JP2017092322A - High thermal conductivity, high insulation heat dissipation sheet - Google Patents

High thermal conductivity, high insulation heat dissipation sheet Download PDF

Info

Publication number
JP2017092322A
JP2017092322A JP2015222523A JP2015222523A JP2017092322A JP 2017092322 A JP2017092322 A JP 2017092322A JP 2015222523 A JP2015222523 A JP 2015222523A JP 2015222523 A JP2015222523 A JP 2015222523A JP 2017092322 A JP2017092322 A JP 2017092322A
Authority
JP
Japan
Prior art keywords
hole
heat dissipation
heat
metal foil
silicone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015222523A
Other languages
Japanese (ja)
Other versions
JP6650736B2 (en
Inventor
光祐 和田
Kosuke Wada
光祐 和田
五十嵐 厚樹
Atsuki Igarashi
厚樹 五十嵐
満 椎葉
Mitsuru Shiiba
満 椎葉
金子 政秀
Masahide Kaneko
政秀 金子
光永 敏勝
Toshikatsu Mitsunaga
敏勝 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2015222523A priority Critical patent/JP6650736B2/en
Publication of JP2017092322A publication Critical patent/JP2017092322A/en
Application granted granted Critical
Publication of JP6650736B2 publication Critical patent/JP6650736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat dissipation sheet capable of having all characteristics of electrical insulation property, thickness accuracy, adhesion between a metal foil and a resin, and thermal conductivity in a well-balanced manner.SOLUTION: The heat dissipation sheet is so configured that a silicone resin composition containing a thermally conductive filler is laminated on both surfaces of a metal foil having a through hole, and the metal foil having the through hole has a through hole diameter of 0.2 mm or more, each through hole pitch interval of 0.7 mm or less, an aperture ratio of 20 to 80%, and a thickness of 0.001 to 0.3 mm.SELECTED DRAWING: None

Description

本発明は、発熱する電子部品の冷却のために、電子部品とヒートシンク又は回路基板などの放熱部分との界面に密着させる放熱シートに関する。   The present invention relates to a heat dissipation sheet that adheres to an interface between an electronic component and a heat dissipation portion such as a heat sink or a circuit board in order to cool the electronic component that generates heat.

放熱シートは、一般的に熱伝導性充填剤を含有したシリコーン樹脂(以下、シリコーン樹脂組成物と称す)をガラスクロスなどの補強層の両面に塗布したものであり、高熱伝導性、電気絶縁性、ハンドリング性などに優れた特性を有することから、電子材料分野において、発熱する電子部品の冷却のために、電子部品とヒートシンク又は回路基板などの放熱部分との界面に密着させて使用される。   A heat-dissipating sheet is generally a silicone resin containing a thermally conductive filler (hereinafter referred to as a silicone resin composition) coated on both sides of a reinforcing layer such as a glass cloth, and has high thermal conductivity and electrical insulation. In the field of electronic materials, it is used in close contact with the interface between an electronic component and a heat-dissipating part such as a heat sink or a circuit board in order to cool the electronic component that generates heat.

しかし、近年の急速な電子部品の小型化・高集積化・高出力化に伴い、作動温度が高まり、従来のガラスクロスを使用した絶縁放熱シートでは放熱性が不十分となり、動作不良が生じるという問題があった。そこで、ガラスクロスを「金属箔」に変更することが提案されている(特許文献1参照)。特許文献1に記載された発明においては、ガラスクロスを金属箔に変更することにより、放熱性を改善している。   However, with the recent rapid downsizing, higher integration, and higher output of electronic components, the operating temperature has increased, and heat dissipation is insufficient with conventional insulating heat dissipation sheets using glass cloth, resulting in malfunction. There was a problem. Therefore, it has been proposed to change the glass cloth to “metal foil” (see Patent Document 1). In the invention described in Patent Document 1, the heat dissipation is improved by changing the glass cloth to a metal foil.

また、厚み方向の熱伝導性を高めることを目的として、貫通孔を有する金属箔を設けることも提案されている。例えば、特許文献2では、熱伝導性接着剤層と、その熱伝導性接着剤層を担持する薄型エキスパンドメタル網状シートとよりなる放熱シートが提案されており、網目の開口率は、20〜80%の範囲にあるのが好ましいことも記載されている。特許文献3では金属箔に穴(多数の穴)を設けておき、金属箔の両側の熱伝導材を穴を介して連続させるとよいことが記載されている。特許文献4では、金属メッシュとして、金属のワイヤーを織物状にしたものや、金属箔を打ち抜き加工して複数の孔を開けたもの等が用いられると記載されている。特許文献5には、網目状補強材を用いた熱伝導性シートは、熱伝導性組成物の粘度が高い場合に、網目状補強材の開口を貫通しないおそれがあることから、メッシュシートの開口よりも大きい孔部を備え、該孔部に前記熱伝導層が貫通しているメッシュシートを提案している。メッシュシートの大きさは、熱伝導層の熱伝導性能の維持及び、熱伝導層と一体となった際における熱伝導性シートの取扱い性の観点から、その厚さは10μm〜500μm程度、開口は200μm〜1200μm、開口率は40〜90%、線径は20μm〜300μm程度のものを用いることが好ましいことも記載されている。   It has also been proposed to provide a metal foil having a through hole for the purpose of increasing the thermal conductivity in the thickness direction. For example, Patent Document 2 proposes a heat dissipating sheet composed of a heat conductive adhesive layer and a thin expanded metal mesh sheet carrying the heat conductive adhesive layer, and the mesh opening ratio is 20-80. It is also described that it is preferable to be in the range of%. Patent Document 3 describes that a hole (many holes) is provided in the metal foil, and the heat conductive material on both sides of the metal foil is made continuous through the hole. Patent Document 4 describes that as a metal mesh, a metal wire in a woven shape, a metal foil punched out, and a plurality of holes are used. In Patent Document 5, since the heat conductive sheet using the mesh reinforcing material may not penetrate the opening of the mesh reinforcing material when the viscosity of the heat conductive composition is high, the mesh sheet opening The mesh sheet | seat which is provided with a larger hole part and the said heat conductive layer has penetrated to this hole part is proposed. The size of the mesh sheet is about 10 μm to 500 μm in thickness from the viewpoint of maintaining the heat conduction performance of the heat conduction layer and handling of the heat conduction sheet when integrated with the heat conduction layer. It is also described that it is preferable to use one having a diameter of 200 μm to 1200 μm, an aperture ratio of 40 to 90%, and a wire diameter of about 20 μm to 300 μm.

