JP2012056818A - Hexagonal boron nitride powder and high heat conductivity and high moisture resistance heat radiation sheet using the same - Google Patents

Hexagonal boron nitride powder and high heat conductivity and high moisture resistance heat radiation sheet using the same Download PDF

Info

Publication number
JP2012056818A
JP2012056818A JP2010203634A JP2010203634A JP2012056818A JP 2012056818 A JP2012056818 A JP 2012056818A JP 2010203634 A JP2010203634 A JP 2010203634A JP 2010203634 A JP2010203634 A JP 2010203634A JP 2012056818 A JP2012056818 A JP 2012056818A
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
nitride powder
powder
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010203634A
Other languages
Japanese (ja)
Other versions
JP5530318B2 (en
Inventor
Hiroshi Yokota
博 横田
Masahide Kaneko
政秀 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010203634A priority Critical patent/JP5530318B2/en
Publication of JP2012056818A publication Critical patent/JP2012056818A/en
Application granted granted Critical
Publication of JP5530318B2 publication Critical patent/JP5530318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiation sheet excellent in heat conductivity and moisture resistance, and a hexagonal boron nitride powder used in the heat radiation sheet.SOLUTION: The hexagonal boron nitride powder has been subjected to a surface modification treatment with a silane coupling agent having an organic functional group containing a vinyl group, and has an aggregate shape formed by aggregating scale-like primary particles of hexagonal boron nitride having a methanol-soluble BOcontent of 0.01-0.10% without orientation. The high heat conductivity and high moisture resistance heat radiation sheet is prepared by formulating the hexagonal boron nitride powder into a resin and/or rubber.

Description

本発明は、高熱伝導フィラーに好適な鱗片状窒化ホウ素の一次粒子が配向せずに集合してなるアグリゲート状の六方晶窒化ホウ素粉末、及びその用途に関する。   The present invention relates to an aggregated hexagonal boron nitride powder in which primary particles of scaly boron nitride suitable for a high thermal conductive filler are aggregated without being oriented, and uses thereof.

六方晶窒化ホウ素粉末は、白色粉末で黒鉛と同じ六方晶系の層状構造を有し、高熱伝導性、潤滑性、電気絶縁性などに優れた特性を有することから、電子材料分野において、窒化ホウ素粉末が配合された樹脂・ゴム組成物は、電子部品から発生する熱を効率よく放出させるための絶縁放熱シートとして使用されている。   Hexagonal boron nitride powder is a white powder that has the same hexagonal layered structure as graphite and has excellent properties such as high thermal conductivity, lubricity, and electrical insulation. A resin / rubber composition containing a powder is used as an insulating heat dissipation sheet for efficiently releasing heat generated from an electronic component.

しかし、従来の窒化ホウ素粉末を使用した絶縁放熱シートは電気絶縁性が不十分であり、特に湿度の高い場合に吸湿導電が生じるという問題があった。
そこで、上記の問題を解決するために、窒化ホウ素粉末を「アミノ基及びメルカプト基から選ばれる基を含有する有機基を有するシランカップリング剤で表面改質処理」することが提案されている(特許文献1参照)。
However, the insulating heat-radiating sheet using the conventional boron nitride powder has insufficient electrical insulation, and has a problem that moisture-conducting conduction occurs particularly when the humidity is high.
Therefore, in order to solve the above problem, it has been proposed that the boron nitride powder is “surface-modified with a silane coupling agent having an organic group containing a group selected from an amino group and a mercapto group” ( Patent Document 1).

特許文献1に記載された発明においては、表面改質処理により、吸湿後の電気絶縁抵抗は改善されるが、熱抵抗は、表面改質処理しないものと比較して同程度であり、放熱シートに用いる場合、熱伝導性(放熱性)のさらなる改善が望まれていた。
また、特許文献1には、比較例として、ビニル基を含有する有機官能基を有するシランカップリング剤で表面改質処理した窒化ホウ素粉末も示されているが、吸湿後の電気絶縁抵抗は改善されないという結果が報告されている(段落[0025]及び[0026])。
In the invention described in Patent Document 1, the electrical insulation resistance after moisture absorption is improved by the surface modification treatment, but the thermal resistance is comparable to that without the surface modification treatment. In the case of using for the above, further improvement in thermal conductivity (heat dissipation) has been desired.
Patent Document 1 also shows, as a comparative example, boron nitride powder surface-modified with a silane coupling agent having an organic functional group containing a vinyl group, but the electrical insulation resistance after moisture absorption is improved. No results have been reported (paragraphs [0025] and [0026]).

一方、樹脂やゴムに高充填が可能な窒化ホウ素粉末を提供することを目的として、「酸化ホウ素量2.0重量%以下」とした窒化ホウ素粉末が公知であり(特許文献2参照)、特許文献2には、具体的に、酸化ホウ素量を0.1%とすることも示されている(段落[0037]表2)が、放熱シートとするために、この窒化ホウ素粉末をシランカップリング剤で表面改質処理して樹脂やゴムに配合することは示されていない。   On the other hand, for the purpose of providing a boron nitride powder that can be highly filled into a resin or rubber, a boron nitride powder having a “boron oxide content of 2.0 wt% or less” is known (see Patent Document 2). Reference 2 specifically shows that the amount of boron oxide is 0.1% (paragraph [0037] Table 2). In order to obtain a heat dissipation sheet, this boron nitride powder was silane coupled. It is not shown that it is surface-modified with an agent and blended into resin or rubber.

また、「平均粒径が5〜25μm、エタノール可溶の酸化硼素含有量が1質量%以下(0%を含む)である窒化硼素粉末」が公知であり(特許文献3参照)、特許文献3には、具体的に、エタノール可溶の酸化硼素含有量が0.04%の窒化硼素粉末も示されている(段落[0027]表1)が、この窒化硼素粉末を樹脂やゴムに配合して、放熱シートとすることは示されていない。   Further, “boron nitride powder having an average particle diameter of 5 to 25 μm and an ethanol-soluble boron oxide content of 1% by mass or less (including 0%)” is known (see Patent Document 3). Specifically, boron nitride powder having an ethanol-soluble boron oxide content of 0.04% is also shown (paragraph [0027] Table 1). This boron nitride powder is blended with resin or rubber. It is not shown to be a heat dissipation sheet.

特許文献4には、六方晶窒化ホウ素の鱗片状の一次粒子同士が結合剤を含有することなく配向せずに集合してなるアグリゲート状の六方晶窒化ホウ素粉末が示され、この窒化ホウ素粉末をシリコーンゴムに配合して絶縁放熱シートとすることも示されているが、この窒化ホウ素粉末をシランカップリング剤で表面改質処理すること、シートの吸湿後の電気絶縁抵抗を改善することについては記載がなく、また、2000℃で焼成後の六方晶窒化ホウ素粉末のB23量についても記載されていない。 Patent Document 4 discloses an aggregated hexagonal boron nitride powder in which flaky primary particles of hexagonal boron nitride do not contain a binder and are assembled without being oriented, and this boron nitride powder It is also shown that an insulating heat-dissipating sheet is blended with silicone rubber, but this boron nitride powder is surface-modified with a silane coupling agent, and the electrical insulation resistance after moisture absorption of the sheet is improved. Is not described, and the amount of B 2 O 3 of the hexagonal boron nitride powder after firing at 2000 ° C. is not described.

