WO2013015060A1 - 光源装置およびそれを備えた液晶表示装置 - Google Patents

光源装置およびそれを備えた液晶表示装置 Download PDF

Info

Publication number
WO2013015060A1
WO2013015060A1 PCT/JP2012/066235 JP2012066235W WO2013015060A1 WO 2013015060 A1 WO2013015060 A1 WO 2013015060A1 JP 2012066235 W JP2012066235 W JP 2012066235W WO 2013015060 A1 WO2013015060 A1 WO 2013015060A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
guide plate
light guide
source device
Prior art date
Application number
PCT/JP2012/066235
Other languages
English (en)
French (fr)
Inventor
賢司 高瀬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013015060A1 publication Critical patent/WO2013015060A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming

Definitions

  • the present invention relates to a light source device that allows light to enter from an end face of a light guide plate, guide the inside thereof, and emit light from the upper surface of the light guide plate, and a liquid crystal display device including the light source device.
  • the light source device for illuminating a liquid crystal panel of a liquid crystal display device there is an edge light type backlight.
  • this backlight the light emitted from the light source enters the inside from the end face of the light guide plate.
  • Light incident at an angle greater than the critical angle with respect to the upper and lower surfaces of the light guide plate is totally reflected on the upper and lower surfaces, and propagates through the light guide plate by repeating such total reflection.
  • the light incident on the reflective dots provided on the lower surface of the light guide plate changes its reflection angle and enters the upper surface of the light guide plate at an angle less than the critical angle. It is emitted from the upper surface.
  • the liquid crystal panel disposed above the light guide plate is illuminated.
  • a plurality of the reflective dots are provided in a predetermined pattern on the lower surface of the light guide plate in order to adjust the luminance distribution of light (illumination light) emitted from the light guide plate.
  • the pattern of a plurality of reflective dots is also simply referred to as a dot pattern.
  • FIG. 16 (a) is a plan view of a conventional light source device
  • FIG. 16 (b) is a side view of the light source device
  • FIG. 16 (c) is an enlarged view of a portion P in FIG. 16 (b). It is a side view shown. 16 (a) to 16 (c), for convenience, light incident on the end surface 102a of the light guide plate 102 is indicated by wide hatching between the lines, and light emitted to the outside from the end surface 102d of the light guide plate 102. Is shown by the narrow hatching between the lines.
  • the light emitted from the light source 101 enters the inside from the end face 102a of the light guide plate 102, and repeats total reflection on the upper face 102b and the lower face 102c. Since the total reflection light has a reflection angle that increases every time it undergoes total reflection, the distance propagated through the light guide plate 102 from the total reflection to the next total reflection becomes longer. As a result, the probability that the total reflected light is incident on the reflective dots 103 on the lower surface 102c of the light guide plate 102 decreases each time the total reflection is repeated, and a part of the total reflected light does not hit the reflective dots 103, and the incident-side end surface. The light is emitted to the outside from the end surface 102d facing the surface 102a. Most of the emitted light from the end face 102d is absorbed by the mechanism member 104 and disappears, except for some interface reflections. Due to such a phenomenon, the light use efficiency decreases.
  • FIG. 17 is a side view showing a schematic configuration of the light source device of Patent Document 1.
  • the light source device includes a light source 201, a condensing optical element 202, a light guide plate 203, a reflection unit 204, and reflection dots 205.
  • a plurality of light sources 201 are provided corresponding to each color of R (red), G (green), and B (blue), and are arranged in a direction in which the condensing optical element 202 extends (a direction perpendicular to the paper surface in FIG. 17). Is provided.
  • the light guide plate 203 is configured by laminating a first light guide layer 206 (refractive index is 1.49) and a second light guide layer 207 (refractive index is 1.43).
  • the condensing optical element 202 is composed of, for example, a cylindrical lens, and is disposed between the first light guide layer 206 of the light guide plate 203 and the light source 201.
  • the reflection unit 204 is provided on the end surface of the first light guide layer 206 of the light guide plate 203 on the side opposite to the light source 201.
  • the reflective dots 205 are provided in a predetermined pattern on the lower surface of the light guide plate 203, that is, the surface of the second light guide layer 207 opposite to the first light guide layer 206.
  • the light emitted from the light source 201 is collected by the condensing optical element 202 and then enters the first light guide layer 206 of the light guide plate 203.
  • the light incident on the first light guide layer 206 is propagated to the reflection unit 204 while repeating total reflection in the first light guide layer 206, and is reflected by the reflection unit 204.
  • a part of the light reflected by the reflection unit 204 is refracted at the interface between the first light guide layer 206 and the second light guide layer 207, enters the second light guide layer 207, and is reflected by the reflective dots 205. Thereafter, the light is emitted from the upper surface of the light guide plate 203 (the surface of the first light guide layer 206 opposite to the second light guide layer 207).
  • the reflection part 204 on the end surface opposite to the light incident side with respect to the light guide plate 203, if there is no reflection part 204, the light passing outside is reflected by the reflection part 204 and reused. be able to.
  • Patent Document 1 has the following problems.
  • the critical angle for example, 44.4 °
  • the critical angle for example, 42.2 °
  • the light that is less than the critical angle among the light reflected by the reflection unit 204 is relatively increased (the total reflected light is relatively decreased), and the light that is less than the critical angle is Regardless of the presence or absence of the reflective dots 205, the light is easily emitted from the front and back surfaces of the light guide plate 203.
  • the light guide plate 203 is composed of a plurality of layers, the cost is higher than that of a conventional one-layer light guide plate.
  • the reflection portion 204 is formed to extend in one direction (a direction in which the plurality of light sources 201 are arranged) over the entire end surface of the light guide plate 203, a light incident form with respect to the light guide plate 203 is limited. That is, only one side incident light or two opposite side incident light can be realized with respect to the light guide plate 203, and the light utilization efficiency of the light guide plate 203 can be improved by providing the reflection unit 204 while improving the light utilization efficiency. Variations in form cannot be increased.
  • one side incident light refers to a form in which light enters only from one end face (one side in a plan view) with respect to the light guide plate, and two side incident light that does not face does not face the light guide plate 2 It refers to the form of light entering from the end face (two sides that do not oppose each other in plan view).
  • the present invention has been made to solve the above-described problems, and its purpose is to easily control the luminance distribution by adjusting the coverage of the reflective dots, to reduce the cost of the light guide plate, and to improve the light utilization efficiency.
  • the light source device capable of increasing variations in the form of light incident on the light guide plate and improving the size and brightness at a low cost, and the liquid crystal display device including the light source device And to provide.
  • the light source device of the present invention includes a single-layer light guide plate that guides incident light therein, a light source that emits light toward at least one of four end faces perpendicular to the upper surface and the lower surface of the light guide plate, Reflecting the light emitted from the light source and guided through the light guide plate and returning it to the light source side, provided on the lower surface of the light guide plate, and guided in the light guide plate
  • a plurality of reflective dots that reflect light incident from the light source side and the reflecting portion side and emit the light from the upper surface of the light guide plate, and the light source is a first of the four end surfaces of the light guide plate.
  • a plurality of light source portions arranged along one end surface and emitting light toward the first end surface, wherein the reflection portion is a second light source plate facing the first end surface.
  • the same direction as the direction in which the plurality of light source parts are arranged on the end face It includes a plurality of reflecting members which are side by side arranged.
  • the light emitted from the light source enters the inside through at least one of the four end faces of the light guide plate.
  • the light incident on the reflective dots on the lower surface of the light guide plate is reflected there and emitted from the upper surface of the light guide plate, while the light further guided inside the light guide plate without entering the reflective dots Is reflected by the reflecting portion and returned to the light source side.
  • the light that has traveled from the reflecting portion toward the light source inside the light guide plate and entered the reflecting dots is reflected there and emitted from the upper surface of the light guide plate.
  • the refractive index of the light guide plate need only be adjusted for one layer, and the light guide plate can be adjusted by adjusting the refractive index of the light guide plate. It becomes easy to set the critical angle at the interface with the air layer. Accordingly, for example, the critical angle can be easily set small so that the ratio of light totally reflected at the interface increases, and the ratio of light that does not totally reflect, that is, the front and back of the light guide plate regardless of the reflection dots. The ratio of the light emitted from can be kept small. As a result, the luminance distribution can be easily controlled by adjusting the coverage of the reflective dots. In addition, the cost of the light guide plate can be reduced because the number of layers used is smaller than when the light guide plate is composed of a plurality of layers.
  • the reflecting portion (reflecting member) is provided on the second end surface facing the first end surface on which the light from the plurality of light source portions is incident, the light is emitted from the plurality of light source portions.
  • the light guided through the inside of the light guide plate without being reflected by the reflection dots can be reliably reflected by the reflection portion and reused. Therefore, it is possible to reduce light amount loss due to light emitted from the second end face of the light guide plate to the outside, and to improve light utilization efficiency.
  • a plurality of reflecting members are provided on the second end face of the light guide plate, and are provided in the same direction as the direction in which the plurality of light source parts are arranged. Thereby, depending on how to arrange the plurality of reflecting members, not only one side incident light but also two opposite sides incident light can be realized.
  • a plurality of reflection members are packed and arranged (without a gap), it is possible to realize only light incident from the first end face side, that is, one side light incident on the light guide plate.
  • one side light can be realized, and another light source unit is further arranged at a corresponding position between the two reflecting members.
  • another light source unit is further arranged at a corresponding position between the two reflecting members.
  • the opposite two-side incident light can be realized, it is possible to easily realize high luminance by the opposite two-side incident light, and it is possible to realize uniform luminance in the direction of the opposite two sides (vertical direction or left-right direction).
  • the plurality of reflecting members may be provided on each optical axis of the plurality of light source units on the second end face of the light guide plate.
  • the optical axis refers to an axis that is perpendicular to the light source unit (particularly the light emitting surface) and passes through the center of the light source unit (particularly the light emitting surface).
  • the luminous intensity of the light emitted (radiated) from the light source unit is the highest, so that the light emitted from each light source unit is reflected by each reflecting member located on each optical axis. The effect of improving the light utilization efficiency can be enhanced.
  • the plurality of reflection members are respectively provided at positions shifted from the respective optical axes of the plurality of light source units in a direction in which the plurality of light source units are arranged on the second end surface of the light guide plate. It may be done.
  • each reflection member is provided on the second end surface of the light guide plate at a position shifted from each optical axis of each light source unit in the direction in which each light source unit is arranged, and the light emitted from each light source unit is transmitted to each reflection member. It is possible to suppress a decrease in luminance between the optical axis and the optical axis by reflecting the light at the optical axis and guiding it between the optical axes.
  • one reflection member may be provided in the middle of each optical axis of two adjacent light source units on the second end face of the light guide plate.
  • the luminance distribution between the optical axes is intermediate between the optical axes.
  • two or more reflecting members may be provided between the optical axes of two adjacent light source units on the second end face of the light guide plate.
  • each light source unit By reflecting the light emitted from each light source unit with two or more reflecting members positioned between the optical axes, the amount of reflected light increases, so that the light use efficiency is reliably improved. In addition, it is possible to reliably suppress a decrease in luminance between the optical axes.
  • the light source when each of the plurality of light source units is a first light source unit and each of the plurality of reflection members is a first reflection member, the light source is the second end surface of the light guide plate. And a plurality of second light source units that emit light toward the second end surface, wherein the reflection unit is provided on the first end surface of the light guide plate, A plurality of second reflecting members that reflect light incident from the two light source unit sides to the plurality of second light source unit sides may be included.
  • the light emitted from the plurality of second light source units enters the light guide plate through the second end face.
  • the light guided to the first end face side without being reflected by the reflecting dots is reflected by the plurality of second reflecting members, returned to the second end face side, and reused.
  • the light is incident on the light guide plate from the first end surface side by the plurality of first light source units.
  • a so-called two-sided incident light form in which light is incident from the second end face side by a plurality of second light source units can be realized.
  • the amount of light flux is increased as compared with the one side incident light, so that the luminance can be increased.
  • uniform luminance can be realized in the direction of the opposite two sides (vertical direction or horizontal direction).
  • the plurality of second light source units and the plurality of second reflecting members are provided in the same direction as the direction in which the plurality of first light source units are arranged
  • the first reflecting member is provided on the second end surface so as to be shifted from each position facing the plurality of second light source units in a direction in which the plurality of second light source units are arranged.
  • the second reflecting member may be provided on the first end face so as to be shifted in a direction in which the plurality of first light source units are arranged from positions facing the plurality of first light source units. .
  • the plurality of first reflecting members do not hinder the incidence of light from the second light source unit to the second end surface, and the plurality of second reflecting members serve as the first light source.
  • the incidence of light from the part to the first end surface is not hindered. Thereby, opposing two-sided incident light can be realized with certainty.
  • the light source includes a plurality of third light sources arranged along the third end surface of the four end surfaces of the light guide plate and emitting light toward the third end surface. And a plurality of fourth light source units arranged along a fourth end surface facing the third end surface of the light guide plate and emitting light toward the fourth end surface, The reflection part is provided on the fourth end face of the light guide plate, and a plurality of third reflection members that reflect light incident from the plurality of third light source parts to the plurality of third light source parts. And a plurality of fourth reflecting members that are provided on the third end face of the light guide plate and reflect light incident from the plurality of fourth light source units to the plurality of fourth light source units. May be included.
  • the light emitted from the plurality of third light source units enters the light guide plate through the third end face.
  • the light guided to the fourth end face side without being reflected by the reflecting dots is reflected by the plurality of third reflecting members and returned to the third end face side, thereby being reused.
  • light emitted from the plurality of fourth light source units enters the light guide plate through the fourth end face.
  • the light guided to the third end face side without being reflected by the reflective dots is reflected by the plurality of fourth reflecting members and returned to the fourth end face side, and is reused.
  • the light source further includes the third light source unit and the fourth light source unit in addition to the first light source unit and the second light source unit
  • the reflecting unit includes the first reflecting member and the second light source unit.
  • the third reflecting member and a fourth reflecting member light is incident on the light guide plate from the first end face side and the second end face side, and at the same time, the third It is possible to realize a four-side incident light form in which light is incident from the end face side and the fourth end face side. Accordingly, the luminance can be further increased, and uniform luminance can be realized in both the vertical direction and the horizontal direction (that is, the entire surface) that are the directions of the opposite two sides.
  • the plurality of third light source units, the plurality of fourth light source units, the plurality of third reflecting members, and the plurality of fourth reflecting members include the first end surface and the The plurality of third reflecting members are provided side by side in a direction opposite to the second end surface, and each of the plurality of third reflecting members from each position facing the plurality of fourth light source units on the fourth end surface.
  • the plurality of fourth light source portions are provided shifted in the direction in which the plurality of fourth light source portions are arranged, and the plurality of fourth reflection members are located on the third end surface from positions facing the plurality of third light source portions.
  • the plurality of third light source units may be provided so as to be shifted in the direction in which they are arranged.
  • the plurality of third reflecting members do not hinder the incidence of light from the fourth light source unit to the fourth end surface, and the plurality of fourth reflecting members serve as the third light source.