特開2015−65330号公報Japanese Patent Laying-Open No. 2015-65330 特開2001−291810号公報JP 2001-291810 A 特開2001−345406号公報JP 2001-345406 A 特開2008−120065号公報JP 2008-120065 A 特開2012−245664号公報JP 2012-245664 A

しかしながら、従来の放熱シートでは厚み精度、金属箔と樹脂の密着性、及び熱伝導率のすべての特性を兼備することはできず、これらの諸特性をバランス良く有することのできる放熱シートを提供することが有利であると考えられる。本発明は、上記のような従来技術に鑑み、電気絶縁性、厚み精度、金属箔と樹脂の密着性、及び熱伝導率のすべての特性をバランス良く有することのできる放熱シートを提供することを目的とする。   However, the conventional heat-dissipating sheet cannot provide all the characteristics of thickness accuracy, adhesion between the metal foil and the resin, and thermal conductivity, and provides a heat-dissipating sheet that can have these characteristics in a well-balanced manner. Is considered advantageous. In view of the conventional technology as described above, the present invention provides a heat-dissipating sheet that can have all the properties of electrical insulation, thickness accuracy, adhesion between metal foil and resin, and thermal conductivity in a well-balanced manner. Objective.

本発明者は上記課題を解決するために鋭意検討したところ、貫通孔を有する金属箔(典型的にはパンチングメタル)の両面に、熱伝導性充填材を含有するシリコーン樹脂組成物が積層する構成を採用することで放熱シートの高い厚み精度を維持しながら金属箔と樹脂の密着性を高めることができることを見出した。そして、金属箔の貫通孔の孔径、ピッチ、開口率及び箔厚を適正化することで、樹脂と金属箔の密着性を更に高めることができ、更には貫通口内への樹脂の充填率を高めることができるので、熱伝導性を確保しながら電気絶縁性にも優れた放熱シートが得られることを見出した。   As a result of diligent investigations to solve the above-mentioned problems, the present inventor has a configuration in which a silicone resin composition containing a heat conductive filler is laminated on both surfaces of a metal foil (typically punched metal) having a through hole. It was found that the adhesiveness between the metal foil and the resin can be improved while maintaining high thickness accuracy of the heat radiating sheet. And by optimizing the hole diameter, pitch, opening ratio, and foil thickness of the through holes of the metal foil, the adhesion between the resin and the metal foil can be further increased, and further the filling rate of the resin into the through holes is increased. Therefore, it was found that a heat radiating sheet excellent in electrical insulation while ensuring thermal conductivity was obtained.

上記知見に基づいて完成した本発明は一側面において、貫通孔を有する金属箔の両面に、熱伝導性充填材を含有するシリコーン樹脂組成物が積層されており、当該貫通孔を有する金属箔は、各貫通孔径が0.2mm以上、各貫通孔ピッチ間隔が0.7mm以下、開口率が20〜80%、厚みが0.001〜0.3mmである放熱シートである。   In one aspect of the present invention completed based on the above knowledge, a silicone resin composition containing a thermally conductive filler is laminated on both sides of a metal foil having a through hole, and the metal foil having the through hole is The heat dissipation sheet has a through hole diameter of 0.2 mm or more, a through hole pitch interval of 0.7 mm or less, an aperture ratio of 20 to 80%, and a thickness of 0.001 to 0.3 mm.

本発明に係る放熱シートの一実施形態においては、貫通孔へのシリコーン樹脂組成物の充填率が85%以上である。   In one embodiment of the heat dissipation sheet according to the present invention, the filling rate of the silicone resin composition into the through holes is 85% or more.

本発明に係る放熱シートの別の一実施形態においては、前記熱伝導性充填材は窒化ホウ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末、窒化ケイ素粉末、酸化ケイ素粉末、酸化亜鉛粉末から選ばれる単体であるか、又はこれらの熱伝導性充填材の一種以上を混合した材料とする。   In another embodiment of the heat dissipation sheet according to the present invention, the thermally conductive filler is a simple substance selected from boron nitride powder, aluminum nitride powder, aluminum oxide powder, silicon nitride powder, silicon oxide powder, and zinc oxide powder. Or a material obtained by mixing one or more of these thermally conductive fillers.

本発明に係る放熱シートの更に別の一実施形態においては、前記窒化ホウ素粉末は窒化ホウ素の鱗片状の一次粒子が配向せずに集合してなるアグリゲート状である。   In yet another embodiment of the heat-dissipating sheet according to the present invention, the boron nitride powder is in the form of an aggregate formed by aggregation of boron nitride scaly primary particles without orientation.

本発明に係る放熱シートの更に別の一実施形態においては、シリコーン樹脂組成物は、シリコーン樹脂成分の合計100質量部に対して、六方晶窒化ホウ素粉末を20〜1,300質量部含有する。   In still another embodiment of the heat dissipation sheet according to the present invention, the silicone resin composition contains 20 to 1,300 parts by mass of hexagonal boron nitride powder with respect to 100 parts by mass in total of the silicone resin components.

本発明に係る放熱シートの更に別の一実施形態においては、前記貫通孔を有する金属箔が、銅、アルミニウム、銀、モリブテン、パラジウム、錫、鉛、ニッケル、金、鉄、亜鉛、タンタル、ニオブ、ジルコニウム、イリジウム、白金よりなる群から選択される金属の単体であるか、又はこれらの金属の一種以上を含む合金を材料とする。   In still another embodiment of the heat dissipation sheet according to the present invention, the metal foil having the through hole is made of copper, aluminum, silver, molybdenum, palladium, tin, lead, nickel, gold, iron, zinc, tantalum, niobium. , Zirconium, iridium, platinum, or a single metal selected from the group consisting of platinum, or an alloy containing one or more of these metals.

本発明に係る放熱シートの更に別の一実施形態においては、前記放熱シートの厚み方向に対する熱伝導率が、7W/m・K以上である。   In still another embodiment of the heat dissipation sheet according to the present invention, the heat conductivity in the thickness direction of the heat dissipation sheet is 7 W / m · K or more.

本発明に係る放熱シートの更に別の一実施形態においては、前記放熱シートの体積抵抗率が、1012Ω・cm以上である。 In still another embodiment of the heat dissipation sheet according to the present invention, the heat dissipation sheet has a volume resistivity of 10 12 Ω · cm or more.