特許第4070345号公報Japanese Patent No. 4070345 特開2000−7310号公報JP 2000-7310 A 特開2006−124203号公報JP 2006-124203 A 特許第3461651号公報Japanese Patent No. 3461651

本発明は、上記のような従来技術に鑑み、熱伝導性と耐湿性に優れた放熱シートを提供すること、その放熱シートに用いる六方晶窒化ホウ素粉末を提供することを課題とする。   In view of the prior art as described above, an object of the present invention is to provide a heat radiating sheet excellent in thermal conductivity and moisture resistance, and to provide a hexagonal boron nitride powder used for the heat radiating sheet.

上記の課題を解決するために、本発明においては、以下の手段を採用する。
(1)ビニル基を含有する有機官能基を有するシランカップリング剤で表面改質処理を行った六方晶窒化ホウ素粉末であって、メタノール可溶性B23量が0.01〜0.10%である六方晶窒化ホウ素の鱗片状の一次粒子が配向せずに集合してなることを特徴とするアグリゲート状の六方晶窒化ホウ素粉末である。
(2)前記(1)の六方晶窒化ホウ素粉末を樹脂及び/又はゴムに配合してなることを特徴とする高熱伝導性、高耐湿性放熱シートである。
(3)前記樹脂及び/又はゴムがシリコーンであることを特徴とする前記(2)の高熱伝導性、高耐湿性放熱シートである。
In order to solve the above problems, the following means are adopted in the present invention.
(1) A hexagonal boron nitride powder which has been surface-modified with a silane coupling agent having an organic functional group containing a vinyl group, and the amount of methanol-soluble B 2 O 3 is 0.01 to 0.10% This is an aggregated hexagonal boron nitride powder characterized in that the flaky primary particles of hexagonal boron nitride are aggregated without being oriented.
(2) A high heat conductivity and high moisture resistance heat radiation sheet, wherein the hexagonal boron nitride powder of (1) is blended with a resin and / or rubber.
(3) The high thermal conductivity and high moisture resistance heat radiation sheet according to (2), wherein the resin and / or rubber is silicone.

本発明の六方晶窒化ホウ素粉末を用いた放熱シートは、熱伝導性と耐湿性に優れているという効果を奏する。   The heat radiating sheet using the hexagonal boron nitride powder of the present invention has an effect of being excellent in thermal conductivity and moisture resistance.

本発明において、アグリゲート状の六方晶窒化ホウ素粉末(以下、「hBN」という)は、特許文献4に開示された方法で作製することができる。   In the present invention, aggregated hexagonal boron nitride powder (hereinafter referred to as “hBN”) can be produced by the method disclosed in Patent Document 4.

まず、原料としては、特許文献4に記載されているように、ほう酸とメラミンの混合物を適度の水蒸気を含む雰囲気下で保持して形成させたほう酸メラミン(C366・2H3BO3)粒子又はそれを含む混合物を用いる。 First, as described in Patent Document 4, as a raw material, melamine borate (C 3 N 6 H 6 .2H 3 BO formed by holding a mixture of boric acid and melamine in an atmosphere containing appropriate water vapor is used. 3 ) Use particles or a mixture containing them.

次に、ほう酸メラミン粒子又はそれを含む混合物を、常法の結晶化触媒を用いて結晶化させる。本発明で使用される結晶化触媒は、安価でありしかも焼成の過程で触媒能力が変化しにくいものが好適である。その例をあげれば、ほう酸、アルカリ金属又はアルカリ土類金属のほう酸塩、ほう酸と反応してアルカリ金属又はアルカリ土類金属のほう酸塩を形成し得るアルカリ金属又はアルカリ土類金属の化合物である。より具体的には、アルカリ金属又はアルカリ土類金属のほう酸塩としては、無水ほう砂(Na247)、ほう酸カルシウム(χCaO・B23〔但し、χ=0.5〜3〕)など、ほう酸と反応してアルカリ金属又はアルカリ土類金属のほう酸塩を形成し得るアルカリ金属又はアルカリ土類金属の化合物としては、炭酸ナトリウム(Na2CO3)、炭酸カルシウム(CaCO3)などである。 Next, melamine borate particles or a mixture containing the same is crystallized using a conventional crystallization catalyst. As the crystallization catalyst used in the present invention, a catalyst which is inexpensive and hardly changes its catalytic ability during the firing process is suitable. Examples thereof include boric acid, alkali metal or alkaline earth metal borates, and alkali metal or alkaline earth metal compounds that can react with boric acid to form alkali metal or alkaline earth metal borates. More specifically, alkali metal or alkaline earth metal borates include anhydrous borax (Na 2 B 4 O 7 ), calcium borate (χCaO · B 2 O 3, where χ = 0.5-3 ] Or the like, and alkali metal or alkaline earth metal compounds that can react with boric acid to form an alkali metal or alkaline earth metal borate include sodium carbonate (Na 2 CO 3 ) and calcium carbonate (CaCO 3 ). Etc.

結晶化触媒の添加時期としては、原料混合時、ほう酸メラミンを形成させた段階、更には仮焼を行う場合は非晶質BN又はGI値2.5を越える低結晶性hBNを形成させた後の段階のいずれであっても良いが、仮焼を行う場合は仮焼の前後において添加することもできる。   The crystallization catalyst is added at the stage where melamine borate is formed at the time of raw material mixing, and further, after calcination, amorphous BN or low crystalline hBN exceeding GI value 2.5 is formed. Any of these stages may be used, but when calcination is performed, it may be added before or after calcination.

結晶化触媒の使用量は、原料混合時に添加する場合は、ほう酸メラミン(C366・2H3BO3)と、結晶化触媒のB23換算とのモル比(C366・2H3BO3/B23)が5〜100になる量である。また、原料を仮焼して非晶質BN又はGI値2.5を越える低結晶性hBNとした後に添加する場合は、hBNの窒素(N)と結晶化触媒のB23換算とのモル比(N/B23)が10〜300になる量である。モル比が上記よりも大きい(触媒量が少ない)と生成するhBN粉末が低結晶性となり、また小さい(触媒量が多い)と生成するhBN粉末が鱗片状の粒子となってアグリゲート状に集合しなくなる。 The amount of crystallization catalyst used is the molar ratio of melamine borate (C 3 N 6 H 6 .2H 3 BO 3 ) to the B 2 O 3 equivalent of the crystallization catalyst (C 3 N 6 H 6 .2H 3 BO 3 / B 2 O 3 ) is an amount that makes 5 to 100. In addition, when the raw material is calcined to form amorphous BN or low crystalline hBN exceeding the GI value of 2.5, the nitrogen (N) of hBN and the B 2 O 3 equivalent of the crystallization catalyst The molar ratio (N / B 2 O 3 ) is 10 to 300. When the molar ratio is larger than the above (the amount of catalyst is small), the generated hBN powder has low crystallinity, and when the molar ratio is small (the amount of catalyst is large), the generated hBN powder is aggregated in the form of scaly particles. No longer.