  • the incidence of light from the part to the third end surface is not hindered. Thereby, the four-sided incident light can be realized with certainty.
  • the reflection portion may be configured by a plurality of cones, and a bottom surface of the cones may be located on the same plane as at least one of the four end surfaces of the light guide plate. .
  • Light that is emitted from the light source and guided inside the light guide plate without entering the reflective dots can be reflected internally from the side surfaces of the multiple cones and returned to the light source side, and has such a function.
  • the part can be realized reliably.
  • the internal reflection at the side surface of the cone includes total reflection.
  • a reflective film may be coated on a side surface of the cone. Since the reflective film is coated on the side surface of the cone, the light that is guided and incident inside the light guide plate can be reliably reflected on the side surface of the cone and returned to the light source side.
  • the plurality of cones may be formed of the same material as the light guide plate. In this case, the plurality of cones and the light guide plate can be easily obtained by integral molding.
  • the cone may be a quadrangular pyramid prism. In this case, it is possible to realize a configuration in which incident light is reflected by the four side surfaces of the quadrangular pyramid prism and returned to the light source side.
  • the cone may be a conical prism.
  • incident light is reflected by the side surface of the conical prism and returned to the light source side.
  • the reflecting portion includes a plurality of recesses recessed from at least one of the four end surfaces of the light guide plate, and the plurality of recesses have a bottom surface extending from the light guide plate. You may form in the shape which notched the cone located on the same surface as the said any end surface.
  • the light emitted from the light source and guided through the light guide plate without entering the reflective dots can be reflected by the surfaces of the plurality of recesses and returned to the light source side. It can be realized reliably.
  • the liquid crystal display device of the present invention may include the light source device described above and a liquid crystal panel that performs display by modulating light supplied from the light source device. In this case, it is possible to realize a liquid crystal display device that can display bright images with uniform brightness.
  • the liquid crystal display device includes a scanning unit that scans a plurality of pixels of the liquid crystal panel, and a lighting control unit that controls lighting of the plurality of light source units of the light source device in conjunction with a scanning operation by the scanning unit.
  • a scanning unit that scans a plurality of pixels of the liquid crystal panel
  • a lighting control unit that controls lighting of the plurality of light source units of the light source device in conjunction with a scanning operation by the scanning unit.
  • each of the plurality of light source units corresponds to each pixel region of the liquid crystal panel.
  • the lighting control unit may turn on only the light source unit corresponding to the pixel area being scanned during the scanning operation.
  • the pixel scanning operation and the lighting operation of the plurality of light source units are synchronized, and pixels that are not scanned (pixel region) are displayed in black (black screen) when the light source unit is turned off.
  • black black screen
  • the pixel scanning operation and the lighting operation of the plurality of light source units are synchronized, and pixels that are not scanned (pixel region) are displayed in black (black screen) when the light source unit is turned off.
  • the above-described light guide plate is configured by a single layer, it is easy to set the critical angle at the interface between the light guide plate and the air layer by adjusting the refractive index of the light guide plate. Become. This makes it easy to set the critical angle at the interface small so that the ratio of light totally reflected at the interface increases, and the ratio of light that does not totally reflect, that is, the light guide plate regardless of the reflection dots. The ratio of light emitted from the front and back surfaces can be kept small. As a result, the luminance distribution can be easily controlled by adjusting the coverage of the reflective dots. And the cost of a light guide plate can be reduced compared with the case where a light guide plate is comprised by multiple layers.
  • the reflecting portion (reflecting member) is provided on the second end surface facing the first end surface on which light from the plurality of light source units is incident, the light is emitted from the second end surface to the outside.
  • the reflected light can be reflected by the reflecting portion and reused, and the light utilization efficiency can be improved.
  • a plurality of reflecting members are provided on the second end face of the light guide plate, and are provided in the same direction as the direction in which the plurality of light source parts are arranged.
  • (A) is a top view which shows the schematic structure of the light source device of Embodiment 1 of this invention
  • (b) is a side view of the said light source device
  • (c) is the same figure (b). It is a side view which expands and shows the P section. It is explanatory drawing which shows the directivity of LED which comprises the light source part with which the said light source device is provided.
  • (A) is a top view of the reflective member with which the said light source device is provided
  • (b) is a side view of the said reflective member
  • (c) is a front view of the said reflective member.
  • (A) is a top view which shows the other structure of the said reflecting member, (b) is a side view of the said other reflecting member, (c) is a front view of the said other reflecting member.
  • (A) is a top view which shows the schematic structure of the light source device of Embodiment 2 of this invention, (b) is a side view of the said light source device, (c) is the same figure (b). It is a side view which expands and shows the P section. It is explanatory drawing which shows the luminance distribution in the A-A 'cross section of the said light source device.
  • (A) is a top view which shows the schematic structure of the light source device of Embodiment 3 of this invention
  • (b) is a side view of the said light source device
  • (c) is the same figure (b). It is a side view which expands and shows the P section.
  • (A) is a top view which shows the schematic structure of the light source device of Embodiment 4 of this invention
  • (b) is a side view of the said light source device
  • (c) is the same figure (b). It is a side view which expands and shows the P section. It is explanatory drawing which shows the luminance distribution in the A-A 'cross section of the said light source device.
  • (A) is a top view which shows the other structure of the said light source device
  • (b) is a side view of the said other light source device
  • (c) expands the P section of the same figure (b). It is a side view shown.
  • In the said liquid crystal display device it is explanatory drawing which shows typically a mode that the lighting operation of a several light source part and operation
  • (A) is a top view of the conventional light source device
  • (b) is a side view of the said light source device
  • (c) is a side view which expands and shows the P section of the same figure (b). is there. It is a side view which shows the schematic structure of the other conventional light source device. It is a top view which shows typically the structure using two or more said other light source devices.
  • FIG. 1A is a plan view showing a schematic configuration of a light source device 1 of the present embodiment
  • FIG. 1B is a side view of the light source device 1
  • FIG. It is a side view which expands and shows the P section of 1 (b).
  • FIGS. 1A to 1C for convenience, light incident on the light guide plate 2 is indicated by wide hatching between lines, and light reflected by the reflection unit 4 is indicated by narrow hatching between lines. Show. Note that the manner of illustration is the same in other drawings.
  • the light source device 1 alone functions as an illumination device, or is used as a backlight light source of the liquid crystal display device 50 (see FIG. 14) as in Embodiment 7 described later. And a reflection portion 4, a reflection dot 5, a mechanism member 6, a reflection sheet 7, and a BL (backlight) chassis 8. In the following drawings, the reflection sheet 7 and the BL chassis 8 may be omitted.
  • the light guide plate 2 is a single-layer light guide plate that guides light emitted from the light source 3 by total internal reflection, such as PMMA (polymethyl methacrylate resin) having a refractive index of 1.49. Made of acrylic resin.
  • the light source 3 emits light toward at least one of the four end faces 2c, 2d, 2e, and 2f perpendicular to the upper surface 2a and the lower surface 2b of the light guide plate 2.
  • an LED It comprises a plurality of light source parts 3a (first light source parts) composed of light emitting diodes).
  • Each light source unit 3a is mounted on the substrate 9 so as to be lined up at equal intervals along the end surface 2c (first end surface) of the light guide plate 2, and emits light toward the end surface 2c.
  • each light source part 3a light-emits with substantially the same brightness by supplying the same electric power.
  • FIG. 2 shows the directivity of the LED as the light source unit 3a, and is an explanatory diagram showing the luminous intensity of the light emitted from the LED.
  • Luminous intensity is a physical quantity representing the brightness of light per unit solid angle emitted in a certain direction from a light source, and the unit is candela (cd).
  • the angle of light emitted from the LED is considered with reference to an axis (optical axis) perpendicular to the light emitting surface of the LED and passing through the center of the light emitting surface.
  • the optical axis of each light source unit 3a is indicated by a broken line (the same applies to other drawings).
  • the reflection unit 4 reflects the light emitted from the light source 3 and guided through the light guide plate 2 and returns it to the light source 3 side, and includes a plurality of reflection members 4a (first reflection members).
  • Each reflecting member 4a is provided on an end surface 2d (second end surface) facing the end surface 2c of the light guide plate 2, and is provided side by side in the same direction as the direction in which the light source portions 3a are arranged.
  • each reflecting member 4 a is provided on the optical axis of each light source 3 a on the end surface 2 d of the light guide plate 2.
  • FIG. 3A is a plan view of the reflecting member 4a
  • FIG. 3B is a side view of the reflecting member 4a
  • FIG. 3C is a front view of the reflecting member 4a.
  • the reflecting member 4a is composed of a plurality of cones.
  • the cone refers to a solid formed by connecting each point of a circle or polygonal closed curve on a plane and one point outside the plane.
  • the above-mentioned cone is formed of, for example, a quadrangular pyramid prism, and the bottom surface thereof is located on the same plane as the end surface 2d of the light guide plate 2.
  • the apex angle of the quadrangular pyramid prism that is, the angle formed by the two sides other than the hypotenuse in the side triangle is 90 degrees, so that the side surface of the quadrangular pyramid prism is guided and incident on the inside of the light guide plate 2. Can be internally reflected. Note that the internal reflection includes total reflection.
  • the cones constituting the reflecting member 4a are made of the same material as the light guide plate 2 (for example, PMMA). Thereby, the some reflection member 4a and the light-guide plate 2 can be obtained easily by integral molding. In addition, you may make it bond the reflecting member 4a and the light-guide plate 2 which consist of the same material through the adhesive agent with an equivalent refractive index.
  • a plurality of reflective dots 5 are provided in a predetermined pattern on the lower surface 2b of the light guide plate 2, and are guided within the light guide plate 2 to reflect the light incident from the light source 3 side and the reflection unit 4 side, thereby guiding the light.
  • the light is emitted from the upper surface 2 a of the optical plate 2.
  • the total reflection light guided inside the light guide plate 2 gradually increases in reflection angle and decreases the number of reflections by repeating total reflection. For this reason, if the coverage of the reflective dots 5, that is, the density is constant, every time the total reflected light repeats the total reflection, it becomes difficult to enter the reflective dots 5 and the luminance is reduced. However, by changing the coverage of the reflective dots 5 depending on the location, even if the total reflected light repeatedly undergoes total reflection, the total reflected light is reliably incident on the reflective dots 5 and emitted from the upper surface 2a of the light guide plate 2. And a reduction in luminance can be avoided.
  • the mechanism member 6 is a member generically referring to other mechanisms mounted on the light source device 1, and includes the housing of the light source device 1.
  • the reflection sheet 7 increases the light use efficiency by reflecting the light emitted from the lower surface 2 b of the light guide plate 2 without entering the reflection dots 5 and returning it to the light guide plate 2 side.
  • the BL chassis 8 is a sheet metal for supporting the light guide plate 2 and the reflection sheet 7.
  • each light source portion 3a of the light source 3 enters the inside through the end surface 2c of the light guide plate 2, and repeats total reflection between the upper surface 2a and the lower surface 2b of the light guide plate 2.
  • the inside is guided.
  • the light guided inside the light guide plate 2 and incident on the reflective dots 5 on the lower surface 2b is reflected there and emitted from the upper surface 2a.
  • the light further guided through the light guide plate 2 without being incident on the reflective dots 5 is reflected by the reflecting portion 4 provided on the end surface 2d of the light guide plate 2 and returned to the light source 3 side.
  • the light that travels from the reflector 4 toward the light source 3 and enters the reflective dots 5 in the light guide plate 2 is reflected there and emitted from the upper surface 2 a of the light guide plate 2.
  • the critical angle at the interface (upper surface 2a and lower surface 2b) between the light guide plate 2 and the air layer can be set by adjusting the refractive index of the light guide plate 2. That is, by appropriately setting the refractive index of the light guide plate 2 and appropriately setting the critical angle, the light can be appropriately totally reflected inside the light guide plate 2 and guided.
  • the critical angle is 42.2 °.
  • the adjustment of the refractive index of the light guide plate 2 is one of the components constituting the light guide plate 2. All you need to do is layer. This facilitates the setting of the critical angle described above by adjusting the refractive index of the light guide plate 2. For example, the critical angle is set to be small and the proportion of light totally reflected at the interface (upper surface 2a, lower surface 2b) is increased. Is also easier.
  • the cost of the light guide plate 2 can be reduced by the amount of layers used compared to the case where the light guide plate 2 is formed of a plurality of layers.
  • the light guide plate 2 is provided with the reflecting portion 4 on the end surface 2d facing the end surface 2c on the light source 3 side, the light guide plate 2 is guided from the light source 3 and not reflected by the reflective dots 5 to the inside of the light guide plate 2.
  • the emitted light can be reliably reflected by the reflecting portion 4 and reused. Accordingly, it is possible to reduce light amount loss due to light emitted from the end surface 2d of the light guide plate 2 to the outside, and to improve light utilization efficiency.
  • the plurality of reflecting members 4a are arranged at intervals, but may be arranged at intervals. Further, if a plurality of reflecting members 4a are arranged at intervals, another light source unit is further arranged at a corresponding position between the two reflecting members 4a and 4a as in the fourth embodiment described later.
  • the reflecting portion 4 by configuring the reflecting portion 4 with the plurality of reflecting members 4a, it is possible to increase the variation of the light incident form on the light guide plate 2 while improving the light utilization efficiency by providing the reflecting portion 4. it can.
  • two opposite sides of light can be realized with respect to the same light guide plate, in order to increase the size and increase the brightness of the light source device 1, a plurality of sets of light sources and light guide plates are combined to enter the opposite two sides.
  • the number of light guide plates to be used is extremely small (although it is large), so that the cost is low.
  • the luminous intensity of the light emitted from the light source unit 3a is the highest in the optical axis direction of the light source unit 3a, the light emitted from each light source unit 3a is reflected on the optical axis of each light source unit 3a.
  • the effect of improving the light utilization efficiency can be enhanced.
  • each reflecting member 4 a is formed of a cone, and the bottom surface of the cone is located on the same plane as the end surface 2 d of the light guide plate 2.
  • a reflective film may be coated on the side surface of the cone forming each reflective member 4a.
  • light that is guided inside the light guide plate 2 and incident at an angle smaller than the critical angle can be returned to the light source side by reflection at the reflection film. Therefore, the utilization efficiency of light can be further improved.
  • each of the reflecting members 4a are quadrangular pyramid prisms, incident light can be reflected by the four side surfaces of the quadrangular pyramid prisms and reliably returned to the light source 3 side.
  • FIG. 4A is a plan view showing another configuration of the reflecting member 4a
  • FIG. 4B is a side view of the other reflecting member 4a
  • FIG. It is a front view of the other reflecting member 4a.
  • the reflecting member 4a may be a conical prism.
  • the reflecting member 4a is formed of a conical prism
  • the bottom surface of the conical prism is positioned on the same plane as the end surface 2d of the light guide plate 2, and light incident on the inside of the light guide plate 2 is incident on the side surface of the conical prism.
  • FIG.5 (a) is a top view which shows the schematic structure of the light source device 1 of this embodiment
  • FIG.5 (b) is a side view of the said light source device 1
  • FIG.5 (c) is a figure. It is a side view which expands and shows the P section of 5 (b).
  • the plurality of reflecting members 4a of the light source device 1 are provided on the end surface 2d of the light guide plate 2 at positions shifted from the respective optical axes of the plurality of light source units 3a in the direction in which the plurality of light source units 3a are arranged. It has been.
  • FIG. 6 shows a luminance distribution in the A-A ′ section of the light source device 1.
  • the light intensity of the light emitted from the light source unit 3a is the highest in the optical axis direction of the light source unit 3a. Therefore, in the light guide plate 2, the luminance tends to decrease between the optical axes. Therefore, as in the present embodiment, each light source 4a is arranged by disposing each reflection member 4a on the end surface 2d of the light guide plate 2 at a position shifted from the optical axis of each light source unit 3a in the direction in which each light source unit 3a is arranged.
  • the light emitted from the portion 3a can be reflected by each reflecting member 4a and guided between the optical axes.
  • position the reflection part 4 (reflective member 4a) the brightness fall between an optical axis can be suppressed.
  • one reflecting member 4 a is provided in the middle of each optical axis of two adjacent light source portions 3 a and 3 a on the end surface 2 d of the light guide plate 2. ing.
