WO2013013339A1 - 太阳电池及其制备方法、装置 - Google Patents

太阳电池及其制备方法、装置 Download PDF

Info

Publication number
WO2013013339A1
WO2013013339A1 PCT/CN2011/001230 CN2011001230W WO2013013339A1 WO 2013013339 A1 WO2013013339 A1 WO 2013013339A1 CN 2011001230 W CN2011001230 W CN 2011001230W WO 2013013339 A1 WO2013013339 A1 WO 2013013339A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
brush
electric field
plating
electrode
Prior art date
Application number
PCT/CN2011/001230
Other languages
English (en)
French (fr)
Inventor
陈丽萍
钱洪强
Original Assignee
无锡尚德太阳能电力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡尚德太阳能电力有限公司 filed Critical 无锡尚德太阳能电力有限公司
Publication of WO2013013339A1 publication Critical patent/WO2013013339A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • C25D5/06Brush or pad plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of photovoltaic technology, and relates to a method for preparing a solar cell, in particular to a method for preparing a solar cell for preparing a solar cell back electrode by using a brush plating method, and a solar cell prepared by using the method, in the preparation method The solar cell preparation device applied.
  • a solar cell is a basic unit for forming a solar cell module. Generally, a plurality of solar cells are connected in series by interconnecting strips to form a solar cell module.
  • a sub-gate line and/or a main gate line are formed on the front side thereof to collect the photo-generated current generated on the front side, and a back-field is formed on the back side thereof to collect the photo-generated current generated on the back side.
  • the interconnecting strip is disposed on the back side of the solar cell.
  • an electrical connection with the back electric field is also provided on the back side. Back electrode.
  • a p-type solar cell (a solar cell formed by using a p-type substrate) is taken as an example, and a paste for forming a back electric field (for example, aluminum) is patterned and printed on the back surface of the solar cell.
  • the slurry, which forms an aluminum back electric field) and a slurry for forming a back electrode (for example, a silver aluminum paste or a silver paste, which forms a back electrode with good solderability), is then co-sintered to form a back electric field and a back electrode.
  • This method of preparing the back electrode has the following disadvantages:
  • the slurry of the back electrode increases the recombination rate of the solar cell after sintering on the back surface, affecting the performance of the solar cell;
  • the sintering temperature is high (for example, above 800 'C), which is not conducive to the improvement of solar cell efficiency;
  • the above screen printing process is applied to the preparation of an aluminum back junction of an n-type solar cell (a solar cell formed by using an n-type substrate) while printing silver aluminum paste on the bottom of the battery substrate.
  • the back electrode paste When the back electrode paste is sintered, it will cause a short circuit in the pn junction region (in the n-type solar cell, the pn junction region is close to the back surface).
  • the Chinese patent application number is CN2010101 18152.3, the applicant is “South China Normal University”, and the invention is entitled “Method of Preparing Solar Cell Array Electrode by Brush Plating", and a positive method for preparing solar cells by brush plating process is proposed.
  • a method of electrodes such as a main gate line and a sub-gate line.
  • a protective film, a laser engraving, a surface activation treatment, and the like are required, and the process of forming a positive electrode by brush plating is complicated, and, in fact, the positive electrode prepared by the brush plating is difficult to form, and the sun is formed.
  • the bonding strength of the battery substrate is poor. Therefore, the skilled person generally avoids the use of a brush plating method to form a positive electrode on a silicon substrate of a solar cell. Summary of the invention
  • one of the objects of the present invention is to reduce the manufacturing cost of the back electrode of the solar cell.
  • a further object of the invention is to avoid the preparation of a sintering process in the back electrode of a solar cell.
  • Still another object of the present invention is to improve the performance of a solar cell.
  • the present invention provides the following technical solutions.
  • a method of fabricating a solar cell wherein a brush plating device with a brush is used to pattern a solar cell on a back electric field/aluminum back junction of the solar cell Back electrode.
  • a pretreatment step for forming a transition layer is further included.
  • the transition layer is interposed between the back electric field/aluminum back junction and the back electrode for enhancing the bonding force between the back electrode and the back electric field/aluminum back junction.
  • the transition layer may have a thickness ranging from 0.5 microns to 2 microns.
  • the pretreatment may be a zinc immersion treatment in a displacement reaction mode, an electroless nickel plating treatment, or a spray coating of a conductive paste and a low temperature drying treatment.
  • the brush plating apparatus includes a negative electrode plate for arranging a solar cell, and the negative electrode plate is electrically connected to a negative electrode of a power source of the brush plating device, and the brush plating The pen is electrically connected to the positive pole of the power source of the brush plating device.
  • the brush plating preferably, during brush plating, the brush plating
  • the back electric field/aluminum back junction is touched and moved at a predetermined rate relative to the solar cell to form a back electrode over the back electric field/aluminum back junction.
  • the brushing pen may have a moving speed ranging from 0.5 m/min to 5 m/min; and the brush plating may operate at a voltage ranging from 5 volts to 16 volts.
  • the brush-plating pen is provided with a layer of absorbent cotton for storing the plating solution.
  • the brush-plating pen comprises a conductive handle and an anode, and the surface of the anode is provided with a layer of absorbent cotton for storing a special plating solution.
  • the plating solution is a brush tin plating solution or a brush silver plating solution.
  • the solar cell is an n-type solar cell
  • the back electrode is patterned by brushing on the aluminum back junction of the solar cell.
  • the back electric field is a full back electric field structure.
  • the back electric field is an aluminum back electric field.
  • the back electric field is formed by a thin film deposition method which does not depend on a sintering process.
  • the film deposition method may be sputtering or evaporation.
  • the back electrode is formed substantially in alignment with a main gate line on the front surface of the solar cell, and the back electrode is in a continuous or discontinuous line form.
  • the step of plating the back electrode comprises the steps of:
  • the brush is plated with a silver metal layer or a tin metal layer.
  • a solar cell which is formed in accordance with the above-described method for producing a solar cell.
  • the solar cell further includes a transition layer disposed between the back electric field/aluminum back junction and the back electrode, the transition layer being used to enhance the The bonding force between the back electrode and the back electric field/aluminum back junction.
  • the transition layer may have a thickness ranging from 0.5 microns to 2 microns.
  • the solar cell is an n-type solar cell