特許文献1に記載の放熱シートのようにガラスクロスを金属箔に変更した場合、金属箔と樹脂との接着力が低いため、金属箔と樹脂との界面に連続した微小な空気層を有し、電気絶縁性が悪い。
特許文献2で提案されるようなエキスパンドメタル網状シートや特許文献5で提案されている線材を網目状に織成したメッシュシートでは表面の起伏が大きく、放熱シートを成型後の厚み精度が低くなってしまう。また、表面起伏が大きいことで、放熱シートを電子部品とヒートシンク間に密着させる時に、エキスパンドメタルやメッシュシートが樹脂を破き絶縁不良を生じるおそれもある。また、金属ワイヤーを用いた織物を使用した場合、ワイヤー間の重なり部分に樹脂が充填せずボイドが生じて絶縁性が低下する他、取扱い時に製品内のワイヤーにずれが生じ、樹脂とワイヤー間にボイドが生じ絶縁性が低下するという問題もある。
特許文献3及び特許文献4では金属箔を打ち抜き加工して孔を開けたものが記載されているが、開口率、孔径、ピッチ間隔等について充分に検討されておらず、例えば、貫通孔の存在頻度が少ない部分では、金属箔と樹脂の接着不良が生じやすく、絶縁不良や絶縁破壊が生じ得る。また、開口率、孔径及びピッチ間隔の適正化による貫通孔への樹脂の充填率の上昇についても議論が不十分である。
これに対して、本発明の貫通孔を有する金属箔を用いた放熱シートは、電気絶縁性、厚み精度、金属箔と樹脂の密着性、及び熱伝導率のすべての特性をバランス良く有することができる。
When the glass cloth is changed to a metal foil as in the heat dissipation sheet described in Patent Document 1, since the adhesive force between the metal foil and the resin is low, a continuous air layer is provided at the interface between the metal foil and the resin. The electrical insulation is poor.
The expanded metal mesh sheet proposed in Patent Document 2 and the mesh sheet obtained by weaving the wire material proposed in Patent Document 5 in a mesh pattern have large surface undulations, and the thickness accuracy after molding the heat dissipation sheet is low. End up. Further, due to the large surface undulation, when the heat-dissipating sheet is brought into close contact between the electronic component and the heat sink, the expanded metal or the mesh sheet may break the resin and cause insulation failure. In addition, when using a woven fabric that uses metal wires, resin is not filled in the overlapping part between the wires and voids are generated, resulting in a decrease in insulation. There is also a problem that voids are generated in the insulating layer and insulation is lowered.
Patent Document 3 and Patent Document 4 describe a method in which a metal foil is punched and perforated, but the aperture ratio, the hole diameter, the pitch interval, etc. have not been sufficiently studied. In a portion where the frequency is low, defective adhesion between the metal foil and the resin is likely to occur, and insulation failure or insulation breakdown may occur. In addition, there is insufficient discussion on the increase in the filling rate of the resin into the through holes by optimizing the aperture ratio, hole diameter, and pitch interval.
On the other hand, the heat dissipation sheet using the metal foil having a through hole according to the present invention has a good balance of all the characteristics of electrical insulation, thickness accuracy, adhesion between the metal foil and the resin, and thermal conductivity. it can.

アグリゲート状の六方晶窒化ホウ素粉末のSEM写真の例である。It is an example of the SEM photograph of aggregate-form hexagonal boron nitride powder.

本発明に係る放熱シートの一実施形態においては、貫通孔を有する金属箔の両面に、熱伝導性充填材を含有するシリコーン樹脂組成物が積層されており、当該貫通孔を有する金属箔は、各貫通孔径が0.2mm以上、各貫通孔ピッチ間隔が0.7mm以下、開口率が20〜80%、厚みが0.001〜0.3mmである。   In one embodiment of the heat dissipation sheet according to the present invention, a silicone resin composition containing a thermally conductive filler is laminated on both surfaces of a metal foil having a through hole, and the metal foil having the through hole is Each through-hole diameter is 0.2 mm or more, each through-hole pitch interval is 0.7 mm or less, an aperture ratio is 20 to 80%, and a thickness is 0.001 to 0.3 mm.

貫通孔を有する金属箔の貫通孔径はシリコーン樹脂組成物の貫通孔内への充填性の理由により、0.2mm以上であり、0.3mm以上であることがより好ましい。0.2mmより小さい場合は、貫通孔内へシリコーン樹脂組成物が充填しにくくなり、電気絶縁性が低下するため、好ましくない。また、貫通孔径は、金属箔のハンドリング性の理由により0.6mm以下であることが好ましく、0.5mm以下であることがより好ましい。金属箔の貫通孔径は、金属箔を上面から目視および顕微鏡による外観形状観察にて評価可能であり、面積から求めた円相当径を測定値とする。   The through-hole diameter of the metal foil having the through-hole is 0.2 mm or more, and more preferably 0.3 mm or more, because of the filling property of the silicone resin composition into the through-hole. When it is smaller than 0.2 mm, it is difficult to fill the through hole with the silicone resin composition, and the electrical insulation property is lowered, which is not preferable. Further, the through-hole diameter is preferably 0.6 mm or less, and more preferably 0.5 mm or less, for the reason of handling properties of the metal foil. The through-hole diameter of the metal foil can be evaluated by visually observing the metal foil from the upper surface and observing the external shape with a microscope, and the equivalent circle diameter obtained from the area is taken as the measurement value.

貫通孔を有する金属箔の貫通孔のピッチ間隔は層間の密着性の理由により、0.7mm以下であることが好ましく、0.6mm以下であることがより好ましい。0.7mmより大きい場合は、貫通孔内でのシリコーン樹脂組成物間の密着性が低下により、電気絶縁性が低下するため、好ましくない。一方、金属箔の貫通孔のピッチ間隔は熱伝導性の理由により0.25mm以上であることが好ましく、0.4mm以上であることがより好ましい。また、貫通孔は金属箔の全面に一定のピッチ間隔で存在することが好ましい。金属箔の貫通孔のピッチ間隔は、目視および顕微鏡による外観形状観察にて評価可能であり、対象となる貫通孔に最も近接している貫通孔との重心間を結ぶ線分の距離をピッチ間隔とする。   The pitch interval of the through holes of the metal foil having the through holes is preferably 0.7 mm or less, and more preferably 0.6 mm or less, for the reason of adhesion between layers. A thickness larger than 0.7 mm is not preferable because the electrical insulation properties are lowered due to a decrease in adhesion between the silicone resin compositions in the through holes. On the other hand, the pitch interval of the through holes of the metal foil is preferably 0.25 mm or more, and more preferably 0.4 mm or more for the reason of thermal conductivity. Moreover, it is preferable that a through-hole exists in the whole surface of metal foil with a fixed pitch space | interval. The pitch interval of the through holes of the metal foil can be evaluated visually and by external appearance observation with a microscope, and the distance between the line segments connecting the center of gravity with the through hole closest to the target through hole is determined as the pitch interval. And

貫通孔へのシリコーン樹脂組成物の充填率は、電気絶縁性向上の理由により、85%以上であることが好ましく、95%以上であることがより好ましく、98%以上であることが更により好ましい。充填率は、貫通孔の長さ方向及び径方向が観察可能な断面の写真を走査型電子顕微鏡により撮影し、画像解析ソフト(実施例ではGIMP2を使用した。)にて、二値化した後、1−(空隙面積/貫通孔面積)より充填率を算出する。測定値は4箇所以上の貫通孔における充填率の平均値とする。   The filling rate of the silicone resin composition into the through holes is preferably 85% or more, more preferably 95% or more, and even more preferably 98% or more, for the reason of improving electrical insulation. . The filling rate is obtained by taking a photograph of a cross section in which the length direction and radial direction of the through-hole can be observed with a scanning electron microscope and binarizing with image analysis software (GIMP2 was used in the examples). 1− (void area / through-hole area), the filling rate is calculated. The measured value is the average value of the filling rate in four or more through holes.

