WO2013015198A1 - Method for producing organic semiconductor element and vacuum drying device - Google Patents

Method for producing organic semiconductor element and vacuum drying device Download PDF

Info

Publication number
WO2013015198A1
WO2013015198A1 PCT/JP2012/068359 JP2012068359W WO2013015198A1 WO 2013015198 A1 WO2013015198 A1 WO 2013015198A1 JP 2012068359 W JP2012068359 W JP 2012068359W WO 2013015198 A1 WO2013015198 A1 WO 2013015198A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
layer
coating liquid
solvent
organic
Prior art date
Application number
PCT/JP2012/068359
Other languages
French (fr)
Japanese (ja)
Inventor
直井 太郎
田中 洋平
拓也 畠山
Original Assignee
パイオニア株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 三菱化学株式会社 filed Critical パイオニア株式会社
Publication of WO2013015198A1 publication Critical patent/WO2013015198A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a method for manufacturing an organic semiconductor element and a vacuum drying apparatus.
  • an organic electroluminescence (EL) device including a plurality of organic semiconductor layers made of an organic compound having a charge transporting property and including a light emitting layer in the organic semiconductor layer
  • establishment and maintenance of a production method with lower cost is achieved.
  • the use of forming a film by wet coating is increasing.
  • a coating solution such as a resist solution is applied to a transparent substrate such as glass and then dried.
  • a coating process for forming a desired pattern by photolithography or the like there is an increasing use of a coating process for forming a desired pattern by photolithography or the like.
  • Examples of wet coating methods for organic coating solutions for organic semiconductor layers include spin, dip, roll, and ink jet methods.
  • a drying process for drying the coating film on the substrate Before the pattern formation process after coating, it is necessary to execute a drying process for drying the coating film on the substrate. In the drying process, the substrate coated with the coating liquid is heated and dried using an oven or a hot plate.
  • the evaporation rate and the coating film are exhausted to about the vapor pressure at which the evaporation rate of the solvent of the organic semiconductor coating liquid is increased, and thereafter, the evaporation rate is reduced and gradually evaporated. Many of them aim to improve both the flatness and smoothness.
  • a conventional vacuum drying apparatus for example, when forming a light emitting layer of an organic EL element made of a low molecular weight host material and a guest material each having different solubility in a coating solvent, if the light emitting layer is slowly dried in vacuum, a plurality of low molecular weight materials are obtained. There is a problem that a plurality of low molecules cannot be uniformly dispersed in a solid content film in which precipitation starts from molecules that are more likely to precipitate, and the solvent is eliminated after drying. Further, when the exhaust speed for vacuum drying of the coating liquid film is slow, there is a problem that convection is generated on the film and the drying unevenness in the finish cannot be sufficiently suppressed, such as partial drying.
  • the present invention has been made in view of such circumstances, and a method for manufacturing an organic semiconductor element capable of improving the state after drying of an organic film by a wet coating method film forming method and maintaining the luminous efficiency after manufacturing, and
  • An object is to provide a vacuum drying apparatus.
  • the method for producing an organic semiconductor element according to claim 1 is a method for producing an organic semiconductor element having a plurality of organic semiconductor layers laminated on a substrate between a pair of opposing anodes and cathodes.
  • the manufacturing method includes a coating step of forming an organic semiconductor coating liquid film by a wet film-forming method from an organic semiconductor coating liquid containing a solute to be the organic semiconductor layer and a solvent for dispersing the solute, and the organic semiconductor A drying step of drying the coating liquid film in a vacuum chamber; and a baking step of baking the organic semiconductor coating liquid film.
  • This method for producing an organic semiconductor element is characterized in that, in the drying step in the method, the inside of the vacuum chamber is evacuated from an atmospheric pressure to an atmospheric pressure of 60 Pa at an evacuation speed of 0.5 seconds or more and 10 seconds or less.
  • Such a vacuum drying apparatus includes a vacuum chamber that houses a substrate carrying the organic semiconductor coating liquid film in an internal space, an exhaust device that exhausts gas from the internal space of the vacuum chamber to the outside, and controls the exhaust device. And an exhaust controller that exhausts the interior of the vacuum chamber from atmospheric pressure to 60 Pa at an exhaust speed of 0.5 seconds to 10 seconds, and dries the organic semiconductor coating liquid film.
  • the low molecular weight material is uniform. It is possible to form a film dispersed in an amorphous state, and it can be dried as a flat film having a narrow meniscus width without causing aggregation of contained particles and the like, so that the luminous efficiency of the obtained organic EL element can be increased. .
  • an optimal dry state can be automatically realized, for example, it is possible to suppress the occurrence of a defective phenomenon such as an organic semiconductor device that increases due to a residual solvent.
  • the graph (a) which shows the film thickness change of the light emitting layer of the organic EL element after the drying process of the organic EL element manufacturing method of embodiment by this invention,
  • the microscope picture which shows the light emission state of the organic EL element obtained by the said method ( It is a top view (b) which shows the light emission state of c) and the said organic EL element.
  • the graph (a) which shows the film thickness change of the light emitting layer of the organic EL element after the drying process of the organic EL element manufacturing method for a comparison
  • the microscope picture (c) which shows the light emission state of the organic EL element obtained by the said method It is a top view (b) which shows the light emission state of the said organic EL element.
  • an example of the organic EL element of the present embodiment includes a transparent anode 2, a hole injection layer 3, a hole transport layer 4, and a light emitting layer 5 in this order on a transparent substrate 1 such as glass.
  • a hole blocking layer 6, an electron transport layer 7, an electron injection layer 8, and a cathode 9 made of a metal are laminated.
  • the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole blocking layer 6, and the electron transport layer 7 are organic semiconductor layers.
  • a plurality of organic semiconductor layers stacked between a pair of opposing anodes and cathodes are formed as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, Includes an electron injection layer.
  • Components such as the organic semiconductor layer will be described later.
  • the anode 2 / hole injection layer 3 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole transport layer 4 and hole blocking layer 6 are omitted, although not shown,
  • the anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3 and hole blocking layer 6 are omitted, and although not shown, the anode 2 A configuration in which the hole injection layer 3, the hole transport layer 4, and the hole blocking layer 6 of / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / is omitted is also included in the present invention.
  • the present invention is not limited to these stacked structures, and includes a structure including at least a light-emitting layer or a charge transport layer that can also be used.
  • a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used.
  • a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the anode 2 that supplies holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate binder resin solution is used.
  • the anode can also be formed by dispersing and coating the substrate.
  • a conductive polymer a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
  • the anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
  • the surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
  • a material used for the cathode 9 for supplying electrons to the layers up to the light emitting layer a material used for the anode can be used.
  • a metal having a low work function is preferable.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the material of the cathode 9 only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the thickness of the cathode is usually the same as that of the anode.
  • a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the material and film thickness are selected so as to be transparent or translucent.
  • the hole injection layer 3 is preferably a layer containing an electron accepting compound.
  • the film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the hole injection layer is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the material for forming the hole injection layer is usually mixed with an appropriate solvent (a solvent for the hole injection layer) to form a composition for film formation (hole An injection layer forming composition) is prepared, and this hole injection layer forming composition is coated on the anode by an appropriate technique to form a film and dried to form a hole injection layer.
  • an appropriate solvent a solvent for the hole injection layer
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • a solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene
  • ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. Can be mentioned.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic EL element
  • a polymer or the like may be a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
  • hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, and tertiary amines linked by fluorene groups.
  • Examples thereof include compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
  • the hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more.
  • the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds.
  • an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably contains an electron-accepting compound, and may further contain other components in addition to the hole-transporting compound and the electron-accepting compound.
  • other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents.
  • only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
  • the material of the hole transport layer 4 may be any material that has been conventionally used as a constituent material of the hole transport layer.
  • the hole transport layer is exemplified as the hole transport compound used in the above-described hole injection layer. Things.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • the material for the hole transport layer 4 include polyarylene derivatives described in JP-A-2008-98619.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, followed by drying after the wet film formation.
  • the hole transporting layer forming composition contains a solvent.
  • the solvent used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
  • the hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
  • the film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the hole transport layer 4 may be a layer containing a polymer obtained by crosslinking an amine-based crosslinking compound.
  • the light emitting layer 5 contains at least a material having a light emitting property (light emitting material) as a constituent material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron transport.
  • a light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material.
  • the light-emitting material There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used.
  • any known material can be applied as the light emitting material.
  • a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferred from the viewpoint of internal quantum efficiency.
  • blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
  • fluorescent light emitting materials blue fluorescent dyes
  • examples of fluorescent light emitting materials that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • fluorescent light-emitting material green fluorescent dye
  • examples of the fluorescent light-emitting material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of the fluorescent light emitting material that emits yellow light include rubrene and perimidone derivatives.
  • red fluorescent dyes examples include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
  • a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium (Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenylpyridine).
  • the molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably.
  • the range is 400 or more. If the molecular weight of the light-emitting material is too small, the heat resistance is significantly reduced, gas is generated, the film quality is deteriorated when the film is formed, or the morphology of the organic EL element is changed due to migration or the like. There is a case to do. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
  • any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the ratio of the light emitting material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced.
  • when using together 2 or more types of luminescent material it is made for the total content of these to be contained in the said range.
  • the component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material. Therefore, at least two kinds of solid contents (host material and guest material) to be the light emitting layer can be prepared by being dispersed or dissolved in a solvent as a solute in the light emitting layer coating liquid.
  • the light emitting layer may contain a hole transporting compound as a constituent material.
  • a hole transporting compound examples include various compounds exemplified as the hole transporting compound in the hole injection layer 3 described above, for example, Two or more condensed aromatic rings containing two or more tertiary amines represented by 4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl ( ⁇ -NPD) are attached to the nitrogen atom.
  • Aromatic amine compounds having a starburst structure such as substituted aromatic diamines (Japanese Patent Laid-open No. Hei 5-234681), 4,4 ′, 4 ′′ -tris (1-naphthylphenylamino) triphenylamine) 1997, Vol.72-74, pp.985), aromatic amine compounds consisting of tetramers of triphenylamine (Chemical Communications, 1996, pp.2175), 2,2 ′, 7,7′-tetrakis- ( Diphenylamino) Examples include spiro compounds such as -9,9'-spirobifluorene (Synthetic Metals, 1997, Vol. 91, pp. 209).
  • a hole transportable compound in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9H-carbazol-9-yl) biphenyl (CBP), etc.
  • BND 2,5-bis (1-naphthyl) -1,3,4-
  • the proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer is preferably formed in the bank partition region, particularly by an ink jet method.
  • the light emitting layer material is dissolved in an appropriate solvent to prepare a light emitting layer forming composition, and a film is formed using the composition.
  • any solvent can be used as long as the light emitting layer can be formed.
  • Suitable examples of the solvent for the light emitting layer are the same as those described for the composition for forming a hole injection layer.
  • the ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less.
  • the obtained coating film is dried and the solvent is removed to form a light emitting layer.
  • the light emitting layer is similar to the coating method described in the formation of the hole injection layer, but is preferably formed by a wet film forming method from the viewpoint of reducing dark spots.
  • the film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer.
  • the hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
  • the physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive.
  • Examples of the material of the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (4-phenolato) aluminum (PAlq) and bis (2-methyl-8-quinolinolato) (tri Mixed ligand complexes such as phenylsilanolato) aluminum (SAlq), bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, etc.
  • Stylyl compounds such as metal complexes and distyrylbiphenyl derivatives (Japanese Patent Laid-Open No. 11-242996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4- Triazole derivatives such as triazole (JP-A-7-41759), phenanthroyl such as bathocuproine (BCP) And the like derivatives (JP-A-10-79297). Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-positions described in International Publication No. 2005-022962 are also preferable as the material for the hole blocking layer.
  • the film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • Electron transport layer * The electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the device, and can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from compounds.
  • the electron transporting compound used for the electron transport layer usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility can be efficiently transported.
  • the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline such as Alq3 (Japanese Patent Laid-Open No.
  • quinoxaline Compound JP-A-6-207169
  • phenanthroline derivative JP-A-5-331459
  • n-type hydrogenated amorphous Silicon carbide n-type sulfur Zinc, such as n-type zinc selenide.
  • the formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode into the light emitting layer.
  • the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
  • an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, and the like, it is possible to improve the electron injection / transport property and achieve excellent film quality.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • an example of a method for manufacturing an organic EL element according to this embodiment includes a bank plate-making process (S1) for patterning an insulating layer, that is, a bank to define a light emitting area of each organic EL element.
  • S1 bank plate-making process
  • a wet film-forming method such as an inkjet process
  • a coating step (S2) for forming a predetermined coating liquid film a drying step (S3) for drying the coating liquid film in a vacuum chamber of a vacuum drying apparatus, and a firing step (sintering the dried predetermined coating liquid film) S4).
  • the coating process (S2), the drying process (S3), and the baking process (S4) are repeated for each organic semiconductor layer to form a plurality of layers.
  • the hole blocking layer, the electron transport layer, the electron injection layer, and the cathode of the organic EL element can be sequentially formed in the formation step (S5) using a vapor deposition process.
  • the deposition process (S5) is also repeated for each layer to form a plurality of layers.
  • the bank plate making process (S1), the coating process (S2), the drying process (S3), the firing process (S4), and the vapor deposition process (S5) will be described later.
  • a transparent substrate 1 such as glass in which an anode 2 is formed in a predetermined pattern in advance and washed as shown in FIG. 3 is prepared.
  • a partition bank is formed on the pattern of the substrate 1 and the anode 2.
  • the bank formation method is preferably formed by photolithography, and the bank is formed by forming a photosensitive composition on the substrate 1, exposing and developing.
  • a residue of the photosensitive composition remains in the area partitioned by the bank, it may affect light emission when the organic EL device is formed. Therefore, before forming the photosensitive composition, Then, after forming a hydrophilic compound-containing composition on the substrate 1 to form an undercoat layer, a photosensitive composition is formed thereon, exposed and developed.
  • an undercoat layer B1 is formed on the entire surface of the substrate 1 and the anode 2, and a photosensitive composition is applied on the entire surface of the undercoat layer and dried to thereby form a bank resist.
  • Layer B2 is formed.
  • the bank pattern is exposed using an exposure mask, and the non-exposed portion is removed together with the undercoat layer by development processing to form a bank.
  • the bank pattern may be a stripe, a cross-girder shape or a ladder shape.
  • the bank pitch is generally about 100 ⁇ m to 1000 ⁇ m.
  • the layer formed of the photosensitive composition before exposure and development is referred to as a bank resist layer
  • the bank resist layer cured by exposure and development to form a bank is referred to as a resin layer.
  • the bank BK has a laminated structure of an undercoat layer B1 formed of a hydrophilic compound-containing composition and a resin layer B3 formed of a photosensitive composition.
  • the hydrophilic compound-containing composition is a hydrophilic compound containing a photosensitive composition (so-called negative photoresist) that is polymerized or cured after exposure and obtains insoluble or hardly soluble properties in the developer in the subsequent development process. It may be a compound-containing composition, or a photosensitive composition (so-called positive photoresist) containing a composition in which an exposed portion changes due to light exposure and acquires a readily soluble property in a developing solution in a subsequent development step. ) -Containing hydrophilic compound-containing composition. In particular, an inorganic negative photosensitive composition may be employed. When the undercoat layer has photosensitivity, the bank resist layer and its photosensitive type (negative type or positive type) are usually matched.
  • a hydrophilic compound is a compound that dissolves or swells in water.
  • a compound having a functional group such as a carboxy group, a hydroxyl group, a sulfonic acid (salt) group, a phosphonic acid (salt) group, an amino group, an amide group, or a quaternary ammonium base in the molecule is preferable.
  • the hydrophilic compound is preferably an organic compound, and is preferably a hydrophilic resin in order to ensure resistance.
  • the hydrophilic resin is a resin having the above functional group, and usually refers to a resin obtained by polymerizing or condensing a unit (monomer or polymer) containing the above functional group, and has a weight average molecular weight (Mw). ) Refers to a polymer material having about 1000 to 2,000,000.
  • hydrophilic resins include polyvinyl alcohol, polysaccharides, polyvinyl pyrrolidone, polyethylene glycol, gelatin, glue, casein, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, hydroxyethyl starch, sucrose octaacetate, ammonium alginate, sodium alginate, polyvinyl Amine, polyallylamine, polystyrene sulfonic acid, polyacrylic acid, water-soluble polyamide, maleic anhydride copolymer, gum arabic, water-soluble soybean polysaccharide, white dextrin, pullulan, curdlan, chitosan, alginic acid, enzymatically degraded etherified dextrin
  • (co) polymer (co) polymerized using a hydrophilic monomer, and the like can be mentioned.
  • the hydrophilic compound-containing composition may contain one kind of these hydrophilic compounds or may contain two or more kinds.
  • the hydrophilic compound is preferably contained in the total solid content of the hydrophilic compound-containing composition in an amount of preferably 10% by weight or more, more preferably 20% by weight or more and 100% by weight or less.
  • the hydrophilic compound-containing composition according to the present embodiment may contain other components as necessary in addition to the hydrophilic compound.
  • the solvent contained in the hydrophilic compound-containing composition is not particularly limited as long as the solid content of the hydrophilic compound-containing composition can be dissolved or dispersed and enables uniform coating.
  • Water and / or alcohol solvents Is preferably used.
  • the solvent contained in the hydrophilic compound-containing composition may be only one selected from water, alcohol solvents, and other solvents, or may be a mixed solvent of two or more.
  • the total solid concentration in the hydrophilic compound-containing composition is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, preferably 10% by weight or less, more preferably 5% by weight or less. is there.
  • a wet film forming method may be mentioned. Further, as a drying method after film formation, a method of drying using a hot plate, a clean oven, an IR oven, or a convection oven is preferable.
  • the drying temperature is usually 40 ° C. or higher, preferably 50 ° C. or higher, usually 200 ° C. or lower, preferably 130 ° C. or lower.
  • the drying time is preferably 15 seconds or more, preferably 30 seconds or more, preferably 5 minutes or less, and preferably 3 minutes or less.
  • the thickness of the undercoat layer obtained after drying is preferably 1/3 or less of the completed bank height including the undercoat layer, particularly preferably 1/4 or less, and 1/200 or more. It is particularly preferable that the ratio is 1/50 or more.
  • the specific thickness of the undercoat layer is preferably 5 nm or more, more preferably 7 nm or more, particularly preferably 10 nm or more, preferably 4 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less. If the thickness of the undercoat layer is less than this lower limit, the effect of the undercoat layer is difficult to obtain, and if it exceeds the upper limit, the organic semiconductor coating film is hardly formed uniformly in the region partitioned by the bank. Further, when the undercoat layer is not photosensitive, it is difficult to hold the upper bank resist layer.
  • the photosensitive composition is made of a material that can be patterned by exposure and development using, for example, photosensitive polyimide or novolac resin.
  • the photosensitive composition usually contains an ethylenically unsaturated compound, a photopolymerization initiator and a solvent, and preferably further contains a binder resin, a crosslinking agent, a surface modifier, a liquid repellent component, and the like.
  • a coloring agent, a coating property improving agent, an ultraviolet absorber, a polymerization inhibitor, an antioxidant, a silane coupling agent, an epoxy compound, other resins, and the like can be appropriately blended.
  • the liquid repellent component is a component having a property of repelling the coating liquid for forming the organic semiconductor coating film formed in the region partitioned by the bank.
  • the bank of the coating liquid is included.
  • the contact angle with respect to is 20 °, more preferably 30 ° or more, and particularly preferably 45 ° or more.
  • the liquid repellent component may be any component having an effect of imparting liquid repellency to the bank, and includes a fluorine-containing compound and a silicon-containing compound, and a fluorine-containing compound is preferable.
  • plasma treatment with a reactive gas such as CF 4 may be performed after the bank is formed.
  • Examples of the coating method for applying the photosensitive composition on the undercoat layer to form the bank resist layer include the above-described wet film forming method.
  • the coating amount of the photosensitive composition is, as a dry film thickness, the height of the bank including the undercoat layer is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 1 ⁇ m or more, usually 10 ⁇ m or less, preferably 9 ⁇ m or less. More preferably, the amount is such that the film thickness is 7 ⁇ m or less. At this time, it is assumed that the dry film thickness or the height of the finally formed bank is uniform over the entire area of the substrate.
  • this coating liquid can be supplied into the bank partition region by an ink discharge type such as an ink jet method (droplet discharge method) or a nozzle print method (liquid flow discharge method).
  • an ink discharge type such as an ink jet method (droplet discharge method) or a nozzle print method (liquid flow discharge method).
  • a coating method is preferable, and an inkjet method is particularly preferable.
  • a solvent of the coating solution used in the ink jet method it is generally known to prevent nozzle drying and clogging by adding a relatively large amount of a high-boiling solvent component. It is preferable to select an optimal solvent in consideration.
  • the organic semiconductor coating liquid at least two kinds of solid contents (for example, a low-molecular host material and a guest material to be a light emitting layer) may be dispersed and dissolved as a solute.
  • the concentration of the solid content of the predetermined coating solution in the coating step is preferably 0.1% by weight to 10% by weight, and more preferably 3% by weight to 10% by weight. If the concentration of the solid content is below this lower limit, the amount of evaporation of the solvent increases, which is inconvenient for vacuum drying. If the concentration exceeds the upper limit, nozzle drying and clogging are likely to occur.
  • the solid content of the predetermined coating solution in the coating step is preferably a low molecular weight compound having a molecular weight of 100 or more and 10,000 or less.
  • the solvent of the predetermined coating solution is a solvent having a vapor pressure at room temperature of 1 Pa to 70 Pa from the above-mentioned solvent (used in the composition for forming a hole injection layer), such as ketone solvents and esters shown in Table 1 below. It is preferable to select from a system solvent, a halogen-free aromatic solvent, and the like. This is because if the vapor pressure of the solvent deviates from the lower limit and the upper limit, it becomes inconvenient for vacuum drying.
  • the solvent for the predetermined coating solution is preferably selected from those having the normal boiling point of 200 ° C. to 300 ° C. from the same solvent. If the standard boiling point of the solvent is below this lower limit, nozzle drying and clogging are likely to occur, and if it exceeds the upper limit, it is inconvenient for vacuum drying.
  • FIG. 6 is a schematic configuration diagram showing a cross section of the vacuum drying apparatus of the embodiment.
  • the 6 includes a vacuum chamber 11, a vacuum gauge 12 connected to the vacuum chamber 11 via a pipe, a vacuum pump 14 connected to an exhaust port of the vacuum chamber 11 via a pipe 13,
  • the proportional control valve 15 is provided in the vacuum chamber 11 and the vacuum pump 14 to adjust the exhaust speed
  • the exhaust control unit 16 is electrically connected to the vacuum gauge 12 and the proportional control valve 15.
  • the exhaust control unit 16 controls the exhaust speed of the proportional control valve 15.
  • the vacuum chamber 11 is configured such that a bottom portion 11a and a lid portion 11b are airtightly detachably joined via an O-ring 11c, and an exhaust port is formed on the bottom portion 11a side.
  • a stage 17 is provided on the exhaust port of the bottom portion 11a inside the vacuum chamber, and the stage 17 is supported on the bottom portion 11a at a predetermined distance via a plurality of support legs 18.
  • coated is mounted on the bottom 11a side of the vacuum chamber 11.
  • a second proportional control valve 19 on a pipe connected to the intake port is provided and communicated with the atmosphere via a filter (not shown).
  • the second proportional control valve 19 is subjected to intake air control by an electrically connected exhaust control unit 16. During the exhaust operation, the second proportional control valve 19 is closed.
  • the exhaust port provided in the bottom 11a of the vacuum chamber 11 is connected to a vacuum pump 14 via a pipe 13, and the gas in the vacuum chamber 11 is exhausted to the outside via the vacuum pump 14 from this exhaust port.
  • the inside of the chamber 11 can be in a predetermined vacuum state.
  • the exhaust port may be formed at a position where the gas can be uniformly exhausted in the vacuum chamber 11, and the number and position thereof are not limited.
  • the vacuum pump 14 can be a dry pump or a rotary pump. In the present embodiment, the vacuum pump 14 is capable of exhibiting an exhaust speed capable of reducing the pressure in the vacuum chamber 11 from the atmosphere to 60 Pa within 10 seconds, preferably within 0.5 seconds.
  • the vacuum pump 14 of the vacuum drying apparatus determines the maximum exhaust speed, and the exhaust speed is controlled by the proportional control valve 15 provided in the preceding stage. That is, the exhaust control unit 16 performs control to exhaust the gas around the predetermined coating liquid film in the vacuum chamber 11 at a high speed within a period of 10 seconds or less.
  • the predetermined exhaust speed is a speed from 0.5 to 10 seconds from atmospheric pressure to 60 Pa.
  • the exhaust control unit 16 controls the proportional control valve 15 to show the ideal pressure change with time in the vacuum chamber of the vacuum drying apparatus of the embodiment.
  • the vacuum chamber 11, the stage 17 and the like constituting the vacuum drying apparatus are each formed of a material such as SUS and iron capable of maintaining appropriate strength, and the area of the main surface of the stage 17 is larger than that of the substrate 1 disposed in the center.
  • the range of 70 to 99% of the bottom area of the vacuum chamber 11 is preferable.
  • the distance between the upper lid portion 11b of the stage 17 and the peripheral portion of the stage 17 and the side wall portion of the bottom portion 11a is equal and uniform so that the gas flow does not affect the coating liquid film on the substrate 1. It is preferable that
  • the exhaust control unit 16 can also control the exhaust speed by controlling the opening and closing of the proportional control valve 15 based on the pressure measurement output of the vacuum gauge 12. For example, when the vacuum chamber 11 is evacuated within a period of 10 seconds or less, there is a solvent having a high or low vapor pressure in the solvent or a mixed solvent thereof, or there is a fluctuation in atmospheric pressure. The differential value of the pressure change with time is calculated from the pressure measurement output of the vacuum gauge 12 in accordance with the pressure fluctuation, and the exhaust control unit 16 controls the proportional control valve 15 to stop the exhaust operation even within 10 seconds.
  • the proportional control valve 19 can return the inside of the vacuum chamber 11 to a predetermined atmospheric pressure such as atmospheric pressure at a predetermined intake speed.
  • the components of the organic semiconductor layer are exhausted within a short period of 10 seconds or less regardless of the evaporation rate of the solvent of the predetermined coating liquid film, and the solvent is rapidly evaporated. Since the state in which the solid content is dispersed is maintained, both the processing speed and the planar smoothness of the coating film can be improved.
  • the vacuum drying method of this embodiment can be applied not only to a single solvent coating solution but also to a mixed solvent coating solution.
  • Vacuum drying is performed at an exhaust rate of 10 seconds or less up to 60 Pa, and then the residual solvent can be removed by exhausting in about 5 minutes in a vacuum at or above the respective vapor pressure.
  • the organic semiconductor layer is baked, for example, using a hot plate, a clean oven, an IR furnace, etc., at a temperature of 200 ° C. for about 30 minutes. Can be carried out by heating.
  • the substrate after firing is held on a substrate holder provided on the inner surface of, for example, a semicircular dome treatment chamber of a vacuum vapor deposition apparatus, and the vapor deposition located at the center position of the semicircular dome
  • a planned organic semiconductor or inorganic material is placed on the source boat, and the dome is slowly rotated around the center during film formation, for example, the film formation starting pressure is set to a high vacuum to about 10 ⁇ 4 Pa, and the vapor deposition film Improves adhesion and film quality.
  • the film forming temperature can be increased (300 ° C.
  • the evaporation source evaporation method includes resistance evaporation (dissolves and evaporates the organic semiconductor or inorganic material by electric resistance heating of the boat) and electron beam evaporation (dissolves the focused semiconductor beam or organic semiconductor or inorganic material of the boat using an electron gun). Evaporate).
  • An anode is formed by patterning into a transparent stripe of indium tin oxide (ITO) having a thickness of 100 ⁇ m and a thickness of 120 nm on a glass substrate by photolithography, and an undercoat layer B1 of polyvinyl alcohol on the ITO substrate shown in FIG. And a polyimide resin layer B3 stacked bank BK (width 10 ⁇ m) formed in a cross-beam shape (100 ⁇ m ⁇ 100 ⁇ m), and the anode / hole injection layer / hole transport layer / light emitting layer in the recess of the bank An organic EL element having a film structure of / hole blocking layer / electron transport layer / electron injection layer / cathode / is produced.
  • ITO indium tin oxide
  • the above-described coating process (S2), drying process (S3), and firing process (S4) are repeated for each of the hole injection layer, the hole transport layer, and the light emitting layer to laminate each layer.
  • the hole injection layer coating liquid 3 is applied onto the anode 2 in each partition region of the bank BK by an ink jet method, vacuum dried, and baked as shown in FIG. The injection layer 3 is formed.
  • the coating solution 4 for the hole transport layer is applied onto the hole injection layer 3 in each partition region of the bank BK by an ink jet method, vacuum dried, and baked as shown in FIG. Thus, the hole transport layer 4 is formed.
  • the coating solution 5 for the light emitting layer is applied onto the hole transport layer 4 in each partition region of the bank BK by the ink jet method, vacuum dried, and fired to emit light as shown in FIG. Layer 5 is formed.
  • the vapor blocking step (S5) is repeated together with the hole blocking layer, the electron transport layer, the electron injection layer, and the cathode to laminate each layer.
  • a hole blocking layer material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus and vapor deposition is performed to form a hole blocking layer 6 on the light emitting layer 5 as shown in FIG.
  • the electron transport layer material is loaded into the vapor deposition source boat of the vacuum vapor deposition apparatus, and the vapor deposition is performed to form the electron transport layer 7 on the hole blocking layer 6 as shown in FIG.
  • the electron injection layer material is loaded into the vapor deposition source boat of the vacuum vapor deposition apparatus, and the vapor deposition is performed to form the electron injection layer 8 on the electron transport layer 7 as shown in FIG.
  • a cathode material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus and vapor deposition is performed to form a cathode 9 on the electron injection layer 8 as shown in FIG.
  • Example 1 Specifically, in the experiment, except that the hole blocking layer, the electron transport layer, the electron injection layer, and the cathode were formed by vapor deposition, 100 ⁇ m was formed on the glass substrate by the above-described process including the drying step by the vacuum drying apparatus of the embodiment.
  • Table 2 shows the composition of the low molecular weight material coating solution for the hole injection layer, hole transport layer and light emitting layer by the inkjet method (the solvent is common to each layer).
  • Two kinds of solid contents guest material: Ir (ppy) 3
  • FIG. 7 also shows changes with time in the pressure in the vacuum chamber in the case of the exhaust speed (60 Pa-10 seconds, 60 Pa-200 seconds).
  • the width of the non-light emitting portion due to the meniscus at the periphery of the light emitting layer was about 5 ⁇ m.
  • the part width was 10 ⁇ m or more, and the reduction of the flat surface and the light emitting part was found.
  • the organic EL device has a luminous efficiency of 106% when the exhaust speed is 60 Pa-1 sec, and the organic EL device has a luminous efficiency of 100% when the exhaust speed is 60 Pa-10 sec.
  • the luminous efficiency of the organic EL device in the case of ( ⁇ 200 seconds) was lower than these.
  • the solvent for the coating solution for each layer by the ink jet method is preferably selected from those having a vapor pressure at room temperature of 1 Pa to 70 Pa, and further selected from those having a normal boiling point of 200 ° C. to 300 ° C. It can be seen that this is preferable.
  • the organic semiconductor element manufacturing method and the vacuum drying apparatus according to the present invention include an organic semiconductor layer in addition to an organic EL display and an organic EL illumination that form a film by wet coating.
  • the present invention can also be applied to organic TFTs, organic solar cells, and color filters to be used.