  • the luminance distribution between the optical axes in the light guide plate 2 is symmetrical with respect to an axis passing through the middle between the optical axes and parallel to each optical axis. As a result, luminance unevenness can be improved (luminance uniformity can be improved).
  • FIG.7 (a) is a top view which shows the schematic structure of the light source device 1 of this embodiment
  • FIG.7 (b) is a side view of the said light source device 1
  • FIG.7 (c) is a figure. It is a side view which expands and shows the P section of 7 (b).
  • two reflection members 4 a of the light source device 1 are provided between the optical axes of the two adjacent light source units 3 a and 3 a on the end surface 2 d of the light guide plate 2.
  • FIG. 8 shows the luminance distribution in the A-A ′ section of the light source device 1.
  • the light emitted from each light source unit 3a is reflected by the two reflecting members 4a and 4a located between the optical axes, so that the configuration of the second embodiment is compared.
  • the amount of reflected light increases.
  • the reflecting member 4a is as many as possible between the optical axes of the two adjacent light source portions 3a and 3a on the end surface 2d of the light guide plate 2. Desirably, three or more may be arranged.
  • FIG. 9A is a plan view showing a schematic configuration of the light source device 1 of the present embodiment
  • FIG. 9B is a side view of the light source device 1
  • FIG. It is a side view which expands and shows the P section of 9 (b).
  • the light incident mode on the light guide plate 2 is changed from the one-side incident light configuration of the third embodiment to the opposite two-side incident light configuration. Details will be described below. Note that description of portions common to Embodiment 3 is omitted.
  • the light source 3 includes a light source unit 3b as a second light source unit in addition to the light source unit 3a as a first light source unit.
  • the light source part 3b is comprised by LED similar to the light source part 3a, and multiple are provided along the end surface 2d of the light-guide plate 2. As shown in FIG.
  • Each light source unit 3b is mounted on the substrate 10 so as to be arranged in the same direction as the direction in which the respective light source units 3a are arranged, and emits light toward the end surface 2d.
  • the reflection part 4 has the reflection member 4b as a 2nd reflection member in addition to the reflection member 4a as a 1st reflection member.
  • the reflecting member 4 b is formed of a cone similar to the reflecting member 4 a, and a plurality of the reflecting members 4 b are provided on the end surface 2 c of the light guide plate 2. At this time, each reflecting member 4b is provided side by side in the same direction as the direction in which the plurality of light source portions 3a are arranged, and the bottom surface of the cone is provided on the same plane as the end surface 2c.
  • the light source unit 3a and the light source unit 3b, and the reflecting member 4a and the reflecting member 4b are in a positional relationship facing each other with the light guide plate 2 interposed therebetween.
  • the reflecting members 4a are provided on the end surface 2d of the light guide plate 2 so as to be shifted from the positions facing the light source portions 3b in the direction in which the light source portions 3b are arranged.
  • each reflection member 4b is provided on the end face 2c of the light guide plate 2 so as to be shifted from each position facing the plurality of light source units 3a in the direction in which the plurality of light source units 3a are arranged.
  • the light emitted from the plurality of light source units 3b passes between the two reflecting members 4a and 4a and enters the light guide plate 2 through the end face 2d.
  • the light guided to the end surface 2c side without being reflected by the reflecting dots 5 is internally reflected by the plurality of reflecting members 4b and returned to the end surface 2d side, and is reused.
  • the light utilization efficiency can be improved by the reflecting member 4a and the reflecting member 4b while realizing a so-called opposite two-side incident light form in which light is incident.
  • the opposite two-side incident light increases the amount of light compared to the one-side incident light, so that the luminance can be increased and uniform luminance can be achieved in the direction of the opposite two sides (vertical direction in the present embodiment).
  • FIG. 10 shows a luminance distribution in the A-A ′ section of the light source device 1. From the figure, it can be seen that the brightness of the configuration of the present embodiment in which light is incident on two sides is doubled as compared with the configuration of the third embodiment in which light is incident on one side.
  • each reflection member 4a is provided on the end surface 2d so as to be shifted from each position facing the plurality of light source units 3b in the direction in which the plurality of light source units 3b are arranged. Does not hinder the incidence of light on the end face 2d.
  • each reflection member 4b is provided on the end surface 2c so as to be shifted from each position facing the plurality of light source units 3a in the direction in which the plurality of light source units 3a are arranged. The incidence of light from 3a to the end face 2c is not hindered. As a result, it is possible to reliably realize a configuration in which light is incident on opposite sides and light utilization efficiency is improved.
  • FIG.11 (a) is a top view which shows the other structure of the light source device 1 of this embodiment
  • FIG.11 (b) is a side view of the said other light source device 1
  • FIG.11 (c) Is an enlarged side view showing a P portion in FIG.
  • the light source device 1 is an example in which the light incident direction with respect to the light guide plate 2 is changed from the vertical direction in FIG.
  • Such a light source device 1 can be realized by rotating the light source device 1 of FIG. 9A by 90 degrees.
  • what is necessary is just to change the vertical and horizontal size of the light-guide plate 2 as needed.
  • the incident light directions of the opposite two sides are the left-right direction, uniform luminance can be realized in the left-right direction.
  • the light incident mode with respect to the light guide plate 2 is four-side incident light. Details will be described below.
  • FIG. 12 is a plan view showing a schematic configuration of the light source device 1 of the present embodiment.
  • the light source 3 includes a light source unit 3c as a third light source unit and a light source unit as a fourth light source unit. 3d.
  • the light source part 3c is comprised by LED similar to the light source part 3a, and multiple are provided along the end surface 2e (3rd end surface) of the light-guide plate 2. As shown in FIG. Each light source part 3c is mounted on the substrate 11 so as to be aligned in the opposing direction of the end faces 2c and 2d, and emits light toward the end face 2e.
  • the light source unit 3d is also composed of the same LED as the light source unit 3a, and a plurality of light source units 3d are provided along the end surface 2f (fourth end surface) facing the end surface 2e of the light guide plate 2.
  • Each light source unit 3d is mounted on the substrate 12 so as to be aligned in the opposing direction of the end surfaces 2c and 2d, and emits light toward the end surface 2f.
  • the reflection part 4 of the light source device 1 of the present embodiment further includes a reflection member 4c as a third reflection member and a reflection member 4d as a fourth reflection member.
  • the reflection member 4 c is configured by a cone similar to the reflection member 4 a, and a plurality of reflection members 4 c are provided on the end surface 2 f of the light guide plate 2.
  • the reflecting members 4c are provided side by side in the opposing direction of the end faces 2c and 2d, and are provided so that the bottom surface of the cone is flush with the end face 2f.
  • the reflecting member 4d is also formed of the same cone as the reflecting member 4a, and a plurality of the reflecting members 4d are provided on the end surface 2e of the light guide plate 2. At this time, each reflecting member 4d is provided side by side in the opposing direction of the end surfaces 2c and 2d, and is provided so that the bottom surface of the cone is flush with the end surface 2e.
  • the light source unit 3c and the light source unit 3d, and the reflection member 4c and the reflection member 4d are in a positional relationship facing each other with the light guide plate 2 interposed therebetween.
  • the reflecting members 4c are provided on the end face 2f of the light guide plate 2 so as to be shifted from the positions facing the light source parts 3d in the direction in which the light source parts 3d are arranged.
  • each reflecting member 4d is provided on the end face 2e of the light guide plate 2 so as to be shifted from each position facing the plurality of light source units 3c in the direction in which the plurality of light source units 3c are arranged.
  • the light emitted from the plurality of light source units 3c enters the light guide plate 2 through the end face 2e.
  • the light guided to the end face 2f side without being reflected by the reflecting dots 5 is internally reflected by the plurality of reflecting members 4c and returned to the end face 2e side for reuse.
  • light emitted from the plurality of light source units 3d enters the light guide plate 2 through the end surface 2f.
  • the light guided to the end face 2e side without being reflected by the reflecting dots 5 is internally reflected by the plurality of reflecting members 4d and returned to the end face 2f side for reuse.
  • the light source 3 further includes the light source unit 3c and the light source unit 3d in addition to the light source unit 3a and the light source unit 3b
  • the reflection unit 4 includes the reflection member 4c and the reflection member 4c in addition to the reflection member 4a and the reflection member 4b.
  • each reflection member 4c is provided on the end face 2f so as to be shifted from each position facing the plurality of light source units 3d in the direction in which the plurality of light source units 3d are arranged, so that each reflection member 4c corresponds to the light source unit 3d. Does not hinder the incidence of light from the first to the end face 2f.
  • each reflection member 4d is provided on the end surface 2e so as to be shifted from each position facing the plurality of light source units 3c in the direction in which the plurality of light source units 3c are arranged. The incidence of light from 3c to the end face 2e is not hindered. As a result, it is possible to reliably realize a configuration with four-side incident light and improved light utilization efficiency.
  • FIG. 13 is a plan view showing a schematic configuration of the light source device 1 of the present embodiment.
  • the reflecting portion 4 is configured by a plurality of concave portions 4m recessed inward from the four end faces 2c to 2f of the light guide plate 2.
  • the plurality of recesses 4m are formed from the light guide plate 2 in a shape in which a cone whose bottom surface is located on the same plane as the end surfaces 2c to 2f is cut out.
  • the cone may be a quadrangular pyramid, a cone, or a cone having another shape.
  • the recessed part 4m recessed from the end surface 2d comprises a 1st reflective member similarly to the reflective member 4a
  • the recessed part 4m recessed from the end surface 2c comprises a 2nd reflective member similarly to the reflective member 4b
  • the recessed part 4m recessed from the end surface 2f constitutes a third reflecting member similarly to the reflecting member 4c
  • the recessed part 4m recessed from the end face 2e constitutes a fourth reflecting member similarly to the reflecting member 4d.
  • the light emitted from the light source 3 (light source units 3a to 3d) and guided through the light guide plate 2 without entering the reflective dots 5 is reflected on the recessed surfaces of the plurality of recesses 4m. It can be reflected and returned to the light source 3 side. That is, even when the reflecting portion 4 is configured by the concave portion 4m other than the prism of each of the above-described embodiments, the light utilization efficiency can be improved by reusing the light originally emitted to the outside.
  • the reflecting portion 4 protrudes outward from the end faces 2c to 2f of the light guide plate 2 by the height of the prism (the distance between the bottom surface and the apex). 3 needs to be further arranged outside.
  • the reflecting portion 4 is constituted by the recess 4m, there is no portion protruding outward from the end faces 2c to 2f of the light guide plate 2, so that the light source 3 is located just outside the end faces 2c to 2f of the light guide plate 2. It becomes possible to arrange in.
  • the distance ⁇ Y1 between the end face 2c of the light guide plate 2 and the light source part 3a the distance ⁇ Y2 between the end face 2d and the light source part 3b, the distance ⁇ X1 between the end face 2e and the light source part 3c, and the distance ⁇ X2 between the end face 2f and the light source part 3d. It can be surely shortened. As a result, the light source device 1 can be reduced in size, frame width, and weight.
  • FIG. 14 is a block diagram showing a schematic configuration of the liquid crystal display device 50 of the present embodiment.
  • the liquid crystal display device 50 includes the light source device 1 of any of the above-described embodiments and the liquid crystal panel 20.
  • the liquid crystal panel 20 is a display element that displays an image by modulating illumination light from the light source device 1 for each pixel according to image data, and is configured by sandwiching a liquid crystal layer between two transparent substrates. .
  • switching elements for example, TFT; Thin Film Transistor
  • various wirings for example, scanning lines, signal lines, and the like are formed.
  • a color filter, a counter electrode, and the like are formed on the other transparent substrate.
  • polarizing plates are respectively arranged on the outer sides (opposite the liquid crystal layer) of the two transparent substrates.
  • the luminance distribution can be easily controlled by adjusting the coverage of the reflective dots 5, and the light utilization efficiency can be improved. Therefore, when the liquid crystal panel 20 is configured to perform display by modulating the light supplied from the light source device 1, it is possible to realize the liquid crystal display device 50 that has a uniform luminance and can display brightly.
  • the liquid crystal display device 50 further includes a gate drive circuit 21, a source drive circuit 22, and a lighting control unit 23.
  • the gate drive circuit 21 is a scanning unit that scans a plurality of pixels of the liquid crystal panel 20.
  • scanning a plurality of pixels refers to an operation (scanning operation) of sequentially turning on switching elements (for example, TFTs) of the pixels in the first row, the second row,... This is done by the gate drive circuit 21 outputting a scanning signal to each switching element via the scanning line of each row.
  • Each pixel is displayed by applying a signal (voltage) according to display data from the source drive circuit 22 to the pixel in which the switching element is turned on by such a scanning operation.
  • the gate drive circuit 21 and the source drive circuit 22 are driven and controlled by a controller (not shown).
  • the lighting control unit 23 controls the lighting of a plurality of light source units of the light source 3 of the light source device 1 in conjunction with the scanning operation by the gate drive circuit 21. Specifically, it is as follows.
  • the entire pixel area of the liquid crystal panel 20 is divided into a plurality of pixel areas including one or more pixels.
  • the liquid crystal panel 20 has, for example, pixels of horizontal 1920 dots ⁇ vertical 1080 dots, and the area of all pixels is divided into eight pixel areas R1 to R8 divided into eight equal parts in the vertical direction.
  • the pixel regions R1 to R8 are composed of a set of pixels in the 1st to 135th rows, the 136th to 270th rows, the 271th to 405th rows,... 946 to 1080th rows from the top.
  • the light source device 1 is configured as shown in FIG. That is, the light source device 1 is a light source device in the form of opposed two-sided incident light and the light incident direction is the left-right direction, and the light source 3 is a plurality of light source units that enter the light guide plate 2 from the left end surface 2c. 3a and a plurality of light source portions 3b that enter the light guide plate 2 from the right end surface 2d. At this time, each of the plurality of light source units 3a and 3b corresponds to each of the pixel regions R1 to R8 of the liquid crystal panel 20.
  • the plurality of light source units 3a are configured by, for example, eight light source units L 01 to L 08 , the light source unit L 01 corresponds to the pixel region R1, light source unit L 02 corresponds to the pixel region R2, the light source unit L 03 corresponds to the pixel region R3, ⁇ ⁇ ⁇ light source unit L 08 corresponds to the pixel area R8.
  • the plurality of light source units 3b are also associated with the pixel regions R1 to R8 in the same manner as the plurality of light source units 3a.
  • the lighting control unit 23 turns on only the light source unit corresponding to the pixel area being scanned during the scanning operation by the gate drive circuit 21. Specifically, the lighting control unit 23, at the time of scanning of the pixel region R1, while turning on only the light source unit L 01 of the plurality of light source sections 3a ⁇ 3b, turns off the other light source unit L 02 ⁇ L 08 , when scanning the pixel area R2, while turning on only the light source unit L 02 of the plurality of light source sections 3a ⁇ 3b, turns off the other light source unit L 03 ⁇ L 08 and L 01, when scanning the pixel region R3 is While turning on only the light source part L 03 among the plurality of light source parts 3a and 3b, the other light source parts L 04 to L 08 and L 01 to L 02 are turned off.
  • the light sources L 01 to L 08 are repeatedly turned on in the order of the light sources L 01 , L 02 , L 03 ,..., L 07 , L 08 in synchronization with the pixel scanning operation. .
  • the lighting control unit 23 synchronizes the pixel scanning operation and the lighting operations of the plurality of light source units L 01 to L 08 , so that pixels that have not been scanned (pixel regions) are (for example, Even if the voltage of the pixel is held until writing (scanning), black display (black screen) is obtained by turning off the corresponding light source unit.
  • black screen black screen
  • the response speed of the light source unit is faster than the response speed of the liquid crystal (the light source response time (rise / fall time) is about 100 nsec, and the liquid crystal response time is about 5 msec). Therefore, when the image displayed on the liquid crystal panel 20 is actually viewed by turning off the light source unit corresponding to the pixel region not scanned and inserting a black screen between the image frames, the liquid crystal is visually Since the user feels that the response is fast, the afterimage effect can be suppressed.
  • the light source unit is turned off in an area where the operation of the liquid crystal panel 20 is OFF (a pixel area not scanned), the power consumption of the apparatus can be reduced.
  • the light source device 1 and thus the liquid crystal display device 50 can be configured by appropriately combining the configurations of the above-described embodiments.
  • the light source device of the present invention can be used for a backlight of a liquid crystal display device, for example.
  • Light source device Light guide plate 2a Upper surface 2b Lower surface 2c End surface (1st end surface) 2d end face (second end face) 2e End face (third end face) 2f End face (fourth end face) 3 Light source 3a Light source part (first light source part) 3b Light source part (second light source part) 3c Light source unit (third light source unit) 3d light source unit (fourth light source unit) 4 reflective portion 4a reflective member (first reflective member) 4b Reflective member (second reflective member) 4c Reflective member (third reflective member) 4d reflective member (fourth reflective member) 4m recess (reflective part) 5 Reflective dots 20 Liquid crystal panel 21 Gate drive circuit (scanning unit) 23 lighting control unit L 01 to L 08 light source unit R1 to R8 pixel area