貫通孔を有する金属箔の開口率は、層間の密着性の理由により、20〜80%であることが好ましく、30〜80%であることがより好ましい。20%より小さい場合は、貫通孔内でのシリコーン樹脂組成物間の密着性が低下により、電気絶縁性が低下し、80%より大きい場合は、金属層が少なく熱伝導率が低下するため好ましくない。開口率は、金属箔を上面から観察したときの(空隙面積の合計)/(空隙を含む金属箔全体の面積)により算出する。   The opening ratio of the metal foil having a through hole is preferably 20 to 80% and more preferably 30 to 80% for the reason of adhesion between layers. If it is less than 20%, the electrical insulation is reduced due to the decrease in the adhesion between the silicone resin compositions in the through-hole, and if it is more than 80%, the metal layer is less and the thermal conductivity is decreased, which is preferable. Absent. The aperture ratio is calculated by (total void area) / (total area of the metal foil including voids) when the metal foil is observed from the upper surface.

放熱シートの厚みは特に限定されないが、0.05〜1.2mm程度のものが一般的であり、熱抵抗率の低減を考慮すると、1.0mm以下が好ましく、より好ましくは0.4mm以下である。貫通孔を有する金属箔の厚みは0.001〜0.30mmのものを好適に使用できる。また、シリコーン樹脂組成物層の厚みも特に限定されないが、片面当たり0.02〜0.6mmであるのが好適である。   The thickness of the heat dissipation sheet is not particularly limited, but is generally about 0.05 to 1.2 mm, and considering the reduction of thermal resistivity, 1.0 mm or less is preferable, and more preferably 0.4 mm or less. is there. A metal foil having a through-hole having a thickness of 0.001 to 0.30 mm can be suitably used. The thickness of the silicone resin composition layer is not particularly limited, but is preferably 0.02 to 0.6 mm per side.

シリコーン樹脂組成物の塗布方法は特に限定されず、均一に塗布できるドクターブレード法、コンマコーター法、スクリーン印刷法、ロールコーター法等の公知の塗布方法を採用することができるが、シリコーン樹脂組成物の厚み精度を考慮するとドクターブレード法、コンマコーター法が好ましい。   The application method of the silicone resin composition is not particularly limited, and a known application method such as a doctor blade method, a comma coater method, a screen printing method, or a roll coater method that can be applied uniformly can be adopted. In view of the thickness accuracy, the doctor blade method and the comma coater method are preferable.

補強材に使用する貫通孔を有する金属箔は、熱伝導性およびハンドリング性の理由により、銅、アルミニウム、銀、モリブテン、パラジウム、錫、鉛、ニッケル、金、鉄、亜鉛、タンタル、ニオブ、ジルコニウム、イリジウム、白金よりなる群から選択される金属の単体であるか、又はこれらの金属の一種以上を含む合金を材料とすることが好ましく、コスト面の観点から銅およびアルミニウムがより好ましい。   Metal foils with through-holes used for reinforcing materials are copper, aluminum, silver, molybdenum, palladium, tin, lead, nickel, gold, iron, zinc, tantalum, niobium, zirconium for reasons of thermal conductivity and handling It is preferable that the material is a simple substance of a metal selected from the group consisting of iridium and platinum, or an alloy containing one or more of these metals, and copper and aluminum are more preferable from the viewpoint of cost.

貫通孔を有する金属箔の純度は、98質量%以上であることが好ましく、純度が98質量%より低い場合、熱伝導性充填材を含有するシリコーン樹脂と貫通孔を有する金属箔の接着性が不十分となる場合や、貫通孔を有する金属箔が硬くなり放熱シートのハンドリング性が低下する場合がある。金属箔の純度は、高周波誘導結合プラズマ発光分光分析法(ICP)により、金属元素以外の元素を不純物として求めた。   The purity of the metal foil having a through hole is preferably 98% by mass or more. When the purity is lower than 98% by mass, the adhesiveness between the silicone resin containing the thermally conductive filler and the metal foil having the through hole is high. When it becomes inadequate, the metal foil which has a through-hole may become hard, and the handleability of a thermal radiation sheet may fall. The purity of the metal foil was determined by using an element other than the metal element as an impurity by high frequency inductively coupled plasma optical emission spectrometry (ICP).

シリコーン樹脂組成物は、シリコーン樹脂成分の合計100質量部に対して、熱伝導性充填材を20〜1,300質量部含有するものであることが好ましく、より好ましくは240〜730質量部である。熱伝導性充填材が20質量部未満の場合は、熱伝導率が低くなり、放熱性が低下する。一方、熱伝導性充填材が1,300質量部より大きい場合は、シリコーン樹脂と熱伝導性充填材の混合性が良好でなく、貫通孔を有する金属箔への塗布時に、厚みが不均一となることがある。   The silicone resin composition preferably contains 20 to 1,300 parts by mass of the heat conductive filler, more preferably 240 to 730 parts by mass with respect to 100 parts by mass in total of the silicone resin components. . When the heat conductive filler is less than 20 parts by mass, the thermal conductivity is lowered and the heat dissipation is reduced. On the other hand, when the heat conductive filler is larger than 1,300 parts by mass, the mixing property of the silicone resin and the heat conductive filler is not good, and the thickness is not uniform when applied to the metal foil having a through hole. May be.

シリコーン樹脂成分の種類は、特に限定されないが過酸化物硬化型、縮合反応硬化型、付加反応硬化型、紫外線硬化型が好適に使用可能である。   The type of the silicone resin component is not particularly limited, but a peroxide curing type, a condensation reaction curing type, an addition reaction curing type, and an ultraviolet curing type can be suitably used.

熱伝導性充填材としては、限定的ではないが、窒化ホウ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末、窒化ケイ素粉末、酸化ケイ素粉末、酸化亜鉛粉末等が使用可能であるが、熱伝導性および加工性の理由により、六方晶窒化ホウ素粉末で構成されることが好ましい。六方晶窒化ホウ素の形態は、鱗片状の一次粒子が配向せずに集合してなるアグリゲート状であることが好ましい。図1にアグリゲート状の六方晶窒化ホウ素粉末の顕微鏡写真を例示的に示す。アグリゲート状でない六方晶窒化ホウ素粉末では、熱伝導率が低くなり放熱性が低下する場合がある。   Examples of the heat conductive filler include, but are not limited to, boron nitride powder, aluminum nitride powder, aluminum oxide powder, silicon nitride powder, silicon oxide powder, and zinc oxide powder. It is preferable that it is composed of hexagonal boron nitride powder for the reason of the property. The hexagonal boron nitride is preferably in the form of an aggregate formed by aggregation of scale-like primary particles without orientation. FIG. 1 exemplarily shows a micrograph of the aggregated hexagonal boron nitride powder. In hexagonal boron nitride powder that is not in aggregate form, the thermal conductivity may be low and heat dissipation may be reduced.