Abstract

The present invention is a method for producing an organic semiconductor element having plurality of organic semiconductor layers layered between a pair of a positive electrode and a negative electrode facing each other on a substrate. The production method includes a coating step for forming an organic semiconductor coating liquid film by wet deposition from an organic semiconductor coating liquid including a solute as an organic semiconductor layer and a solvent for dispersing the solute, and a drying step for drying the organic semiconductor coating liquid film inside a vacuum chamber. In the drying step, the interior of the vacuum chamber is exhausted from atmosphere pressure to a pressure of 60 Pa at an exhausting speed of 0.5 seconds to 10 seconds inclusive.

Description

有機半導体素子の製造方法及び真空乾燥装置Organic semiconductor device manufacturing method and vacuum drying apparatus
 本発明は、有機半導体素子の製造方法及び真空乾燥装置に関する。 The present invention relates to a method for manufacturing an organic semiconductor element and a vacuum drying apparatus.
 電荷輸送性を有する有機化合物からなる複数の有機半導体層を備え有機半導体層の内に発光層を含む有機エレクトロルミネッセンス(EL)素子の製造方法では、より低コスト化された生産方法の確立及びメンテナンス性の向上のために、湿式塗布により膜形成を実施する採用が増えてきている。また、有機EL素子を利用した有機ELディスプレイ、有機EL照明の他に、有機半導体層を用いる有機TFTや有機太陽電池の分野でも、ガラスなど透明基板にレジスト液などの塗布液を塗布して乾燥し、フォトリソグラフィなどにより所望のパターンの形成を行う塗布プロセスを用いることが増えてきている。 In the manufacturing method of an organic electroluminescence (EL) device including a plurality of organic semiconductor layers made of an organic compound having a charge transporting property and including a light emitting layer in the organic semiconductor layer, establishment and maintenance of a production method with lower cost is achieved. In order to improve the property, the use of forming a film by wet coating is increasing. In addition to organic EL displays and organic EL lighting using organic EL elements, in the field of organic TFTs and organic solar cells using organic semiconductor layers, a coating solution such as a resist solution is applied to a transparent substrate such as glass and then dried. However, there is an increasing use of a coating process for forming a desired pattern by photolithography or the like.
 有機半導体層のための有機塗布液の湿式の塗布方式としては、たとえばスピン、ディップ、ロール、インクジェットなどの方式がある。塗布後のパターン形成工程前では基板上の塗布膜を乾燥させる乾燥工程を実行する必要がある。乾燥工程では、塗布液が塗布された基板に対しては、オーブンあるいはホットプレートを用いた加熱乾燥が行われている。 Examples of wet coating methods for organic coating solutions for organic semiconductor layers include spin, dip, roll, and ink jet methods. Before the pattern formation process after coating, it is necessary to execute a drying process for drying the coating film on the substrate. In the drying process, the substrate coated with the coating liquid is heated and dried using an oven or a hot plate.
 加熱乾燥では要する時間が長いので、近年、工程時間の短縮化のために、有機EL素子の製造方法にて、真空乾燥装置が使用されている。(特許文献1~12参照) Since the time required for heat drying is long, in recent years, a vacuum drying apparatus has been used in a method for manufacturing an organic EL element in order to shorten the process time. (See Patent Documents 1 to 12)
特開平11-54272号公報Japanese Patent Laid-Open No. 11-54272 国際公開WO2000/059267公報International Publication WO2000 / 059267 特開2002-289352号公報JP 2002-289352 A 特開2004-127897号公報JP 2004-1227897 A 特開2004-223354号公報JP 2004-223354 A 特開2005-259720号公報JP 2005-259720 A 特開2006-68598号公報JP 2006-68598 A 特開2008-84566号公報JP 2008-84566 A 特開2008-226685号公報JP 2008-226685 A 特開2005-310709号公報JP 2005-310709 A 特開2009-181932号公報JP 2009-181932 A 特開2010-80167号公報JP 2010-80167 A
 従来の真空乾燥装置では、有機半導体塗布液の溶媒の蒸発速度が高まる蒸気圧程度まで排気し、その後は排気速度を低減して徐々に蒸発させるなど2段階とすることにより、蒸発速度と塗布膜の平面平滑性の両方を向上させることを図っているものが多い。 In the conventional vacuum drying apparatus, the evaporation rate and the coating film are exhausted to about the vapor pressure at which the evaporation rate of the solvent of the organic semiconductor coating liquid is increased, and thereafter, the evaporation rate is reduced and gradually evaporated. Many of them aim to improve both the flatness and smoothness.
 しかしながら、従来真空乾燥装置では、たとえば、それぞれ塗布溶媒に対する溶解度が異なる低分子のホスト材料とゲスト材料からなる有機EL素子の発光層を形成する場合、ゆっくり発光層を真空乾燥すると、複数の低分子の中の析出しやすい方の分子から析出が始まり、乾燥後溶媒がなくなった固形分膜内において、複数の低分子が均一に分散できない問題があった。さらに、塗布液膜の真空乾燥のための排気速度が遅いと、膜上に対流が発生し、部分的に乾燥するなど、仕上がりの乾燥ムラ発生を充分抑制できないという問題もあった。 However, in a conventional vacuum drying apparatus, for example, when forming a light emitting layer of an organic EL element made of a low molecular weight host material and a guest material each having different solubility in a coating solvent, if the light emitting layer is slowly dried in vacuum, a plurality of low molecular weight materials are obtained. There is a problem that a plurality of low molecules cannot be uniformly dispersed in a solid content film in which precipitation starts from molecules that are more likely to precipitate, and the solvent is eliminated after drying. Further, when the exhaust speed for vacuum drying of the coating liquid film is slow, there is a problem that convection is generated on the film and the drying unevenness in the finish cannot be sufficiently suppressed, such as partial drying.
 さらに、粘性が低い低分子系材料塗布液のためにバンク区画を形成して、真空乾燥方法を湿式成膜へ適用すると、塗布膜の最外周縁部にメニスカスが残り、結果として塗布膜の平坦度は低下するという問題もあった。 Furthermore, when a bank section is formed for a low molecular weight material coating solution with low viscosity and the vacuum drying method is applied to wet film formation, a meniscus remains on the outermost peripheral edge of the coating film, resulting in a flat coating film. There was also a problem that the degree decreased.
 本発明は、このような事情に鑑みてなされたものであり、湿式塗布方式成膜法による有機膜の乾燥後の状態を改善するとともに製造後の発光効率を維持できる有機半導体素子の製造方法及び真空乾燥装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method for manufacturing an organic semiconductor element capable of improving the state after drying of an organic film by a wet coating method film forming method and maintaining the luminous efficiency after manufacturing, and An object is to provide a vacuum drying apparatus.
 請求項1に記載の有機半導体素子の製造方法は、基板上に、対向する1対の陽極及び陰極の間に積層配置された複数の有機半導体層を有する有機半導体素子の製造方法である。かかる製造方法は、前記有機半導体層となる溶質と前記溶質を分散させる溶媒とを含有する有機半導体塗布液から、湿式成膜法により、有機半導体塗布液膜を形成する塗布工程と、前記有機半導体塗布液膜を真空チャンバ内で乾燥する乾燥工程と、前記有機半導体塗布液膜を焼成する焼成工程と、を含む。この有機半導体素子の製造方法はかかる方法における前記乾燥工程において、前記真空チャンバ内を大気圧から60Paの気圧まで0.5秒以上10秒以下の排気速度で排気することを特徴とする。 The method for producing an organic semiconductor element according to claim 1 is a method for producing an organic semiconductor element having a plurality of organic semiconductor layers laminated on a substrate between a pair of opposing anodes and cathodes. The manufacturing method includes a coating step of forming an organic semiconductor coating liquid film by a wet film-forming method from an organic semiconductor coating liquid containing a solute to be the organic semiconductor layer and a solvent for dispersing the solute, and the organic semiconductor A drying step of drying the coating liquid film in a vacuum chamber; and a baking step of baking the organic semiconductor coating liquid film. This method for producing an organic semiconductor element is characterized in that, in the drying step in the method, the inside of the vacuum chamber is evacuated from an atmospheric pressure to an atmospheric pressure of 60 Pa at an evacuation speed of 0.5 seconds or more and 10 seconds or less.
 請求項8に記載の真空乾燥装置は、有機半導体層となる溶質と前記溶質を分散させる溶媒とを含有する有機半導体塗布液から成膜された有機半導体塗布液膜を真空中で乾燥する真空乾燥装置である。かかる真空乾燥装置は、前記有機半導体塗布液膜を担持する基板を内部空間に収容する真空チャンバと、前記真空チャンバの内部空間から気体を外部へ排気する排気装置と、前記排気装置を制御して前記真空チャンバ内を大気圧から60Paの気圧まで0.5秒以上10秒以下の排気速度で排気し、前記有機半導体塗布液膜を乾燥させる排気制御部と、を含むことを特徴とする。 The vacuum drying apparatus according to claim 8, wherein an organic semiconductor coating liquid film formed from an organic semiconductor coating liquid containing a solute serving as an organic semiconductor layer and a solvent for dispersing the solute is dried in vacuum. Device. Such a vacuum drying apparatus includes a vacuum chamber that houses a substrate carrying the organic semiconductor coating liquid film in an internal space, an exhaust device that exhausts gas from the internal space of the vacuum chamber to the outside, and controls the exhaust device. And an exhaust controller that exhausts the interior of the vacuum chamber from atmospheric pressure to 60 Pa at an exhaust speed of 0.5 seconds to 10 seconds, and dries the organic semiconductor coating liquid film.
 本発明によれば、急速排気による急減圧を利用することによって、たとえば、塗布液溶媒に対する溶解度が異なる低分子のホスト材料とゲスト材料からなる発光層を成膜する時でも、材料低分子が均一にアモルファスに分散された成膜が可能となり、含有の粒子などの凝集も起こすことなく、メニスカス幅の狭い平坦膜として乾燥することができるので、得られる有機EL素子の発光効率を上げることができる。また、最適な乾燥状態を自動的に実現できるため、たとえば、残留溶媒が原因で増加する有機半導体デバイスなどの不良現象発生を抑制することができる。 According to the present invention, by utilizing rapid decompression by rapid exhaust, for example, even when a light emitting layer composed of a low molecular weight host material and a guest material having different solubility in a coating solution solvent is formed, the low molecular weight material is uniform. It is possible to form a film dispersed in an amorphous state, and it can be dried as a flat film having a narrow meniscus width without causing aggregation of contained particles and the like, so that the luminous efficiency of the obtained organic EL element can be increased. . In addition, since an optimal dry state can be automatically realized, for example, it is possible to suppress the occurrence of a defective phenomenon such as an organic semiconductor device that increases due to a residual solvent.
有機EL素子の積層構造を示す概略構成図である。It is a schematic block diagram which shows the laminated structure of an organic EL element. 本発明による実施形態の有機EL素子の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the organic EL element of embodiment by this invention. 本実施形態における有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process in this embodiment. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の真空乾燥装置を示す概略構成断面図である。It is a schematic structure sectional view showing a vacuum drying device of an embodiment by the present invention. 本発明による実施形態の真空乾燥装置の真空チャンバ内の圧力経時変化を示すグラフである。It is a graph which shows the pressure time-dependent change in the vacuum chamber of the vacuum dryer of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造工程における基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate in the organic EL element manufacturing process of embodiment by this invention. 本発明による実施形態の有機EL素子製造方法の乾燥工程後の有機EL素子の発光層の膜厚変化を示すグラフ(a)、当該方法により得られた有機EL素子の発光状態を示す顕微鏡写真(c)及び当該有機EL素子の発光状態を示す平面図(b)である。The graph (a) which shows the film thickness change of the light emitting layer of the organic EL element after the drying process of the organic EL element manufacturing method of embodiment by this invention, The microscope picture which shows the light emission state of the organic EL element obtained by the said method ( It is a top view (b) which shows the light emission state of c) and the said organic EL element. 比較のための有機EL素子製造方法の乾燥工程後の有機EL素子の発光層の膜厚変化を示すグラフ(a)、当該方法により得られた有機EL素子の発光状態を示す顕微鏡写真(c)及び当該有機EL素子の発光状態を示す平面図(b)である。The graph (a) which shows the film thickness change of the light emitting layer of the organic EL element after the drying process of the organic EL element manufacturing method for a comparison, The microscope picture (c) which shows the light emission state of the organic EL element obtained by the said method It is a top view (b) which shows the light emission state of the said organic EL element.
 以下、本発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 --有機EL素子--
 本実施形態の有機EL素子の一例は、図1に示すように、ガラスなどの透明基板1上にて、順に、透明な陽極2、正孔注入層3、正孔輸送層4、発光層5、正孔阻止層6、電子輸送層7、電子注入層8及び金属からなる陰極9が積層されて得られるものである。正孔注入層3、正孔輸送層4、発光層5、正孔阻止層6、及び電子輸送層7は有機半導体層である。すなわち、有機EL素子において、対向する1対の陽極及び陰極の間に積層配置された複数の有機半導体層が正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層を包含する。これら有機半導体層などの構成要素について後述する。
--- Organic EL device--
As shown in FIG. 1, an example of the organic EL element of the present embodiment includes a transparent anode 2, a hole injection layer 3, a hole transport layer 4, and a light emitting layer 5 in this order on a transparent substrate 1 such as glass. , A hole blocking layer 6, an electron transport layer 7, an electron injection layer 8, and a cathode 9 made of a metal are laminated. The hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole blocking layer 6, and the electron transport layer 7 are organic semiconductor layers. That is, in the organic EL element, a plurality of organic semiconductor layers stacked between a pair of opposing anodes and cathodes are formed as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, Includes an electron injection layer. Components such as the organic semiconductor layer will be described later.
 図1に示す陽極2/正孔注入層3/正孔輸送層4/発光層5/正孔阻止層6/電子輸送層7/電子注入層8/陰極9/の構成の他に、図示しないが、陽極2/正孔注入層3/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔輸送層4、正孔阻止層6を省いた構成や、図示しないが、陽極2/正孔輸送層4/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔阻止層6を省いた構成や、図示しないが、陽極2/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔輸送層4、正孔阻止層6を省いた構成も本発明に含まれる。また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。いずれにしても、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む構成は本発明に含まれる。 In addition to the structure of anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8 / cathode 9 / shown in FIG. However, the anode 2 / hole injection layer 3 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole transport layer 4 and hole blocking layer 6 are omitted, although not shown, The anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3 and hole blocking layer 6 are omitted, and although not shown, the anode 2 A configuration in which the hole injection layer 3, the hole transport layer 4, and the hole blocking layer 6 of / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / is omitted is also included in the present invention. Moreover, in the layer structure demonstrated above, it is also possible to laminate | stack components other than a board | substrate in reverse order. In any case, the present invention is not limited to these stacked structures, and includes a structure including at least a light-emitting layer or a charge transport layer that can also be used.
 --基板--
 基板1としては、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機EL素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。
--substrate--
As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 --陽極及び陰極--
 発光層までの層に正孔を供給する陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金などの金属、インジウム及び/又はスズ、亜鉛の酸化物(ITOやIZO)などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリンなどの導電性高分子などにより構成される。
--Anode and cathode--
The anode 2 that supplies holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
 陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる。 The anode is usually formed by a sputtering method, a vacuum deposition method, or the like. In addition, when forming an anode using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, an appropriate binder resin solution is used. The anode can also be formed by dispersing and coating the substrate. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
 陽極は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極の厚みは任意であり、陽極は基板1と一体化されたものであってもよい。また、さらには、異なる導電材料が積層されたものであってもよい。 The thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることは好ましい。 The surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
 発光層までの層に電子を供給する陰極9の材料としては、陽極に使用される材料を用いることが可能であるが、効率良く電子注入を行うには、仕事関数の低い金属が好ましく、たとえば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。 As a material of the cathode 9 for supplying electrons to the layers up to the light emitting layer, a material used for the anode can be used. However, in order to perform electron injection efficiently, a metal having a low work function is preferable. A suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。陰極の膜厚は、通常、陽極と同様である。 In addition, only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio. The thickness of the cathode is usually the same as that of the anode.