  • the back electrode is patterned by brushing on the aluminum back junction of the solar cell.
  • the back electric field is a full back electric field structure.
  • the back electric field is an aluminum back electric field.
  • the back electric field is formed by a thin film deposition method that does not depend on a sintering process.
  • the back electrode is substantially aligned with the main gate line of the front side of the solar cell, and the back electrode is in the form of a continuous or discontinuous line.
  • the back electrode is a composite layer structure including a copper metal layer and a silver metal layer or a tin metal layer covering the copper metal layer.
  • the back electrode of the solar cell is formed by the brush-plated pen contacting the back electric field/aluminum back junction of the solar cell.
  • the brush-plating pen is provided with a layer of absorbent cotton for storing the plating solution.
  • the brush-plating pen includes a conductive handle and an anode, and the surface of the anode is provided with a layer of absorbent cotton for storing a dedicated plating solution.
  • a solar cell preparation apparatus using the above-described preparation method comprising:
  • a brush plating device with a brush-plated pen comprising a negative plate for placing the solar battery
  • the front side of the solar cell is fixed to the negative plate, and the brush pen is operatively moved over the back electric field/aluminum back junction of the solar cell to pattern the back electrode.
  • the brush pen is electrically connected to the positive electrode of the power module through a positive electrode
  • the negative plate is connected to the negative electrode of the power module through a negative wire.
  • the brush-plating pen is provided with a cotton wool layer for storing the plating solution.
  • the brush-plating pen includes a conductive handle and an anode, and a surface of the anode is provided with a cotton wool layer for storing a dedicated plating solution.
  • the technical effect of the invention is that, by brushing the back electrode on the back electric field/aluminum back junction, the performance requirement of the back electrode is good, and the operation is simple and conformal.
  • the figure is convenient, the preparation cost is low, and it is easy to be compatible with the existing solar cell preparation method; and the back electrode can be formed at normal temperature, avoiding the high-temperature sintering process, and is beneficial to improving the conversion efficiency of the solar cell; the back electrode prepared by the method It is also easy to be compatible with the full back electric field structure, and is especially suitable for the p-type full back electric field battery and the n-type aluminum back junction battery, thereby contributing to reducing the surface recombination rate of the back surface and improving the performance of the solar cell.
  • FIG. 1 is a view showing the basic configuration of a solar cell manufacturing apparatus used in a method for producing a solar cell according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a p-type solar cell formed by a method for preparing a back electrode according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an n-type solar cell formed by the method for preparing a back electrode according to an embodiment of the present invention. detailed description
  • the "front surface of the solar cell” in the present invention refers to the side that receives the sunlight when the battery is operated, that is, the light receiving surface, and the "back surface of the solar cell” in the present invention refers to the side opposite to the "front surface of the solar cell”.
  • Schematic diagram of the basic structure of the cell preparation device As shown in Figure 1, considering the graphic characteristics of the back pole, the brush plating system with the brush-plated pen 230 is selected to pattern the brush-plated solar power.
  • the negative electrode lead 221 is connected to the negative pole ("one") of the power module 210, and the power module 210 can be a DC power source for brush plating.
  • the front surface of the solar cell 10 in the solar cell manufacturing apparatus is fixedly disposed on the negative electrode plate 20 toward the negative electrode plate 220.
  • the front surface of the solar cell 10 may also be already A metal electrode (for example, a sub-gate line) may be formed, or a metal electrode may not be formed.
  • the back surface of the solar cell 10 has formed a back electric field (if 10 is a p-type solar cell) or an aluminum back junction (if 10 is an n-type solar cell), preferably, the back electric field is a full back electric field, which is different from the prior art.
  • the back surface of the solar cell is partially occupied by the back electrode, and therefore, the surface recombination rate is lowered, and the conversion efficiency of the solar cell can be improved.
  • the brush plating pen 230 is provided with a special plating solution. During the brush plating process, the brush plating pen 230 contacts the back electric field/aluminum back junction of the solar cell 10 and moves at a predetermined rate with respect to the solar cell 10, thereby forming a back electric field. / Back electrode on the aluminum back junction.
  • the brush pen 230 includes a conductive handle and an anode.
  • a graphite anode is used.
  • the surface of the graphite anode may be provided with a cotton wool layer for storing a special plating solution.
  • the absorbent cotton layer can not only store a special plating solution but also prevent the anode and the back.
  • the electric field/aluminum back junction is in direct contact (otherwise it is prone to arcing) and it has a certain filtering effect on the graphite ions or salts generated on the graphite anode surface.
  • the special plating solution stored through the absorbent cotton layer can be selected according to the material of the back electrode to be formed.
  • the back electrode when selecting the material of the back electrode, it is selected according to the performance requirements of the back electrode such as weldability, tamper resistance, and electrical conductivity.
  • the back electrode may be selected from tin, silver, or tin-silver alloy, and accordingly, the special plating solution may be selected as a brush tin plating solution or a brush silver plating solution, respectively.
  • the brush plating pen Before starting the brush plating, the brush plating pen can be immersed in the corresponding plating solution, so that the brush plating pen 230 stores the plating solution, so that the solar battery does not need to be placed in the plating solution during the brush plating.
  • the trajectory of the brushing pen 230 with respect to the solar cell 10 is designed in accordance with the pattern requirements of the back electrode.
  • the moving speed of the brushing pen 230 relative to the solar cell 10 ranges from 0.5 to 5 m/min, for example, may be 2.5 m/min; the operating voltage range of the brush plating may range from 5 volts to 16 volts, for example Can be 10V.
  • the thickness parameter of the back electrode and the like those skilled in the art can specifically select the above technical parameters of the brush plating.
  • a back electrode is formed on the back electric field/aluminum back junction.
  • the back electrode can be substantially aligned with the solar cell
  • the main gate line of the face is formed, which may be in the form of a continuous line or a discontinuous line form.