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 光源装置(1)は、単層の導光板(2)と、光源(3)と、反射部(4)と、反射ドット(5)とを備える。反射部(4)は、光源(3)から出射されて導光板(2)の内部を導光される光を反射させて、光源(3)側に戻す。反射ドット(5)は、導光板(2)の下面(2b)に複数設けられ、導光板(2)の内部で導光されて入射する光を反射させて、導光板(2)の上面(2a)から出射させる。光源(3)は、導光板(2)の端面(2c)に沿って並び、かつ、端面(2c)に向けて光を出射する複数の光源部(3a)を含む。反射部(4)は、導光板(2)の端面(2c)と対向する端面(2d)に設けられ、複数の光源部(3a)が並ぶ方向と同一方向に並ぶ複数の反射部材(4a)を含む。

Description

光源装置およびそれを備えた液晶表示装置
 本発明は、導光板の端面から光を入射して内部を導光させ、導光板の上面から出射させる光源装置と、その光源装置を備えた液晶表示装置とに関するものである。
 従来から、液晶表示装置の液晶パネルを照明する光源装置として、エッジライト型のバックライトがある。このバックライトでは、光源から発せられた光は、導光板の端面から内部に入射する。導光板の上面および下面に対して臨界角以上の角度で入射した光は、その上面および下面で全反射され、このような全反射を繰り返して導光板内部を伝搬される。このとき、全反射光のうちで、導光板の下面に設けられた反射ドットに入射した光は、反射角が変化して、導光板の上面に臨界角未満の角度で入射し、導光板の上面から出射される。これにより、導光板の上方に配置される液晶パネルが照明されることになる。
 なお、上記の反射ドットは、導光板から出射される光(照明光)の輝度分布を調整するために、導光板の下面に所定のパターンで複数設けられている。以下、複数の反射ドットのパターンを単にドットパターンとも称する。
 ここで、光利用効率の向上を考えると、導光板の端面から入射した光を全て照明に使い切ることが理想的である。つまり、導光板の端面から入射した光を、全て、ドットパターンに入射させて導光板の上面から出射させることができれば、輝度が均一で明るい面光源を実現することができ、望ましい。
 しかし、実際には、導光板の端面から入射した光のうち、ドットパターンに入射することなく、入射側とは反対側の端面から外部に出射される光が存在し、導光板に入射した光を全て照明に使い切れていないため、光利用効率が100%とはならない。この点について、図面を用いてさらに説明する。
 図16(a)は、従来の光源装置の平面図であり、図16(b)は、上記光源装置の側面図であり、図16(c)は、図16(b)のP部を拡大して示す側面図である。なお、図16(a)~図16(c)では、便宜上、導光板102の端面102aに入射する光を、線間の広いハッチングで示し、導光板102の端面102dから外部に出射される光を、線間の狭いハッチングで示している。
 光源101から発せられた光は、導光板102の端面102aから内部に入射し、上面102bおよび下面102cでの全反射を繰り返す。全反射光は、全反射を繰り返すたびに反射角が大きくなるため、全反射から次の全反射までに導光板102内を伝搬される距離が長くなる。この結果、全反射光が導光板102の下面102cの反射ドット103に入射する確率が、全反射を繰り返すたびに低下し、全反射光の一部は反射ドット103に当たることなく、入射側の端面102aと対向する端面102dから外部に出射されてしまう。端面102dからの出射光は、一部の界面反射を除き、ほとんどが機構部材104へ吸収されて消滅する。このような現象により、光利用効率が低下する。
 この点、例えば特許文献1の光源装置では、導光板に対して入光側とは反対側の端面に反射部を設けている。これにより、本来外部に抜ける光の再利用を図ることができるものと思われる。以下、特許文献1の光源装置の構成について、図面を用いてさらに説明する。
 図17は、特許文献1の光源装置の概略の構成を示す側面図である。この光源装置は、光源201と、集光光学素子202と、導光板203と、反射部204と、反射ドット205とを備えている。光源201は、R(赤)、G(緑)、B(青)の各色に対応して複数設けられており、集光光学素子202が延びる方向(図17では紙面に垂直な方向)に並んで設けられている。導光板203は、第1導光層206(屈折率は1.49)と、第2導光層207(屈折率は1.43)とを積層して構成されている。集光光学素子202は、例えばシリンドリカルレンズで構成されており、導光板203の第1導光層206と光源201との間に配置されている。反射部204は、導光板203の第1導光層206における、光源201とは反対側の端面に設けられている。反射ドット205は、導光板203の下面、すなわち、第2導光層207における第1導光層206とは反対側の面に所定のパターンで設けられている。
 上記の構成によれば、光源201から出射された光は、集光光学素子202で集光された後、導光板203の第1導光層206に入射する。第1導光層206に入射した光は、第1導光層206内で全反射を繰り返しながら反射部204まで伝播され、反射部204で反射される。反射部204で反射された光の一部は、第1導光層206と第2導光層207との界面で屈折して第2導光層207に入射し、反射ドット205で反射された後、導光板203の上面(第1導光層206における第2導光層207とは反対側の面)から出射される。
 このように、導光板203に対して入光側とは反対側の端面に反射部204を設けることにより、反射部204がなければ外部に抜ける光を、反射部204で反射させて再利用することができる。
再表2004/055429号公報(請求項1、図1等参照)
 ところが、特許文献1の構成では、以下の問題が生ずる。
 導光板203の第1導光層206に対して第2導光層207の屈折率が低いので、第2導光層207と空気層との界面での臨界角(例えば44.4°)が、第1導光層206と空気層との界面での臨界角(例えば42.2°)よりも大きくなる。このため、反射部204で反射された光のうち、臨界角に満たない光が相対的に増えることになり(全反射光が相対的に減ることになり)、臨界角に満たない光が、反射ドット205の有無に関係なく、導光板203の表裏面から出射されやすくなる。その結果、反射ドット205の被覆率(密度)の調整による輝度分布の制御が困難となる。また、導光板203が複数層で構成されているので、従来の1層構成の導光板よりもコストアップとなる。
 また、反射部204は、導光板203の端面全体にわたって一方向(複数の光源201が並ぶ方向)に延びて形成されているため、導光板203に対する入光形態が制限される。つまり、導光板203に対して、一辺入光または対向しない二辺入光しか実現することができず、反射部204を設けることによって光利用効率の向上を図りながら、導光板203に対する入光の形態のバリエーションを増大させることができない。なお、一辺入光とは、導光板に対して1端面(平面的に見ると1辺)からのみ入光する形態を指し、対向しない二辺入光とは、導光板に対して対向しない2端面(平面的に見て対向しない2辺)から入光する形態を指す。
 また、光源装置の大型化および高輝度化を図る場合、例えば図18に示すように、光源201と導光板203と反射部204とをセットで複数配置する必要があり、用いる導光板203の枚数が増えるので、さらなるコストアップを招く。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、反射ドットの被覆率調整による輝度分布の制御が容易で、導光板のコストを低減でき、しかも、光利用効率の向上を図りながら、導光板に対する入光の形態のバリエーションを増大させることができるとともに、大型化および高輝度化を低コストで図ることができる光源装置と、その光源装置を備えた液晶表示装置とを提供することにある。
 本発明の光源装置は、入射光を内部で導光する単層の導光板と、前記導光板の上面および下面と垂直に交わる4つの端面の少なくともいずれかに向けて光を出射する光源と、前記光源から出射されて前記導光板の内部を導光される光を反射させて、前記光源側に戻す反射部と、前記導光板の下面に設けられ、前記導光板の内部で導光されて、前記光源側および前記反射部側から入射する光を反射させて、前記導光板の上面から出射させる複数の反射ドットとを備え、前記光源は、前記導光板の前記4つの端面のうちの第1の端面に沿って並び、かつ、前記第1の端面に向けて光を出射する複数の光源部を含み、前記反射部は、前記導光板において、前記第1の端面と対向する第2の端面に設けられ、前記複数の光源部が並ぶ方向と同一方向に並んで設けられる複数の反射部材を含んでいる。
 上記の構成によれば、光源から出射される光は、導光板の4つの端面の少なくともいずれかを介して内部に入射する。上記光のうち、導光板の下面の反射ドットに入射した光は、そこで反射されて、導光板の上面から出射される一方、反射ドットに入射せずに導光板内部をさらに導光された光は、反射部にて反射されて、光源側に戻される。導光板内部を反射部から光源側に進行して反射ドットに入射した光は、そこで反射されて導光板の上面から出射される。
 ここで、導光板は、複数層ではなく単層で構成されているので、導光板の屈折率の調整は、1つの層について行うだけでよく、導光板の屈折率の調整による、導光板と空気層との界面での臨界角の設定が容易となる。これにより、例えば、上記界面で全反射する光の割合が増大するように、上記臨界角を小さく設定することが容易となり、全反射しない光の割合、つまり、反射ドットに関係なく導光板の表裏から出射される光の割合を小さく抑えることができる。その結果、反射ドットの被覆率調整による輝度分布の制御が容易となる。しかも、導光板が複数層で構成される場合に比べて、用いる層数が少ない分、導光板のコストを低減することもできる。
 また、導光板において、複数の光源部からの光が入射する第1の端面と対向する第2の端面に、反射部(反射部材)が設けられているので、複数の光源部から出射されて反射ドットで反射されずに導光板の内部を導光された光を、反射部で確実に反射させて再利用することができる。したがって、導光板の第2の端面から外部に光が出射されることによる光量ロスを低減して、光利用効率を向上させることができる。
 また、反射部材は、導光板の第2の端面に複数設けられており、しかも、複数の光源部が並ぶ方向と同一方向に並んで設けられている。これにより、複数の反射部材の配置の仕方によっては、一辺入光のみならず、対向二辺入光の形態も実現することができる。
 例えば、複数の反射部材を詰めて(間を空けずに)配置すれば、導光板に対して、第1の端面側からの入光、すなわち一辺入光のみを実現することができる。また、例えば、複数の反射部材を間を空けて配置すれば、一辺入光を実現することもできるし、2つの反射部材の間に対応する位置に別の光源部をさらに配置して、別の光源部からの光を導光板の第2の端面から入光させることにより、対向二辺入光を実現することもできる。なお、このような考え方を組み合わせることにより、1つの導光板に対して、対向しない二辺入光やその他の入光形態(例えば四辺入光)を実現することもできる。
 したがって、上述した光利用効率の向上を図りながら、導光板に対する入光の形態のバリエーションを増大させることができる。特に、対向二辺入光を実現できるので、対向二辺入光による高輝度化を容易に実現できるとともに、対向二辺の方向(上下方向または左右方向)で均一な輝度を実現できる。
 また、同じ導光板に対して対向二辺入光を実現することができるので、光源装置の大型化および高輝度化を図る場合でも、導光板としては、大型の導光板1枚を用いるだけで済み、小型の導光板を複数枚用いて同じ大きさの光源装置を構成する場合に比べて、低コストとなる。
 上記した光源装置において、前記複数の反射部材は、前記導光板の前記第2の端面において、前記複数の光源部の各光軸上にそれぞれ設けられていてもよい。
 光軸とは、光源部(特に発光面)に垂直で、光源部(特に発光面)の中心を通る軸を指すものとする。光源部の光軸方向は、光源部から出射(放射)される光の光度が最も高いので、各光源部から出射される光を、各光軸上に位置する各反射部材で反射させることにより、光利用効率を向上させる効果を高めることができる。
 上記した光源装置において、前記複数の反射部材は、前記導光板の前記第2の端面において、前記複数の光源部の各光軸から、前記複数の光源部が並ぶ方向にずれた位置にそれぞれ設けられていてもよい。
 光源部の光軸方向は、光源部から出射される光の光度が最も高く、それゆえ、導光板において、光軸と光軸との間では、輝度が低下しやすい。そこで、導光板の第2の端面において、各光源部の各光軸から、各光源部が並ぶ方向にずれた位置に各反射部材を設けて、各光源部から出射される光を各反射部材で反射させ、光軸と光軸との間に導くことにより、光軸と光軸との間の輝度低下を抑えることができる。
 上記した光源装置において、前記反射部材は、前記導光板の前記第2の端面において、隣り合う2つの光源部の各光軸の中間に、1つずつ設けられていてもよい。
 各光源部から出射される光を、光軸と光軸との中間に位置する反射部材で反射させることにより、光軸と光軸との間の輝度分布を、光軸と光軸との中間を通る軸を基準に対称にすることができ、輝度ムラを改善することができる。
 上記した光源装置において、前記反射部材は、前記導光板の前記第2の端面において、隣り合う2つの光源部の各光軸の間に、2つ以上設けられていてもよい。
 各光源部から出射される光を、光軸と光軸との間に位置する2つ以上の反射部材で反射させることにより、反射光量が増大するので、光の利用効率を確実に向上させることができるとともに、光軸と光軸との間の輝度低下を確実に抑えることができる。
 上記した光源装置において、前記複数の光源部の各々を第1の光源部とし、前記複数の反射部材の各々を第1の反射部材とすると、前記光源は、前記導光板の前記第2の端面に沿って並び、かつ、前記第2の端面に向けて光を出射する複数の第2の光源部を含み、前記反射部は、前記導光板の第1の端面に設けられ、前記複数の第2の光源部側から入射する光を前記複数の第2の光源部側に反射させる複数の第2の反射部材を含んでいてもよい。