熱伝導性充填材含有シリコーン樹脂組成物と貫通孔を有する金属箔の接合は、貫通孔を有する金属箔にシリコーン樹脂組成物を塗布後、加熱プレス機を用いて、大気雰囲気中にて圧力100〜200kg/cm2の条件で80℃〜170℃の温度且つ10〜60分の時間で接合することが好ましい。圧力が100kg/cm2より低い場合、接合温度が80℃より低い場合、または、接合時間が10分より短い場合、熱伝導性充填材含有シリコーン樹脂と貫通孔を有する金属箔の接合性が低下する。一方、圧力が200kg/cm2より高い場合、接合温度が170℃より高い場合、または、接合時間が60分より長い場合、金属箔の表面の酸化が生じ、接合性の低下および放熱性の低下が生じ、生産性の低下の観点からも好ましくない。ただし、接合時の雰囲気を窒素、アルゴン、水素、真空とした場合は、この限りでない。その後、シリコーン樹脂の架橋反応で副生成するアルコールやカルボン酸および低分子シロキサン除去の為に130〜250℃、5〜30時間の条件で二次加熱をおこない、シリコーン樹脂を加硫させることが好ましい。 The joining of the thermally conductive filler-containing silicone resin composition and the metal foil having a through-hole is performed by applying the silicone resin composition to the metal foil having a through-hole and then using a hot press machine in an air atmosphere at a pressure of 100. It is preferable to join at a temperature of 80 ° C. to 170 ° C. and a time of 10 to 60 minutes under a condition of ˜200 kg / cm 2 . When the pressure is lower than 100 kg / cm 2 , when the bonding temperature is lower than 80 ° C., or when the bonding time is shorter than 10 minutes, the bonding property between the thermally conductive filler-containing silicone resin and the metal foil having a through hole is lowered. To do. On the other hand, when the pressure is higher than 200 kg / cm 2 , when the bonding temperature is higher than 170 ° C., or when the bonding time is longer than 60 minutes, the surface of the metal foil is oxidized, resulting in a decrease in bonding property and heat dissipation. This is not preferable from the viewpoint of lowering productivity. However, this does not apply when the atmosphere during bonding is nitrogen, argon, hydrogen, or vacuum. Thereafter, it is preferable to vulcanize the silicone resin by performing secondary heating under conditions of 130 to 250 ° C. and 5 to 30 hours in order to remove alcohol and carboxylic acid and low molecular siloxane by-produced by the crosslinking reaction of the silicone resin. .

(実施例1)
ポリオルガノシロキサンベースポリマー(東レ・ダウコーニング・シリコーン社製 商品名「CF3110」)100質量部、アグリゲート状窒化ホウ素粉末350質量部、架橋剤(東レ・ダウコーニング・シリコーン社製 商品名「RC−4」)1質量部を、500質量部のトルエンに分散して攪拌機で15時間混合し、熱伝導性充填材含有シリコーン樹脂組成物を調整した。
Example 1
100 parts by weight of a polyorganosiloxane base polymer (trade name “CF3110” manufactured by Toray Dow Corning Silicone), 350 parts by weight of aggregated boron nitride powder, and a crosslinking agent (trade name “RC- manufactured by Toray Dow Corning Silicone”) 4 ") 1 part by mass was dispersed in 500 parts by mass of toluene and mixed with a stirrer for 15 hours to prepare a thermally conductive filler-containing silicone resin composition.

上記のシリコーン樹脂組成物を厚み0.05mmのペットフィルム上にドクターブレードで片面当たり厚さ0.175mmに塗工し、75℃で5分乾燥させた後、厚さ0.035mmの表1に記載の仕様の貫通孔を有する純度99.8%銅箔の両面にシリコーン樹脂組成物面が接するように積層し、厚さ0.485mmの積層体を作成した。次いで、温度150℃、圧力160kg/cm2の条件で25分間の加熱プレスを行い、両面のペットフィルムを剥離して0.20mmのシートとした。次いでそれを常圧、150℃で4時間の2次加熱を行い、放熱シートとした。 The above silicone resin composition was coated on a pet film having a thickness of 0.05 mm with a doctor blade to a thickness of 0.175 mm per side, dried at 75 ° C. for 5 minutes, and then in Table 1 having a thickness of 0.035 mm. Lamination was performed such that the silicone resin composition surface was in contact with both surfaces of a 99.8% pure copper foil having through-holes having the specifications described above, to form a laminate having a thickness of 0.485 mm. Subsequently, a heat press for 25 minutes was performed under the conditions of a temperature of 150 ° C. and a pressure of 160 kg / cm 2 , and the pet films on both sides were peeled to form a 0.20 mm sheet. Next, it was subjected to secondary heating for 4 hours at 150 ° C. under normal pressure to obtain a heat radiating sheet.

(実施例2)
アグリゲート状窒化ホウ素粉末の配合量を100質量部に変更した以外は、実施例1と同様にして放熱シートを得た。
(Example 2)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the amount of the aggregated boron nitride powder was changed to 100 parts by mass.

(実施例3)
アグリゲート状窒化ホウ素粉末の配合量を250質量部に変更した以外は、実施例1と同様にして放熱シートを得た。
(Example 3)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the amount of the aggregated boron nitride powder was changed to 250 parts by mass.

(実施例4)
アグリゲート状窒化ホウ素粉末の配合量を700質量部に変更した以外は、実施例1と同様にして放熱シートを得た。
Example 4
A heat radiating sheet was obtained in the same manner as in Example 1 except that the amount of the aggregated boron nitride powder was changed to 700 parts by mass.

(実施例5)
アグリゲート状窒化ホウ素粉末の配合量を1250質量部に変更した以外は、実施例1と同様にして放熱シートを得た。
(Example 5)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the amount of the aggregated boron nitride powder was changed to 1250 parts by mass.

(実施例6)
銅箔を純度99.8質量%アルミニウム箔に変更した以外は、実施例1と同様にして放熱シートを得た。
(Example 6)
A heat radiation sheet was obtained in the same manner as in Example 1 except that the copper foil was changed to an aluminum foil having a purity of 99.8% by mass.

(実施例7)
銅箔を純度99.8質量%銀箔に変更した以外は、実施例1と同様にして放熱シートを得た。
(Example 7)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the copper foil was changed to a 99.8% by mass silver foil.

(実施例8)
アグリゲート状窒化ホウ素粉末を鱗片状窒化ホウ素粉末に変更した以外は、実施例1と同様にして放熱シートを得た。
(Example 8)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the aggregated boron nitride powder was changed to scaly boron nitride powder.

(実施例9)
アグリゲート状窒化ホウ素粉末を酸化アルミニウム粉末に変更した以外は、実施例1と同様にして放熱シートを得た。
Example 9
A heat radiating sheet was obtained in the same manner as in Example 1 except that the aggregated boron nitride powder was changed to aluminum oxide powder.