  • the battery substrate includes a p-type semiconductor region 130 and a doped n-type semiconductor region 110; the n-type semiconductor region 110 is located on the front surface of the solar cell 10, and an anti-reflection is sequentially formed thereon.
  • the layer 1 11 and the sub-gate line 113; the back surface of the solar cell 10 is a p-type semiconductor region 130, and a pn junction region formed between the p-type semiconductor region 130 and the n-type semiconductor region 110 is formed near the front surface of the solar cell.
  • a back electric field (for example, an aluminum back electric field) 133 is formed on the p-type semiconductor region 130.
  • the back electric field 133 may be formed by screen printing or stencil printing paste (for example, aluminum paste), or may be used.
  • a thin film deposition method depending on a sintering process is formed over the p-type semiconductor region 130, for example, by depositing metal aluminum on the back surface of the battery substrate by a thin film deposition method such as sputtering (for example, magnetron sputtering) or evaporation (for example, thermal evaporation). .
  • the contact resistance is lowered by heat treatment (e.g., annealing treatment at about 400 C) or laser treatment after deposition.
  • the battery substrate includes an n-type semiconductor region 150 on the front surface of the solar cell 10, and an anti-reflection layer 151 and a sub-gate line 153 are sequentially formed thereon; the back surface of the solar cell 10 is an aluminum back junction.
  • the aluminum paste passing through the aluminum backing 173 diffuses into the n-type surface of the battery substrate during the sintering process (sintering temperature is about 577 ° C), and partially forms p
  • a type semiconductor region (not shown) forms a pn junction with the n-type semiconductor region 150.
  • the p-type semiconductor region in the aluminum back junction 173 has a thickness of 3-6 microns, for example 5 microns.
  • the solar cell 10 formed by the brush plating method includes a transition layer (135 or 175) in addition to the back electrode (137 or 177), and the transition layer is located on the back electrode and the back.
  • the electric field/aluminum backing it can be used to enhance the bonding between the back electrode of the brush plating and the back electric field/aluminum back junction to meet the reliability requirements after soldering the component. This is because the oxide that may be attached to the surface of the back electric field/aluminum back junction affects its adhesion to the back electrode of the brush plating, or the self-bonding force between the back electric field/aluminum backing material and the back electrode of the brush plating. Too small. Therefore, in a preferred embodiment of the brush plating method of the present invention, prior to brush plating using a brush-plated pen, a pre-processing step is also employed to form a transition layer (135 or 175).
  • the transition layer (135 or 175) can increase the rate of brush plating of the back electrode while enhancing the bonding between the brush back electrode and the back electric field/aluminum back junction.
  • Embodiment 1 Several examples of methods of preparing a back electrode including this pretreatment step are provided below.
  • Embodiment 1 Several examples of methods of preparing a back electrode including this pretreatment step are provided below.
  • the brush plating pen sprays the conductive paste on the back electric field and needs to weld the extracted area at a relative movement speed of 5 m/min, and the brush is plated with silver for 10 min to form the back electrode. .
  • the side for forming the transition layer includes, but is not limited to, a zinc immersion treatment of a displacement reaction method, an electroless nickel plating treatment, a sprayed conductive paste, and a low-temperature drying treatment.
  • the specific material selection of the transition layer is not limiting.
  • the thickness of the transition layer may range from 0.5 microns to 2 microns, for example, 1.2 microns.
  • the pn junction region is formed near the back surface of the solar cell, and when the back electrode 177 is formed by the brush plating method, the formation of the back electrode 177 does not include a high-temperature process such as sintering, thereby enabling The short circuit caused by the large diffusion of the back electrode metal (for example, silver) to the junction region is prevented, and the bonding force of the back electrode 230 and the aluminum back junction 173 can be ensured. Therefore, the method of preparing the back electrode by brush plating of the present invention is particularly suitable for an n-type aluminum back junction solar cell.
  • the brush-plated back electrode 230 may be a composite layer structure, for example, the back electrode includes a silver metal layer of the surface layer (or a tin metal layer), a copper metal layer covered by the silver layer, specifically, Brushing a copper metal layer on the transition layer 135 or 175 (the plating solution may be a brush copper plating solution), and then plating a silver metal layer (or a tin metal layer) to reduce the silver metal layer ( Or the thickness of the tin metal layer), which relatively reduces the preparation cost of the back electrode.
  • the back electrode includes a silver metal layer of the surface layer (or a tin metal layer), a copper metal layer covered by the silver layer, specifically, Brushing a copper metal layer on the transition layer 135 or 175 (the plating solution may be a brush copper plating solution), and then plating a silver metal layer (or a tin metal layer) to reduce the silver metal layer ( Or the thickness of the tin metal layer), which relatively reduces the preparation cost of the back electrode.
  • the above method for preparing the back electrode can be applied to the preparation of various types of solar cells, in particular, solar cells that are not suitable for forming a back electric field by screen printing and high-temperature sintering (for example, PERC (passivated emission) Extremely rear battery), LFC (laser sintered) battery, which is particularly suitable; for example, it can also be applied to the preparation of metal Wrap Through (MWT) back contact solar cells.
  • PERC passive emission
  • Extremely rear battery for example, PERC (passivated emission) Extremely rear battery
  • LFC laser sintered
  • the back electrode elbow is prepared by the above-described brush plating method.
  • the solar cell does not need to be placed in the plating solution, and the operation is simple, the patterning is convenient, the preparation cost is low, and it is easy to be compatible with the existing solar cell preparation method (on the back).
  • the electric field can be brushed on the plate without affecting the preparation of other parts), which is easy to apply in large-scale preparation of solar cells.
  • the above brush plating method is used to avoid the high-temperature sintering process when forming the back electrode, which is beneficial to improve the conversion efficiency of the solar cell, especially in the preparation of the back electric field, the main gate line and/or the sub-gate line without using a high-temperature sintering process.
  • the combined use of this method will greatly improve the conversion efficiency of the battery.
  • the back electrode formed by the brush plating method has a good bonding force with the back electric field, avoiding the structure of the back electrode which is directly sintered on the back surface of the battery bottom by the conventional method, and the back electric field can adopt the full back electric field structure, the back surface Low surface recombination rate, improved battery opening Road voltage (Uoc).