 上記の構成によれば、複数の第2の光源部から出射された光は、第2の端面を介して導光板内部に入射する。このうち、反射ドットで反射されずに第1の端面側まで導光された光は、複数の第2の反射部材で反射されて、第2の端面側に戻され、再利用が図られる。
 このように、複数の第2の光源部および複数の第2の反射部材をさらに設けることにより、導光板に対して、複数の第1の光源部によって第1の端面側から光を入射させるとともに、複数の第2の光源部によって第2の端面側から光を入射させる、いわゆる対向二辺入光の形態を実現することができる。これにより、一辺入光に比べて光束量が増えるため、輝度を増大させることができる。また、対向二辺の方向(上下方向または左右方向)で均一な輝度を実現できる。
 上記した光源装置において、前記複数の第2の光源部および前記複数の第2の反射部材は、前記複数の第1の光源部が並ぶ方向と同一方向に並んで設けられており、前記複数の第1の反射部材は、前記第2の端面において、前記複数の第2の光源部と対向する各位置から、前記複数の第2の光源部が並ぶ方向にずれて設けられており、前記複数の第2の反射部材は、前記第1の端面において、前記複数の第1の光源部と対向する各位置から、前記複数の第1の光源部が並ぶ方向にずれて設けられていてもよい。
 この構成では、複数の第1の反射部材が、第2の光源部から第2の端面への光の入射を阻害することがなく、また、複数の第2の反射部材が、第1の光源部から第1の端面への光の入射を阻害することがない。これにより、対向二辺入光を確実に実現できる。
 上記した光源装置において、前記光源は、前記導光板の前記4つの端面のうち、第3の端面に沿って並び、かつ、前記第3の端面に向けて光を出射する複数の第3の光源部と、前記導光板の前記第3の端面と対向する第4の端面に沿って並び、かつ、前記第4の端面に向けて光を出射する複数の第4の光源部とを含み、前記反射部は、前記導光板の前記第4の端面に設けられ、前記複数の第3の光源部側から入射する光を前記複数の第3の光源部側に反射させる複数の第3の反射部材と、前記導光板の前記第3の端面に設けられ、前記複数の第4の光源部側から入射する光を前記複数の第4の光源部側に反射させる複数の第4の反射部材とを含んでいてもよい。
 上記の構成によれば、複数の第3の光源部から出射された光は、第3の端面を介して導光板内部に入射する。このうち、反射ドットで反射されずに第4の端面側まで導光された光は、複数の第3の反射部材で反射されて第3の端面側に戻され、再利用が図られる。同様に、複数の第4の光源部から出射された光は、第4の端面を介して導光板内部に入射する。このうち、反射ドットで反射されずに第3の端面側まで導光された光は、複数の第4の反射部材で反射されて第4の端面側に戻され、再利用が図られる。
 このように、光源が、第1の光源部および第2の光源部に加えて、第3の光源部および第4の光源部をさらに含み、反射部が、第1の反射部材および第2の反射部材に加えて、第3の反射部材および第4の反射部材をさらに含むことにより、導光板に対して、第1の端面側および第2の端面側から光を入射させると同時に、第3の端面側および第4の端面側から光を入射させる四辺入光の形態を実現することができる。これにより、輝度をさらに増大させることができるともに、対向二辺の方向である上下方向および左右方向の両方向で(つまりは面全体で)均一な輝度を実現できる。
 上記した光源装置において、前記複数の第3の光源部、前記複数の第4の光源部、前記複数の第3の反射部材および前記複数の第4の反射部材は、前記第1の端面と前記第2の端面との対向方向に沿って並んで設けられており、前記複数の第3の反射部材は、前記第4の端面において、前記複数の第4の光源部と対向する各位置から、前記複数の第4の光源部が並ぶ方向にずれて設けられており、前記複数の第4の反射部材は、前記第3の端面において、前記複数の第3の光源部と対向する各位置から、前記複数の第3の光源部が並ぶ方向にずれて設けられていてもよい。
 この構成では、複数の第3の反射部材が、第4の光源部から第4の端面への光の入射を阻害することがなく、また、複数の第4の反射部材が、第3の光源部から第3の端面への光の入射を阻害することがない。これにより、四辺入光を確実に実現できる。
 上記した光源装置において、前記反射部は、複数の錐体で構成されており、前記錐体の底面は、前記導光板の前記4つの端面の少なくともいずれかと同一面上に位置していてもよい。
 光源から出射されて反射ドットに入射せずに導光板の内部を導光される光を、複数の錐体の側面で内面反射させて光源側に戻すことができ、そのような機能を持つ反射部を確実に実現することができる。なお、錐体の側面での内面反射には、全反射も含まれる。
 上記した光源装置において、前記錐体の側面には、反射膜がコーティングされていてもよい。錐体の側面に反射膜がコーティングされていることにより、導光板内部で導光されて入射する光を、錐体の側面で確実に反射させて光源側に戻すことができる。
 上記した光源装置において、前記複数の錐体は、前記導光板と同一材料で形成されていてもよい。この場合、複数の錐体と導光板とを一体成形で容易に得ることができる。
 上記した光源装置において、前記錐体は、四角錐プリズムであってもよい。この場合、四角錐プリズムの4つの側面で入射光を反射させて、光源側に戻す構成を実現することができる。
 上記した光源装置において、前記錐体は、円錐プリズムであってもよい。この場合、円錐プリズムの側面で入射光を反射させて、光源側に戻す構成を実現することができる。
 上記した光源装置において、前記反射部は、前記導光板の前記4つの端面の少なくともいずれかから内部に窪んだ複数の凹部で構成されており、前記複数の凹部は、前記導光板から、底面が前記いずれかの端面と同一面上に位置する錐体を切り欠いた形状で形成されていてもよい。
 光源から出射されて反射ドットに入射せずに導光板の内部を導光される光を、複数の凹部の面で反射させて光源側に戻すことができ、そのような機能を持つ反射部を確実に実現することができる。
 本発明の液晶表示装置は、上記した光源装置と、前記光源装置から供給される光を変調して表示を行う液晶パネルとを備えていてもよい。この場合、輝度が均一で明るい表示が可能な液晶表示装置を実現することができる。
 上記の液晶表示装置は、前記液晶パネルの複数の画素をスキャンする走査部と、前記走査部によるスキャン動作と連動して、前記光源装置の前記複数の光源部の点灯を制御する点灯制御部とをさらに備え、前記液晶パネルの全画素の領域を、1以上の画素からなる複数の画素領域に分割したときに、前記複数の光源部の各々は、前記液晶パネルの各画素領域と対応しており、前記点灯制御部は、前記スキャン動作の際に、スキャンされている画素領域に対応する光源部のみを点灯させてもよい。
 画素のスキャン動作と、複数の光源部の点灯動作とが同期し、スキャンされていない画素(画素領域)については、光源部の消灯によって黒表示(黒画面)となる。このように、表示と表示との間、すなわち各映像フレーム間に黒画面を挿入することにより、液晶の応答速度が遅いことによって生じる残像をリセットすることができる。つまり、各映像フレーム間に黒画面を挿入することによって、視覚上は、液晶の応答速度が速いと感じることになり、残像効果を抑制することができる。また、液晶パネルの動作がOFFのエリア(スキャンされていない画素領域)で光源部が消灯するので、装置の消費電力を低減できることにもなる。
 上記した光源装置の構成によれば、上記した導光板は単層で構成されているので、導光板の屈折率の調整による、導光板と空気層との界面での臨界角の設定が容易となる。これにより、上記界面で全反射する光の割合が増大するように、上記界面での臨界角を小さく設定することが容易となり、全反射しない光の割合、つまり、反射ドットに関係なく導光板の表裏から出射される光の割合を小さく抑えることができる。その結果、反射ドットの被覆率調整による輝度分布の制御が容易となる。しかも、導光板が複数層で構成される場合に比べて、導光板のコストを低減することができる。
 また、導光板において、複数の光源部からの光が入射する第1の端面と対向する第2の端面に、反射部(反射部材)が設けられているので、第2の端面から外部に出射される光を反射部で反射させて再利用することができ、光利用効率を向上させることができる。
 また、反射部材は、導光板の第2の端面に複数設けられており、しかも、複数の光源部が並ぶ方向と同一方向に並んで設けられている。これにより、複数の反射部材の配置の仕方によっては、一辺入光のみならず、対向二辺入光の形態も実現することができ、さらには四辺入光も実現できる。よって、導光板に対する入光の形態のバリエーションを増大させることができる。
 また、同じ導光板に対して対向二辺入光を実現することができるので、光源装置の大型化および高輝度化を図る場合でも、大型の導光板を1枚用いるだけで済み、小型の導光板を複数枚用いる場合に比べて、低コストとなる。
(a)は、本発明の実施の形態1の光源装置の概略の構成を示す平面図であり、(b)は、上記光源装置の側面図であり、(c)は、同図(b)のP部を拡大して示す側面図である。 上記光源装置が備える光源部を構成するLEDの指向性を示す説明図である。 (a)は、上記光源装置が備える反射部材の平面図であり、(b)は、上記反射部材の側面図であり、(c)は、上記反射部材の正面図である。 (a)は、上記反射部材の他の構成を示す平面図であり、(b)は、上記他の反射部材の側面図であり、(c)は、上記他の反射部材の正面図である。 (a)は、本発明の実施の形態2の光源装置の概略の構成を示す平面図であり、(b)は、上記光源装置の側面図であり、(c)は、同図(b)のP部を拡大して示す側面図である。 上記光源装置のA-A’断面での輝度分布を示す説明図である。 (a)は、本発明の実施の形態3の光源装置の概略の構成を示す平面図であり、(b)は、上記光源装置の側面図であり、(c)は、同図(b)のP部を拡大して示す側面図である。 上記光源装置のA-A’断面での輝度分布を示す説明図である。 (a)は、本発明の実施の形態4の光源装置の概略の構成を示す平面図であり、(b)は、上記光源装置の側面図であり、(c)は、同図(b)のP部を拡大して示す側面図である。 上記光源装置のA-A’断面での輝度分布を示す説明図である。 (a)は、上記光源装置の他の構成を示す平面図であり、(b)は、上記他の光源装置の側面図であり、(c)は、同図(b)のP部を拡大して示す側面図である。 本発明の実施の形態5の光源装置の概略の構成を示す平面図である。 本発明の実施の形態6の光源装置の概略の構成を示す平面図である。 本発明の実施の形態7の液晶表示装置の概略の構成を示すブロック図である。 上記液晶表示装置において、複数の光源部の点灯動作と液晶パネルの動作とが同期して行われる様子を模式的に示す説明図である。 (a)は、従来の光源装置の平面図であり、(b)は、上記光源装置の側面図であり、(c)は、同図(b)のP部を拡大して示す側面図である。 従来の他の光源装置の概略の構成を示す側面図である。 上記他の光源装置を複数用いた構成を模式的に示す平面図である。
 〔実施の形態1〕
 本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、各実施の形態で共通する構成には同一の部材番号を付記して説明を省略することがある。
 図1(a)は、本実施形態の光源装置1の概略の構成を示す平面図であり、図1(b)は、上記光源装置1の側面図であり、図1(c)は、図1(b)のP部を拡大して示す側面図である。なお、図1(a)~図1(c)では、便宜上、導光板2に入射する光を、線間の広いハッチングで示し、反射部4で反射される光を、線間の狭いハッチングで示している。なお、このような図示の仕方は、他の図面でも同様とする。
 光源装置1は、単体で照明装置として機能したり、後述する実施の形態7のように液晶表示装置50(図14参照)のバックライト光源として用いられるものであり、導光板2と、光源3と、反射部4と、反射ドット5と、機構部材6、反射シート7と、BL(バックライト)シャーシ8とを備えている。なお、以降の図面においては、反射シート7およびBLシャーシ8の図示を省略している場合もある。
 導光板2は、光源3から出射されて入射する光を、内部での全反射によって導光する単層の導光板であり、例えば屈折率が1.49のPMMA(ポリメタクリル酸メチル樹脂)などのアクリル樹脂で構成されている。
 光源3は、導光板2の上面2aおよび下面2bと垂直に交わる4つの端面2c・2d・2e・2fの少なくともいずれかに向けて光を出射するものであり、本実施形態では、例えばLED(発光ダイオード)からなる複数の光源部3a(第1の光源部)で構成されている。各光源部3aは、導光板2の端面2c(第1の端面)に沿ってライン状に等間隔で並ぶように、基板9上に実装されており、端面2cに向けて光を出射する。また、各光源部3aは、同じ電力が投入されることによってほぼ同じ明るさで発光する。
 ここで、図2は、光源部3aとしてのLEDの指向性を示すものであって、LEDから出射される光の光度を示す説明図である。光度とは、光源からある方向に放射された単位立体角当たりの光の明るさを表す物理量であり、単位はカンデラ(cd)である。ここでは、LEDからの出射光の角度を、LEDの発光面に垂直で発光面の中心を通る軸(光軸)を基準(0°)として考えている。同図に示すように、標準的なLEDは、光軸上の光度が最も高いので、光軸上の光をできるだけ利用することにより、光利用効率の向上の効果が高くなる。なお、図1(a)では、各光源部3aの光軸を破線で示している(他の図面でも同様)。
 反射部4は、光源3から出射されて導光板2の内部を導光される光を反射させて、光源3側に戻すものであり、複数の反射部材4a(第1の反射部材)で構成されている。各反射部材4aは、導光板2の端面2cと対向する端面2d(第2の端面)に設けられているとともに、各光源部3aが並ぶ方向と同一方向に並んで設けられている。しかも、各反射部材4aは、導光板2の端面2dにおいて、各光源部3aの光軸上にそれぞれ設けられている。
 ここで、図3(a)は、反射部材4aの平面図であり、図3(b)は、反射部材4aの側面図であり、図3(c)は、反射部材4aの正面図である。反射部材4aは、複数の錐体で構成されている。ここで、錐体とは、平面上の円または多角形の閉曲線の各点と、平面外の一点とを結んでできる立体のことを指す。