 さらに、低仕事関数金属から成る陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、たとえば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Further, for the purpose of protecting the cathode made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased. For this purpose, for example, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 さらに、陽極及び陰極は、発光の取り出し側となる場合は、透明又は半透明となるように材料、膜厚を選択する。特に陽極及び陰極のうちどちらか、もしくはその両方が、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。これら電極は、必要に応じてパターニングしても良い。 Furthermore, when the anode and the cathode are on the light emission extraction side, the material and film thickness are selected so as to be transparent or translucent. In particular, it is preferable to select a material in which either one or both of the anode and the cathode has a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material. These electrodes may be patterned as necessary.
 --有機半導体層--
 *正孔注入層*
 正孔注入層3は、電子受容性化合物を含有する層とすることが好ましい。
--- Organic semiconductor layer--
* Hole injection layer *
The hole injection layer 3 is preferably a layer containing an electron accepting compound.
 正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。正孔注入層の形成方法はダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. The hole injection layer is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 湿式成膜法により正孔注入層を形成する場合、通常は、正孔注入層を構成する材料を適切な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、陽極上に塗布して成膜し、乾燥することにより正孔注入層を形成する。 When forming a hole injection layer by a wet film formation method, the material for forming the hole injection layer is usually mixed with an appropriate solvent (a solvent for the hole injection layer) to form a composition for film formation (hole An injection layer forming composition) is prepared, and this hole injection layer forming composition is coated on the anode by an appropriate technique to form a film and dried to form a hole injection layer.
 正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。溶媒としては、限定されるものではないが、たとえば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。
エーテル系溶媒としては、たとえば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)などの脂肪族エーテル、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソールなどの芳香族エーテル、などが挙げられる。
The composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer. Examples of the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
 エステル系溶媒としては、たとえば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチルなどの芳香族エステル、などが挙げられる。 Examples of ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶媒としては、たとえば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンなどが挙げられる。 Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. Can be mentioned.
 アミド系溶媒としては、たとえば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、などが挙げられる。その他、ジメチルスルホキシド、なども用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 Examples of the amide solvent include N, N-dimethylformamide and N, N-dimethylacetamide. In addition, dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
 正孔輸送性化合物は、通常、有機EL素子の正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、低分子化合物であることが好ましい。 As long as the hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic EL element, a polymer or the like may be a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
 正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン銅(CuPc)に代表されるフタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボンなどが挙げられる。 The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer. Examples of hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, and tertiary amines linked by fluorene groups. Examples thereof include compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
 尚、ここで誘導体とは、たとえば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。 Here, the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
 正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することもできる。非晶質性、可視光の透過率の点から、正孔注入層には芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。具体的には、国際公開第2005/089024号パンフレットに記載のものが挙げられる。 The hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. In the case of containing two or more kinds of hole transporting compounds, the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレートなどでキャップしたものであってもよい。 As the hole transporting compound, a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
 正孔注入層形成用組成物は電子受容性化合物を含有することが好ましく、また、正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The composition for forming a hole injection layer preferably contains an electron-accepting compound, and may further contain other components in addition to the hole-transporting compound and the electron-accepting compound. Examples of other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents. In addition, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
 *正孔輸送層*
 正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、たとえば、前述の正孔注入層に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。また、たとえば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
* Hole transport layer *
The material of the hole transport layer 4 may be any material that has been conventionally used as a constituent material of the hole transport layer. For example, the hole transport layer is exemplified as the hole transport compound used in the above-described hole injection layer. Things. In addition, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatics Group derivatives, metal complexes and the like. Also, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like. These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
 正孔輸送層4の材料としては、特開2008-98619号公報に記載のポリアリーレン誘導体の具体例などが挙げられる。 Specific examples of the material for the hole transport layer 4 include polyarylene derivatives described in JP-A-2008-98619.
 湿式成膜法で正孔輸送層を形成する場合は、正孔注入層の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。 When the hole transport layer is formed by a wet film formation method, a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, followed by drying after the wet film formation.
 正孔輸送層形成用組成物に、正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件なども正孔注入層の形成の場合と同様である。 In addition to the hole transporting compound, the hole transporting layer forming composition contains a solvent. The solvent used is the same as that used for the composition for forming the hole injection layer. The film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
 正孔輸送層は、正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。 The hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
 正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 正孔輸送層の形成方法は真空蒸着法でも、湿式成膜法でもよいが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 正孔輸送層4は、アミン系架橋性化合物を架橋して得られたポリマーを含有する層であってもよい。 The hole transport layer 4 may be a layer containing a polymer obtained by crosslinking an amine-based crosslinking compound.
 *発光層*
 発光層5は、その構成材料として、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、あるいは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有する。発光材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として使用してもよい。発光材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。なお、湿式成膜法で発光層を形成する場合は、何れも低分子量の材料を使用することが好ましい。
* Light emitting layer *
The light emitting layer 5 contains at least a material having a light emitting property (light emitting material) as a constituent material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron transport. A compound (electron transporting compound) having the following properties: A light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material. There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used. In addition, when forming a light emitting layer with a wet film-forming method, it is preferable to use a low molecular weight material in any case.
 発光材料としては、任意の公知の材料を適用可能である。たとえば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。また、青色は蛍光発光材料を用い、緑色や赤色は燐光発光材料を用いるなど、組み合わせて用いてもよい。 Any known material can be applied as the light emitting material. For example, a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferred from the viewpoint of internal quantum efficiency. Alternatively, blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
 なお、溶媒への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることが好ましい。 For the purpose of improving the solubility in a solvent, it is preferable to reduce the symmetry and rigidity of the molecule of the luminescent material, or to introduce a lipophilic substituent such as an alkyl group.
 青色発光を与える蛍光発光材料(青色蛍光色素)としては、たとえば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体などが挙げられる。 Examples of fluorescent light emitting materials (blue fluorescent dyes) that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
 緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、たとえば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。 Examples of the fluorescent light-emitting material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
 黄色発光を与える蛍光発光材料(黄色蛍光色素)としては、たとえば、ルブレン、ペリミドン誘導体などが挙げられる。 Examples of the fluorescent light emitting material (yellow fluorescent dye) that emits yellow light include rubrene and perimidone derivatives.
 赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、たとえば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテンなどが挙げられる。 Examples of fluorescent materials that emit red light (red fluorescent dyes) include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
 燐光発光材料としては、たとえば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を含む有機金属錯体が挙げられる。周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。 As the phosphorescent material, for example, a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. As the ligand of the complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable. A pyridine ligand and a phenylpyrazole ligand are preferable. Here, (hetero) aryl represents an aryl group or a heteroaryl group.
 燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリンなどが挙げられる。 Specific examples of phosphorescent materials include tris (2-phenylpyridine) iridium (Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenylpyridine). ) Platinum, tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, octaphenylpalladium porphyrin, and the like.
 発光材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。発光材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機EL素子のモルフォロジー変化を来したりする場合がある。一方、発光材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、溶媒に溶解させる際に時間を要したりする傾向がある。 The molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. The range is 400 or more. If the molecular weight of the light-emitting material is too small, the heat resistance is significantly reduced, gas is generated, the film quality is deteriorated when the film is formed, or the morphology of the organic EL element is changed due to migration or the like. There is a case to do. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
 なお、発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。発光層における発光材料の割合は、通常0.05重量%以上、通常35重量%以下である。発光材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。発光層における含有量が最も多い成分をホスト材料とより少ない成分をゲスト材料と呼ぶ。よって、発光層塗布液には、発光層層となるべき少なくとも2種類の固形分(ホスト材料とゲスト材料)が溶質として溶媒に分散又は溶解されて、調製され得る。 In addition, any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio. The ratio of the light emitting material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of luminescent material, it is made for the total content of these to be contained in the said range. The component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material. Therefore, at least two kinds of solid contents (host material and guest material) to be the light emitting layer can be prepared by being dispersed or dissolved in a solvent as a solute in the light emitting layer coating liquid.
 発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層3における正孔輸送性化合物として例示した各種の化合物のほか、たとえば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)に代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミンなどのスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence, 1997, Vol.72-74, pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications, 1996, pp.2175)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレンなどのスピロ化合物(Synthetic Metals, 1997, Vol.91, pp.209)などが挙げられる。 The light emitting layer may contain a hole transporting compound as a constituent material. Here, among the hole transporting compounds, examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound in the hole injection layer 3 described above, for example, Two or more condensed aromatic rings containing two or more tertiary amines represented by 4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) are attached to the nitrogen atom. Aromatic amine compounds having a starburst structure (Journal ジ ア ミ ン of ジ ア ミ ン Luminescence, such as substituted aromatic diamines (Japanese Patent Laid-open No. Hei 5-234681), 4,4 ′, 4 ″ -tris (1-naphthylphenylamino) triphenylamine) 1997, Vol.72-74, pp.985), aromatic amine compounds consisting of tetramers of triphenylamine (Chemical Communications, 1996, pp.2175), 2,2 ′, 7,7′-tetrakis- ( Diphenylamino) Examples include spiro compounds such as -9,9'-spirobifluorene (Synthetic Metals, 1997, Vol. 91, pp. 209).
 なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
 発光層における正孔輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
 発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)や、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)や、4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(CBP)などが挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The light emitting layer may contain an electron transporting compound as a constituent material. Here, among the electron transporting compounds, examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9H-carbazol-9-yl) biphenyl (CBP), etc. In the light emitting layer, only one kind of electron transporting compound may be used, or two or more kinds. It may be used together in any combination and in any ratio.
 発光層における電子輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
 発光層はバンク区画領域内に形成され、特にインクジェット法により形成されることが好ましい。この場合、上記発光層材料を適切な溶媒に溶解させて発光層形成用組成物を調製し、それを用いて成膜することにより形成する。 The light emitting layer is preferably formed in the bank partition region, particularly by an ink jet method. In this case, the light emitting layer material is dissolved in an appropriate solvent to prepare a light emitting layer forming composition, and a film is formed using the composition.
 発光層を湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶媒としては、発光層の形成が可能である限り任意のものを用いることができる。発光層用溶媒の好適な例は、正孔注入層形成用組成物で説明した溶媒と同様である。 As the solvent for the light emitting layer to be contained in the composition for forming a light emitting layer for forming the light emitting layer by a wet film forming method, any solvent can be used as long as the light emitting layer can be formed. Suitable examples of the solvent for the light emitting layer are the same as those described for the composition for forming a hole injection layer.
 発光層を形成するための発光層形成用組成物に対する発光層用溶媒の比率は、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶媒として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。 The ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. In addition, when using 2 or more types of solvents mixed as a solvent for light emitting layers, it is made for the sum total of these solvents to satisfy | fill this range.
 発光層形成用組成物を湿式成膜後、得られた塗膜を乾燥し、溶媒を除去することにより、発光層が形成される。発光層は、上記正孔注入層の形成において記載した塗布方法と同様であるが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 After forming the light emitting layer forming composition into a wet film, the obtained coating film is dried and the solvent is removed to form a light emitting layer. The light emitting layer is similar to the coating method described in the formation of the hole injection layer, but is preferably formed by a wet film forming method from the viewpoint of reducing dark spots.
 発光層の膜厚は通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。 The film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
 *正孔阻止層*