Abstract

本发明提供一种太阳电池及其制备方法、装置,属于光伏技术领域。该制备方法中,使用带刷镀笔的电刷镀装置在所述太阳电池的背电场上构图电刷镀所述太阳电池的背电极。该太阳电池使用该制备方法形成。该制备方法操作简单、构图方便、制备成本低,易于与现有的太阳电池制备方法兼容,并且背电极可常温下形成,其可焊接特性、结合力好,尤其适合应用于p型全背电场电池和n型铝背结电池,有利于提高太阳电池的性能。

Description

太阳电池及其制备方法、 装置 技术领域
本发明属于光伏技术领域, 涉及太阳电池的制备方法, 尤其涉及 一种采用电刷镀方法构图制备太阳电池背电极的太阳电池的制备方 法、 以及使用该方法制备形成的太阳电池、 该制备方法中所应用的太 阳电池制备装置。
太阳电池是形成太阳电池组件的基本单元, 通常地, 多个太阳电 池通过互连条焊接串联连接形成太阳电池组件。
对于每个太阳电池, 通常地, 在其正面形成副栅线和 /或主栅线以 汇集引出在正面产生的光生电流, 在其背面形成背电场以收集引出在 其背面产生的光生电流。 为防止互连条影响光的入射效率, 互连条是 设置在太阳电池的背面, 通常, 为保证互连条与背电场之间的连接可 靠性, 在背面还设置有与背电场电性连接的背电极。 焊接形成太阳电 池组件时, 互连条的一端焊接连接于一个太阳电池的背电极, 另一端 焊接连接于另一个太阳电池的主栅线。
目前, 传统的丝网印刷 (或钢网印刷等) 工艺在太阳电池的制备 中广泛应用。 对于太阳电池背面的背电场和背电极, 以 p型太阳电池 (采用 p型衬底制备形成的太阳电池)为例, 在太阳电池背面上分别 构图印刷用于形成背电场的浆料(例如铝浆, 其形成铝背电场)和用 于形成背电极的浆料 (例如银铝浆或银浆, 其形成的背电极焊接性 好) , 然后再共同烧结形成背电场和背电极。 这种制备背电极的方法 具有以下缺点:
(一) 背电极的浆料在背面烧结后会增加太阳电池的复合速率, 影响太阳电池的性能;
(二) 烧结的温度高 (例如 800 'C以上) , 其不利于太阳电池效 率的提升;
(三) 丝网印刷工艺过程成本高。
特别地, 以上丝网印刷工艺应用于 n型太阳电池(采用 n型衬底 制备形成的太阳电池) 的铝背结制备同时, 在电池村底上印刷银铝浆 等背电极浆料, 烧结时会导致 pn结区短路(在 n型太阳电池中, pn 结区靠近背面) 。
同时, 中国专利申请号为 CN2010101 18152.3、 申请人为 "华南师 范大学" 、 发明名称为 "电刷镀制备太阳能电池阵列电极的方法" 专 利中, 提出了一种采用电刷镀工艺制备太阳电池的正电极(例如主栅 线和副栅线)的方法。 但是, 该方法中, 需要涂覆保护膜、 激光刻槽、 表面活化处理等步骤, 电刷镀形成正电极的过程复杂, 并且, 实际上, 该电刷镀制备的正电极难以形成、与太阳电池衬底的结合力差。因此, 技术人员一般避免采用电刷镀的方法在太阳电池的硅衬底上形成正 电极。 发明内容
针对以上现有技术的缺陷, 本发明的目的之一在于, 降低太阳电 池的背电极的制备成本。
本发明的又一目的在于, 避免制备太阳电池背电极中的烧结过 程。
本发明的再一目的在于, 提高太阳电池的性能。
为实现以上目的或者其它目的, 本发明提供以下技术方案。
按照本发明的一方面, 提供一种太阳电池的制备方法, 其中, 使 用带刷镀笔的电刷镀装置在所述太阳电池的背电场 /铝背结上构图电 刷镀所述太阳电池的背电极。
按照本发明提供的制备方法的一实施例, 其中, 在所述电刷镀之 前, 还包括用于形成过渡层的预处理步骤。
具体地, 所述过渡层置于所述背电场 /铝背结与所述背电极之间, 其用于增强所述背电极与背电场 /铝背结之间的结合力。
可选地, 所述过渡层的厚度范围可以为 0.5微米至 2微米。
可选地, 所述预处理可以为置换反应方式的浸锌处理、 化学镀镍 处理或者喷涂导电浆并低温烘干处理。
在之前所述的制备方法中, 优选地, 所述电刷镀装置包括用于置 放太阳电池的负极板, 所述负极板电性连接于电刷镀装置的电源的负 极, 所述刷镀笔电性连接于电刷镀装置的电源的正极。
在之前所述的制备方法中, 优选地, 在电刷镀时, 所述刷镀笔接 触于所述背电场 /铝背结并相对于太阳电池按预定速率运动,以形成位 于背电场 /铝背结之上的背电极。
可选地, 所述刷镀笔的移动速率范围可以为 0.5米 /分钟至 5米 / 分钟; 电刷镀的工作电压范围可以为 5伏至 16伏。
优选地, 所述刷镀笔上设置有用于存储电镀液的脱脂棉层。
优选地, 所述刷镀笔包括导电柄和阳极, 所述阳极的表面设置肴 用于存储专用电镀液的脱脂棉层。
优选地, 所述电镀液为电刷镀锡溶液或者电刷镀银溶液。
在之前所述的制备方法中, 优选地, 所述太阳电池为 n型太阳电 池, 在所述太阳电池的铝背结上构图电刷镀所述背电极。
在之前所述的制备方法中,优选地,所述背电场为全背电场结构。 在之前所述的制备方法中, 优选地, 所述背电场为铝背电场。 在之前所述的制备方法中, 优选地, 所述背电场通过不依赖于烧 结工艺的薄膜沉积方法形成 i
在之前所述的制备方法中, 优选地, 所述薄膜沉积方法可以为溅 射或者蒸发。
在之前所述的制备方法中, 优选地, 所述背电极基本对准于太阳 电池正面的主栅线形成, 所述背电极为连续式或者间断式的线条形 式。
在之前所述的制备方法中, 优选地, 电刷镀背电极包括步骤:
( 1 ) 电刷镀铜金属层; 以及
( 2 ) 电刷镀银金属层或锡金属层。
按照本发明的又一方面, 提供一种太阳电池, 其按照以上所述的 太阳电池的制备方法制备形成。
按照本发明提供的太阳电池的一实施例, 其中, 所述太阳电池还 包括设置于所述背电场 /铝背结与所述背电极之间的过渡层,所述过渡 层用于增强所述背电极与背电场 /铝背结之间的结合力。
可选地, 所述过渡层的厚度范围可以为 0.5微米至 2微米。
在之前所述的太阳电池实施例中, 优选地, 所述太阳电池为 n型 太阳电池, 在所述太阳电池的铝背结上构图电刷镀所述背电极。
在之前所述的太阳电池实施例中, 优选地, 所述背电场为全背电 场结构。 在之前所述的太阳电池实施例中, 优选地, 所述背电场为铝背电 场。
在之前所述的太阳电池实施例中, 优选地, 所述背电场通过不依 赖于烧结工艺的薄膜沉积方法形成。
在之前所述的太阳电池实施例中, 优选地, 所述背电极基本对准 于太阳电池正面的主栅线形成, 所述背电极为连续式或者间断式的线 条形式。