 本実施形態では、上記の錐体は、例えば四角錐プリズムで構成されており、その底面は、導光板2の端面2dと同一面上に位置している。四角錐プリズムの頂角、すなわち、側面の三角形における斜辺以外の2辺のなす角度は90度であり、これによって、四角錐プリズムの側面は、導光板2の内部で導光されて入射する光を内面反射させることができる。なお、上記の内面反射には、全反射も含まれる。
 反射部材4aを構成する上記の錐体は、導光板2と同一材料(例えばPMMA)で形成されている。これにより、複数の反射部材4aと導光板2とを一体成形で容易に得ることができる。なお、同一材料からなる反射部材4aと導光板2とを、屈折率が同等の接着剤を介して貼り合わせるようにしてもよい。
 反射ドット5は、導光板2の下面2bに所定のパターンで複数設けられおり、導光板2の内部で導光されて、光源3側および反射部4側から入射する光を反射させて、導光板2の上面2aから出射させる。
 ここで、導光板2の内部で導光される全反射光は、全反射を繰り返すことによって次第に反射角度が大きくなり、反射回数も減る。このため、反射ドット5の被覆率、つまり、密度が一定であると、全反射光が全反射を繰り返すごとに、反射ドット5に入射しにくくなり、輝度低下が生じる。しかし、反射ドット5の被覆率を場所によって変えることで、全反射光が全反射を繰り返しても、その全反射光を反射ドット5に確実に入射させて導光板2の上面2aから出射させるようにすることができ、輝度低下を回避することができる。
 機構部材6は、光源装置1に搭載されるその他の機構を総称する部材であり、これには、光源装置1の筐体も含まれる。反射シート7は、反射ドット5に入射せずに導光板2の下面2bから出射される光を反射させて導光板2側に戻すことにより、光の利用効率を上げるものである。BLシャーシ8は、導光板2や反射シート7を支持するための板金である。
 上記の構成において、光源3の各光源部3aから出射される光は、導光板2の端面2cを介して内部に入射し、導光板2の上面2aと下面2bとの間で全反射を繰り返すことによって内部を導光される。導光板2の内部で導光されて下面2bの反射ドット5に入射した光は、そこで反射されて上面2aから出射される。一方、反射ドット5に入射せずに導光板2の内部をさらに導光された光は、導光板2の端面2dに設けられた反射部4にて反射されて、光源3側に戻される。導光板2の内部を反射部4から光源3側に進行して反射ドット5に入射した光は、そこで反射されて導光板2の上面2aから出射される。
 ここで、導光板2と空気層との界面(上面2aおよび下面2b)での臨界角の設定は、導光板2の屈折率を調整することによって行うことが可能である。つまり、導光板2の屈折率を適切に設定して、臨界角を適切に設定することにより、導光板2の内部で光を適切に全反射させて導光することができる。ちなみに、本実施形態では、導光板2の屈折率は、1.49であるため、臨界角は42.2°である。
 このような導光板2の屈折率を調整するにあたって、本実施形態では、導光板2は単層で構成されているので、導光板2の屈折率の調整は、導光板2を構成する1つの層のみについて行えばよい。これにより、導光板2の屈折率の調整による上記した臨界角の設定が容易となり、例えば、臨界角を小さく設定して、界面(上面2a、下面2b)で全反射する光の割合を増やすことも容易となる。
 つまり、臨界角に満たない光は、導光板2の上面2aおよび下面2bで全反射されることなく外部に出射されるが、臨界角を小さく設定することにより、全反射光の割合が増えるので、反射ドット5の有無に関係なく外部に出射される光、つまり、臨界角よりも小さい角度で上面2aおよび下面2bに入射してそこで全反射されることなく、外部に出射される光の割合を相対的に小さくすることができる。その結果、上述した反射ドット5の被覆率調整による輝度分布の制御を容易に行うことが可能となる。
 また、導光板2が単層で構成されていることにより、複数層で構成される場合に比べて、用いる層数が少ない分、導光板2のコストを低減することもできる。
 また、導光板2において、光源3側の端面2cと対向する端面2dに反射部4が設けられているので、光源3から出射されて反射ドット5で反射されずに導光板2の内部を導光された光を、反射部4で確実に反射させて再利用することができる。したがって、導光板2の端面2dから外部に光が出射されることによる光量ロスを低減して、光利用効率を向上させることができる。
 また、反射部4を構成する複数の反射部材4aは、導光板2の端面2dに、複数の光源部3aが並ぶ方向と同一方向に並んで設けられている。これにより、導光板2に対して1端面(平面的に見ると1辺)からのみ入光する一辺入光のみならず、対向する2端面(平面的に見ると対向する2辺)から入光する対向二辺入光の形態も実現することができる。
 つまり、本実施形態のように、複数の反射部材4aを導光板2の端面2dにライン状に設けることにより、導光板2に対して端面2c側からのみの入光(一辺入光)を実現することができる。なお、本実施形態では、複数の反射部材4aを間隔を空けて配置しているが、間隔を詰めて配置してもよい。また、複数の反射部材4aを間隔を空けて配置すれば、後述する実施の形態4のように、2つの反射部材4a・4aの間に対応する位置に別の光源部をさらに配置して、別の光源部からの光を導光板2の端面2dから入光させる構成とすることもでき、この場合は、対向二辺入光を実現することができる。さらに、後述する実施の形態5および6のように、対向二辺入光を上下方向および左右方向で組み合わせて四辺入光を実現することもできる。なお、図示はしないが、一辺入光を上下方向および左右方向で組み合わせれば、対向しない二辺入光を実現することもできる。
 このように、反射部4を複数の反射部材4aで構成することにより、反射部4を設けることによって光利用効率の向上を図りながら、導光板2に対する入光の形態のバリエーションを増大させることができる。特に、同じ導光板に対して対向二辺入光を実現することができることから、光源装置1の大型化および高輝度化を図るべく、光源と導光板とをセットで複数組み合わせて対向二辺入光を実現する構成(導光板を複数枚用意する構成)に比べて、用いる導光板の枚数が(大型ではあるが)1枚と格段に少なくて済むため、低コストとなる。
 また、光源部3aの光軸方向は、光源部3aから出射される光の光度が最も高いので、各光源部3aから出射される光を、各光源部3aの光軸上に位置する各反射部材4aで反射させることにより、光利用効率を向上させる効果を高めることができる。
 また、各反射部材4aは錐体で構成され、錐体の底面が導光板2の端面2dと同一面上に位置している。これにより、光源3から出射されて、反射ドット5に入射せずに導光板2の内部を導光される光を、複数の錐体の側面での内面反射によって光源3側に戻すことができ、そのような機能を持つ反射部4を確実に実現することができる。
 ここで、各反射部材4aを構成する錐体の側面には、反射膜がコーティングされていてもよい。この場合、導光板2の内部で導光されて、臨界角よりも小さい角度で入射する光についても、反射膜での反射によって光源側に戻すことができる。したがって、光の利用効率の向上をさらに図ることができる。
 また、各反射部材4aを構成する錐体は、四角錐プリズムであるので、四角錐プリズムの4つの側面で入射光を反射させて、光源3側に確実に戻すことができる。
 ところで、図4(a)は、反射部材4aの他の構成を示す平面図であり、図4(b)は、上記他の反射部材4aの側面図であり、図4(c)は、上記他の反射部材4aの正面図である。このように、反射部材4aは、円錐プリズムであってもよい。
 反射部材4aが円錐プリズムで構成される場合でも、円錐プリズムの底面を導光板2の端面2dと同一面上に位置させ、導光板2の内部で導光されて入射する光を円錐プリズムの側面(周面)で内面反射させることにより、入射光を光源3側に戻す構成を実現することができる。
 〔実施の形態2〕
 本発明の他の実施の形態について、図面に基づいて説明すれば以下の通りである。
 図5(a)は、本実施形態の光源装置1の概略の構成を示す平面図であり、図5(b)は、上記光源装置1の側面図であり、図5(c)は、図5(b)のP部を拡大して示す側面図である。本実施形態では、光源装置1の複数の反射部材4aは、導光板2の端面2dにおいて、複数の光源部3aの各光軸から、複数の光源部3aが並ぶ方向にずれた位置にそれぞれ設けられている。
 ここで、図6は、光源装置1のA-A’断面での輝度分布を示している。上述したように、光源部3aの光軸方向は、光源部3aから出射される光の光度が最も高い。それゆえ、導光板2において、光軸と光軸との間では、輝度が低下しやすい。そこで、本実施形態のように、導光板2の端面2dにおいて、各光源部3aの光軸から、各光源部3aが並ぶ方向にずれた位置に各反射部材4aを配置することにより、各光源部3aから出射される光を各反射部材4aで反射させて、光軸と光軸との間に導くことができる。これにより、図6に示すように、反射部4(反射部材4a)を配置しない構成に比べて、光軸と光軸との間の輝度低下を抑えることができる。
 特に、反射部材4aは、図5(a)および図6に示すように、導光板2の端面2dにおいて、隣り合う2つの光源部3a・3aの各光軸の中間に、1つずつ設けられている。この構成では、図6に示すように、導光板2における光軸と光軸との間の輝度分布を、光軸と光軸との中間を通って各光軸に平行な軸を基準に対称にすることができ、その結果、輝度ムラを改善することができる(輝度均一性を向上させることができる)。
 〔実施の形態3〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば以下の通りである。
 図7(a)は、本実施形態の光源装置1の概略の構成を示す平面図であり、図7(b)は、上記光源装置1の側面図であり、図7(c)は、図7(b)のP部を拡大して示す側面図である。本実施形態では、光源装置1の反射部材4aは、導光板2の端面2dにおいて、隣り合う2つの光源部3a・3aの各光軸の間に、2つずつ設けられている。
 ここで、図8は、光源装置1のA-A’断面での輝度分布を示している。本実施形態では、各光源部3aから出射される光が、光軸と光軸との間に位置する2つの反射部材4a・4aで反射されることにより、実施の形態2の構成に比べて反射光量が増大する。これにより、光の利用効率を確実に向上させることができるとともに、光軸と光軸との間の輝度低下を確実に抑えることができ、輝度均一性をさらに向上させることができる。
 なお、光軸と光軸との間の輝度低下を抑える観点から、反射部材4aは、導光板2の端面2dにおいて、隣り合う2つの光源部3a・3aの各光軸の間に、できるだけ多く配置されることが望ましく、3つ以上配置されてもよい。
 〔実施の形態4〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば以下の通りである。
 図9(a)は、本実施形態の光源装置1の概略の構成を示す平面図であり、図9(b)は、上記光源装置1の側面図であり、図9(c)は、図9(b)のP部を拡大して示す側面図である。本実施形態では、導光板2に対する入光形態を、実施の形態3の一辺入光の形態から対向二辺入光の形態に変形したものである。以下、詳細に説明する。なお、実施の形態3と共通する部分の説明については省略する。
 本実施形態では、光源3は、第1の光源部としての光源部3aに加えて、第2の光源部としての光源部3bを有している。光源部3bは、光源部3aと同様のLEDで構成されており、導光板2の端面2dに沿って複数設けられている。各光源部3bは、各光源部3aが並ぶ方向と同一方向に並ぶように、基板10に実装されており、端面2dに向けて光を出射する。
 また、反射部4は、第1の反射部材としての反射部材4aに加えて、第2の反射部材としての反射部材4bを有している。反射部材4bは、反射部材4aと同様の錐体で構成されており、導光板2の端面2cに複数設けられている。このとき、各反射部材4bは、複数の光源部3aが並ぶ方向と同一方向に並んで設けられているとともに、錐体の底面が端面2cと同一面上となるように設けられている。
 ここで、光源部3aと光源部3b、反射部材4aと反射部材4bとは、導光板2を介して対向した位置関係にある。そして、各反射部材4aは、導光板2の端面2dにおいて、複数の光源部3bと対向する各位置から、複数の光源部3bが並ぶ方向にずれて設けられている。同様に、各反射部材4bは、導光板2の端面2cにおいて、複数の光源部3aと対向する各位置から、複数の光源部3aが並ぶ方向にずれて設けられている。
 上記の構成によれば、複数の光源部3bから出射された光は、2つの反射部材4a・4aの間を通り、端面2dを介して導光板2の内部に入射する。このうち、反射ドット5で反射されずに端面2c側まで導光された光は、複数の反射部材4bで内面反射されて端面2d側に戻され、再利用が図られる。
 本実施形態のように、複数の光源部3bおよび複数の反射部材4bをさらに設けることにより、複数の光源部3aによって端面2c側から光を入射させるとともに、複数の光源部3bによって端面2d側から光を入射させる、いわゆる対向二辺入光の形態を実現しながら、反射部材4aおよび反射部材4bにより、光の利用効率を向上させることができる。また、対向二辺入光により、一辺入光に比べて光束量が増えるため、輝度を増大させることができるとともに、対向二辺の方向(本実施形態では上下方向)で均一な輝度を実現できる。
 図10は、光源装置1のA-A’断面での輝度分布を示している。同図より、対向二辺入光の本実施形態の構成では、一辺入光の実施の形態3の構成に比べて、輝度が倍増していることがわかる。
 また、各反射部材4aは、端面2dにおいて、複数の光源部3bと対向する各位置から、複数の光源部3bが並ぶ方向にずれて設けられているので、各反射部材4aが、光源部3bから端面2dへの光の入射を阻害することがない。同様に、各反射部材4bは、端面2cにおいて、複数の光源部3aと対向する各位置から、複数の光源部3aが並ぶ方向にずれて設けられているので、各反射部材4bが、光源部3aから端面2cへの光の入射を阻害することがない。これにより、対向二辺入光で、かつ、光利用効率を向上させる構成を確実に実現することができる。