 正孔阻止層6は、発光層の上に、発光層の陰極側の界面に接するように積層される層である。正孔阻止層は、陽極から移動してくる正孔を陰極に到達するのを阻止する役割と、陰極から注入された電子を効率よく発光層の方向に輸送する役割とを有する。
* Hole blocking layer *
The hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer. The hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
 正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、たとえば、ビス(2-メチル-8-キノリノラト)(4-フェノラト)アルミニウム(PAlq)や、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム(SAlq)などの混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体などの金属錯体、ジスチリルビフェニル誘導体などのスチリル化合物(特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾールなどのトリアゾール誘導体(特開平7-41759号公報)、バソクプロイン(BCP)などのフェナントロリン誘導体(特開平10-79297号公報)などが挙げられる。更に、国際公開第2005-022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。 The physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive. Examples of the material of the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (4-phenolato) aluminum (PAlq) and bis (2-methyl-8-quinolinolato) (tri Mixed ligand complexes such as phenylsilanolato) aluminum (SAlq), bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, etc. Stylyl compounds such as metal complexes and distyrylbiphenyl derivatives (Japanese Patent Laid-Open No. 11-242996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4- Triazole derivatives such as triazole (JP-A-7-41759), phenanthroyl such as bathocuproine (BCP) And the like derivatives (JP-A-10-79297). Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-positions described in International Publication No. 2005-022962 are also preferable as the material for the hole blocking layer.
 なお、正孔阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。正孔阻止層の形成方法に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 In addition, only 1 type may be used for the material of a hole-blocking layer, and 2 or more types may be used together by arbitrary combinations and a ratio. Although there is no restriction | limiting in the formation method of a hole-blocking layer, It is preferable to form by the wet film-forming method from a viewpoint of dark spot reduction.
 正孔阻止層の膜厚は、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。 The film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
 *電子輸送層*
 電子輸送層7は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。
* Electron transport layer *
The electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the device, and can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from compounds.
 電子輸送層に用いられる電子輸送性化合物としては、通常、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、たとえば、Alq3など8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 As the electron transporting compound used for the electron transport layer, usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility can be efficiently transported. Use possible compounds. Examples of the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline such as Alq3 (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadi Azole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline Compound (JP-A-6-207169), phenanthroline derivative (JP-A-5-331459), 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Silicon carbide, n-type sulfur Zinc, such as n-type zinc selenide.
 なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, only 1 type may be used for the material of an electron carrying layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
 電子輸送層の形成方法に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。 The film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 *電子注入層*
 電子注入層8は、陰極から注入された電子を効率良く発光層へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウムなどのアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属、それらの化合物(CsF、CsCO、LiO、LiF)などが用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
* Electron injection layer *
The electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode into the light emitting layer. In order to perform electron injection efficiently, the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
 更に、バソフェナントロリンなどの含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウムなどのアルカリ金属をドープする(特開平10-270171号公報、特開2002-100478号公報、特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。 Furthermore, an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, and the like, it is possible to improve the electron injection / transport property and achieve excellent film quality. preferable. In this case, the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
 なお、電子注入層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。電子注入層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
--有機EL素子の製造方法--
 本実施形態の有機EL素子の製造方法の一例は、図2に示すように、個々の有機EL素子の発光エリアを規定するために絶縁層すなわちバンクをパターニングするバンク製版工程(S1)と、たとえば正孔注入層や正孔輸送層や発光層などの各々の有機半導体層となる所定の溶質と当該溶質を分散させる溶媒とを含有する所定有機半導体塗布液から、湿式成膜法、たとえばインクジェットプロセスにより、所定塗布液膜を形成する塗布工程(S2)と、真空乾燥装置の真空チャンバ中でかかる塗布液膜を乾燥する乾燥工程(S3)と、乾燥した所定塗布液膜を焼成する焼成工程(S4)と、を含む。有機半導体層毎に塗布工程(S2)と乾燥工程(S3)と焼成工程(S4)を繰り返して、複数層を成膜する。
In addition, only 1 type may be used for the material of an electron injection layer, and 2 or more types may be used together by arbitrary combinations and a ratio. There is no restriction | limiting in the formation method of an electron injection layer. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
--- Method of manufacturing organic EL element--
As shown in FIG. 2, an example of a method for manufacturing an organic EL element according to this embodiment includes a bank plate-making process (S1) for patterning an insulating layer, that is, a bank to define a light emitting area of each organic EL element. From a predetermined organic semiconductor coating liquid containing a predetermined solute that becomes each organic semiconductor layer such as a hole injection layer, a hole transport layer, and a light emitting layer and a solvent that disperses the solute, a wet film-forming method such as an inkjet process Thus, a coating step (S2) for forming a predetermined coating liquid film, a drying step (S3) for drying the coating liquid film in a vacuum chamber of a vacuum drying apparatus, and a firing step (sintering the dried predetermined coating liquid film) S4). The coating process (S2), the drying process (S3), and the baking process (S4) are repeated for each organic semiconductor layer to form a plurality of layers.
 なお、有機EL素子の正孔阻止層、電子輸送層、電子注入層及び陰極は、それぞれ蒸着プロセスを用いた形成工程(S5)で順次層形成することができる。蒸着プロセス(S5)も層毎に繰り返して、複数層を成膜する。 Note that the hole blocking layer, the electron transport layer, the electron injection layer, and the cathode of the organic EL element can be sequentially formed in the formation step (S5) using a vapor deposition process. The deposition process (S5) is also repeated for each layer to form a plurality of layers.
 バンク製版工程(S1)、塗布工程(S2)、乾燥工程(S3)、焼成工程(S4)及び蒸着プロセス(S5)ごとに後述する。 The bank plate making process (S1), the coating process (S2), the drying process (S3), the firing process (S4), and the vapor deposition process (S5) will be described later.
 (バンク製版工程)
 有機半導体素子の製造方法の前処理として、図3に示す予め所定パターンで陽極2が形成され洗浄されたガラスなどの透明基板1を用意する。バンク製版工程(S1)においては、基板1及び陽極2のパターン上に、区画をなすバンクを形成する。
(Bank making process)
As a pretreatment of the method for manufacturing an organic semiconductor element, a transparent substrate 1 such as glass in which an anode 2 is formed in a predetermined pattern in advance and washed as shown in FIG. 3 is prepared. In the bank plate making process (S1), a partition bank is formed on the pattern of the substrate 1 and the anode 2.
 バンクの形成方法はフォトリソグラフィ法により形成されることが好ましく、基板1上に感光性組成物を成膜して、露光、現像することによりバンクを形成する。 The bank formation method is preferably formed by photolithography, and the bank is formed by forming a photosensitive composition on the substrate 1, exposing and developing.
 そこで、現像後、バンクで区画された領域内に感光性組成物の残渣が残ると、有機EL素子としたときの発光に影響を及ぼす場合があるため、感光性組成物を成膜する前に、基板1上に親水性化合物含有組成物を成膜し下引き層を形成した後、この上に感光性組成物を成膜し、露光、現像する。 Therefore, after development, if a residue of the photosensitive composition remains in the area partitioned by the bank, it may affect light emission when the organic EL device is formed. Therefore, before forming the photosensitive composition, Then, after forming a hydrophilic compound-containing composition on the substrate 1 to form an undercoat layer, a photosensitive composition is formed thereon, exposed and developed.
 まず、図4に示すように、基板1及び陽極2上の全面に下引き層B1成膜して、その下引き層の上に、感光性組成物を全面塗布、乾燥することでバンク用レジスト層B2を形成する。その後、図示しないが、露光マスクを用いてバンクパターンを露光し、さらに非露光部を下引き層と共に現像処理で除去することにより、バンクを形成する。バンクパターンは、ストライプでも良いし、井桁状や梯子状でも良い。バンクピッチは、100μm~1000μm程度が一般的である。ここでは、露光現像前の感光性組成物により形成される層をバンク用レジスト層といい、バンク用レジスト層が露光現像により硬化し、バンクを形成した状態となっているものを樹脂層という。 First, as shown in FIG. 4, an undercoat layer B1 is formed on the entire surface of the substrate 1 and the anode 2, and a photosensitive composition is applied on the entire surface of the undercoat layer and dried to thereby form a bank resist. Layer B2 is formed. Thereafter, although not shown, the bank pattern is exposed using an exposure mask, and the non-exposed portion is removed together with the undercoat layer by development processing to form a bank. The bank pattern may be a stripe, a cross-girder shape or a ladder shape. The bank pitch is generally about 100 μm to 1000 μm. Here, the layer formed of the photosensitive composition before exposure and development is referred to as a bank resist layer, and the bank resist layer cured by exposure and development to form a bank is referred to as a resin layer.
 以上のフォトリソグラフィ法により、図5に示すように、バンクBKは、親水性化合物含有組成物により形成される下引き層B1、感光性組成物により形成される樹脂層B3の積層構造となる。 By the above photolithography method, as shown in FIG. 5, the bank BK has a laminated structure of an undercoat layer B1 formed of a hydrophilic compound-containing composition and a resin layer B3 formed of a photosensitive composition.
 この下引き層B1形成方法としては、親水性化合物を含有する親水性化合物含有組成物を正孔輸送層上に塗布して乾燥することにより形成することが好ましい。親水性化合物含有組成物は、感光後に重合又は硬化し、その後の現像工程における現像液に対して不溶若しくは難溶の性質を獲得する感光性組成物(いわゆるネガ型フォトレジスト)を含有する親水性化合物含有組成物であってもよいし、露光部が感光によって変化し、その後の現像工程における現像液に対して易溶の性質を獲得する組成物を含む感光性組成物(いわゆるポジ型フォトレジスト)を含有する親水性化合物含有組成物であってもよい。また、特に、無機系ネガ型感光性組成物を採用してもよい。下引き層が感光性を有する場合には、通常、バンク用レジスト層とその感光型(ネガ型又はポジ型)が一致するようにする。 As the method of forming the undercoat layer B1, it is preferable to form by applying a hydrophilic compound-containing composition containing a hydrophilic compound on the hole transport layer and drying it. The hydrophilic compound-containing composition is a hydrophilic compound containing a photosensitive composition (so-called negative photoresist) that is polymerized or cured after exposure and obtains insoluble or hardly soluble properties in the developer in the subsequent development process. It may be a compound-containing composition, or a photosensitive composition (so-called positive photoresist) containing a composition in which an exposed portion changes due to light exposure and acquires a readily soluble property in a developing solution in a subsequent development step. ) -Containing hydrophilic compound-containing composition. In particular, an inorganic negative photosensitive composition may be employed. When the undercoat layer has photosensitivity, the bank resist layer and its photosensitive type (negative type or positive type) are usually matched.
 親水性化合物とは、水に溶解又は膨潤する化合物である。具体的には、分子内に、カルボキシ基、水酸基、スルホン酸(塩)基、ホスホン酸(塩)基、アミノ基、アミド基、4級アンモニウム塩基などの官能基を有する化合物であることが好ましい。特に、親水性化合物は、有機化合物であることが好ましく、耐性を確保するため、親水性樹脂であることが好ましい。ここで、親水性樹脂とは、上記官能基を有する樹脂であり、通常は、上記官能基を含有する単位(モノマーやポリマー)を重合や縮合して得られる樹脂をいい、重量平均分子量(Mw)が1000~2,000,000程度の高分子材料をいう。親水性樹脂としては、たとえば、ポリビニルアルコール、ポリサッカライド、ポリビニルピロリドン、ポリエチレングリコール、ゼラチン、膠、カゼイン、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチル澱粉、サクローズオクタアセテート、アルギン酸アンモニウム、アルギン酸ナトリウム、ポリビニルアミン、ポリアリルアミン、ポリスチレンスルホン酸、ポリアクリル酸、水溶性ポリアミド、無水マレイン酸共重合体、アラビアゴム、水溶性大豆多糖類、ホワイトデキストリン、プルラン、カードラン、キトサン、アルギン酸、酵素分解エーテル化デキストリンなどの他、親水性モノマーを用いて(共)重合された(共)重合体などが挙げられる。 A hydrophilic compound is a compound that dissolves or swells in water. Specifically, a compound having a functional group such as a carboxy group, a hydroxyl group, a sulfonic acid (salt) group, a phosphonic acid (salt) group, an amino group, an amide group, or a quaternary ammonium base in the molecule is preferable. . In particular, the hydrophilic compound is preferably an organic compound, and is preferably a hydrophilic resin in order to ensure resistance. Here, the hydrophilic resin is a resin having the above functional group, and usually refers to a resin obtained by polymerizing or condensing a unit (monomer or polymer) containing the above functional group, and has a weight average molecular weight (Mw). ) Refers to a polymer material having about 1000 to 2,000,000. Examples of hydrophilic resins include polyvinyl alcohol, polysaccharides, polyvinyl pyrrolidone, polyethylene glycol, gelatin, glue, casein, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, hydroxyethyl starch, sucrose octaacetate, ammonium alginate, sodium alginate, polyvinyl Amine, polyallylamine, polystyrene sulfonic acid, polyacrylic acid, water-soluble polyamide, maleic anhydride copolymer, gum arabic, water-soluble soybean polysaccharide, white dextrin, pullulan, curdlan, chitosan, alginic acid, enzymatically degraded etherified dextrin In addition to the above, (co) polymer (co) polymerized using a hydrophilic monomer, and the like can be mentioned.
 親水性化合物含有組成物は、これらの親水性化合物の1種を含有していてもよく、2種以上を含有していてもよい。親水性化合物は、親水性化合物含有組成物の全固形分中、好ましくは10重量%以上、より好ましくは20重量%以上で、100重量%以下含有されることが好ましい。本実施形態に係る親水性化合物含有組成物には、上記親水性化合物の他、必要に応じて他の成分が含有されていてもよい。 The hydrophilic compound-containing composition may contain one kind of these hydrophilic compounds or may contain two or more kinds. The hydrophilic compound is preferably contained in the total solid content of the hydrophilic compound-containing composition in an amount of preferably 10% by weight or more, more preferably 20% by weight or more and 100% by weight or less. The hydrophilic compound-containing composition according to the present embodiment may contain other components as necessary in addition to the hydrophilic compound.
 親水性化合物含有組成物に含有される溶媒としては、親水性化合物含有組成物の固形分が溶解若しくは分散可能で、均一な塗布を可能とするものであればよく、水及び/又はアルコール系溶媒を用いることが好ましい。親水性化合物含有組成物に含まれる溶媒は、水、アルコール系溶媒、及びその他の溶媒から選ばれる1種のみであってもよく、2種以上の混合溶媒であってもよい。親水性化合物含有組成物中の、全固形分濃度は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上で、好ましくは10重量%以下、より好ましくは5重量%以下である。 The solvent contained in the hydrophilic compound-containing composition is not particularly limited as long as the solid content of the hydrophilic compound-containing composition can be dissolved or dispersed and enables uniform coating. Water and / or alcohol solvents Is preferably used. The solvent contained in the hydrophilic compound-containing composition may be only one selected from water, alcohol solvents, and other solvents, or may be a mixed solvent of two or more. The total solid concentration in the hydrophilic compound-containing composition is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, preferably 10% by weight or less, more preferably 5% by weight or less. is there.
 上記親水性化合物含有組成物の下引き層を形成する際の方法としては湿式成膜法が挙げられる。また、成膜後の乾燥方法としては、ホットプレート、クリーンオーブン、IRオーブン、又はコンベクションオーブンを使用して乾燥させる方法が好ましい。乾燥温度としては、通常40℃以上、好ましくは50℃以上、通常200℃以下、好ましくは130℃以下の温度で加熱乾燥する。また、乾燥時間としては、15秒以上が好ましく、30秒以上が好ましく、5分以下が好ましく、3分以下が好ましい。 As a method for forming the undercoat layer of the hydrophilic compound-containing composition, a wet film forming method may be mentioned. Further, as a drying method after film formation, a method of drying using a hot plate, a clean oven, an IR oven, or a convection oven is preferable. The drying temperature is usually 40 ° C. or higher, preferably 50 ° C. or higher, usually 200 ° C. or lower, preferably 130 ° C. or lower. Further, the drying time is preferably 15 seconds or more, preferably 30 seconds or more, preferably 5 minutes or less, and preferably 3 minutes or less.