在之前所述的太阳电池实施例中, 优选地, 所述背电极为包括铜 金属层和覆盖该铜金属层的银金属层或锡金属层的复合层结构。
在之前所述的太阳电池实施例中, 优选地, 所述太阳电池的背电 极由所述刷镀笔接触于太阳电池的背电场 /铝背结形成。
在之前所述的太阳电池实施例中, 优选地, 所述刷镀笔上设置有 用于存储电镀液的脱脂棉层。
在之前所述的太阳电池实施例中, 优选地, 所述刷镀笔包括导电 柄和阳极, 所述阳极的表面设置有用于存储专用电镀液的脱脂棉层。
按照本发明的再一方面, 提供一种应用以上所述制备方法的太阳 电池制备装置, 该太阳电池制备装置包括:
太阳电池, 以及
带刷镀笔的电刷镀装置, 所述电刷镀装置包括用于置放所述太 阳电池的负极板;
其中, 所述太阳电池的正面相向地固定于所述负极板上, 所述 刷镀笔可操作地在所述太阳电池的背电场 /铝背结上移动以构图形成 所述背电极。
按照本发明提供的太阳电池制备装置的一实施例, 其中, 所述刷 镀笔通过正极导线电性连接于电源模块的正极, 所述负极板通过负极 导线连接于电源模块的负极。
在之前所述的太阳电池制备装置中, 优选地, 所述刷镀笔上设置 有用于存储电镀液的脱脂棉层。
在之前所述的太阳电池制备装置中, 优选地, 所述刷镀笔包括导电柄 和阳极, 所述阳极的表面设置有用于存储专用电镀液的脱脂棉层
本发明的技术效果是, 通过在背电场 /铝背结上电刷镀背电极, 在 满足背电极的可烊接特性、 结合力好的性能要求同时, 操作简单、 构 图方便、 制备成本低, 易于与现有的太阳电池制备方法兼容; 并且, 背电极可以在常温下形成, 避免了高温烧结的过程, 有利于提高太阳 电池的转换效率; 该方法制备的背电极也易与全背电场结构兼容, 尤 其适合应用于 p型全背电场电池和 n型铝背结电池,从而有利于降低背 面的表面复合速率, 提高太阳电池的性能。 附图说明
从结合附图的以下详细说明中, 将会使本发明的上述和其它目的 及优点更加完全清楚,其中,相同或相似的要素采用相同的标号表示。
图 1是本发明提供的制备太阳电池的方法中所应用的太阳电池制 备装置的基本结构示意图。
图 2是本发明一实施例提供的背电极制备方法所制备形成的 p型 太阳电池的截面结构示意图。
图 3是本发明一实施例提供的背电极制备方法所制备形成的 n型 太阳电池的截面结构示意图。 具体实施方式
下面介绍的是本发明的多个可能实施例中的一些, 旨在提供对本 发明的基本了解, 并不旨在确认本发明的关键或决定性的要素或限定 所要保护的范围。 容易理解, 根据本发明的技术方案, 在不变更本发 明的实质精神下, 本领域的一般技术人员可以提出可相互替换的其它 实现方式。 因此, 以下具体实施方式以及附图仅是对本发明的技术方 案的示例性说明, 而不应当视为本发明的全部或者视为对本发明技术 方案的限定或限制。
在附图中, 为了清楚起见, 有可能放大了层的厚度或者区域的面 积, 但作为示意图不应该被认为严格反映了几何尺寸的比例关系。
本发明中的"太阳电池的正面"是指电池工作时接收太阳光照射的 一面, 即光接收面, 而本发明中的 "太阳电池的背面"是指与 "太阳电池 的正面"相反的一面。 池制备装置的基本结构示意图。 如图 1所示,、考虑到背 极的图形特 性要求, 选择应用带有刷镀笔 230的电刷镀系统来构图电刷镀太阳电 池 10的背电极; 在该太阳电池制备装置中, 刷镀笔 230通过正极导 线 231 电性连接于电源模块 210的正极( "+" ) , 另外, 用于置放 太阳电池 10的负极板 220通过负极导线 221连接于电源模块 210的 负极( "一" ) , 电源模块 210可以为用于刷镀的直流电源。
在该发明的制备背电极的方法中, 太阳电池制备装置中的太阳电 池 10的正面相向于负极板 220地固定置于负极板 20上, 在该实施例 中, 太阳电池 10 的正面也可以已经形成金属电极(例如副栅线) , 也可以为还未形成金属电极。太阳电池 10的背面已经形成背电场(如 果 10为 p型太阳电池)或铝背结 (如果 10为 n型太阳电池) , 优选 地, 背电场为全背电场, 这有别与现有技术中太阳电池的背面局部被 背电极占有的结构, 因此, 降低表面复合速率, 可以提高太阳电池的 转换效率。 刷镀笔 230带有专用电镀液, 在电刷镀的过程中, 刷镀笔 230接触于太阳电池 10的背电场 /铝背结并相对于太阳电池 10按预定 速率运动, 从而形成位于背电场 /铝背结之上的背电极。
具体地, 刷镀笔 230包括导电柄和阳极, 一般地使用石墨阳极, 石墨阳极的表面可以设置用于存储专用电镀液的脱脂棉层, 脱脂棉层 不但可以存储专用电镀液,还可以防止阳极与背电场 /铝背结直接接触 (否则容易产生电弧) , 并对石墨阳极表面产生的石墨离子或者盐类 起一定的过滤作用。 通过脱脂棉层存储的专用电镀液可以根据所要形 成的背电极的材料来选择, 首先在选择背电极的材料时, 根据背电极 的可焊接性、 抗氡化性、 导电性等性能方面要求来选择; 例如, 背电 极可以选择锡、 银、 或者锡银合金等, 相应地, 专用电镀液分别可以 选择为电刷镀锡溶液或电刷镀银溶液。 在开始电刷镀前, 可以把刷镀 笔浸入相应电镀液中, 使刷镀笔 230存储该电镀液, 因此, 在电刷镀 时, 太阳电池并不需要置放于电镀溶液中。
在电镀时, 刷镀笔 230相对于太阳电池 10的运动轨迹按照背电 极的图案要求来设计。 具体地, 电镀时, 刷镀笔 230相对于太阳电池 10的移动速率的范围为 0.5-5m/min, 例如可以为 2.5m/min; 电刷镀的 工作电压范围可以为 5伏至 16V, 例如可以为 10V。 根据背电极的厚 度参数等要求, 本领域技术人员具体可以选择电刷镀的以上技术参 数。 刷镀笔 230在太阳电池 10的背电场 /铝背结表面运动后, 背电场 / 铝背结上形成背电极。 具体地, 背电极的可以基本对准于太阳电池正 面的主栅线形成, 其可以是连续式的线条形式, 也可以是间断式的线 条形式。