焼成は、ほう酸メラミン粒子又はそれを含む混合物と結晶化触媒を混合し、それを非酸化性ガス雰囲気下、温度1800〜2200℃で行うか、又はほう酸メラミン粒子又はそれを含む混合物をあらかじめ非酸化性ガス雰囲気下、温度500℃以上1700℃未満で仮焼して非晶質BN又はGI値が2.5を越えるhBNとした後に結晶化触媒を添加し、非酸化性ガス雰囲気下、温度1800〜2200℃で行われる。焼成温度が1800℃未満では、目的とするB23量のhBN粉末が得られにくく、また2200℃を越えるとhBN粉末の分解が顕著となる。非酸化性ガスとしては、窒素ガス、水素ガス、アンモニアガス、メタン、プロパンなどの炭化水素ガス、ヘリウム、アルゴンなどの希ガス、一酸化炭素ガスなどがある。これらのうち、入手しやすく安価でありしかも2000〜2200℃の高温においてはhBNの分解を抑制する効果の大きい窒素ガスが最適である。焼成時間としては1〜24時間特に2〜10時間が好ましい。 The calcination is performed by mixing the melamine borate particles or a mixture containing the crystallization catalyst with the crystallization catalyst in a non-oxidizing gas atmosphere at a temperature of 1800 to 2200 ° C. In an oxidizing gas atmosphere, calcination is performed at a temperature of 500 ° C. or more and less than 1700 ° C. to obtain amorphous BN or hBN having a GI value exceeding 2.5, and then a crystallization catalyst is added. Performed at ~ 2200 ° C. When the firing temperature is less than 1800 ° C., it is difficult to obtain a target hBN powder having an amount of B 2 O 3, and when it exceeds 2200 ° C., the decomposition of the hBN powder becomes remarkable. Non-oxidizing gases include nitrogen gas, hydrogen gas, ammonia gas, hydrocarbon gases such as methane and propane, rare gases such as helium and argon, and carbon monoxide gas. Of these, nitrogen gas is most suitable because it is easily available, inexpensive, and has a large effect of suppressing the decomposition of hBN at high temperatures of 2000 to 2200 ° C. The firing time is preferably 1 to 24 hours, particularly 2 to 10 hours.

本発明においては、上記のようにして、例えば、2000℃で焼成(高純度化処理)するときの時間を変更することにより、目的とするB23量のhBN粉末が得られる。例えば、B23量が0.10%のhBN粉末は2時間焼成で得られ、0.02%のhBN粉末は5時間焼成で得られるというように焼成時間を長くするほどB23量が低減する。 In the present invention, as described above, for example, by changing the time for firing (purification treatment) at 2000 ° C., the desired hBN powder having the amount of B 2 O 3 can be obtained. For example, B 2 O 3 amount is 0.10% of the hBN powder obtained in 2 hours calcination, the longer the sintering time so that 0.02% of the hBN powder is obtained in 5 hours firing B 2 O 3 The amount is reduced.

焼成炉としては、マッフル炉、管状炉、雰囲気炉などのバッチ式炉や、ロータリーキルン、スクリューコンベヤ炉、トンネル炉、ベルト炉、プッシャー炉、竪形連続炉などの連続式炉があげられる。これらは目的に応じて使い分けられ、たとえば多くの品種のhBN粉末を少量ずつ製造するときはバッチ式炉を、一定の品種を多量製造するときは連続式炉が採用される。   Examples of the firing furnace include batch furnaces such as muffle furnaces, tubular furnaces, and atmospheric furnaces, and continuous furnaces such as rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and vertical continuous furnaces. These are properly used according to the purpose. For example, a batch furnace is used when small quantities of many types of hBN powders are produced, and a continuous furnace is adopted when a certain quantity is produced in large quantities.

得られたhBN粉末について、以下に示す測定方法で、hBN粉末中に残存するメタノール可溶性B23の含有量を測定した。
hBN粉末をメタノールに浸漬し、hBN粉末中に残存するBをメタノールと反応させて、メタ硼酸とした。メタノールに浸漬後のhBN粉末を120℃で加熱することによりメタ硼酸を蒸発させ、hBN粉末の質量の減少量から、メタノール可溶性B量を求めた。
1.洗浄乾燥した秤量ビンを乾燥器から取り出し、デシケーターにて冷却する。(1〜1.5時間冷却)
2.秤量ビンにhBN粉末を約5g(A)精秤する。(5.0〜5.5g)
3.電気定温乾燥器で2時間以上乾燥する。
4.乾燥後、秤量ビンを取り出しデシケーター内で冷却後、天秤で質量(B)を測定する。
5.次式により水分を算出する。
水分(%)=[hBN粉末元質量(A)−乾燥後質量(B)]/hBN粉末元質量(A)
6.水分を定量した後の秤量ビン中の試料にメタノールを15ml添加し防爆型乾燥機内で80℃×1.5〜2.0時間メタノールを揮発させる。
7.次に乾燥器の温度を120℃に上げ、120℃で1.5時間乾燥する。(メタノールを完全に揮発させる)。
8.秤量ビンを取り出しデシケーター内で冷却後、秤量(C)する。
9.次式によりメタノール可溶性B23量を算出する。
メタノール可溶性B23量(%)=[hBN粉末乾燥後質量(B)−メタノール揮発後質量(C)]/hBN粉末乾燥後質量(B)
About the obtained hBN powder, the content of methanol-soluble B 2 O 3 remaining in the hBN powder was measured by the measurement method shown below.
The hBN powder was immersed in methanol, and B 2 O 3 remaining in the hBN powder was reacted with methanol to obtain metaboric acid. Metaboric acid was evaporated by heating the hBN powder after being immersed in methanol at 120 ° C., and the amount of methanol-soluble B 2 O 3 was determined from the amount of decrease in the mass of the hBN powder.
1. The washed and dried weighing bottle is taken out of the dryer and cooled with a desiccator. (Cooling for 1 to 1.5 hours)
2. About 5 g (A) of hBN powder is precisely weighed in a weighing bottle. (5.0-5.5g)
3. Dry for 2 hours or more in an electric constant temperature dryer.
4). After drying, the weighing bottle is taken out, cooled in a desiccator, and the mass (B) is measured with a balance.
5. The moisture is calculated by the following formula.
Moisture (%) = [hBN powder source mass (A)-mass after drying (B)] / hBN powder source mass (A)
6). 15 ml of methanol is added to the sample in the weighing bottle after the moisture is determined, and the methanol is volatilized in an explosion-proof dryer at 80 ° C. for 1.5 to 2.0 hours.
7). Next, the temperature of the dryer is raised to 120 ° C., and drying is performed at 120 ° C. for 1.5 hours. (Methanol is volatilized completely).
8). The weighing bottle is taken out, cooled in a desiccator, and weighed (C).
9. The amount of methanol-soluble B 2 O 3 is calculated by the following formula.
Methanol-soluble B 2 O 3 amount (%) = [mass after drying hBN powder (B) −mass after methanol volatilization (C)] / mass after drying hBN powder (B)