 乾燥後に得られる下引き層の膜厚は、下引き層も含んだ出来上がりのバンク高さの1/3以下が好ましく、1/4以下であることが特に好ましく、また1/200以上であることが好ましく、1/50以上であることが特に好ましい。下引き層の具体的な膜厚は、5nm以上が好ましく、7nm以上がより好ましく、10nm以上が特に好ましく、4μm以下が好ましく、1μm以下がより好ましく、0.5μm以下が特に好ましい。下引き層の膜厚がこの下限を下回ると、下引き層の効果が得られ難く、上限を上回ると、バンクで区画された領域内に有機半導体塗布膜が均一に形成され難くなる。また、下引き層に感光性を持たせない場合は、上層のバンク用レジスト層を保持することが難しくなる。 The thickness of the undercoat layer obtained after drying is preferably 1/3 or less of the completed bank height including the undercoat layer, particularly preferably 1/4 or less, and 1/200 or more. It is particularly preferable that the ratio is 1/50 or more. The specific thickness of the undercoat layer is preferably 5 nm or more, more preferably 7 nm or more, particularly preferably 10 nm or more, preferably 4 μm or less, more preferably 1 μm or less, and particularly preferably 0.5 μm or less. If the thickness of the undercoat layer is less than this lower limit, the effect of the undercoat layer is difficult to obtain, and if it exceeds the upper limit, the organic semiconductor coating film is hardly formed uniformly in the region partitioned by the bank. Further, when the undercoat layer is not photosensitive, it is difficult to hold the upper bank resist layer.
 次に、感光性組成物は、たとえば感光性のポリイミドやノボラック系樹脂などを使用し、露光、現像によりパターニングできる材料から構成される。感光性組成物は、通常、エチレン性不飽和化合物、光重合開始剤及び溶媒を含有し、さらに、バインダー樹脂、架橋剤、表面改質剤、撥液性成分などを含有することが好ましい。また、着色剤、塗布性向上剤、紫外線吸収剤、重合禁止剤、酸化防止剤、シランカップリング剤、エポキシ化合物、その他の樹脂などを適宜配合することができる。撥液性成分は、バンクで区画された領域内に形成される有機半導体塗布膜を形成する塗布液をはじく性質を有する成分であり、撥液性成分を含有することにより、該塗布液のバンクに対する接触角が20°、より好ましくは30°以上、特に好ましくは45°以上となることである。撥液性成分としては、バンクに撥液性を持たせる効果があるものであればよく、フッ素含有化合物やシリコン含有化合物が挙げられるが、フッ素含有化合物が好ましい。フッ素系などの撥液成分を感光性組成物に混ぜない場合、CFなどの反応性ガスによるプラズマ処理をバンク形成後に施しても良い。 Next, the photosensitive composition is made of a material that can be patterned by exposure and development using, for example, photosensitive polyimide or novolac resin. The photosensitive composition usually contains an ethylenically unsaturated compound, a photopolymerization initiator and a solvent, and preferably further contains a binder resin, a crosslinking agent, a surface modifier, a liquid repellent component, and the like. Moreover, a coloring agent, a coating property improving agent, an ultraviolet absorber, a polymerization inhibitor, an antioxidant, a silane coupling agent, an epoxy compound, other resins, and the like can be appropriately blended. The liquid repellent component is a component having a property of repelling the coating liquid for forming the organic semiconductor coating film formed in the region partitioned by the bank. By containing the liquid repellent component, the bank of the coating liquid is included. The contact angle with respect to is 20 °, more preferably 30 ° or more, and particularly preferably 45 ° or more. The liquid repellent component may be any component having an effect of imparting liquid repellency to the bank, and includes a fluorine-containing compound and a silicon-containing compound, and a fluorine-containing compound is preferable. When a fluorine-based liquid repellent component is not mixed with the photosensitive composition, plasma treatment with a reactive gas such as CF 4 may be performed after the bank is formed.
 感光性組成物を、下引き層上に塗布して、バンク用レジスト層を形成する際の塗布方法としては、上記湿式成膜法が挙げられる。 Examples of the coating method for applying the photosensitive composition on the undercoat layer to form the bank resist layer include the above-described wet film forming method.
 感光性組成物の塗布量は、乾燥膜厚として、下引き層も含めたバンクの高さが通常0.5μm以上、好ましくは1μm以上、より好ましくは1μm以上、通常10μm以下、好ましくは9μm以下、より好ましくは7μm以下のような膜厚となる量である。この際、乾燥膜厚あるいは最終的に形成されたバンクの高さが、基板全域に渡って均一であることする。 The coating amount of the photosensitive composition is, as a dry film thickness, the height of the bank including the undercoat layer is usually 0.5 μm or more, preferably 1 μm or more, more preferably 1 μm or more, usually 10 μm or less, preferably 9 μm or less. More preferably, the amount is such that the film thickness is 7 μm or less. At this time, it is assumed that the dry film thickness or the height of the finally formed bank is uniform over the entire area of the substrate.
 (塗布工程)
 有機半導体素子の製造方法の塗布工程(S2)においては、基板上のバンクで区画された領域内に有機半導体塗布膜を形成するために、通常、有機半導層の成分(乾燥後に残る固形分など)を溶媒(乾燥後に排気される成分)に溶解又は分散させた塗布液をバンク区画領域内に供給する。
(Coating process)
In the coating step (S2) of the manufacturing method of the organic semiconductor element, in order to form the organic semiconductor coating film in the region partitioned by the bank on the substrate, the component of the organic semiconductor layer (solid content remaining after drying) is usually used. Etc.) is applied to the bank partition region by dissolving or dispersing it in a solvent (component exhausted after drying).
 この塗布液をバンク区画領域内への供給方法は、凸版印刷法、ディスペンサー法、スリットコート法の他、インクジェット法(液滴吐出法)やノズルプリント法(液流吐出法)といったインク吐出型の塗布法が好ましく、特にインクジェット法が好ましい。 In addition to the relief printing method, the dispenser method, and the slit coating method, this coating liquid can be supplied into the bank partition region by an ink discharge type such as an ink jet method (droplet discharge method) or a nozzle print method (liquid flow discharge method). A coating method is preferable, and an inkjet method is particularly preferable.
 インクジェット法に用いられる塗布液の溶媒としては、高沸点溶媒成分を比較的多く添加することにより、ノズル乾燥、目詰まりを防止することが一般的に知られており、溶媒の選定にはこれらを考慮した上で最適な溶媒を選定することが好ましい。また、特に、インクジェット法の場合、20plの液滴サイズで被塗布面に着滴させたとき、着滴後1分経過後の液滴径が100~400μmのような溶媒であることが好ましく、さらに好ましくはこの液滴径は150~300μmである。これにより、膜厚ムラやピンホールの発生を防止することができる。 As a solvent of the coating solution used in the ink jet method, it is generally known to prevent nozzle drying and clogging by adding a relatively large amount of a high-boiling solvent component. It is preferable to select an optimal solvent in consideration. In particular, in the case of the ink jet method, it is preferable to use a solvent having a droplet diameter of 100 to 400 μm after 1 minute has elapsed when the droplet is deposited on the surface to be coated with a droplet size of 20 pl. More preferably, the droplet diameter is 150 to 300 μm. Thereby, the occurrence of film thickness unevenness and pinholes can be prevented.
 有機半導体塗布液には、少なくとも2種類の固形分(たとえば、発光層となるべき低分子のホスト材料とゲスト材料)が溶質として分散、溶解されていてもよい。塗布工程における所定塗布液の固形分の濃度が0.1重量%~10重量%であることが好ましく、3重量%~10重量%であることが更に好ましい。固形分の濃度がこの下限を下回ると溶媒の蒸発量が増え真空乾燥に不都合となり、上限を上回るとノズル乾燥、目詰まりが発生しやすくなる。塗布工程における所定塗布液の固形分が100以上10000以下の分子量の低分子化合物であることが好ましい。当該低分子化合物の分子量がこの下限を下回ると溶媒の蒸発量が増え真空乾燥に不都合となり、上限を上回るとノズル乾燥、目詰まりが発生しやすくなる。所定塗布液の溶媒は、前述の溶媒(正孔注入層形成用組成物に用いたもの)から、その室温の蒸気圧が1Pa~70Paであるもの、例えば下記表1に示すケトン系溶媒、エステル系溶媒、ハロゲン非含有芳香族系溶媒などから選択することが好ましい。溶媒の蒸気圧がこの下限及び上限を離れると真空乾燥に不都合となるからである。さらに、所定塗布液の溶媒は、前述の同溶媒から、その標準沸点が200℃~300℃であるものから選択することが好ましい。溶媒の標準沸点がこの下限を下回るとノズル乾燥、目詰まりが発生しやすくなり、上限を上回ると真空乾燥に不都合となる。 In the organic semiconductor coating liquid, at least two kinds of solid contents (for example, a low-molecular host material and a guest material to be a light emitting layer) may be dispersed and dissolved as a solute. The concentration of the solid content of the predetermined coating solution in the coating step is preferably 0.1% by weight to 10% by weight, and more preferably 3% by weight to 10% by weight. If the concentration of the solid content is below this lower limit, the amount of evaporation of the solvent increases, which is inconvenient for vacuum drying. If the concentration exceeds the upper limit, nozzle drying and clogging are likely to occur. The solid content of the predetermined coating solution in the coating step is preferably a low molecular weight compound having a molecular weight of 100 or more and 10,000 or less. If the molecular weight of the low molecular weight compound is below this lower limit, the amount of solvent evaporation increases, which is inconvenient for vacuum drying, and if it exceeds the upper limit, nozzle drying and clogging are likely to occur. The solvent of the predetermined coating solution is a solvent having a vapor pressure at room temperature of 1 Pa to 70 Pa from the above-mentioned solvent (used in the composition for forming a hole injection layer), such as ketone solvents and esters shown in Table 1 below. It is preferable to select from a system solvent, a halogen-free aromatic solvent, and the like. This is because if the vapor pressure of the solvent deviates from the lower limit and the upper limit, it becomes inconvenient for vacuum drying. Further, the solvent for the predetermined coating solution is preferably selected from those having the normal boiling point of 200 ° C. to 300 ° C. from the same solvent. If the standard boiling point of the solvent is below this lower limit, nozzle drying and clogging are likely to occur, and if it exceeds the upper limit, it is inconvenient for vacuum drying.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (乾燥工程)
 有機半導体素子の製造方法の乾燥工程(S3)においては、バンク区画領域内に塗布液を供給した後は、真空チャンバ内で乾燥を行う、真空乾燥法を実行する。真空乾燥するときは、必ずしも加熱する必要はない。
(Drying process)
In the drying step (S3) of the method for manufacturing an organic semiconductor element, after supplying the coating liquid into the bank partition region, a vacuum drying method is performed in which drying is performed in a vacuum chamber. When vacuum drying, it is not always necessary to heat.
 真空乾燥法に用いられる真空乾燥装置の一例を図6に示す。図6は実施形態の真空乾燥装置の断面を示す概略構成図である。 An example of a vacuum drying apparatus used in the vacuum drying method is shown in FIG. FIG. 6 is a schematic configuration diagram showing a cross section of the vacuum drying apparatus of the embodiment.
 図6に示す真空乾燥装置は、真空チャンバ11と、真空チャンバ11に配管を介して接続された真空計12と、配管13を介して真空チャンバ11の排気口に接続された真空ポンプ14と、真空チャンバ11及び真空ポンプ14に設けられ排気速度を調整する比例制御弁15と、真空計12及び比例制御弁15に電気的に接続された排気制御部16と、から構成される。排気制御部16は比例制御弁15の排気速度の制御を行う。 6 includes a vacuum chamber 11, a vacuum gauge 12 connected to the vacuum chamber 11 via a pipe, a vacuum pump 14 connected to an exhaust port of the vacuum chamber 11 via a pipe 13, The proportional control valve 15 is provided in the vacuum chamber 11 and the vacuum pump 14 to adjust the exhaust speed, and the exhaust control unit 16 is electrically connected to the vacuum gauge 12 and the proportional control valve 15. The exhaust control unit 16 controls the exhaust speed of the proportional control valve 15.
 真空チャンバ11は、底部11aと蓋部11bがOリング11cを介して気密的に着脱自在に接合されて構成され、底部11a側には排気口が形成されている。真空チャンバ内部の底部11aの排気口上にはステージ17が設けられ、このステージ17は複数の支持脚18を介して底部11a上に所定距離に離間して支持されている。ステージ17上に、被乾燥体である所定塗布液が塗布された基板1が載置される。真空チャンバ11の底部11a側には吸気口に接続する配管上にある第2比例制御弁19が設けられ、フィルタ(図示せず)を介して大気に連通されている。第2比例制御弁19は、電気的に接続された排気制御部16により、吸気制御を行われる。排気動作中、第2比例制御弁19は閉じられている。 The vacuum chamber 11 is configured such that a bottom portion 11a and a lid portion 11b are airtightly detachably joined via an O-ring 11c, and an exhaust port is formed on the bottom portion 11a side. A stage 17 is provided on the exhaust port of the bottom portion 11a inside the vacuum chamber, and the stage 17 is supported on the bottom portion 11a at a predetermined distance via a plurality of support legs 18. On the stage 17, the board | substrate 1 with which the predetermined coating liquid which is a to-be-dried body was apply | coated is mounted. On the bottom 11a side of the vacuum chamber 11, a second proportional control valve 19 on a pipe connected to the intake port is provided and communicated with the atmosphere via a filter (not shown). The second proportional control valve 19 is subjected to intake air control by an electrically connected exhaust control unit 16. During the exhaust operation, the second proportional control valve 19 is closed.
 真空チャンバ11の底部11aに設けられている排気口は、配管13を介して真空ポンプ14に接続され、この排気口から真空チャンバ11内の気体が真空ポンプ14を介して外部に排出され、真空チャンバ11内を所定の真空状態とすることができる。排気口は、真空チャンバ11内で気体を均等に排気することができる位置に形成すればよく、個数及び位置など制限されない。真空ポンプ14はドライポンプやロータリーポンプを用いることができる。本実施形態では、真空ポンプ14は真空チャンバ11内部を大気から60Paまで10秒以内好ましくは0.5秒以内で減圧できる排気速度を発揮できるものを用いる。真空乾燥装置の真空ポンプ14は最大排気速度を決定するが、その前段に設けられた比例制御弁15にて排気速度を制御する。すなわち、排気制御部16は、真空チャンバ11中の所定塗布液膜の周囲のガスを10秒以下の期間内で高速排気する制御を行う。所定の排気速度は、大気圧から60Paの気圧まで0.5秒以上10秒以下の速度である。 The exhaust port provided in the bottom 11a of the vacuum chamber 11 is connected to a vacuum pump 14 via a pipe 13, and the gas in the vacuum chamber 11 is exhausted to the outside via the vacuum pump 14 from this exhaust port. The inside of the chamber 11 can be in a predetermined vacuum state. The exhaust port may be formed at a position where the gas can be uniformly exhausted in the vacuum chamber 11, and the number and position thereof are not limited. The vacuum pump 14 can be a dry pump or a rotary pump. In the present embodiment, the vacuum pump 14 is capable of exhibiting an exhaust speed capable of reducing the pressure in the vacuum chamber 11 from the atmosphere to 60 Pa within 10 seconds, preferably within 0.5 seconds. The vacuum pump 14 of the vacuum drying apparatus determines the maximum exhaust speed, and the exhaust speed is controlled by the proportional control valve 15 provided in the preceding stage. That is, the exhaust control unit 16 performs control to exhaust the gas around the predetermined coating liquid film in the vacuum chamber 11 at a high speed within a period of 10 seconds or less. The predetermined exhaust speed is a speed from 0.5 to 10 seconds from atmospheric pressure to 60 Pa.
 図7に示すグラフのように、実施形態の真空乾燥装置の真空チャンバ内の理想的な圧力経時変化を示すように、排気制御部16は、比例制御弁15を制御して真空チャンバ11内の気体の排気速度、大気圧PからP=60Paの気圧までt=0.5秒~t=10秒の範囲内の排気時間がtになるように調整する。 As shown in the graph of FIG. 7, the exhaust control unit 16 controls the proportional control valve 15 to show the ideal pressure change with time in the vacuum chamber of the vacuum drying apparatus of the embodiment. The gas exhaust speed is adjusted so that the exhaust time in the range of t L = 0.5 seconds to t H = 10 seconds from the atmospheric pressure P 0 to the atmospheric pressure P 1 = 60 Pa is t.
 真空乾燥装置を構成する真空チャンバ11、ステージ17などは、それぞれ適宜強度の保てるSUS、鉄などの材料により形成され、ステージ17主面の面積は、中央に配置される基板1より面積が大きく、真空チャンバ11の底部面積の70~99%の範囲とすることが好ましい。また、ステージ17の上部の蓋部11bとの並びにステージ17の周辺部と底部11aの側壁部との距離は、基板1上の塗布液膜にガス流が影響を与えないように同程度で均一とすることが好ましい。 The vacuum chamber 11, the stage 17 and the like constituting the vacuum drying apparatus are each formed of a material such as SUS and iron capable of maintaining appropriate strength, and the area of the main surface of the stage 17 is larger than that of the substrate 1 disposed in the center. The range of 70 to 99% of the bottom area of the vacuum chamber 11 is preferable. Further, the distance between the upper lid portion 11b of the stage 17 and the peripheral portion of the stage 17 and the side wall portion of the bottom portion 11a is equal and uniform so that the gas flow does not affect the coating liquid film on the substrate 1. It is preferable that
 また、真空乾燥装置において、排気制御部16は、真空計12の圧力測定出力に基づき比例制御弁15のバルブの開閉制御を行って、排気速度の制御を行うこともできる。たとえば、真空チャンバ11中を10秒以下の期間内で排気するが、溶媒中で蒸気圧が高い若しくは低い溶媒又はそれらの混合溶媒がある場合、大気圧変動がある場合など、真空チャンバ11中の圧力の変動に応じて真空計12の圧力測定出力から当該圧力経時変化の微分値を算出して排気制御部16は比例制御弁15制御し、10秒以内でも排気動作を停止して、第2比例制御弁19により所定吸気速度で真空チャンバ11中を例えば大気圧などの所定気圧に戻すことができる。 Further, in the vacuum drying apparatus, the exhaust control unit 16 can also control the exhaust speed by controlling the opening and closing of the proportional control valve 15 based on the pressure measurement output of the vacuum gauge 12. For example, when the vacuum chamber 11 is evacuated within a period of 10 seconds or less, there is a solvent having a high or low vapor pressure in the solvent or a mixed solvent thereof, or there is a fluctuation in atmospheric pressure. The differential value of the pressure change with time is calculated from the pressure measurement output of the vacuum gauge 12 in accordance with the pressure fluctuation, and the exhaust control unit 16 controls the proportional control valve 15 to stop the exhaust operation even within 10 seconds. The proportional control valve 19 can return the inside of the vacuum chamber 11 to a predetermined atmospheric pressure such as atmospheric pressure at a predetermined intake speed.