 また、図11(a)は、本実施形態の光源装置1の他の構成を示す平面図であり、図11(b)は、上記他の光源装置1の側面図であり、図11(c)は、図11(b)のP部を拡大して示す側面図である。上記光源装置1は、導光板2に対する入光方向を、図9(a)の上下方向から左右方向に変更した例である。このような光源装置1は、図9(a)の光源装置1を90度回転させることによって実現することができる。なお、導光板2の縦横のサイズは、必要に応じて変更すればよい。図11(a)の光源装置1では、対向二辺の入光方向が左右方向であるので、左右方向で均一な輝度を実現することができる。
 〔実施の形態5〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば以下の通りである。本実施形態では、導光板2に対する入光形態が四辺入光となっている。以下、詳細に説明する。
 図12は、本実施形態の光源装置1の概略の構成を示す平面図である。本実施形態の光源装置1は、実施の形態4の図9(a)の構成に加えて、光源3が、第3の光源部としての光源部3cと、第4の光源部としての光源部3dとをさらに有している。
 光源部3cは、光源部3aと同様のLEDで構成されており、導光板2の端面2e(第3の端面)に沿って複数設けられている。各光源部3cは、端面2c・2dの対向方向に並ぶように基板11に実装されており、端面2eに向けて光を出射する。
 光源部3dも、光源部3aと同様のLEDで構成されており、導光板2の端面2eと対向する端面2f(第4の端面)に沿って複数設けられている。各光源部3dは、端面2c・2dの対向方向に並ぶように基板12に実装されており、端面2fに向けて光を出射する。
 また、本実施形態の光源装置1の反射部4は、第3の反射部材としての反射部材4cと、第4の反射部材としての反射部材4dとをさらに有している。反射部材4cは、反射部材4aと同様の錐体で構成されており、導光板2の端面2fに複数設けられている。このとき、各反射部材4cは、端面2c・2dの対向方向に並んで設けられているとともに、錐体の底面が端面2fと同一面上となるように設けられている。
 反射部材4dも、反射部材4aと同様の錐体で構成されており、導光板2の端面2eに複数設けられている。このとき、各反射部材4dは、端面2c・2dの対向方向に並んで設けられているとともに、錐体の底面が端面2eと同一面上となるように設けられている。
 ここで、光源部3cと光源部3d、反射部材4cと反射部材4dとは、導光板2を介して対向した位置関係にある。そして、各反射部材4cは、導光板2の端面2fにおいて、複数の光源部3dと対向する各位置から、複数の光源部3dが並ぶ方向にずれて設けられている。同様に、各反射部材4dは、導光板2の端面2eにおいて、複数の光源部3cと対向する各位置から、複数の光源部3cが並ぶ方向にずれて設けられている。
 上記の構成によれば、複数の光源部3cから出射された光は、端面2eを介して導光板2の内部に入射する。このうち、反射ドット5で反射されずに端面2f側まで導光された光は、複数の反射部材4cで内面反射されて端面2e側に戻され、再利用が図られる。同様に、複数の光源部3dから出射された光は、端面2fを介して導光板2の内部に入射する。このうち、反射ドット5で反射されずに端面2e側まで導光された光は、複数の反射部材4dで内面反射されて端面2f側に戻され、再利用が図られる。
 このように、光源3が、光源部3aおよび光源部3bに加えて、光源部3cおよび光源部3dをさらに含み、反射部4が、反射部材4aおよび反射部材4bに加えて、反射部材4cおよび反射部材4dをさらに含むことにより、導光板2に対して、端面2c~2fから光を入射させる四辺入光の形態で、光利用効率を向上させることができる。これにより、輝度をさらに増大させることができるともに、面全体で均一な輝度を実現することができる。
 また、各反射部材4cは、端面2fにおいて、複数の光源部3dと対向する各位置から、複数の光源部3dが並ぶ方向にずれて設けられているので、各反射部材4cが、光源部3dから端面2fへの光の入射を阻害することがない。同様に、各反射部材4dは、端面2eにおいて、複数の光源部3cと対向する各位置から、複数の光源部3cが並ぶ方向にずれて設けられているので、各反射部材4dが、光源部3cから端面2eへの光の入射を阻害することがない。これにより、四辺入光で、かつ、光利用効率を向上させる構成を確実に実現することができる。
 〔実施の形態6〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば以下の通りである。
 図13は、本実施形態の光源装置1の概略の構成を示す平面図である。本実施形態では、四辺入光の実施の形態5の構成において、反射部4は、導光板2の4つの端面2c~2fから内部に窪んだ複数の凹部4mで構成されている。複数の凹部4mは、導光板2から、底面が端面2c~2fと同一面上に位置する錐体を切り欠いた形状で形成されている。なお、上記の錐体は、四角錐であってもよいし、円錐であってもよいし、その他の形状の錐体であってもよい。
 また、端面2dから窪んだ凹部4mは、反射部材4aと同様に第1の反射部材を構成し、端面2cから窪んだ凹部4mは、反射部材4bと同様に第2の反射部材を構成し、端面2fから窪んだ凹部4mは、反射部材4cと同様に第3の反射部材を構成し、端面2eから窪んだ凹部4mは、反射部材4dと同様に第4の反射部材を構成している。
 上記の構成によれば、光源3(光源部3a~3d)から出射されて反射ドット5に入射せずに導光板2の内部を導光される光を、複数の凹部4mの窪んだ面で反射させて光源3側に戻すことができる。つまり、反射部4が上述した各実施の形態のプリズム以外に凹部4mで構成される場合でも、本来外部に出射される光を再利用して、光利用効率を向上させることができる。
 また、反射部4がプリズムで構成される場合は、プリズムの高さ(底面と頂点との距離)の分だけ、反射部4が導光板2の端面2c~2fから外側に突出するため、光源3をさらにその外側に配置する必要がある。これに対して、反射部4が凹部4mで構成される場合は、導光板2の端面2c~2fから外側に突出する部分がないので、光源3を導光板2の端面2c~2fのすぐ外側に配置することが可能となる。つまり、導光板2の端面2cと光源部3aとの距離ΔY1、端面2dと光源部3bとの距離ΔY2、端面2eと光源部3cとの距離ΔX1、端面2fと光源部3dとの距離ΔX2を確実に縮めることができる。その結果、光源装置1として、小型化、狭額縁化および軽量化を図ることができる。
 なお、本実施形態では、四辺入光の形態において、反射部4としての凹部4mを、導光板2の4つの端面2c~2fのそれぞれに設けた例について説明したが、少なくともいずれかの端面に設けられればよい。したがって、反射部4として凹部4mを設ける構成であっても、反射部4を錐体で構成する場合と同様に、一辺入光、対向二辺入光などの様々な入光形態を実現することができる。
 〔実施の形態7〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば以下の通りである。本実施形態では、各実施の形態の光源装置1を適用可能な液晶表示装置について説明する。
 図14は、本実施形態の液晶表示装置50の概略の構成を示すブロック図である。この液晶表示装置50は、上述した各実施の形態のいずれかの光源装置1と、液晶パネル20とを備えている。
 液晶パネル20は、光源装置1からの照明光を画像データに応じて各画素ごとに変調することにより画像を表示する表示素子であり、2つの透明基板で液晶層を挟持して構成されている。一方の透明基板には、各画素をON/OFFするためのスイッチング素子(例えばTFT;Thin Film Transistor)や、各種の配線(走査線、信号線)等が形成されている。他方の透明基板には、カラーフィルタや対向電極等が形成されている。また、2つの透明基板の外側(液晶層とは反対側)には、偏光板がそれぞれ配置されている。
 上述した各実施の形態の光源装置1の構成によれば、反射ドット5の被覆率調整による輝度分布の制御が容易で、光利用効率の向上を図ることができる。したがって、液晶パネル20が、光源装置1から供給される光を変調して表示を行う構成とすることにより、輝度が均一で明るい表示が可能な液晶表示装置50を実現することができる。
 また、液晶表示装置50は、ゲート駆動回路21と、ソース駆動回路22と、点灯制御部23とをさらに備えている。ゲート駆動回路21は、液晶パネル20の複数の画素をスキャンする走査部である。ここで、複数の画素をスキャンするとは、液晶パネル20の上から1行目、2行目、・・・最終行の各画素のスイッチング素子(例えばTFT)を順次ONする動作(スキャン動作)のことを指し、ゲート駆動回路21が各行の走査線を介して各スイッチング素子に走査信号を出力することによって行われる。このようなスキャン動作によってスイッチング素子がONとなった画素に、ソース駆動回路22から表示データに応じた信号(電圧)が印加されることにより、各画素の表示が行われる。ゲート駆動回路21およびソース駆動回路22は、図示しないコントローラによって駆動制御される。
 点灯制御部23は、ゲート駆動回路21による上記のスキャン動作と連動して、光源装置1の光源3の複数の光源部の点灯を制御する。具体的には、以下の通りである。
 なお、以下での説明の便宜上、液晶パネル20の全画素の領域を、1以上の画素からなる複数の画素領域に分割する。ここでは、液晶パネル20が、例えば横1920ドット×縦1080ドットの画素を有しており、全画素の領域を縦方向に8等分した8個の画素領域R1~R8に分割する。したがって、画素領域R1~R8は、上から、1~135行目、136~270行目、271~405行目、・・・946~1080行目の画素の集合からなる。
 一方、光源装置1は、実施の形態4の図11(a)の構成とする。つまり、光源装置1は、対向二辺入光の形態で、入光方向が左右方向の光源装置であり、光源3は、導光板2に対して左側の端面2cから入光する複数の光源部3aと、導光板2に対して右側の端面2dから入光する複数の光源部3bとで構成されているものとする。このとき、複数の光源部3a・3bの各々は、液晶パネル20の各画素領域R1~R8と対応している。
 つまり、図15に示すように、複数の光源部3aが、例えば8個の光源部L01~L08で構成されているとすると、光源部L01は、画素領域R1と対応しており、光源部L02は、画素領域R2と対応しており、光源部L03は、画素領域R3と対応しており、・・・光源部L08は、画素領域R8と対応している。なお、図示はしないが、複数の光源部3bについても、複数の光源部3aと同様に、画素領域R1~R8との対応関係がとられているものとする。
 このような構成において、点灯制御部23は、ゲート駆動回路21によるスキャン動作の際に、スキャンされている画素領域に対応する光源部のみを点灯させる。具体的には、点灯制御部23は、画素領域R1のスキャン時には、複数の光源部3a・3bの中の光源部L01のみを点灯させる一方、他の光源部L02~L08を消灯させ、画素領域R2のスキャン時には、複数の光源部3a・3bの中の光源部L02のみを点灯させる一方、他の光源部L03~L08およびL01を消灯させ、画素領域R3のスキャン時には、複数の光源部3a・3bの中の光源部L03のみを点灯させる一方、他の光源部L04~L08およびL01~L02を消灯させ、・・・画素領域R8のスキャン時には、複数の光源部3a・3bの中の光源部L08のみを点灯させる一方、他の光源部L01~L07を消灯させる。したがって、光源部L01~L08は、画素のスキャン動作と同期して、光源部L01、L02、L03、・・・、L07、L08の順での点灯を繰り返すことになる。
 このように、点灯制御部23により、画素のスキャン動作と、複数の光源部L01~L08の点灯動作とを同期させることにより、スキャンされていない画素(画素領域)については、(たとえ次の書き込み(スキャン)まではその画素の電圧が保持されていても、)対応する光源部の消灯によって黒表示(黒画面)となる。このように、表示と表示との間、すなわち各映像フレーム間に黒画面を挿入することにより、液晶の応答速度が遅いことによって生じる残像をリセットすることができる。
 つまり、光源部の応答速度は、液晶の応答速度よりも速い(光源応答時間(立上り/立下り時間)は約100nsec、液晶の応答時間は約5msec)。よって、スキャンされていない画素領域に対応する光源部を消灯して各映像フレーム間に黒画面を挿入することにより、液晶パネル20に表示された映像を実際に見た場合、視覚上は液晶の応答が速いと感じることになるため、残像効果を抑制することができる。
 また、液晶パネル20の動作がOFFのエリア(スキャンされていない画素領域)で光源部が消灯するので、装置の消費電力を低減できることにもなる。
 なお、上述した各実施の形態の構成を適宜組み合わせて、光源装置1ひいては液晶表示装置50を構成することも勿論可能である。
 以上、本発明の実施形態について説明したが、本発明はこの内容に限定されるものではない。また、本発明の実施形態は、発明の趣旨を逸脱しない限り、種々の改変を加えることが可能である。
 本発明の光源装置は、例えば液晶表示装置のバックライトに利用することができる。
   1   光源装置
   2   導光板
   2a  上面
   2b  下面
   2c  端面(第1の端面)
   2d  端面(第2の端面)
   2e  端面(第3の端面)
   2f  端面(第4の端面)
   3   光源
   3a  光源部(第1の光源部)
   3b  光源部(第2の光源部)
   3c  光源部(第3の光源部)
   3d  光源部(第4の光源部)
   4   反射部
   4a  反射部材(第1の反射部材)
   4b  反射部材(第2の反射部材)
   4c  反射部材(第3の反射部材)
   4d  反射部材(第4の反射部材)
   4m  凹部(反射部)
   5   反射ドット
  20   液晶パネル
  21   ゲート駆動回路(走査部)
  23   点灯制御部
   L01~L08   光源部
   R1~R8   画素領域