图 2所示为本发明一实施例提供的背电极制备方法所制备形成的 p型太阳电池的截面结构示意图。 如图 2所示实施例, 电池衬底包括 p型半导体区域 130以及掺杂形成的 n型半导体区域 1 10; n型半导体 区域 1 10位于太阳电池 10的正面, 其上还依次形成有减反射层 1 11 和副栅线 113; 太阳电池 10的背面为 p型半导体区域 130, p型半导 体区域 130和 n型半导体区域 110之间所形成的 pn结区靠近太阳电 池的正面形成。 背电场 (例如铝背电场) 133形成于 p型半导体区域 130之上,具体地,背电场 133可以釆用丝网印刷或钢网印刷浆料(例 如铝浆)再烧结形成, 也可以采用不依赖于烧结工艺的薄膜沉积方法 在 p型半导体区域 130之上形成, 例如, 通过溅射(例如磁控溅射)、 蒸发(例如热蒸发) 等薄膜沉积方法沉积金属铝于电池衬底背面上。 优选地, 在不依赖于烧结工艺的薄膜沉积方法形成背电场 133时, 沉 积后再通过热处理 (例如 400'C左右退火处理)或者激光处理来降低 接触电阻。
图 3所示为本发明一实施例提供的背电极制备方法所制备形成的 n型太阳电池的截面结构示意图。 如图 3所示实施例, 电池村底包括 位于太阳电池 10的正面的 n型半导体区域 150,其上还依次形成有减 反射层 151和副栅线 153; 太阳电池 10的背面为铝背结 173 , 形成于 n型电池衬底之上, 一般地, 通过铝背结 173的铝浆在烧结过程 (烧 结温度为 577。C左右) 中向电池衬底 n型表面扩散, 会部分地形成 p 型半导体区域(图中未示出) , 从而与 n型半导体区域 150形成 pn 结。铝背结 173中的 p型半导体区域的厚度为 3-6微米, 例如 5微米。
继续如图 2和图 3所示, 电刷镀方法形成的太阳电池 10中, 除 背电极( 137或 177 )之外, 还包括过渡层 ( 135或 175 ) , 该过渡层 位于背电极和背电场 /铝背结之间,可以用来增强电刷镀的背电极和背 电场 /铝背结之间的结合力, 以满足焊接形成组件后的可靠性要求。 这 是由于背电场 /铝背结的表面可能附着的氧化物影响其与电刷镀的背 电极的结合力、或者背电场 /铝背结材料与电刷镀的背电极之间的自身 结合力太小。 因此, 在本发明电刷镀方法的优选实施例中, 在采用刷 镀笔进行刷镀之前, 还包括采用预处理步骤用以形成过渡层 ( 135或 175) 。
在又一实例中, 过渡层 ( 135 或 175)在增强电刷镀的背电极和 背电场 /铝背结之间的结合力的同时, 还能够提高电刷镀背电极的速 率。
以下提供包括该预处理步骤的制备背电极方法的几个实施例。 实施例一
( la)预处理: 对 p型丝网印刷全铝背场太阳能电池的背电场局 部区域或者全部区域、 通过置换反应进行浸锌处理。
(lb) 电刷镀: 为方便组件焊接, 在背电场上与太阳电池正面的 主栅线位置对应的区域电刷镀锡形成背电极。 实施例二
(2a)预处理: 对 n型丝网印刷太阳能电池的铝背结的局部或者 全部区域、 通过置换反应进行浸锌处理。
(2b) 电刷镀: 为方便组件焊接, 在背电场上与太阳电池正面的 主栅线位置对应的区域, 刷镀笔以 3m/min的相对运动速度、 电刷镀 锡约 15min, 以形成背电极。 实施例三
(3a)预处理: 在溅射形成的铝背电场 /铝背结上, 在欲形成背电 极的区域, 化学镀镍。
(3b)电刷镀: 根据太阳能电池的结构设计, 在背电场 /铝背结上 需要烊接的区域电刷镀银形成背电极。 实施例四
(4a)预处理: 在蒸发铝形成的铝背电场 /铝背结上, 在欲形成背 电极的区域, 喷涂导电浆料并低温 (温度低于 200°C ) 烘干。
(4b) 电刷镀: 根据太阳能电池的结构设计, 刷镀笔在背电场上 喷涂导电浆料并需要焊接引出的区域以 5m/min的相对运动速度、 电 刷镀银 10min, 以形成背电极。
通过以上实施例可以发现, 预处理步骤中, 用以形成过渡层的方 法包括但不限于: 置换反应方式的浸锌处理、 化学镀镍处理、 喷涂导 电浆并低温烘干处理。 过渡层的具体材料选择并不是限制性的, 本领 材料, 过渡层的厚度范围可以为 0.5微米 -2微米, 例如为, 1.2微米。
从图 3中可以看出, 对于 n型太阳电池, pn结区靠近太阳电池的 背面形成, 通过电刷镀方法形成背电极 177时, 背电极 177的形成不 包含烧结等高温处理过程, 从而能防止背电极金属 (例如银) 大量扩 散至结区造成的短路, 并能保证背电极 230与铝背结 173的结合力。 因此, 本发明的电刷镀制备背电极的方法尤其适合于 n型铝背结太阳 电池。
在还一实例中, 电刷镀的背电极 230可以为复合层结构, 例如, 背电极包括表层的银金属层(或者为锡金属层) 、 被银层覆盖的铜金 属层, 具体地, 先在过渡层 135或 175上电刷镀形成铜金属层(电镀 液可以采用电刷镀铜溶液) , 再电刷镀形成银金属层(或者为锡金属 层) , 这样可以减小银金属层(或者为锡金属层) 的厚度, 相对降低 背电极的制备成本。
需要说明的是, 以上背电极的制备方法可以应用于多种类型的太 阳电池的制备, 特别是, 对于不适宜通过丝网印刷并高温烧结形成背 电场的太阳电池(例如, PERC (钝化发射极背面电池) 、 LFC (激光 烧结型) 电池) , 其尤为合适; 例如, 其也还可以应用于金属绕穿型 ( Metal Wrap Through, MWT ) 背接触太阳电池的制备。
因此, 使用上述电刷镀方法制备背电极肘, 首先, 太阳电池并不 需要置于电镀液中, 操作简单、 构图方便、 制备成本低, 并且易于与 现有的太阳电池制备方法兼容(在背电场上电刷镀即可, 不影响其它 部分的制备) , 其易于在太阳电池的大规模制备中应用。
其次,以上电刷镀方法制备形成背电极时避免了高温烧结的过程, 有利于提高太阳电池的转换效率, 特别是在背电场、主栅线和 /或副栅 线的制备未采用高温烧结过程时, 该方法的结合运用将大大提高电池 的转换效率。
再次, 电刷镀方法形成的背电极与背电场上有着良好的结合力, 避开了传统方法直接在电池村底背面上烧结形成背电极的结构, 背电 场可以采用全背电场结构, 背面的表面复合速率低, 提高了电池的开 路电压 (Uoc ) 。
以上例子主要说明了本发明的制备太阳电池的方法、 制备形成的 太阳电池以及采用的太阳电池制备装置。 尽管只对其中一些本发明的 实施方式进行了描述, 但是本领域普通技术人员应当了解, 本发明可 以在不偏离其主旨与范围内以许多其他的形式实施。 因此, 所展示的 例子与实施方式被视为示意性的而非限制性的, 在不脱离如所附各权 利要求所定义的本发明精神及范围的情况下, 本发明可能涵盖各种的 修改与替换。