 このように、所定塗布液膜を真空中で乾燥する実施形態の真空乾燥装置は、所定塗布液膜を担持する基板を内部空間に収容する真空チャンバ11と、真空チャンバの内部空間から気体を外部へ排気する排気装置(真空計12、配管13、真空ポンプ14、比例制御弁15)と、真空チャンバ11内を排気させる排気速度に排気装置を維持する排気制御部16と、を含む。 As described above, the vacuum drying apparatus according to the embodiment for drying a predetermined coating liquid film in a vacuum includes a vacuum chamber 11 that accommodates a substrate carrying the predetermined coating liquid film in the internal space, and gas from the internal space of the vacuum chamber to the outside. And an exhaust controller (vacuum gauge 12, pipe 13, vacuum pump 14, proportional control valve 15) and an exhaust controller 16 for maintaining the exhaust device at an exhaust speed for exhausting the inside of the vacuum chamber 11.
 実施形態の真空乾燥装置では、所定塗布液膜の溶媒の蒸発速度に関わらず短い10秒以下の期間内で排気し、該溶媒を急速蒸発させることにより、有機半導層の成分(乾燥後に残る固形分)を分散させた状態を維持するので、処理速度と塗布膜の平面平滑性の両方を向上させることができる。 In the vacuum drying apparatus of the embodiment, the components of the organic semiconductor layer (remaining after drying) are exhausted within a short period of 10 seconds or less regardless of the evaporation rate of the solvent of the predetermined coating liquid film, and the solvent is rapidly evaporated. Since the state in which the solid content is dispersed is maintained, both the processing speed and the planar smoothness of the coating film can be improved.
 本実施形態の真空乾燥方法では、単一溶媒塗布液だけでなく混合溶媒塗布液の場合でも適用することができることは言うまでもない。 It goes without saying that the vacuum drying method of this embodiment can be applied not only to a single solvent coating solution but also to a mixed solvent coating solution.
 真空乾燥は60Paまで10秒以下の排気速度で行うが、その後、それぞれの蒸気圧以上の真空中で5分程度で排気することで残留溶媒を除去することができる。 Vacuum drying is performed at an exhaust rate of 10 seconds or less up to 60 Pa, and then the residual solvent can be removed by exhausting in about 5 minutes in a vacuum at or above the respective vapor pressure.
 (焼成工程)
 有機半導体素子の製造方法の焼成工程(S4)において、有機半導体層の焼成は、たとえば、乾燥後の基板を200℃の温度で、30分程度で、ホットプレート、クリーンオーブン、IR炉などを用いて加熱して行うことができる。
(Baking process)
In the baking step (S4) of the method for manufacturing an organic semiconductor element, the organic semiconductor layer is baked, for example, using a hot plate, a clean oven, an IR furnace, etc., at a temperature of 200 ° C. for about 30 minutes. Can be carried out by heating.
 (蒸着工程)
 有機半導体素子の製造方法の蒸着工程(S5)において、真空蒸着装置のたとえば半円形ドーム処理室の内面に設けられた基板ホルダーに焼成後の基板を保持し、半円形ドームの中心位置にある蒸着源ボートに予定の有機半導体又は無機材料を置いて、かかるドームを成膜中にゆっくりと中心回りに回転させて、たとえば成膜開始到達圧力を、10-4Pa程度まで高真空にし、蒸着膜の密着性や膜質を向上させる。また、無機材料の蒸着では成膜温度を高温(300℃~400℃)にできるが、プラスチック基板などは低温で蒸着を行う。蒸着源の蒸発方法は抵抗蒸着(ボートの電気抵抗加熱により有機半導体又は無機材料を溶かして蒸発させる)方法や、電子ビーム蒸着(電子銃を用い収束電子ビームをボートの有機半導体又は無機材料を溶かして蒸発させる)などがある。
(Deposition process)
In the vapor deposition step (S5) of the manufacturing method of the organic semiconductor element, the substrate after firing is held on a substrate holder provided on the inner surface of, for example, a semicircular dome treatment chamber of a vacuum vapor deposition apparatus, and the vapor deposition located at the center position of the semicircular dome A planned organic semiconductor or inorganic material is placed on the source boat, and the dome is slowly rotated around the center during film formation, for example, the film formation starting pressure is set to a high vacuum to about 10 −4 Pa, and the vapor deposition film Improves adhesion and film quality. In the vapor deposition of inorganic materials, the film forming temperature can be increased (300 ° C. to 400 ° C.), but plastic substrates and the like are deposited at a low temperature. The evaporation source evaporation method includes resistance evaporation (dissolves and evaporates the organic semiconductor or inorganic material by electric resistance heating of the boat) and electron beam evaporation (dissolves the focused semiconductor beam or organic semiconductor or inorganic material of the boat using an electron gun). Evaporate).
 フォトリソグラフィーにより、ガラス基板上に100μm幅で120nm厚のインジウムスズ酸化物(ITO)の透明ストライプにパターニングして陽極を形成し、図5に示した、ITO基板上にポリビニルアルコールの下引き層B1及びポリイミドの樹脂層B3の積層バンクBK(幅10μm)を井桁状(100μm×100μm)に形成したものを使用して、バンクの凹に、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極/の膜構成の有機EL素子を作製する。 An anode is formed by patterning into a transparent stripe of indium tin oxide (ITO) having a thickness of 100 μm and a thickness of 120 nm on a glass substrate by photolithography, and an undercoat layer B1 of polyvinyl alcohol on the ITO substrate shown in FIG. And a polyimide resin layer B3 stacked bank BK (width 10 μm) formed in a cross-beam shape (100 μm × 100 μm), and the anode / hole injection layer / hole transport layer / light emitting layer in the recess of the bank An organic EL element having a film structure of / hole blocking layer / electron transport layer / electron injection layer / cathode / is produced.
 まず、上述の塗布工程(S2)と乾燥工程(S3)と焼成工程(S4)の一連の工程を、正孔注入層、正孔輸送層及び発光層ごとに繰り返してそれぞれの層を積層する。 First, the above-described coating process (S2), drying process (S3), and firing process (S4) are repeated for each of the hole injection layer, the hole transport layer, and the light emitting layer to laminate each layer.
 図8に示すように正孔注入層用の塗布液3をインクジェット法によりバンクBKの各区画領域内の陽極2上へ塗布し、真空乾燥して、図9に示すように焼成して正孔注入層3を形成する。 As shown in FIG. 8, the hole injection layer coating liquid 3 is applied onto the anode 2 in each partition region of the bank BK by an ink jet method, vacuum dried, and baked as shown in FIG. The injection layer 3 is formed.
 図10に示すように正孔輸送層用の塗布液4をインクジェット法によりバンクBKの各区画領域内の正孔注入層3上へ塗布し、真空乾燥して、図11に示すように焼成して正孔輸送層4を形成する。 As shown in FIG. 10, the coating solution 4 for the hole transport layer is applied onto the hole injection layer 3 in each partition region of the bank BK by an ink jet method, vacuum dried, and baked as shown in FIG. Thus, the hole transport layer 4 is formed.
 図12に示すように発光層用の塗布液5をインクジェット法によりバンクBKの各区画領域内の正孔輸送層4上へ塗布し、真空乾燥して、図13に示すように焼成して発光層5を形成する。 As shown in FIG. 12, the coating solution 5 for the light emitting layer is applied onto the hole transport layer 4 in each partition region of the bank BK by the ink jet method, vacuum dried, and fired to emit light as shown in FIG. Layer 5 is formed.
 次に、正孔阻止層、電子輸送層、電子注入層及び陰極ごと蒸着工程(S5)を繰り返してそれぞれの層を積層する。 Next, the vapor blocking step (S5) is repeated together with the hole blocking layer, the electron transport layer, the electron injection layer, and the cathode to laminate each layer.
 真空蒸着装置の蒸着源ボートに正孔阻止層材料を装填して蒸着を実行して、図14に示すように発光層5上に正孔阻止層6を形成する。 A hole blocking layer material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus and vapor deposition is performed to form a hole blocking layer 6 on the light emitting layer 5 as shown in FIG.
 次に、真空蒸着装置の蒸着源ボートに電子輸送層材料を装填して蒸着を実行して、図15に示すように正孔阻止層6上に電子輸送層7を形成する。 Next, the electron transport layer material is loaded into the vapor deposition source boat of the vacuum vapor deposition apparatus, and the vapor deposition is performed to form the electron transport layer 7 on the hole blocking layer 6 as shown in FIG.
 次に、真空蒸着装置の蒸着源ボートに電子注入層材料を装填して蒸着を実行して、図16に示すように電子輸送層7上に電子注入層8を形成する。 Next, the electron injection layer material is loaded into the vapor deposition source boat of the vacuum vapor deposition apparatus, and the vapor deposition is performed to form the electron injection layer 8 on the electron transport layer 7 as shown in FIG.
 次に、真空蒸着装置の蒸着源ボートに陰極材料を装填して蒸着を実行して、図17に示すように電子注入層8上に陰極9を形成する。 Next, a cathode material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus and vapor deposition is performed to form a cathode 9 on the electron injection layer 8 as shown in FIG.
 [実験例1] 
 具体的に実験において、正孔阻止層、電子輸送層、電子注入層及び陰極を蒸着法により成膜した以外、実施形態の真空乾燥装置による乾燥工程を含む前述のプロセスにより、ガラス基板上に100μm×100μmのバンク区画からなる陽極(ITO)/正孔注入層(CuPc)/正孔輸送層(α-NPD)/発光層((Ir(ppy)3)+(CBP))/正孔阻止層(BCP)/電子輸送層(Alq3)/電子注入層(LiF)/陰極(Al)/の膜構成の有機EL素子を作製し、評価した。
[Experimental Example 1]
Specifically, in the experiment, except that the hole blocking layer, the electron transport layer, the electron injection layer, and the cathode were formed by vapor deposition, 100 μm was formed on the glass substrate by the above-described process including the drying step by the vacuum drying apparatus of the embodiment. Anode (ITO) / hole injection layer (CuPc) / hole transport layer (α-NPD) / light emitting layer ((Ir (ppy) 3) + (CBP)) / hole blocking layer comprising bank sections of 100 μm An organic EL device having a film configuration of (BCP) / electron transport layer (Alq3) / electron injection layer (LiF) / cathode (Al) / was fabricated and evaluated.
 インクジェット法による正孔注入層、正孔輸送層及び発光層の低分子系材料塗布液の組成(溶媒は各層で共通)を表2に示す。発光層塗布液には2種類の固形分(ゲスト材料:Ir(ppy)3)及び(ホスト材料:CBP)が溶媒に分散又は溶解された。 Table 2 shows the composition of the low molecular weight material coating solution for the hole injection layer, hole transport layer and light emitting layer by the inkjet method (the solvent is common to each layer). Two kinds of solid contents (guest material: Ir (ppy) 3) and (host material: CBP) were dispersed or dissolved in the solvent in the light emitting layer coating solution.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 正孔注入層、正孔輸送層及び発光層の各塗布層の真空乾燥工程において真空チャンバ内を、大気圧から60Paまで1秒の排気速度として排気した場合(60Pa-1秒)、大気圧から60Paまで10秒の排気速度として排気した場合(60Pa-10秒)、及び大気圧から60Paまで200秒の排気速度として排気した場合(60Pa-200秒)、の3パターンで排気速度を変えて、有機EL素子の成膜を行った。各有機EL素子の成膜において陽極(ITO)、正孔阻止層(BCP)、電子輸送層(Alq3)、電子注入層(LiF)及び陰極(Al)の成膜条件は同一とした。 When the inside of the vacuum chamber is evacuated from atmospheric pressure to 60 Pa at a evacuation rate of 1 second (60 Pa-1 second) in the vacuum drying process of each coating layer of the hole injection layer, the hole transport layer, and the light emitting layer, from the atmospheric pressure When exhausting to 60 Pa as a 10-second exhaust speed (60 Pa-10 seconds) and exhausting from atmospheric pressure to 60 Pa as a 200-second exhaust speed (60 Pa-200 seconds), changing the exhaust speed in three patterns, An organic EL element was formed. In the film formation of each organic EL element, the film formation conditions of the anode (ITO), the hole blocking layer (BCP), the electron transport layer (Alq3), the electron injection layer (LiF), and the cathode (Al) were the same.
 インクジェット法により塗布、真空乾燥されたバンク区画内発光層の塗布膜の最外周縁部のメニスカスと得られた有機EL素子の発光とを観察した。図18と図19に、真空乾燥時の大気圧から60Paまで10秒と200秒の排気速度(60Pa-10秒、60Pa-200秒)による有機EL素子の各バンク区画内発光層のメニスカス幅測定と、その素子の発光状態の顕微鏡観察を行った結果を示す。図7にも排気速度(60Pa-10秒、60Pa-200秒)の場合の真空チャンバ内の圧力経時変化を示す。 The meniscus at the outermost peripheral edge of the coating film of the light emitting layer in the bank compartment, which was applied and vacuum-dried by the ink jet method, and the light emission of the obtained organic EL element were observed. 18 and 19 show the measurement of the meniscus width of the light-emitting layer in each bank section of the organic EL element at an exhaust speed of 10 seconds and 200 seconds from atmospheric pressure to 60 Pa during vacuum drying (60 Pa-10 seconds, 60 Pa-200 seconds). And the result of having performed the microscope observation of the light emission state of the element is shown. FIG. 7 also shows changes with time in the pressure in the vacuum chamber in the case of the exhaust speed (60 Pa-10 seconds, 60 Pa-200 seconds).
 実験結果から、排気速度(60Pa-10秒)場合は発光層周縁のメニスカスによる非発光部幅が約5μmであったが、排気速度(60Pa-200秒)場合は発光層周縁のメニスカスによる非発光部幅が10μm以上となり、平坦面と発光部の減少が知見された。 From the experimental results, when the exhaust speed (60 Pa-10 seconds), the width of the non-light emitting portion due to the meniscus at the periphery of the light emitting layer was about 5 μm. The part width was 10 μm or more, and the reduction of the flat surface and the light emitting part was found.
 乾燥工程において排気速度(60Pa-1秒)場合の有機EL素子は発光効率106%であり、排気速度(60Pa-10秒)場合は有機EL素子の発光効率が100%であり、排気速度(60Pa-200秒)場合の有機EL素子の発光効率はこれらよりも低いものであった。 In the drying process, the organic EL device has a luminous efficiency of 106% when the exhaust speed is 60 Pa-1 sec, and the organic EL device has a luminous efficiency of 100% when the exhaust speed is 60 Pa-10 sec. The luminous efficiency of the organic EL device in the case of (−200 seconds) was lower than these.
 [実験例2~26] 
 実験例1に用いた正孔注入層、正孔輸送層及び発光層の共通溶媒のジエチレングリコール-n-ブチルエーテルアセテートに代えて、下記表3の溶剤を、各層用の塗布液組成物の溶媒に用いた以外、実験例1と同一条件で、同一の膜構成の有機EL素子の実験例2~26を作製し、評価した。また、それぞれにおいて、実験例1と同様に、正孔注入層、正孔輸送層及び発光層の各塗布層の真空乾燥工程において真空チャンバ内を、大気圧から60Paまで1秒の排気速度として排気した場合(60Pa-1秒)、大気圧から60Paまで10秒の排気速度として排気した場合(60Pa-10秒)、及び大気圧から60Paまで200秒の排気速度として排気した場合(60Pa-200秒)、の3パターンで排気速度を変えて、有機EL素子の成膜を行った。
[Experimental Examples 2 to 26]
Instead of diethylene glycol-n-butyl ether acetate, which is a common solvent for the hole injection layer, hole transport layer, and light emitting layer used in Experimental Example 1, the solvents in Table 3 below were used as the solvent for the coating liquid composition for each layer. Experimental examples 2 to 26 of organic EL elements having the same film configuration were produced and evaluated under the same conditions as in experimental example 1. In each case, similarly to Experimental Example 1, the vacuum chamber was evacuated from the atmospheric pressure to 60 Pa at a evacuation rate of 1 second in the vacuum drying process of the coating layers of the hole injection layer, the hole transport layer, and the light emitting layer. When exhausting from atmospheric pressure to 60 Pa as an exhaust rate of 10 seconds (60 Pa-10 seconds) When exhausting from atmospheric pressure to 60 Pa as an exhaust rate of 200 seconds (60 Pa-200 seconds) The organic EL element was formed by changing the exhaust speed in three patterns.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実験結果] 
 実験例2~26にて作製した素子の表面および発光状態の顕微鏡観察を行った結果、実験例2~22では、塗布層の膜厚が均一で、均質な発光を得ることができた。溶媒の標準沸点200℃を下回る実験例においては工程中にノズル乾燥、目詰まりが発生したものが散見された、溶媒の標準沸点300℃を上回る実験例においては真空乾燥でも塗布膜が乾ききらずに不都合となる場合が散見された。
[Experimental result]
As a result of performing microscopic observation of the surface and light emission state of the devices prepared in Experimental Examples 2 to 26, in Experimental Examples 2 to 22, the coating layer had a uniform film thickness and uniform light emission was obtained. In the experimental example where the standard boiling point of the solvent is lower than 200 ° C., nozzle drying and clogging were observed in the process, and in the experimental example where the standard boiling point of the solvent was higher than 300 ° C., the coating film was not completely dried even by vacuum drying. In some cases, it was inconvenient.
 よって、インクジェット法による各層用の塗布液の溶媒は、その室温の蒸気圧が1Pa~70Paであるものから選択することが好ましく、さらに、その標準沸点が200℃~300℃であるものから選択することが好ましいことが、わかる。 Therefore, the solvent for the coating solution for each layer by the ink jet method is preferably selected from those having a vapor pressure at room temperature of 1 Pa to 70 Pa, and further selected from those having a normal boiling point of 200 ° C. to 300 ° C. It can be seen that this is preferable.
 本実施形態では有機EL素子を説明したが、本発明の有機半導体素子の製造方法及び真空乾燥装置は、湿式塗布により膜形成を実施する有機ELディスプレイ、有機EL照明の他に、有機半導体層を用いる有機TFTや有機太陽電池やカラーフィルタの場合でも適用することができることは言うまでもない。 Although the organic EL element has been described in the present embodiment, the organic semiconductor element manufacturing method and the vacuum drying apparatus according to the present invention include an organic semiconductor layer in addition to an organic EL display and an organic EL illumination that form a film by wet coating. Needless to say, the present invention can also be applied to organic TFTs, organic solar cells, and color filters to be used.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 11 真空チャンバ
 11a 真空チャンバの底部
 11b 真空チャンバの蓋部
 11c Oリング
 12 真空計
 13 配管
 14 真空ポンプ
 15 比例制御弁
 16 排気制御部
 17 ステージ
 18 支持脚
 B1 下引き層
 B2 レジスト層
 B3 樹脂層
 BK バンク
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode 11 Vacuum chamber 11a Vacuum chamber bottom 11b Vacuum chamber lid 11c O-ring 12 Vacuum gauge 13 Piping 14 Vacuum pump 15 Proportional control valve 16 Exhaust controller 17 Stage 18 Support leg B1 Undercoat layer B2 Resist layer B3 Resin layer BK Bank