上記のようにして測定されたメタノール可溶性B23量が0.01〜0.10%の範囲にあるアグリゲート状のhBN粉末を、ビニル基を含有する有機官能基を有するシランカップリング剤で表面改質処理した場合、このhBN粉末を樹脂及び/又はゴムに配合してなる放熱シートは、熱抵抗が低く高熱伝導性であると共に、吸湿後の絶縁抵抗が顕著に向上し耐吸湿性が改善されることを知見して本発明に到達した。
hBN粉末のメタノール可溶性B23量が0.01未満であると、熱抵抗が高くなり熱伝導性が低下する。また、メタノール可溶性B23量が0.10%を超えると熱伝導性が低下すると共に、耐吸湿性も低下する。したがって、本発明において、hBN粉末のメタノール可溶性B23量は、0.01〜0.10%とする。メタノール可溶性B23量は、0.03〜0.06%であることが好ましい。
また、メタノール可溶性B23量が本発明の範囲内にあっても、アグリゲート状でない鱗片状のhBN粉末では、熱抵抗が高くなり熱伝導性が低下する。
A silane coupling agent having an organic functional group containing a vinyl group from an aggregated hBN powder having a methanol-soluble B 2 O 3 content in the range of 0.01 to 0.10% measured as described above. When heat-treating the surface, the heat-dissipating sheet obtained by blending this hBN powder with resin and / or rubber has a low thermal resistance and high thermal conductivity, and the insulation resistance after moisture absorption is significantly improved, resulting in moisture absorption resistance. As a result, the present invention has been achieved.
When the amount of methanol-soluble B 2 O 3 in the hBN powder is less than 0.01, the thermal resistance increases and the thermal conductivity decreases. On the other hand, when the amount of methanol-soluble B 2 O 3 exceeds 0.10%, the thermal conductivity is lowered and the moisture absorption resistance is also lowered. Therefore, in the present invention, the amount of methanol-soluble B 2 O 3 in the hBN powder is set to 0.01 to 0.10%. The amount of methanol-soluble B 2 O 3 is preferably 0.03 to 0.06%.
Moreover, even if the amount of methanol-soluble B 2 O 3 is within the scope of the present invention, the scale-like hBN powder that is not aggregated has a high thermal resistance and a low thermal conductivity.

本発明においては、メタノール可溶性B23量が0.01〜0.10%の範囲にあるhBN粉末を、ビニル基を含有する有機官能基を有するシランカップリング剤で表面改質処理を行うことが重要である。
ビニル基を含有する有機官能基を有するシランカップリング剤としては、ビニルトリス(メトキシエトキシ)シラン、ビニルメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリクロルシランなどを使用することができる。
ビニル基を含有する有機官能基を有するシランカップリング剤は、hBNに対して0.03〜10質量%添加することが好ましい。
In the present invention, hBN powder having an amount of methanol-soluble B 2 O 3 in the range of 0.01 to 0.10% is surface-modified with a silane coupling agent having an organic functional group containing a vinyl group. This is very important.
As the silane coupling agent having an organic functional group containing a vinyl group, vinyltris (methoxyethoxy) silane, vinylmethoxysilane, vinylmethyldimethoxysilane, vinyltrichlorosilane, and the like can be used.
It is preferable to add 0.03-10 mass% of silane coupling agents which have an organic functional group containing a vinyl group with respect to hBN.

後述する比較例にあるように、メタノール可溶性B23量が0.01〜0.10%の範囲にあるhBN粉末を使用しても、ビニル基の代わりにジメチル基を含有するシランカップリング剤で表面改質処理した場合には、耐吸湿性が低下し、また、エポキシ基やメタクリル基やアミノ基を含有するシランカップリング剤で表面改質処理した場合には、耐吸湿性は向上するが、熱伝導性が低下するので好ましくない。 Silane coupling containing dimethyl group instead of vinyl group even when hBN powder having a methanol-soluble B 2 O 3 content in the range of 0.01 to 0.10% is used, as shown in a comparative example described later. Hygroscopicity is reduced when surface modification is performed with an agent, and moisture absorption is improved when surface modification is performed with a silane coupling agent containing an epoxy group, methacryl group or amino group. However, it is not preferable because the thermal conductivity is lowered.

hBN粉末をシランカップリング剤で表面改質処理する方法としては、後述する実施例にあるように、hBN粉末を、樹脂及び/又はゴムに配合する際に、トルエンなどの溶剤と共にシランカップリング剤を同時に混合する方法を採用することが好ましい。また、常法によりhBN粉末を予めシランカップリング剤で処理しておき、これを樹脂及び/又はゴムに配合してもよい。   As a method of surface-modifying the hBN powder with a silane coupling agent, as shown in the examples described later, when the hBN powder is blended with a resin and / or rubber, a silane coupling agent together with a solvent such as toluene. It is preferable to employ a method of mixing the two simultaneously. Alternatively, the hBN powder may be previously treated with a silane coupling agent by a conventional method, and this may be blended with the resin and / or rubber.

本発明において、ビニル基を含有する有機官能基を有するシランカップリング剤で表面改質処理を行ったhBN粉末が配合される樹脂及び/又はゴムとしては、シリコーン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリカーボネート樹脂、シリコーンゴム、ポリスチレンゴムなどを採用できるが、シリコーン樹脂又はシリコーンゴムが好ましい。
樹脂及び/又はゴムに対するhBNの配合割合は、138〜163体積%とすることが好ましい。
In the present invention, as the resin and / or rubber in which hBN powder subjected to surface modification treatment with a silane coupling agent having an organic functional group containing a vinyl group is blended, silicone resin, epoxy resin, polyamide resin, polycarbonate Resin, silicone rubber, polystyrene rubber and the like can be used, but silicone resin or silicone rubber is preferable.
The blending ratio of hBN with respect to the resin and / or rubber is preferably 138 to 163% by volume.

(実施例1)
3BO31kgとメラミン0.87kgをリボンブレンダーで混合し、それを恒温恒湿機を用い、大気中で温度80℃、相対湿度80%の水蒸気を含む雰囲気下に24時間保持した。得られた混合物は指で軽く押さえると容易に解砕できる程度に集合しており、SEM観察によれば、ほう酸メラミンの針状結晶の一次粒子が集合した粒子を含む混合物であることが確認された。
Example 1
1 kg of H 3 BO 3 and 0.87 kg of melamine were mixed with a ribbon blender, and this was kept in an atmosphere containing water vapor at a temperature of 80 ° C. and a relative humidity of 80% in the atmosphere for 24 hours using a thermo-hygrostat. The obtained mixture is aggregated to such an extent that it can be easily crushed when pressed lightly with a finger. According to SEM observation, it is confirmed that the mixture is a mixture containing particles in which primary particles of melamine borate crystals are aggregated. It was.