(実施例10)
アグリゲート状窒化ホウ素粉末の一部を酸化亜鉛粉末に変更した以外は、実施例1と同様にして放熱シートを得た。
(実施例11)
銅箔の貫通孔径を0.25mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(実施例12)
銅箔の貫通孔ピッチ間隔を0.60mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(実施例13)
銅箔の貫通孔ピッチ間隔を0.40mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(Example 10)
A heat radiating sheet was obtained in the same manner as in Example 1 except that a part of the aggregated boron nitride powder was changed to zinc oxide powder.
(Example 11)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the through hole diameter of the copper foil was changed to 0.25 mm.
(Example 12)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the through-hole pitch interval of the copper foil was changed to 0.60 mm.
(Example 13)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the pitch between the through holes of the copper foil was changed to 0.40 mm.

(比較例1)
貫通孔を有する銅箔の貫通孔径を0.15mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(Comparative Example 1)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the diameter of the through hole of the copper foil having the through hole was changed to 0.15 mm.

(比較例2)
六方晶窒化ホウ素粉末の配合量を100質量部に変更した以外は、比較例1と同様にして放熱シートを得た。
(Comparative Example 2)
A heat radiating sheet was obtained in the same manner as in Comparative Example 1 except that the amount of the hexagonal boron nitride powder was changed to 100 parts by mass.

(比較例3)
六方晶窒化ホウ素粉末の配合量を1250質量部に変更した以外は、比較例1と同様にして放熱シートを得た。
(Comparative Example 3)
A heat radiating sheet was obtained in the same manner as in Comparative Example 1 except that the blending amount of the hexagonal boron nitride powder was changed to 1250 parts by mass.

(比較例4)
貫通孔を有するアルミニウム箔の貫通孔径を0.15mmに変更した以外は、実施例6と同様にして放熱シートを得た。
(Comparative Example 4)
A heat radiating sheet was obtained in the same manner as in Example 6 except that the diameter of the through hole of the aluminum foil having the through hole was changed to 0.15 mm.

(比較例5)
貫通孔を有する銅箔の貫通孔のピッチ間隔を0.90mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(Comparative Example 5)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the pitch interval of the through holes of the copper foil having the through holes was changed to 0.90 mm.

(比較例6)
貫通孔を有する銅箔の貫通孔ピッチ間隔を0.355mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(比較例7)
貫通孔を有する銅箔の貫通孔径を0.15mm、貫通孔ピッチ間隔を0.20mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(比較例8)
貫通孔を有する銅箔の貫通孔径を1.2mm、貫通孔ピッチ間隔を1.5mmに変更した以外は、実施例1と同様にして放熱シートを得た。
(Comparative Example 6)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the pitch of the through holes of the copper foil having through holes was changed to 0.355 mm.
(Comparative Example 7)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the through-hole diameter of the copper foil having through-holes was changed to 0.15 mm and the through-hole pitch interval was changed to 0.20 mm.
(Comparative Example 8)
A heat radiating sheet was obtained in the same manner as in Example 1 except that the through-hole diameter of the copper foil having the through-hole was changed to 1.2 mm and the through-hole pitch interval was changed to 1.5 mm.

試作された実施例1〜13、比較例1〜8の放熱シートを下記の評価項目(1)〜(3)によって行った。結果を表1及び2に示す。
(1)体積抵抗率
JIS K6271に記載の方法に準拠して、体積抵抗率の評価を行なった。
(2)絶縁破壊電圧
JIS K6249に記載の方法に準拠して、絶縁破壊電圧の評価を行なった。
(3)熱伝導率
熱伝導率(H:W/(m・K))は、厚み方向に対して評価を行なった。熱拡散率(A:m2/sec)と密度(B:kg/m3)、比熱容量(C:J/(kg・K))から、H=A×B×Cとして、算出した。熱拡散率は、測定用試料を幅10mm×長さ10mmに加工し、測定用レーザー光の反射防止の為、放熱シートの両面にカーボンブラックを塗布した後、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(「LFA447NanoFlash」NETZSCH社製)を用いた。密度はアルキメデス法を用いて求めた。比熱容量はJIS K 7123:1987に記載の方法に準拠して求めた。
The heat-radiation sheets of Examples 1 to 13 and Comparative Examples 1 to 8 that were prototyped were performed according to the following evaluation items (1) to (3). The results are shown in Tables 1 and 2.
(1) Volume resistivity Volume resistivity was evaluated based on the method described in JIS K6271.
(2) Dielectric breakdown voltage In accordance with the method described in JIS K6249, the dielectric breakdown voltage was evaluated.
(3) Thermal conductivity Thermal conductivity (H: W / (m · K)) was evaluated in the thickness direction. From the thermal diffusivity (A: m 2 / sec), the density (B: kg / m 3 ), and the specific heat capacity (C: J / (kg · K)), it was calculated as H = A × B × C. The thermal diffusivity was determined by a laser flash method after processing a measurement sample into a width of 10 mm and a length of 10 mm and applying carbon black on both sides of the heat dissipation sheet to prevent reflection of the measurement laser beam. A xenon flash analyzer (“LFA447 NanoFlash” manufactured by NETZSCH) was used as a measurement apparatus. The density was determined using the Archimedes method. The specific heat capacity was determined according to the method described in JIS K 7123: 1987.

表1より、シリコーン樹脂成分の合計100質量部に対して、アグリゲート状窒化ホウ素粉末を100〜1,250質量部含有する組成物を銅メッシュ箔の両面に塗布した実施例1〜5の放熱シートは、絶縁破壊電圧は、3.0〜3.8kVと高く、また、体積抵抗率は5.5×1013〜9.4×1014と高く、電気絶縁性に優れ、熱伝導率は、8.0〜11.2W/m・Kと高く放熱性にも優れた放熱シートである。また、貫通孔を有する銅箔から貫通孔を有するアルミニウム箔(実施例6)および貫通孔を有する銀箔(実施例7)に変更した場合でも、電気絶縁性、放熱性ともに優れた放熱シートが得られた。さらに、アグリゲート状窒化ホウ素粉末を鱗片状窒化ホウ素粉末(実施例8)に変更および酸化アルミニウム粉末(実施例9)に変更および一部を酸化亜鉛粉末(実施例10)に置換した場合でも、電気絶縁性、放熱性ともに優れた放熱シートが得られた。また、貫通孔径を0.35mmから0.25mmに変更(実施例11)および貫通孔のピッチ間隔を0.45mmから0.60mm(実施例12)または0.40mm(実施例13)に変更した場合でも、電気絶縁性、放熱性ともに優れた放熱シートが得られた。 From Table 1, the heat dissipation of Examples 1-5 which apply | coated the composition containing 100-1250 mass parts of aggregated boron nitride powder on both surfaces of a copper mesh foil with respect to a total of 100 mass parts of a silicone resin component. The sheet has a high dielectric breakdown voltage of 3.0 to 3.8 kV, a high volume resistivity of 5.5 × 10 13 to 9.4 × 10 14 , excellent electrical insulation, and a thermal conductivity of , 8.0 to 11.2 W / m · K, a heat dissipation sheet that is excellent in heat dissipation. Further, even when the copper foil having through holes is changed to the aluminum foil having through holes (Example 6) and the silver foil having the through holes (Example 7), a heat radiating sheet excellent in both electrical insulation and heat dissipation is obtained. It was. Furthermore, even when the aggregated boron nitride powder was changed to scaly boron nitride powder (Example 8) and changed to aluminum oxide powder (Example 9) and partially replaced with zinc oxide powder (Example 10), A heat-dissipating sheet with excellent electrical insulation and heat dissipation was obtained. Further, the through hole diameter was changed from 0.35 mm to 0.25 mm (Example 11), and the pitch interval of the through holes was changed from 0.45 mm to 0.60 mm (Example 12) or 0.40 mm (Example 13). Even in this case, a heat radiating sheet having excellent electrical insulation and heat radiating properties was obtained.