Claims (8)

  1.  基板上に、対向する1対の陽極及び陰極の間に配置された有機半導体層を有する有機半導体素子の製造方法であって、
     前記有機半導体層となる溶質と前記溶質を分散させる溶媒とを含有する有機半導体塗布液から、湿式成膜法により、有機半導体塗布液膜を形成する塗布工程と、
     前記有機半導体塗布液膜を真空チャンバ内で乾燥する乾燥工程と、を含み、
     前記乾燥工程において、前記真空チャンバ内を大気圧から60Paの気圧まで0.5秒以上10秒以下の排気速度で排気することを特徴とする有機半導体素子の製造方法。
    A method of manufacturing an organic semiconductor element having an organic semiconductor layer disposed between a pair of opposing anodes and cathodes on a substrate,
    A coating step of forming an organic semiconductor coating liquid film by a wet film-forming method from an organic semiconductor coating liquid containing a solute to be the organic semiconductor layer and a solvent for dispersing the solute;
    Drying the organic semiconductor coating liquid film in a vacuum chamber, and
    In the drying step, the vacuum chamber is evacuated from an atmospheric pressure to an atmospheric pressure of 60 Pa at an evacuation speed of 0.5 seconds or more and 10 seconds or less.
  2.  前記有機半導体塗布液には、有機半導体層となるべき少なくとも2種類の固形分が前記溶質として分散又は溶解されていることを特徴とする請求項1に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to claim 1, wherein the organic semiconductor coating liquid contains at least two kinds of solids to be an organic semiconductor layer dispersed or dissolved as the solute.
  3.  前記塗布工程における前記有機半導体塗布液の固形分の濃度が0.1重量%~10重量%であることを特徴とする請求項2に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to claim 2, wherein the concentration of the solid content of the organic semiconductor coating liquid in the coating step is 0.1 wt% to 10 wt%.
  4.  前記塗布工程における前記有機半導体塗布液の前記固形分が100以上10000以下の分子量の化合物であることを特徴とする請求項2に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to claim 2, wherein the solid content of the organic semiconductor coating liquid in the coating step is a compound having a molecular weight of 100 or more and 10,000 or less.
  5.  前記化合物が発光層の成分の一部であることを特徴とする請求項4に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to claim 4, wherein the compound is a part of a component of the light emitting layer.
  6.  前記有機半導体塗布液の溶媒の室温の蒸気圧が1Pa~70Paであることを特徴とする請求項1に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to claim 1, wherein the organic semiconductor coating solution has a solvent having a vapor pressure of 1 Pa to 70 Pa at room temperature.
  7.  前記有機半導体塗布液の溶媒の標準沸点が200℃~300℃であることを特徴とする請求項6に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to claim 6, wherein a normal boiling point of the solvent of the organic semiconductor coating solution is 200 ° C to 300 ° C.
  8.  有機半導体層となる溶質と前記溶質を分散させる溶媒とを含有する有機半導体塗布液から成膜された有機半導体塗布液膜を真空中で乾燥する真空乾燥装置であって、前記有機半導体塗布液膜を担持する基板を内部空間に収容する真空チャンバと、前記真空チャンバの内部空間から気体を外部へ排気する排気装置と、前記排気装置を制御して前記真空チャンバ内を大気圧から60Paの気圧まで0.5秒以上10秒以下の排気速度で排気し、前記有機半導体塗布液膜を乾燥させる排気制御部と、を含む真空乾燥装置。 A vacuum drying apparatus for drying an organic semiconductor coating liquid film formed from an organic semiconductor coating liquid containing a solute to be an organic semiconductor layer and a solvent for dispersing the solute in vacuum, the organic semiconductor coating liquid film A vacuum chamber that accommodates a substrate carrying the substrate in an internal space, an exhaust device that exhausts gas from the internal space of the vacuum chamber to the outside, and the exhaust device is controlled to control the inside of the vacuum chamber from atmospheric pressure to an atmospheric pressure of 60 Pa An evacuation control unit that evacuates at an evacuation speed of 0.5 seconds or more and 10 seconds or less to dry the organic semiconductor coating liquid film.
PCT/JP2012/068359 2011-07-26 2012-07-19 Method for producing organic semiconductor element and vacuum drying device WO2013015198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011163421 2011-07-26
JP2011-163421 2011-07-26