これをスクリューコンベヤ炉を用い、アンモニア雰囲気中、温度800℃の加熱部を2時間で通過するように連続的に仮焼した。得られた仮焼物を粉末X線回折分析を行ったところ、非晶質BNであることが確認された。   This was calcined continuously using a screw conveyor furnace in an ammonia atmosphere so as to pass through a heating section at a temperature of 800 ° C. in 2 hours. When the obtained calcined product was subjected to powder X-ray diffraction analysis, it was confirmed to be amorphous BN.

次いで、仮焼物に結晶化触媒として炭酸カルシウム(CaCO3)9質量%を内割り添加し、雰囲気炉を用いて窒素雰囲気中、2000℃で8時間焼成した。焼成後の試料を150μm以下に粉砕し、粉末X線回折測定を行ったところ、hBNとほう酸カルシウム(3CaO・B2 3 )の混合物であることが確認された。これを希硝酸水溶液と混合・濾過・乾燥してほう酸カルシウムを除去してSEM写真を観察したところ、鱗片状の一次粒子が配向せずに集合してなるアグリゲート状のhBN粉末であることが確認された。
得られたhBN粉末について、上記のようにしてメタノール可溶性B23量を測定したところ、0.010%であった。
Next, 9% by mass of calcium carbonate (CaCO 3 ) was internally added as a crystallization catalyst to the calcined product, and calcined at 2000 ° C. for 8 hours in a nitrogen atmosphere using an atmosphere furnace. When the fired sample was pulverized to 150 μm or less and subjected to powder X-ray diffraction measurement, it was confirmed to be a mixture of hBN and calcium borate (3CaO · B 2 O 3 ). This was mixed with a dilute nitric acid solution, filtered, and dried to remove calcium borate and the SEM photograph was observed. confirmed.
With respect to the obtained hBN powder, the amount of methanol-soluble B 2 O 3 was measured as described above, and it was 0.010%.

ジメチルシリコーン重合体100質量部、上記のhBN粉末346質量部、hBN粉末の表面処理剤としてビニルトリス(メトキシエトキシ)シラン(東レ・ダウコーニング(株)製Z-6172)3質量部、水0.4質量部、架橋剤として2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン1質量部を、502質量部のトルエンに分散して攪拌機で15時間混合し、シリコーンゴム組成物を調整した。hBN粉末の表面改質処理は、シリコーン重合体やトルエンとともに混合するときに同時に行われる。   100 parts by mass of a dimethyl silicone polymer, 346 parts by mass of the above hBN powder, 3 parts by mass of vinyltris (methoxyethoxy) silane (Z-6172 manufactured by Toray Dow Corning Co., Ltd.) as a surface treatment agent for hBN powder, and water 0.4 1 part by weight of 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as a crosslinking agent is dispersed in 502 parts by weight of toluene and mixed with a stirrer for 15 hours to obtain a silicone rubber composition. Adjusted. The surface modification treatment of the hBN powder is performed simultaneously with mixing with the silicone polymer and toluene.

上記のシリコーンゴム組成物を厚さ0.03mmのガラス繊維クロス(ユニチカ(株)製H-12)の両面にドクターブレードで厚さ0.6mmにコーティングした後、75℃で5分乾燥させて、温度150℃、圧力160kg/cm条件で25分間のプレス加熱加圧を行って0.3mmのシートとした。次いでそれを常圧150℃で4時間の2次加熱を行い、放熱シートとした。 The above silicone rubber composition was coated on both surfaces of a 0.03 mm thick glass fiber cloth (H-12 manufactured by Unitika Co., Ltd.) with a doctor blade to a thickness of 0.6 mm, and then dried at 75 ° C. for 5 minutes. Then, press heating and pressing were performed for 25 minutes under conditions of a temperature of 150 ° C. and a pressure of 160 kg / cm 2 to form a 0.3 mm sheet. Next, it was subjected to secondary heating for 4 hours at a normal pressure of 150 ° C. to obtain a heat radiating sheet.

(実施例2)
2000℃での焼成時間を4.5時間に変更した以外は、実施例1と同様にしてhBN粉末を得た。
得られたhBN粉末について、上記のようにしてメタノール可溶性B23量を測定したところ、0.030%であった。このhBN粉末を使用して、実施例1と同様にして放熱シートを試作した。
(Example 2)
An hBN powder was obtained in the same manner as in Example 1 except that the firing time at 2000 ° C. was changed to 4.5 hours.
With respect to the obtained hBN powder, the amount of methanol-soluble B 2 O 3 was measured as described above, and it was 0.030%. Using this hBN powder, a heat radiating sheet was prototyped in the same manner as in Example 1.

(実施例3)
2000℃での焼成時間を4時間に変更した以外は、実施例1と同様にしてhBN粉末を得た。
得られたhBN粉末について、上記のようにしてメタノール可溶性B23量を測定したところ、0.040%であった。このhBN粉末を使用して、実施例1と同様にして放熱シートを試作した。
Example 3
An hBN powder was obtained in the same manner as in Example 1 except that the firing time at 2000 ° C. was changed to 4 hours.
With respect to the obtained hBN powder, the amount of methanol-soluble B 2 O 3 was measured as described above, and it was 0.040%. Using this hBN powder, a heat radiating sheet was prototyped in the same manner as in Example 1.

(実施例4)
2000℃での焼成時間を3時間に変更した以外は、実施例1と同様にしてhBN粉末を得た。
得られたhBN粉末について、上記のようにしてメタノール可溶性B23量を測定したところ、0.060%であった。このhBN粉末を使用して、実施例1と同様にして放熱シートを試作した。
Example 4
An hBN powder was obtained in the same manner as in Example 1 except that the firing time at 2000 ° C. was changed to 3 hours.
With respect to the obtained hBN powder, the amount of methanol-soluble B 2 O 3 was measured as described above, and it was 0.060%. Using this hBN powder, a heat radiating sheet was prototyped in the same manner as in Example 1.

(実施例5)
2000℃での焼成時間を2時間に変更した以外は、実施例1と同様にしてhBN粉末を得た。
得られたhBN粉末について、上記のようにしてメタノール可溶性B23量を測定したところ、0.100%であった。このhBN粉末を使用して、実施例1と同様にして放熱シートを試作した。
(Example 5)
An hBN powder was obtained in the same manner as in Example 1 except that the firing time at 2000 ° C. was changed to 2 hours.
With respect to the obtained hBN powder, the amount of methanol-soluble B 2 O 3 was measured as described above, and it was 0.100%. Using this hBN powder, a heat radiating sheet was prototyped in the same manner as in Example 1.

(比較例1)
hBN粉末として鱗片状(電気化学工業製(株)SGPグレード)の形態のものを使用した以外は、実施例1と同様にして放熱シートを試作した。
(Comparative Example 1)
A heat radiating sheet was produced in the same manner as in Example 1 except that the hBN powder was in the form of scales (SGP grade, manufactured by Denki Kagaku Kogyo Co., Ltd.).

(比較例2)
hBN粉末の表面処理剤を添加しなかった以外は、実施例1と同様にして放熱シートを試作した。
(Comparative Example 2)
A heat radiating sheet was prototyped in the same manner as in Example 1 except that the surface treatment agent for hBN powder was not added.