これに対して、貫通孔の孔径0.35mm、ピッチ間隔0.45mm、開口率55%の銅箔ではなく、貫通孔の孔径0.15mm、ピッチ間隔0.45mm、開口率10%の銅箔を使用した表2記載の比較例1〜3では、熱伝導率は8.2〜11.2W/m・Kと同等であるが、絶縁破壊電圧は1.9〜2.3kVと低下するとともに、体積抵抗率は、1.1×1010〜9.0×1010に低下し電気絶縁性が悪く、好ましくない。また、貫通孔の孔径0.15mm、ピッチ間隔0.45mm、開口率10%アルミニウム箔を使用した表2記載の比較例4の場合でも、放熱性は同等であるが、電気絶縁性は低下した。また、貫通孔ピッチ間隔0.45mmではなく、貫通孔ピッチ間隔0.90mmの銅箔を使用した表2記載の比較例5の場合でも、放熱性は同等であるが、電気絶縁性は低下した。また、貫通孔のピッチ間隔を0.45mmではなく、0.355mmを使用した表2記載の比較例6の場合でも、電気絶縁性は同等であるが、熱伝導率は低下した。また、貫通孔の孔径0.15mm、ピッチ間隔0.2mm、開口率51%銅箔を使用した表2記載の比較例7の場合でも、放熱性は同等であるが、電気絶縁性は低下した。また、貫通孔の孔径1.2mm、ピッチ間隔1.5mm、開口率58%銅箔を使用した表2記載の比較例8の場合でも、放熱性は同等であるが、電気絶縁性は低下した。 On the other hand, not a copper foil having a hole diameter of 0.35 mm, a pitch interval of 0.45 mm, and an aperture ratio of 55%, but a copper foil having a hole diameter of through holes of 0.15 mm, a pitch interval of 0.45 mm, and an aperture ratio of 10%. In Comparative Examples 1 to 3 described in Table 2 using the thermal conductivity, the thermal conductivity is equivalent to 8.2 to 11.2 W / m · K, but the dielectric breakdown voltage decreases to 1.9 to 2.3 kV. The volume resistivity decreases to 1.1 × 10 10 to 9.0 × 10 10 and the electrical insulation is poor, which is not preferable. Further, even in the case of Comparative Example 4 shown in Table 2 using an aluminum foil having a hole diameter of 0.15 mm, a pitch interval of 0.45 mm, and an aperture ratio of 10%, the heat dissipation performance is the same, but the electrical insulation property is reduced. . Further, even in the case of Comparative Example 5 shown in Table 2 using a copper foil having a through-hole pitch interval of 0.90 mm instead of a through-hole pitch interval of 0.45 mm, the heat dissipation was the same, but the electrical insulation property was lowered. . Further, even in the case of Comparative Example 6 shown in Table 2 in which the pitch interval of the through holes was not 0.45 mm but 0.355 mm, the electrical insulation was equivalent, but the thermal conductivity was lowered. Further, even in the case of Comparative Example 7 shown in Table 2 using a copper foil having a hole diameter of 0.15 mm, a pitch interval of 0.2 mm, and an aperture ratio of 51%, the heat dissipation performance was the same, but the electrical insulation property was lowered. . Further, even in the case of Comparative Example 8 shown in Table 2 using a copper foil having a hole diameter of 1.2 mm, a pitch interval of 1.5 mm, and an opening ratio of 58%, the heat dissipation performance is the same, but the electrical insulation property is reduced. .

本発明の放熱シートは、高い放熱性と優れた電気絶縁性を有することから、急速に高性能化が進み作動温度が高まる電子部品から熱を効率よく放出させるためのTIM(Thermal Interface Material)などに使用できる。   Since the heat-dissipating sheet of the present invention has high heat dissipation and excellent electrical insulation, TIM (Thermal Interface Material) for efficiently releasing heat from electronic components whose performance is rapidly increasing and operating temperature is increased. Can be used for

Claims (8)