Publications (1)

Publication Number Publication Date
WO2013015198A1 true WO2013015198A1 (en) 2013-01-31

Family

ID=47601045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068359 WO2013015198A1 (en) 2011-07-26 2012-07-19 Method for producing organic semiconductor element and vacuum drying device

Country Status (2)

Country Link
JP (1) JPWO2013015198A1 (en)
WO (1) WO2013015198A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194429A1 (en) * 2014-06-17 2015-12-23 株式会社ダイセル Solvent for manufacturing organic el elements
JP2016108374A (en) * 2014-12-02 2016-06-20 セイコーエプソン株式会社 Film-forming ink, film-forming method, film-equipped device, and electronic apparatus
JP2018022865A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
JP2018022862A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
WO2018131616A1 (en) * 2017-01-10 2018-07-19 株式会社Joled Method for manufacturing organic el display panel, and ink drying device
JP2019506732A (en) * 2015-12-15 2019-03-07 メルク パテント ゲーエムベーハー Esters containing aromatic groups as solvents for organic electronic formulations
KR20190045265A (en) * 2016-08-30 2019-05-02 노발레드 게엠베하 Organic semiconductor layer and method for manufacturing organic electronic device
US10797256B2 (en) 2016-07-20 2020-10-06 Joled Inc. Organic electroluminescence device, organic electroluminescence unit, and electronic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276726A (en) * 2000-03-31 2001-10-09 Seiko Epson Corp Method for manufacturing membrane and fine structure, and fine structure
JP2003257640A (en) * 2002-03-05 2003-09-12 Fuji Photo Film Co Ltd Light emitting element and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517357B1 (en) * 2000-01-05 2005-09-28 캠브리지 디스플레이 테크놀로지 리미티드 Luminescent polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276726A (en) * 2000-03-31 2001-10-09 Seiko Epson Corp Method for manufacturing membrane and fine structure, and fine structure
JP2003257640A (en) * 2002-03-05 2003-09-12 Fuji Photo Film Co Ltd Light emitting element and method of manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194429A1 (en) * 2014-06-17 2015-12-23 株式会社ダイセル Solvent for manufacturing organic el elements
JP2016108374A (en) * 2014-12-02 2016-06-20 セイコーエプソン株式会社 Film-forming ink, film-forming method, film-equipped device, and electronic apparatus
KR20170092624A (en) * 2014-12-02 2017-08-11 세이코 엡슨 가부시키가이샤 Film-forming ink, film-forming method, film-equipped device, and electronic apparatus
KR102166377B1 (en) * 2014-12-02 2020-10-15 세이코 엡슨 가부시키가이샤 Film-forming ink, film-forming method, film-equipped device, and electronic apparatus
US10526500B2 (en) 2014-12-02 2020-01-07 Seiko Epson Corporation Film-forming ink, film formation method, device with film, and electronic apparatus
JP2019506732A (en) * 2015-12-15 2019-03-07 メルク パテント ゲーエムベーハー Esters containing aromatic groups as solvents for organic electronic formulations
JP7051684B2 (en) 2015-12-15 2022-04-11 メルク パテント ゲーエムベーハー Esters containing aromatic groups as solvents for organic electronic formulations
US11770971B2 (en) 2015-12-15 2023-09-26 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
US11171294B2 (en) 2015-12-15 2021-11-09 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
JP2018022862A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
US10797256B2 (en) 2016-07-20 2020-10-06 Joled Inc. Organic electroluminescence device, organic electroluminescence unit, and electronic apparatus
JP2018022865A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
KR20190045265A (en) * 2016-08-30 2019-05-02 노발레드 게엠베하 Organic semiconductor layer and method for manufacturing organic electronic device
KR102393766B1 (en) 2016-08-30 2022-05-02 노발레드 게엠베하 Methods of manufacturing organic semiconductor layers and organic electronic devices
JPWO2018131616A1 (en) * 2017-01-10 2019-07-04 株式会社Joled Method of manufacturing organic EL display panel, and ink drying apparatus
US10879501B2 (en) 2017-01-10 2020-12-29 Joled Inc. Method for manufacturing organic EL display panel, and ink drying device
WO2018131616A1 (en) * 2017-01-10 2018-07-19 株式会社Joled Method for manufacturing organic el display panel, and ink drying device

Also Published As

Publication number Publication date
JPWO2013015198A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2013015198A1 (en) Method for producing organic semiconductor element and vacuum drying device
JP5577685B2 (en) Organic electroluminescent device manufacturing method, organic electroluminescent device, organic EL display device, and organic EL illumination
WO2011074550A1 (en) Method for manufacturing organic electroluminescent element, organic electroluminescent element, display device and illuminating device
JP5499482B2 (en) Organic electroluminescence device, organic EL display and organic EL lighting
WO2010018851A1 (en) Organic electroluminescent element, organic el display device and organic el illuminating device
JP5884213B2 (en) Organic electroluminescent device manufacturing method, organic electroluminescent device, organic EL display, and organic EL lighting
JP6035706B2 (en) Manufacturing method of composition for organic electric field element, composition for organic electric field element, manufacturing method of organic electroluminescent element, organic electroluminescent element, organic EL display device and organic EL lighting
WO2010104183A1 (en) Composition for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
JP5668330B2 (en) Organic electroluminescence device, organic EL lighting, and organic EL display device
JP2015093938A (en) Composition for organic electroluminescent element, organic electroluminescent element, display device, and illumination device
JP2009266814A (en) Method of manufacturing organic electroluminescent device, organic electroluminescent device, organic el display, and organic el illumination
JP2010103105A (en) Method for manufacturing organic field light-emitting element, organic field light-emitting element, organic el display, and organic el illumination
JP2010212676A (en) Organic light emitting device
JP5321700B2 (en) Organic electroluminescence device, organic EL lighting, and organic EL display device
JP2009252407A (en) Method of manufacturing organic electroluminescent element
JP6286872B2 (en) Iridium complex compound, organic electroluminescent element, display device and lighting device
JP2010209320A (en) Composition for organic electroluminescent element, method for producing organic electroluminescent element, organic electroluminescent element, organic el display and organic el lighting
JP2014078528A (en) Electronic device, organic electroluminescent element, organic el display device, and organic el illumination manufacturing method
JP2010108921A (en) Substrate for patterning organic thin film, organic field light-emitting element and its manufacturing method, organic el display, and organic el illumination
WO2013035143A1 (en) Method for manufacturing organic electroluminescent panel
WO2018135656A1 (en) Composition for forming light emitting layer and organic electroluminescent element containing said composition for forming light emitting layer
JP5402703B2 (en) Organic electroluminescence device, organic EL display, organic EL lighting, and organic EL signal device
JP2010192121A (en) Composition for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
JP5456282B2 (en) Organic electroluminescence device
JP2010192474A (en) Organic electroluminescent element, organic el display, and organic el lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817466

Country of ref document: EP

Kind code of ref document: A1