(比較例3)
2000℃での焼成時間を22時間に変更した以外は、実施例1と同様にしてhBN粉末を得た。
得られたhBN粉末について、上記のようにしてメタノール可溶性B23量を測定したところ、0.005%であった。このhBN粉末を使用して、実施例1と同様にして放熱シートを試作した。
(Comparative Example 3)
An hBN powder was obtained in the same manner as in Example 1 except that the firing time at 2000 ° C. was changed to 22 hours.
With respect to the obtained hBN powder, the amount of methanol-soluble B 2 O 3 was measured as described above, and it was 0.005%. Using this hBN powder, a heat radiating sheet was prototyped in the same manner as in Example 1.

(比較例4)
2000℃での焼成時間を1時間に変更した以外は、実施例1と同様にしてhBN粉末を得た。
得られたhBN粉末について、上記のようにしてメタノール可溶性B23量を測定したところ、0.130%であった。このhBN粉末を使用して、実施例1と同様にして放熱シートを試作した。
(Comparative Example 4)
An hBN powder was obtained in the same manner as in Example 1 except that the firing time at 2000 ° C. was changed to 1 hour.
With respect to the obtained hBN powder, the amount of methanol-soluble B 2 O 3 was measured as described above, and it was 0.130%. Using this hBN powder, a heat radiating sheet was prototyped in the same manner as in Example 1.

(比較例5)
hBN粉末の表面処理剤としてジメチルジメトキシシラン(東レ・ダウコーニング(株)製AY)を使用した以外は、実施例1と同様にして放熱シートを試作した。
(Comparative Example 5)
A heat radiating sheet was produced in the same manner as in Example 1 except that dimethyldimethoxysilane (AY manufactured by Toray Dow Corning Co., Ltd.) was used as the surface treatment agent for the hBN powder.

(比較例6)
hBN粉末の表面処理剤として3−グリシドキシプロピルトリメキシシラン(MOMENTIVE(株)製A187)を使用した以外は、実施例1と同様にして放熱シートを試作した。
(Comparative Example 6)
A heat radiating sheet was produced in the same manner as in Example 1 except that 3-glycidoxypropyltrimexisilane (A187 manufactured by MOMENTIVE Co., Ltd.) was used as the surface treatment agent for hBN powder.

(比較例7)
hBN粉末の表面処理剤として3−メタクロキシプロピルトリメトキシシラン(MOMENTIVE(株)製A174)を使用した以外は、実施例1と同様にして放熱シートを試作した。
(Comparative Example 7)
A heat radiating sheet was produced in the same manner as in Example 1 except that 3-methacryloxypropyltrimethoxysilane (A174 manufactured by MOMENTIVE Co., Ltd.) was used as the surface treatment agent for the hBN powder.

(比較例8)
hBN粉末の表面処理剤としてγ−アミノプロピルトリエトキシシラン(MOMENTIVE(株)製TSL8331)を使用した以外は、実施例1と同様にして放熱シートを試作した。
(Comparative Example 8)
A heat radiating sheet was produced in the same manner as in Example 1 except that γ-aminopropyltriethoxysilane (TSL8331 manufactured by MOMENTIVE Co., Ltd.) was used as the surface treatment agent for hBN powder.

試作された実施例1〜5、比較例1〜8の放熱シートの絶縁性評価は、以下のようにして行った。シートをTO−3型トランジスターと銅板との間に挟み5kgf・cmで取り付けたものを使用して熱抵抗を測定した。更にシートをアルミニウム板と銅ニッケルメッキ板55×70mm板との間に挟み、M5のネジを使用してトルク7
kgf・cmで取り付けたものを温度85℃、相対湿度85%の条件で5時間吸湿させ、その雰囲気下で吸湿後の電気抵抗を測定した。測定結果を表1に示す。
The insulation evaluation of the heat-radiation sheets of Examples 1 to 5 and Comparative Examples 1 to 8 manufactured as prototypes was performed as follows. The thermal resistance was measured using a sheet sandwiched between a TO-3 type transistor and a copper plate and attached at 5 kgf · cm. Furthermore, the sheet is sandwiched between an aluminum plate and a copper nickel plated plate 55 × 70 mm plate, and torque 7 using M5 screws.
The one attached with kgf · cm was absorbed for 5 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 85%, and the electrical resistance after moisture absorption was measured in that atmosphere. The measurement results are shown in Table 1.

Figure 2012056818
Figure 2012056818

表1より、メタノール可溶性B23量が0.01〜0.10%であるhBNの鱗片状の一次粒子が配向せずに集合してなるアグリゲート状のhBN粉末を使用し、ビニル基を含有する有機官能基を有するシランカップリング剤で表面改質処理を行った実施例1〜5のものは、熱抵抗は、0.12〜0.16℃/Wと低く、熱伝導性に優れ、吸湿後の電気抵抗は、3.0×10〜4.7×1010Ωと高く、耐湿性に優れていることが分かる。
特に、メタノール可溶性B23量が0.03〜0.06%であるアグリゲート状のhBN粉末を使用すると、熱抵抗は、0.12〜0.13℃/Wと顕著に低くなり、吸湿後の電気抵抗は、2.4×1010〜4.7×1010Ωと顕著に高くなり、熱伝導性、耐湿性に極めて優れた放熱シートが得られる。
From Table 1, an aggregated hBN powder formed by aggregation of hBN scaly primary particles having an amount of methanol-soluble B 2 O 3 of 0.01 to 0.10% without orientation is used. In Examples 1 to 5 in which the surface modification treatment was performed with a silane coupling agent having an organic functional group containing N, the thermal resistance was as low as 0.12 to 0.16 ° C./W, and the thermal conductivity was low. It can be seen that the electrical resistance after moisture absorption is as high as 3.0 × 10 9 to 4.7 × 10 10 Ω, and the moisture resistance is excellent.
In particular, when an aggregated hBN powder having an amount of methanol-soluble B 2 O 3 of 0.03 to 0.06% is used, the thermal resistance is remarkably reduced to 0.12 to 0.13 ° C./W, The electrical resistance after moisture absorption is remarkably high at 2.4 × 10 10 to 4.7 × 10 10 Ω, and a heat dissipation sheet having excellent heat conductivity and moisture resistance can be obtained.

これに対して、メタノール可溶性B23量が0.01未満であるhBN粉末を使用した比較例3では、熱抵抗が0.17℃/Wと高くなり熱伝導性が低下する。また、メタノール可溶性B23量が0.10%を超えるhBN粉末を使用した比較例4では、熱抵抗が0.17℃/Wと高くなり熱伝導性が低下すると共に、吸湿後の電気抵抗も2.4×10Ωと低くなり耐吸湿性も低下する。
また、メタノール可溶性B23量が0.02%であっても、アグリゲート状でない鱗片状のhBN粉末を使用した比較例1では、熱抵抗が0.23℃/Wと高くなり熱伝導性が低下する。
On the other hand, in Comparative Example 3 using the hBN powder having an amount of methanol-soluble B 2 O 3 of less than 0.01, the thermal resistance is increased to 0.17 ° C./W and the thermal conductivity is lowered. In Comparative Example 4 using hBN powder having an amount of methanol-soluble B 2 O 3 exceeding 0.10%, the thermal resistance is increased to 0.17 ° C./W, the thermal conductivity is lowered, and the electric power after moisture absorption is reduced. The resistance is lowered to 2.4 × 10 7 Ω, and the moisture absorption resistance is also lowered.
Further, even when the amount of methanol-soluble B 2 O 3 is 0.02%, in Comparative Example 1 using scale-like hBN powder that is not aggregated, the thermal resistance is as high as 0.23 ° C./W, and heat conduction is increased. Sex is reduced.