Claims (17)

  1.  入射光を内部で導光する単層の導光板と、
     前記導光板の上面および下面と垂直に交わる4つの端面の少なくともいずれかに向けて光を出射する光源と、
     前記光源から出射されて前記導光板の内部を導光される光を反射させて、前記光源側に戻す反射部と、
     前記導光板の下面に設けられ、前記導光板の内部で導光されて、前記光源側および前記反射部側から入射する光を反射させて、前記導光板の上面から出射させる複数の反射ドットとを備え、
     前記光源は、前記導光板の前記4つの端面のうちの第1の端面に沿って並び、かつ、前記第1の端面に向けて光を出射する複数の光源部を含み、
     前記反射部は、前記導光板において、前記第1の端面と対向する第2の端面に設けられ、前記複数の光源部が並ぶ方向と同一方向に並んで設けられる複数の反射部材を含んでいることを特徴とする光源装置。
  2.  前記複数の反射部材は、前記導光板の前記第2の端面において、前記複数の光源部の各光軸上にそれぞれ設けられていることを特徴とする請求項1に記載の光源装置。
  3.  前記複数の反射部材は、前記導光板の前記第2の端面において、前記複数の光源部の各光軸から、前記複数の光源部が並ぶ方向にずれた位置にそれぞれ設けられていることを特徴とする請求項1に記載の光源装置。
  4.  前記反射部材は、前記導光板の前記第2の端面において、隣り合う2つの光源部の各光軸の中間に、1つずつ設けられていることを特徴とする請求項3に記載の光源装置。
  5.  前記反射部材は、前記導光板の前記第2の端面において、隣り合う2つの光源部の各光軸の間に、2つ以上設けられていることを特徴とする請求項3に記載の光源装置。
  6.  前記複数の光源部の各々を第1の光源部とし、前記複数の反射部材の各々を第1の反射部材とすると、
     前記光源は、前記導光板の前記第2の端面に沿って並び、かつ、前記第2の端面に向けて光を出射する複数の第2の光源部を含み、
     前記反射部は、前記導光板の第1の端面に設けられ、前記複数の第2の光源部側から入射する光を前記複数の第2の光源部側に反射させる複数の第2の反射部材を含んでいることを特徴とする請求項1から5のいずれかに記載の光源装置。
  7.  前記複数の第2の光源部および前記複数の第2の反射部材は、前記複数の第1の光源部が並ぶ方向と同一方向に並んで設けられており、
     前記複数の第1の反射部材は、前記第2の端面において、前記複数の第2の光源部と対向する各位置から、前記複数の第2の光源部が並ぶ方向にずれて設けられており、
     前記複数の第2の反射部材は、前記第1の端面において、前記複数の第1の光源部と対向する各位置から、前記複数の第1の光源部が並ぶ方向にずれて設けられていることを特徴とする請求項6に記載の光源装置。
  8.  前記光源は、
     前記導光板の前記4つの端面のうち、第3の端面に沿って並び、かつ、前記第3の端面に向けて光を出射する複数の第3の光源部と、
     前記導光板の前記第3の端面と対向する第4の端面に沿って並び、かつ、前記第4の端面に向けて光を出射する複数の第4の光源部とを含み、
     前記反射部は、
     前記導光板の前記第4の端面に設けられ、前記複数の第3の光源部側から入射する光を前記複数の第3の光源部側に反射させる複数の第3の反射部材と、
     前記導光板の前記第3の端面に設けられ、前記複数の第4の光源部側から入射する光を前記複数の第4の光源部側に反射させる複数の第4の反射部材とを含んでいることを特徴とする請求項6または7に記載の光源装置。
  9.  前記複数の第3の光源部、前記複数の第4の光源部、前記複数の第3の反射部材および前記複数の第4の反射部材は、前記第1の端面と前記第2の端面との対向方向に沿って並んで設けられており、
     前記複数の第3の反射部材は、前記第4の端面において、前記複数の第4の光源部と対向する各位置から、前記複数の第4の光源部が並ぶ方向にずれて設けられており、
     前記複数の第4の反射部材は、前記第3の端面において、前記複数の第3の光源部と対向する各位置から、前記複数の第3の光源部が並ぶ方向にずれて設けられていることを特徴とする請求項8に記載の光源装置。
  10.  前記反射部は、複数の錐体で構成されており、
     前記錐体の底面は、前記導光板の前記4つの端面の少なくともいずれかと同一面上に位置していることを特徴とする請求項1から9のいずれかに記載の光源装置。
  11.  前記錐体の側面には、反射膜がコーティングされていることを特徴とする請求項10に記載の光源装置。
  12.  前記複数の錐体は、前記導光板と同一材料で形成されていることを特徴とする請求項10または11に記載の光源装置。
  13.  前記錐体は、四角錐プリズムであることを特徴とする請求項10から12のいずれかに記載の光源装置。
  14.  前記錐体は、円錐プリズムであることを特徴とする請求項10から12のいずれかに記載の光源装置。
  15.  前記反射部は、前記導光板の前記4つの端面の少なくともいずれかから内部に窪んだ複数の凹部で構成されており、
     前記複数の凹部は、前記導光板から、底面が前記いずれかの端面と同一面上に位置する錐体を切り欠いた形状で形成されていることを特徴とする請求項1から9のいずれかに記載の光源装置。
  16.  請求項1から15のいずれかに記載の光源装置と、
     前記光源装置から供給される光を変調して表示を行う液晶パネルとを備えていることを特徴とする液晶表示装置。
  17.  前記液晶パネルの複数の画素をスキャンする走査部と、
     前記走査部によるスキャン動作と連動して、前記光源装置の前記複数の光源部の点灯を制御する点灯制御部とをさらに備え、
     前記液晶パネルの全画素の領域を、1以上の画素からなる複数の画素領域に分割したときに、
     前記複数の光源部の各々は、前記液晶パネルの各画素領域と対応しており、
     前記点灯制御部は、前記スキャン動作の際に、スキャンされている画素領域に対応する光源部のみを点灯させることを特徴とする請求項16に記載の液晶表示装置。
PCT/JP2012/066235 2011-07-25 2012-06-26 光源装置およびそれを備えた液晶表示装置 WO2013015060A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-162154 2011-07-25
JP2011162154 2011-07-25

Publications (1)

Publication Number Publication Date
WO2013015060A1 true WO2013015060A1 (ja) 2013-01-31

Family

ID=47600919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066235 WO2013015060A1 (ja) 2011-07-25 2012-06-26 光源装置およびそれを備えた液晶表示装置

Country Status (1)

Country Link
WO (1) WO2013015060A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309903A (ja) * 1987-03-05 1988-12-19 Kondo Shirubania Kk 照明装置
JP2004079488A (ja) * 2002-08-22 2004-03-11 Fujitsu Ten Ltd Ledバックライトユニットおよび液晶表示装置
JP2004127745A (ja) * 2002-10-03 2004-04-22 Sanyo Electric Co Ltd 面光源装置
JP2008226844A (ja) * 2007-03-14 2008-09-25 Samsung Electronics Co Ltd 導波部材及びそれを用いるキーパッドアセンブリ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309903A (ja) * 1987-03-05 1988-12-19 Kondo Shirubania Kk 照明装置
JP2004079488A (ja) * 2002-08-22 2004-03-11 Fujitsu Ten Ltd Ledバックライトユニットおよび液晶表示装置
JP2004127745A (ja) * 2002-10-03 2004-04-22 Sanyo Electric Co Ltd 面光源装置
JP2008226844A (ja) * 2007-03-14 2008-09-25 Samsung Electronics Co Ltd 導波部材及びそれを用いるキーパッドアセンブリ

Similar Documents

Publication Publication Date Title
CN101660689B (zh) 背光单元及液晶显示装置
US8783931B2 (en) Light injection system and method for uniform luminosity of waveguide-based displays
JP4902566B2 (ja) 面状照明装置および表示装置
US8651722B2 (en) Backlight module and LCD comprising the same
US8714804B2 (en) Backlight assembly and display apparatus having the same
JP4600257B2 (ja) 導光板、バックライト装置とその製造方法及び液晶表示装置
KR102634179B1 (ko) 디스플레이 장치
JP5469552B2 (ja) 液晶表示装置
JP2017207624A (ja) 表示装置
JP3810788B2 (ja) 表示装置
JP2009140663A (ja) 面光源及び液晶表示装置
WO2018056248A1 (ja) 面光源装置および液晶表示装置
WO2017170017A1 (ja) 照明装置及び表示装置
TW201314314A (zh) 導光板、面光源裝置及透過型圖像顯示裝置
WO2013061866A1 (ja) 照明装置およびそれを備えた表示装置
JP2005321754A (ja) 表示装置
JP2010108601A (ja) 面状光源及び液晶表示装置
KR20110139039A (ko) 디스플레이 장치
WO2012060266A1 (ja) 調光素子、表示装置および照明装置
JP2004171870A (ja) 照明装置及び液晶表示装置
JP5489020B2 (ja) 面光源及び液晶表示装置
KR20110104634A (ko) 디스플레이 장치
WO2013015060A1 (ja) 光源装置およびそれを備えた液晶表示装置
JP2006309017A (ja) 表示装置
JP2010055771A (ja) 導光体および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP