046 FD016 FD207 GQ00
Claims (3)
化炭素繊維を濃度が5〜40体積%、電気絶縁性熱伝導
充填剤を濃度が30〜50体積%で含有させてなる、体
積抵抗率が106Ω・cm以上の電気絶縁性を有する熱
伝導性シート。1. A volume resistivity comprising a sheet of silicone rubber containing a graphitized carbon fiber at a concentration of 5 to 40% by volume and an electrically insulating heat conductive filler at a concentration of 30 to 50% by volume. Is a heat conductive sheet having an electrical insulating property of 10 6 Ω · cm or more.
さ20〜800μm、繊維長さ方向の熱伝導率が200
W/m・K以上であることを特徴とする請求項1に記載
の熱伝導性シート。2. The graphitized carbon fiber has a diameter of 5 to 20 μm, a length of 20 to 800 μm, and a thermal conductivity in the fiber length direction of 200.
The heat conductive sheet according to claim 1, wherein the heat conductive sheet has a W / m · K or more.
ことを特徴とする請求項1あるいは2に記載の熱伝導性
シート。3. The heat conductive sheet according to claim 1, wherein the sheet has an Asker C hardness of 50 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000186193A JP2002003717A (en) | 2000-06-21 | 2000-06-21 | Heat conductive sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000186193A JP2002003717A (en) | 2000-06-21 | 2000-06-21 | Heat conductive sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002003717A true JP2002003717A (en) | 2002-01-09 |
Family
ID=18686396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000186193A Pending JP2002003717A (en) | 2000-06-21 | 2000-06-21 | Heat conductive sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002003717A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006335957A (en) * | 2005-06-03 | 2006-12-14 | Polymatech Co Ltd | Method of manufacturing thermally conductive molded article and thermally conductive molded article |
JP2008169513A (en) * | 2007-01-12 | 2008-07-24 | Teijin Ltd | Light-reflecting heat-conductive filler, light-reflecting heat-conductive resin composition, light-reflecting heat-conductive layer, light-reflecting film, electronic mounting substrate, and light-reflecting heat-conductive coverlay film |
US7625638B2 (en) | 2002-07-08 | 2009-12-01 | Dynic Corporation | Hygroscopic molding |
WO2013035652A1 (en) * | 2011-09-06 | 2013-03-14 | 日東電工株式会社 | Electrical insulation sheet |
KR20180050392A (en) | 2016-01-26 | 2018-05-14 | 데쿠세리아루즈 가부시키가이샤 | HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THERMAL CONDUCTIVE SHEET |
CN109627783A (en) * | 2019-01-04 | 2019-04-16 | 东莞市汉华热能科技有限公司 | A kind of heat conductive silica gel of Specific gravity and preparation method thereof |
CN110105638A (en) * | 2019-05-05 | 2019-08-09 | 华南协同创新研究院 | A kind of low-density high thermal conductivity non-silicon material and its preparation method and application |
JPWO2019244881A1 (en) * | 2018-06-20 | 2021-03-18 | 信越ポリマー株式会社 | Heat dissipation structure, manufacturing method of heat dissipation structure and battery |
-
2000
- 2000-06-21 JP JP2000186193A patent/JP2002003717A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7625638B2 (en) | 2002-07-08 | 2009-12-01 | Dynic Corporation | Hygroscopic molding |
JP2006335957A (en) * | 2005-06-03 | 2006-12-14 | Polymatech Co Ltd | Method of manufacturing thermally conductive molded article and thermally conductive molded article |
JP4657816B2 (en) * | 2005-06-03 | 2011-03-23 | ポリマテック株式会社 | Method for producing thermally conductive molded body and thermally conductive molded body |
JP2008169513A (en) * | 2007-01-12 | 2008-07-24 | Teijin Ltd | Light-reflecting heat-conductive filler, light-reflecting heat-conductive resin composition, light-reflecting heat-conductive layer, light-reflecting film, electronic mounting substrate, and light-reflecting heat-conductive coverlay film |
WO2013035652A1 (en) * | 2011-09-06 | 2013-03-14 | 日東電工株式会社 | Electrical insulation sheet |
KR20180050392A (en) | 2016-01-26 | 2018-05-14 | 데쿠세리아루즈 가부시키가이샤 | HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THERMAL CONDUCTIVE SHEET |
KR20190120421A (en) | 2016-01-26 | 2019-10-23 | 데쿠세리아루즈 가부시키가이샤 | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
US10526519B2 (en) | 2016-01-26 | 2020-01-07 | Dexerials Corporation | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
KR20200070435A (en) | 2016-01-26 | 2020-06-17 | 데쿠세리아루즈 가부시키가이샤 | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
JPWO2019244881A1 (en) * | 2018-06-20 | 2021-03-18 | 信越ポリマー株式会社 | Heat dissipation structure, manufacturing method of heat dissipation structure and battery |
CN109627783A (en) * | 2019-01-04 | 2019-04-16 | 东莞市汉华热能科技有限公司 | A kind of heat conductive silica gel of Specific gravity and preparation method thereof |
CN110105638A (en) * | 2019-05-05 | 2019-08-09 | 华南协同创新研究院 | A kind of low-density high thermal conductivity non-silicon material and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4301468B2 (en) | Heat-resistant and heat-conductive silicone rubber composite sheet and method for producing the same | |
US8187490B2 (en) | Heat dissipating material and semiconductor device using same | |
JP6136952B2 (en) | Thermally conductive composite silicone rubber sheet | |
JP3515368B2 (en) | High thermal conductive electromagnetic shielding sheet for mounting element, method of manufacturing the same, heat radiation of mounting element and electromagnetic shielding structure | |
JP7389014B2 (en) | insulation heat dissipation sheet | |
JP2002088171A (en) | Heat-conductive sheet and method for producing the same and heat radiation device | |
JPH11209618A (en) | Heat-conductive silicone rubber composition | |
EP3608384B1 (en) | Heat-conductive sheet | |
JP2002138205A (en) | Thermal conductive molded article | |
JP4406484B2 (en) | Thermally conductive electromagnetic shielding sheet | |
JP2002003831A (en) | Member for heat radiation | |
JP2001160607A (en) | Anisotropic heat conducting sheet | |
JP2020128463A (en) | Thermally conductive silicone rubber sheet having thermally conductive adhesive layer | |
KR20190122354A (en) | A carbon seat having high heat-radiation property and manufacturing method thereof | |
JP2016155946A (en) | Thermosetting resin composition, thermally conductive resin sheet, circuit board, and power module | |
JP2002003717A (en) | Heat conductive sheet | |
KR100642622B1 (en) | Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity | |
KR20120078478A (en) | Thermal interface material comprising carbon nano tube and metal, and ceramic nano particle | |
JP2004083905A (en) | Thermally conductive filler, thermally conductive silicone elastomer composition and semiconductor device | |
CN112074572A (en) | Thermally conductive silicone rubber composition, sheet thereof, and method for producing same | |
JP2007084704A (en) | Resin composition and circuit board and package using the same | |
JP6448736B2 (en) | Thermally conductive sheet | |
JPH11317592A (en) | Thermally conductive electromagnetic shielding sheet | |
JPH11317591A (en) | Thermally conductive electromagnetic shielding sheet | |
JP2000191812A (en) | Thermally conductive sheet |