メタノール可溶性B23量が0.01%の実施例1と同じhBN粉末を使用しても、ジメチル基を含有するシランカップリング剤で表面改質処理した場合には、吸湿後の電気抵抗が2.4×10Ωと低くなり耐吸湿性が低下し、また、エポキシ基やメタクリル基やアミノ基を含有するシランカップリング剤で表面改質処理した場合には、耐吸湿性は向上するが、熱抵抗が0.22〜0.27℃/Wと高くなり熱伝導性が低下する。 Even when the same hBN powder as in Example 1 having a methanol-soluble B 2 O 3 content of 0.01% was used, when the surface modification treatment was performed with a silane coupling agent containing a dimethyl group, the electrical resistance after moisture absorption Is reduced to 2.4 × 10 7 Ω, resulting in a decrease in moisture absorption resistance. Also, when surface modification is performed with a silane coupling agent containing an epoxy group, a methacryl group or an amino group, the moisture absorption resistance is improved. However, the thermal resistance is increased to 0.22 to 0.27 ° C./W, and the thermal conductivity is lowered.

本発明の六方晶窒化ホウ素粉末を使用することにより、放熱シートは、高熱伝導性、高耐湿性のものになるから、電子部品から発生する熱を効率よく放出させるための絶縁放熱シートなどに利用できる。   By using the hexagonal boron nitride powder of the present invention, the heat radiating sheet becomes highly heat-conductive and highly moisture-resistant, so it can be used as an insulating heat-radiating sheet for efficiently releasing heat generated from electronic components. it can.

Claims (3)

ビニル基を含有する有機官能基を有するシランカップリング剤で表面改質処理を行った六方晶窒化ホウ素粉末であって、メタノール可溶性B23量が0.01〜0.10%である六方晶窒化ホウ素の鱗片状の一次粒子が配向せずに集合してなることを特徴とするアグリゲート状の六方晶窒化ホウ素粉末。 A hexagonal boron nitride powder which has been surface-modified with a silane coupling agent having an organic functional group containing a vinyl group, wherein the amount of methanol-soluble B 2 O 3 is 0.01 to 0.10%. Aggregated hexagonal boron nitride powder, characterized by aggregation of crystalline boron nitride scaly primary particles without orientation. 請求項1に記載の六方晶窒化ホウ素粉末を樹脂及び/又はゴムに配合してなることを特徴とする高熱伝導性、高耐湿性放熱シート。   A high thermal conductivity, high moisture resistance heat-radiating sheet comprising the hexagonal boron nitride powder according to claim 1 in a resin and / or rubber. 前記樹脂及び/又はゴムがシリコーンであることを特徴とする請求項2に記載の高熱伝導性、高耐湿性放熱シート。   The heat- and heat-resistant heat-dissipating sheet according to claim 2, wherein the resin and / or rubber is silicone.
JP2010203634A 2010-09-10 2010-09-10 Hexagonal boron nitride powder and high thermal conductivity and high moisture resistance heat dissipation sheet using the same Active JP5530318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203634A JP5530318B2 (en) 2010-09-10 2010-09-10 Hexagonal boron nitride powder and high thermal conductivity and high moisture resistance heat dissipation sheet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203634A JP5530318B2 (en) 2010-09-10 2010-09-10 Hexagonal boron nitride powder and high thermal conductivity and high moisture resistance heat dissipation sheet using the same

Publications (2)

Publication Number Publication Date
JP2012056818A true JP2012056818A (en) 2012-03-22
JP5530318B2 JP5530318B2 (en) 2014-06-25

Family

ID=46054357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203634A Active JP5530318B2 (en) 2010-09-10 2010-09-10 Hexagonal boron nitride powder and high thermal conductivity and high moisture resistance heat dissipation sheet using the same

Country Status (1)

Country Link
JP (1) JP5530318B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171842A (en) * 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk Composite particle of melamine borate and boron nitride, and method for producing boron nitride particle using the same
CN103087556A (en) * 2012-12-31 2013-05-08 东莞市万钧化工新材料科技有限公司 Surface treatment method and application of heat-conducting packing
WO2013065556A1 (en) * 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
JP2015036361A (en) * 2013-08-16 2015-02-23 Dic株式会社 Modified boron nitride, method for producing the same and composition
WO2015134233A1 (en) 2014-03-07 2015-09-11 Dupont Mitsui Fluorochemicals Company, Ltd. High thermal conductivity resin composition
WO2016081673A1 (en) 2014-11-20 2016-05-26 Dupont-Mitsui Fluorochemicals Co. Ltd Melt processible fluoropolymer composition with excellent heat conductivity, molded product manufactured from the composition and manufacturing method
WO2016092951A1 (en) * 2014-12-08 2016-06-16 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
JP2017092322A (en) * 2015-11-12 2017-05-25 デンカ株式会社 High thermal conductivity, high insulation heat dissipation sheet
JP2017170769A (en) * 2016-03-24 2017-09-28 デンカ株式会社 Process for producing high heat conducting roll-like heat dissipation sheet material
JP2018053009A (en) * 2016-09-26 2018-04-05 トヨタ自動車株式会社 Method for producing organic-inorganic composite material including boron nitride particle aggregate
WO2021006310A1 (en) 2019-07-11 2021-01-14 昭和電工株式会社 Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles
WO2021091308A1 (en) * 2019-11-06 2021-05-14 주식회사 아모그린텍 Heat dissipation sheet, method for manufacturing same, and electronic device including same
JP2021102540A (en) * 2019-12-25 2021-07-15 デンカ株式会社 Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
JP2021102542A (en) * 2019-12-25 2021-07-15 デンカ株式会社 Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
WO2022071245A1 (en) * 2020-09-30 2022-04-07 デンカ株式会社 Hexagonal boron nitride powder and method for producing sintered body
JP2022126642A (en) * 2016-09-30 2022-08-30 デンカ株式会社 Heat dissipation sheet having high load resistance and high thermal conductivity
WO2022264326A1 (en) * 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same
WO2022264325A1 (en) * 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551540A (en) * 1991-08-27 1993-03-02 Kawasaki Steel Corp Treatment of boron nitride
JPH0676624A (en) * 1992-08-31 1994-03-18 Shin Etsu Chem Co Ltd Electrically insulating material
JPH07105739A (en) * 1993-10-04 1995-04-21 Shin Etsu Chem Co Ltd Coating agent for insulating radiation sheet and insulating radiation sheet
JPH07215705A (en) * 1994-02-07 1995-08-15 Shin Etsu Chem Co Ltd Boron nitride powder for adding to silicone rubber and silicone rubber product
JPH1126661A (en) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk Radiation spacer
JPH11263670A (en) * 1998-03-16 1999-09-28 Shin Etsu Chem Co Ltd Production of high purity boron nitride molding
JP2000007310A (en) * 1998-06-19 2000-01-11 Denki Kagaku Kogyo Kk Highly filling boron nitride powder
JP3461651B2 (en) * 1996-01-24 2003-10-27 電気化学工業株式会社 Hexagonal boron nitride powder and its use
JP2003531802A (en) * 2000-05-01 2003-10-28 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド Highly exfoliated hexagonal boron nitride powder, process for its production and use
JP2008189488A (en) * 2007-02-02 2008-08-21 Denki Kagaku Kogyo Kk Slurry containing boron nitride