Claims

权 利 要 求
1. 一种太阳电池的制备方法, 其特征在于, 使用带刷镀笔的电刷 镀装置在所述太阳电池的背电场 /铝背结上构图电刷镀所述太阳电池 的背电极。
2. 如权利要求 1所述的制备方法, 其特征在于, 在所述电刷镀之 前, 还包括用于形成过渡层的预处理步骤。
3. 如权利要求 2所述的制备方法, 其特征在于, 所述过渡层置于 所述背电场 /铝背结与所述背电极之间,其用于增强所述背电极与背电 场 /铝背结之间的结合力。
4. 如权利要求 2或 3所述的制备方法, 其特征在于, 所述过渡层 的厚度范围为 0.5微米至 2微米。
5. 如权利要求 2所述的制备方法, 其特征在于, 所述预处理为置 换反应方式的浸锌处理、 化学镀镍处理或者喷涂导电浆并低温烘干处 理。
6. 如权利要求 1或 2所述的制备方法, 其特征在于, 所述电刷镀 装置包括用于置放太阳电池的负极板, 所述负极板电性连接于电刷镀 装置的电源的负极, 所述刷镀笔电性连接于电刷镀装置的电源的正 极。
7. 如权利要求 1所述的制备方法, 其特征在于, 在电刷镀时, 所 动, 以形成位于背电场 /铝背结之上的背电极。
8. 如权利要求 7所述的制备方法, 其特征在于, 所述刷镀笔的移 动速率范围为 0.5米 /分钟至 5米 /分钟; 电刷镀的工作电压范围为 5 伏至 16伏。
9. 如权利要求 1或 7所述的制备方法, 其特征在于, 所述刷镀笔 上设置有用于存储电镀液的脱脂棉层。
10. 如权利要求 9所述的制备方法, 其特征在于, 所述刷镀笔包 括导电柄和阳极, 所述阳极的表面设置有用于存储专用电镀液的脱脂 棉层。
1 1. 如权利要求 9所述的制备方法, 其特征在于, 所述电镀液为 电刷镀锡溶液或者电刷镀银溶液。
12. 如权利要求 1或 2所述的制备方法, 其特征在于, 所述太阳 电池为 n型太阳电池, 在所述太阳电池的铝背结上构图电刷镀所述背 电极。
13. 如权利要求 1或 2所述的制备方法, 其特征在于, 所述背电 场为全背电场结构。
14. 如权利要求 13所述的制备方法, 其特征在于, 所述背电场为 铝背电场。
15. 如权利要求 13所述的制备方法, 其特征在于, 所述背电场通 过不依赖于烧结工艺的薄膜沉积方法形成。
16. 如权利要求 15所述的制备方法, 其特征在于, 所述薄膜沉积 方法为溅射或者蒸发。
17. 如权利要求 1或 2所述的制备方法, 其特征在于, 所述背电 极基本对准于太阳电池正面的主栅线形成, 所述背电极为连续式或者 间断式的线条形式。
18. 如权利要求 1或 2所述的制备方法, 其特征在于, 电刷镀背 电极包括步骤:
( 1 ) 电刷镀铜金属层; 以及
( 2 ) 电刷镀银金属层或锡金属层。
19. 一种如权利要求 1所述的制备方法制得的太阳电池。
20. 如权利要求 19所述的太阳电池, 其特征在于, 所述太阳电池 还包括设置于所述背电场 /铝背结与所述背电极之间的过渡层,所述过 渡层用于增强所述背电极与背电场 /铝背结之间的结合力。
21. 如权利要求 20所述的太阳电池, 其特征在于, 所述过渡层的 厚度范围为 0.5微米至 2微米。
22. 如权利要求 19或 20所述的太阳电池, 其特征在于, 所述太 阳电池为 n型太阳电池, 在所述太阳电池的铝背结上构图电刷镀所述 背电极。
23. 如权利要求 19或 20所述的太阳电池, 其特征在于, 所述背 电场为全背电场结构。
24. 如权利要求 23所述的太阳电池, 其特征在于, 所述背电场为 铝背电场。
25. 如权利要求 23所述的太阳电池, 其特征在于, 所述背电场通 过不依赖于烧结工艺的薄膜沉积方法形成。
26. 如权利要求 19或 20所述的太阳电池, 其特征在于, 所述背 电极基本对准于太阳电池正面的主栅线形成, 所述背电极为连续式或 者间断式的线条形式。
27. 如权利要求 19或 20所述的太阳电池, 其特征在于, 所述背 电极为包括铜金属层和覆盖该铜金属层的银金属层或锡金属层的复 合层结构。
28. 如权利要求 19或 20所述的太阳电池, 其特征在于, 所述太 阳电池的背电极由所述刷镀笔接触于太阳电池的背电场 /铝背结形成。
29. 如权利要求 19或 20所述的太阳电池, 其特征在于, 所述刷 镀笔上设置有用于存储电镀液的脱脂棉层。
30. 如权利要求 29所述的太阳电池, 其特征在于, 所述刷镀笔包 括导电柄和阳极, 所述阳极的表面设置有用于存储专用电镀液的脱脂 棉层。
31. 一种应用权利要求 1所述的制备方法的太阳电池制备装置, 其特征在于, 太阳电池制备装置包括:
太阳电池, 以及
带刷镀笔的电刷镀装置, 所述电刷镀装置包括用于置放所述太 阳电池的负极板;
其中, 所述太阳电池的正面相向地固定于所述负极板上, 所述 刷镀笔可操作地在所述太阳电池的背电场 /铝背结上移动以构图形成 所迷背电极。
32. 如权利要求 31所述的太阳电池制备装置, 其特征在于, 所述 刷镀笔通过正极导线电性连接于电源模块的正极, 所述负极板通过负 极导线连接于电源模块的负极。
33. 如权利要求 31所述的太阳电池制备装置, 其特征在于, 所迷 刷镀笔上设置有用于存储电镀液的脱脂棉层。
34. 如权利要求 32所述的太阳电池制备装置, 其特征在于, 所述 刷镀笔包括导电柄和阳极, 所述阳极的表面设置有用于存储专用电镀 液的脱脂棉层。
PCT/CN2011/001230 2011-07-22 2011-07-27 太阳电池及其制备方法、装置 WO2013013339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110206361.8 2011-07-22
CN2011102063618A CN102891209A (zh) 2011-07-22 2011-07-22 太阳电池及其制备方法、装置