貫通孔を有する金属箔の両面に、熱伝導性充填材を含有するシリコーン樹脂組成物が積層されており、当該貫通孔を有する金属箔は、各貫通孔径が0.2mm以上、各貫通孔ピッチ間隔が0.7mm以下、開口率が20〜80%、厚みが0.001〜0.3mmである放熱シート。   A silicone resin composition containing a thermally conductive filler is laminated on both surfaces of a metal foil having a through-hole, and the metal foil having the through-hole has a diameter of each through-hole of 0.2 mm or more and a pitch of each through-hole. A heat dissipation sheet having an interval of 0.7 mm or less, an aperture ratio of 20 to 80%, and a thickness of 0.001 to 0.3 mm. 貫通孔へのシリコーン樹脂組成物の充填率が85%以上である請求項1に記載の放熱シート。   The heat dissipation sheet according to claim 1, wherein a filling rate of the silicone resin composition into the through holes is 85% or more. 前記熱伝導性充填材は窒化ホウ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末、窒化ケイ素粉末、酸化ケイ素粉末、酸化亜鉛粉末から選ばれる単体であるか、又はこれらの熱伝導性充填材の一種以上を混合した材料とする請求項1又は2に記載の放熱シート。   The thermally conductive filler is a simple substance selected from boron nitride powder, aluminum nitride powder, aluminum oxide powder, silicon nitride powder, silicon oxide powder, zinc oxide powder, or one or more of these thermally conductive fillers. The heat dissipating sheet according to claim 1 or 2, which is a mixed material. 前記窒化ホウ素粉末は窒化ホウ素の鱗片状の一次粒子が配向せずに集合してなるアグリゲート状である請求項3に記載の放熱シート。   The heat dissipation sheet according to claim 3, wherein the boron nitride powder has an aggregate shape in which flaky primary particles of boron nitride are aggregated without being oriented. シリコーン樹脂組成物は、シリコーン樹脂成分の合計100質量部に対して、六方晶窒化ホウ素粉末を20〜1,300質量部含有する請求項1〜4のいずれか一項に記載の放熱シート。   The heat dissipation sheet according to any one of claims 1 to 4, wherein the silicone resin composition contains 20 to 1,300 parts by mass of hexagonal boron nitride powder with respect to a total of 100 parts by mass of the silicone resin component. 前記貫通孔を有する金属箔が、銅、アルミニウム、銀、モリブテン、パラジウム、錫、鉛、ニッケル、金、鉄、亜鉛、タンタル、ニオブ、ジルコニウム、イリジウム、白金よりなる群から選択される金属の単体であるか、又はこれらの金属の一種以上を含む合金を材料とする請求項1〜5のいずれか一項に記載の放熱シート。   The metal foil having the through-hole is a simple metal selected from the group consisting of copper, aluminum, silver, molybdenum, palladium, tin, lead, nickel, gold, iron, zinc, tantalum, niobium, zirconium, iridium, and platinum. The heat dissipation sheet according to any one of claims 1 to 5, wherein the material is an alloy containing one or more of these metals. 前記放熱シートの厚み方向に対する熱伝導率が、7W/m・K以上である請求項1〜6のいずれか一項に記載の放熱シート。   The thermal conductivity with respect to the thickness direction of the said heat radiating sheet is 7 W / m * K or more, The heat radiating sheet as described in any one of Claims 1-6. 前記放熱シートの体積抵抗率が、1012Ω・cm以上である請求項1〜7のいずれか一項に記載の放熱シート。 The heat radiation sheet according to any one of claims 1 to 7, wherein the heat radiation sheet has a volume resistivity of 10 12 Ω · cm or more.
JP2015222523A 2015-11-12 2015-11-12 High thermal conductivity, high insulation heat dissipation sheet Active JP6650736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015222523A JP6650736B2 (en) 2015-11-12 2015-11-12 High thermal conductivity, high insulation heat dissipation sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015222523A JP6650736B2 (en) 2015-11-12 2015-11-12 High thermal conductivity, high insulation heat dissipation sheet

Publications (2)

Publication Number Publication Date
JP2017092322A true JP2017092322A (en) 2017-05-25
JP6650736B2 JP6650736B2 (en) 2020-02-19

Family

ID=58771088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015222523A Active JP6650736B2 (en) 2015-11-12 2015-11-12 High thermal conductivity, high insulation heat dissipation sheet

Country Status (1)

Country Link
JP (1) JP6650736B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176201A (en) * 2019-04-18 2020-10-29 信越化学工業株式会社 Heat-conductive resin composition and heat-conductive resin cured product
CN113045856A (en) * 2019-12-28 2021-06-29 广东生益科技股份有限公司 Bonding sheet, preparation method thereof and metal-clad laminate comprising bonding sheet
WO2021251494A1 (en) * 2020-06-12 2021-12-16 デンカ株式会社 Heat-conductive resin composition and heat dissipation sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235968A (en) * 2004-02-19 2005-09-02 Toshiba Corp Adhesion high heat conductive resin sheet and electronic equipment using the same
JP2012056818A (en) * 2010-09-10 2012-03-22 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder and high heat conductivity and high moisture resistance heat radiation sheet using the same
JP2015149476A (en) * 2014-01-10 2015-08-20 日立化成株式会社 Heat conduction member and electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235968A (en) * 2004-02-19 2005-09-02 Toshiba Corp Adhesion high heat conductive resin sheet and electronic equipment using the same
JP2012056818A (en) * 2010-09-10 2012-03-22 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder and high heat conductivity and high moisture resistance heat radiation sheet using the same
JP2015149476A (en) * 2014-01-10 2015-08-20 日立化成株式会社 Heat conduction member and electronic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176201A (en) * 2019-04-18 2020-10-29 信越化学工業株式会社 Heat-conductive resin composition and heat-conductive resin cured product
CN113045856A (en) * 2019-12-28 2021-06-29 广东生益科技股份有限公司 Bonding sheet, preparation method thereof and metal-clad laminate comprising bonding sheet
CN113045856B (en) * 2019-12-28 2023-04-07 广东生益科技股份有限公司 Bonding sheet, preparation method thereof and metal-clad laminate comprising bonding sheet
WO2021251494A1 (en) * 2020-06-12 2021-12-16 デンカ株式会社 Heat-conductive resin composition and heat dissipation sheet
CN115698187A (en) * 2020-06-12 2023-02-03 电化株式会社 Thermally conductive resin composition and heat sink

Also Published As

Publication number Publication date
JP6650736B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP5322894B2 (en) Insulating heat conductive sheet manufacturing method, insulating heat conductive sheet and heat radiation member
JP7389014B2 (en) insulation heat dissipation sheet
JP6068733B2 (en) Thermally conductive resin molded product
JP7092676B2 (en) Heat dissipation sheet, manufacturing method of heat dissipation sheet and laminated body
JP6657616B2 (en) Thermal conductive sheet, cured product of thermal conductive sheet, and semiconductor device
JP2009049062A (en) Method of manufacturing substrate for metal base circuit, and substrate for metal base circuit
JPWO2018061447A1 (en) Heat dissipation sheet with high load carrying capacity and high thermal conductivity
JP2009066817A (en) Thermally-conductive sheet
JP6650736B2 (en) High thermal conductivity, high insulation heat dissipation sheet
WO2018235920A1 (en) Resin material, method for producing resin material, and laminate
WO2021022055A9 (en) Thermal interface materials
JP2015189884A (en) Thermosetting resin composition, resin sheet, prepreg and laminate sheet
JP2017028128A (en) Substrate for power module, circuit board for power module, and power module
TWI780200B (en) Heat sink with high thermal conductivity and high insulation
JP3981090B2 (en) Manufacturing method of electronic device
JP2018134779A (en) Multilayer resin sheet, method for producing multilayer resin sheet, multilayer resin sheet cured product, multilayer resin sheet laminate, and multilayer resin sheet laminate cured product
JP2019089957A (en) Resin composition and laminate
JP7328941B2 (en) Graphite laminates, graphite plates, and methods of making graphite laminates
JP6340220B2 (en) Thermally conductive sheet for semiconductor module and semiconductor module
JP2007084704A (en) Resin composition and circuit board and package using the same
JP6750284B2 (en) Metal base circuit board
JP2017028130A (en) Substrate for power module, circuit board for power module, and power module
JP2017001310A (en) Anodic oxide film excellent in thermal conductivity and laminated structure
JP2017028129A (en) Substrate for power module, circuit board for power module, and power module
JPWO2020194867A1 (en) Heat dissipation sheet precursor and heat dissipation sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R150 Certificate of patent or registration of utility model

Ref document number: 6650736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250