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551540A (en) * 1991-08-27 1993-03-02 Kawasaki Steel Corp Treatment of boron nitride
JPH0676624A (en) * 1992-08-31 1994-03-18 Shin Etsu Chem Co Ltd Electrically insulating material
JPH07105739A (en) * 1993-10-04 1995-04-21 Shin Etsu Chem Co Ltd Coating agent for insulating radiation sheet and insulating radiation sheet
JPH07215705A (en) * 1994-02-07 1995-08-15 Shin Etsu Chem Co Ltd Boron nitride powder for adding to silicone rubber and silicone rubber product
JP3461651B2 (en) * 1996-01-24 2003-10-27 電気化学工業株式会社 Hexagonal boron nitride powder and its use
JPH1126661A (en) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk Radiation spacer
JPH11263670A (en) * 1998-03-16 1999-09-28 Shin Etsu Chem Co Ltd Production of high purity boron nitride molding
JP2000007310A (en) * 1998-06-19 2000-01-11 Denki Kagaku Kogyo Kk Highly filling boron nitride powder
JP2003531802A (en) * 2000-05-01 2003-10-28 サンーゴバン セラミックス アンド プラスティクス,インコーポレイティド Highly exfoliated hexagonal boron nitride powder, process for its production and use
JP2008189488A (en) * 2007-02-02 2008-08-21 Denki Kagaku Kogyo Kk Slurry containing boron nitride

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171842A (en) * 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk Composite particle of melamine borate and boron nitride, and method for producing boron nitride particle using the same
WO2013065556A1 (en) * 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
CN103087556A (en) * 2012-12-31 2013-05-08 东莞市万钧化工新材料科技有限公司 Surface treatment method and application of heat-conducting packing
CN103087556B (en) * 2012-12-31 2014-11-12 东莞市万钧化工新材料科技有限公司 Surface treatment method and application of heat-conducting packing
JP2015036361A (en) * 2013-08-16 2015-02-23 Dic株式会社 Modified boron nitride, method for producing the same and composition
WO2015134233A1 (en) 2014-03-07 2015-09-11 Dupont Mitsui Fluorochemicals Company, Ltd. High thermal conductivity resin composition
WO2016081673A1 (en) 2014-11-20 2016-05-26 Dupont-Mitsui Fluorochemicals Co. Ltd Melt processible fluoropolymer composition with excellent heat conductivity, molded product manufactured from the composition and manufacturing method
WO2016092951A1 (en) * 2014-12-08 2016-06-16 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
JP2017092322A (en) * 2015-11-12 2017-05-25 デンカ株式会社 High thermal conductivity, high insulation heat dissipation sheet
JP2017170769A (en) * 2016-03-24 2017-09-28 デンカ株式会社 Process for producing high heat conducting roll-like heat dissipation sheet material
JP2018053009A (en) * 2016-09-26 2018-04-05 トヨタ自動車株式会社 Method for producing organic-inorganic composite material including boron nitride particle aggregate
JP2022126642A (en) * 2016-09-30 2022-08-30 デンカ株式会社 Heat dissipation sheet having high load resistance and high thermal conductivity
WO2021006310A1 (en) 2019-07-11 2021-01-14 昭和電工株式会社 Method for producing silica-coated boron nitride particles and silica-coated boron nitride particles
WO2021091308A1 (en) * 2019-11-06 2021-05-14 주식회사 아모그린텍 Heat dissipation sheet, method for manufacturing same, and electronic device including same
JP2021102540A (en) * 2019-12-25 2021-07-15 デンカ株式会社 Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
JP2021102542A (en) * 2019-12-25 2021-07-15 デンカ株式会社 Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
JP7372142B2 (en) 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7429532B2 (en) 2019-12-25 2024-02-08 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
WO2022071245A1 (en) * 2020-09-30 2022-04-07 デンカ株式会社 Hexagonal boron nitride powder and method for producing sintered body
JPWO2022071245A1 (en) * 2020-09-30 2022-04-07
WO2022264326A1 (en) * 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same
WO2022264325A1 (en) * 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same

Also Published As

Publication number Publication date
JP5530318B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5530318B2 (en) Hexagonal boron nitride powder and high thermal conductivity and high moisture resistance heat dissipation sheet using the same
JP5673539B2 (en) Method for producing spheroidized boron nitride
JP3461651B2 (en) Hexagonal boron nitride powder and its use
JP6261050B2 (en) Aluminum nitride powder
JP7334763B2 (en) Aluminum nitride-boron nitride composite aggregate particles and method for producing the same
TWI638768B (en) Boron nitride fine particles and manufacturing method thereof
JP6683715B2 (en) Thermally conductive resin composition
JP5645559B2 (en) Spherical aluminum nitride powder
JP6875854B2 (en) Hexagonal Boron Nitride Primary Particle Aggregates and Their Applications
JP6038886B2 (en) Method for producing aluminum nitride powder
JP2012072013A (en) Spherical aluminum nitride powder
US20020146562A1 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
JP5353379B2 (en) Thermosetting resin composition containing anisotropically shaped aluminum nitride filler
CN110099865B (en) Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
WO2020032060A1 (en) Hexagonal boron nitride powder and method for producing hexagonal boron nitride powder
JP5579029B2 (en) Boron nitride powder, method for producing the same, composition containing the same, and heat dissipation material
JPH1059702A (en) Boron nitride and its production
WO2015105145A1 (en) Method for producing hexagonal boron nitride, and heat dissipation sheet
JP3880201B2 (en) Boron nitride powder and method for producing the same
JP2021084814A (en) Surface-treated boron nitride production method, surface-treated boron nitride, resin composition, and cured product
JP7140939B2 (en) Boron nitride powder and method for producing boron nitride powder
CN103215010B (en) Single-component dealcoholized heat-conducting flame retardant fixing glue and preparation method thereof
JP2000169137A (en) Borate particle, production of inorganic powder containing the particle, and its use
JPWO2019244531A1 (en) Manufacturing method of surface-treated aluminum nitride, surface-treated aluminum nitride, resin composition, and cured product
Song et al. Pseudo low-temperature sintering effect and microstructure evolution of SiBCO ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250