Publications (1)

Publication Number Publication Date
WO2013013339A1 true WO2013013339A1 (zh) 2013-01-31

Family

ID=47534664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001230 WO2013013339A1 (zh) 2011-07-22 2011-07-27 太阳电池及其制备方法、装置

Country Status (2)

Country Link
CN (1) CN102891209A (zh)
WO (1) WO2013013339A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420766A (zh) * 2020-11-13 2021-02-26 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103335A (zh) * 2013-04-10 2014-10-15 比亚迪股份有限公司 太阳能电池背电极用金属丝及制备方法、太阳能电池片及制备方法和太阳能电池组件
CN106206818B (zh) * 2014-10-31 2019-01-29 比亚迪股份有限公司 太阳能电池单元、太阳能电池组件及其制备方法
WO2016065940A1 (en) * 2014-10-31 2016-05-06 Byd Company Limited Solar cell unit, solar cell array, solar cell module and manufacturing method thereof
CN104465116A (zh) * 2014-12-30 2015-03-25 中国科学院上海硅酸盐研究所 一种染料敏化太阳能电池的对电极及其制备方法
CN106400081A (zh) * 2016-11-24 2017-02-15 兰州飞行控制有限责任公司 一种铝及铝合金铬酸阳极氧化方法
CN106784047A (zh) * 2016-12-30 2017-05-31 苏州阿特斯阳光电力科技有限公司 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池
CN111020680B (zh) * 2019-12-27 2021-06-25 安徽林驰电子有限公司 一种电路板生产用定点镀锡填充装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270238A (zh) * 2007-03-20 2008-09-24 德古萨有限责任公司 透明的导电层,制备该层的方法及其应用
CN101521248A (zh) * 2009-02-27 2009-09-02 上海联孚新能源科技有限公司 硅基高效双结太阳能电池的制造方法
CN101789468A (zh) * 2010-02-26 2010-07-28 华南师范大学 电刷镀制备太阳能电池阵列电极的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138413B2 (en) * 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
CN201144293Y (zh) * 2007-11-07 2008-11-05 第二炮兵工程学院对外技术服务部 快速电刷镀装置
CN201172696Y (zh) * 2007-12-26 2008-12-31 张佶 一种便携式高频自补偿电刷镀装置
CN101635317A (zh) * 2009-05-26 2010-01-27 珈伟太阳能(武汉)有限公司 一种背面铝扩散n型太阳能电池及制作背电极方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270238A (zh) * 2007-03-20 2008-09-24 德古萨有限责任公司 透明的导电层,制备该层的方法及其应用
CN101521248A (zh) * 2009-02-27 2009-09-02 上海联孚新能源科技有限公司 硅基高效双结太阳能电池的制造方法
CN101789468A (zh) * 2010-02-26 2010-07-28 华南师范大学 电刷镀制备太阳能电池阵列电极的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420766A (zh) * 2020-11-13 2021-02-26 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
CN102891209A (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2013013339A1 (zh) 太阳电池及其制备方法、装置
CN103137791B (zh) 湿法沉积和低温热处理相结合制备异质结太阳电池方法
CN102403371B (zh) 具有电镀的金属格栅的太阳能电池
CN113066897B (zh) 一种异质结太阳电池铜电极的无掩膜制备方法
JP2939075B2 (ja) 太陽電池モジュール
CN103107212A (zh) 具有电镀电极的异质结太阳电池及制备方法
JP2017529704A (ja) メインゲートフリーで高効率なバックコンタクト太陽電池モジュール、アセンブリ及び製造プロセス
KR20100096819A (ko) 후면전극형 태양전지 및 그 제조방법
CN101764179A (zh) 一种选择性前表面场n型太阳电池的制作方法
JP5739076B2 (ja) 太陽電池モジュール及びその製造方法
CN101447518A (zh) 一种背点接触异质结太阳能电池及其制造方法
CN101764170A (zh) 一种铝背发射极n型太阳电池及其制作方法
CN110137278A (zh) 原位还原制备电镀种子层的异质结太阳电池及其制备方法
CN110896118A (zh) 一种背接触异质结太阳能电池制作方法
CN103681942B (zh) 晶体硅se太阳电池片的制备方法以及晶体硅se太阳电池片
CN106252466A (zh) 一种背接触异质结单晶硅太阳能电池及其制作方法
Li et al. In-situ formation of indium seed layer for copper metallization of silicon heterojunction solar cells
CN113823701A (zh) 双面发电的异质结太阳电池的电极设计及电池互联方法
CN106098807A (zh) 一种n型晶体硅太阳能电池结构及其制备方法
CN111081795A (zh) 一种太阳能电池、组件结构及其制备方法
CN106653876A (zh) 一种太阳能电池
CN108701551B (zh) 包括掺杂的半导体材料的晶粒的太阳能电池和该太阳能电池的制造方法
CN106409930A (zh) 一种微细金属线太阳能电池栅极及制备方法
CN111834470A (zh) 一种交叉网状电接触的背接触异质结电池及组件制作方法
JP2000150929A (ja) 光起電力素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869776

Country of ref document: EP

Kind code of ref document: A1