WO2013011934A1 - 加硫缶、及び、タイヤの製造方法 - Google Patents

加硫缶、及び、タイヤの製造方法 Download PDF

Info

Publication number
WO2013011934A1
WO2013011934A1 PCT/JP2012/067902 JP2012067902W WO2013011934A1 WO 2013011934 A1 WO2013011934 A1 WO 2013011934A1 JP 2012067902 W JP2012067902 W JP 2012067902W WO 2013011934 A1 WO2013011934 A1 WO 2013011934A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
duct
wall surface
air
discharged
Prior art date
Application number
PCT/JP2012/067902
Other languages
English (en)
French (fr)
Inventor
洋平 中島
快 本田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011157048A external-priority patent/JP5702241B2/ja
Priority claimed from JP2011233886A external-priority patent/JP5702261B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP12814962.2A priority Critical patent/EP2732948A4/en
Priority to US14/232,973 priority patent/US9758001B2/en
Priority to CN201280043976.6A priority patent/CN103781608B/zh
Publication of WO2013011934A1 publication Critical patent/WO2013011934A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0227Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using pressure vessels, e.g. autoclaves, vulcanising pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/045Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using gas or flames

Definitions

  • the present invention relates to a vulcanization can suitably used for vulcanization molding of a tire, and in particular, a vulcanization can capable of uniforming an internal temperature distribution, and a method of manufacturing a tire using the vulcanization can. About.
  • a base tire that is the foundation of the tire and a tread rubber that is stuck in the circumferential direction of the base tire are accommodated in an envelope, and the pressure in the envelope is reduced.
  • a vulcanization process in which the cushion rubber as an adhesive layer interposed between the base tire and the tread rubber is vulcanized and the both are firmly integrated.
  • the vulcanization can used in the vulcanization process is a cylindrical pressure vessel capable of storing a plurality of sets of tires (base tires and tread rubber) accommodated in an envelope, and one side portion in the extending direction of the cylindrical pressure vessel.
  • a heat source that heats the air in the pressure vessel, a fan that is disposed in the vicinity of the heat source and circulates the air heated by the heat source, and that can be opened and closed on the other side in the extending direction of the pressure vessel. It has an airtight door.
  • a duct extending along the extending direction of the pressure vessel is disposed on the inner wall surface of the pressure vessel, and the air heated by the heat source is supplied into the duct by the fan, and the air passing through the duct is connected to the fan. Is discharged at the airtight door provided on the opposite side.
  • the air exhausted on the airtight door side collides with the wall surface of the airtight door and flows out in the pressure vessel toward the fan side, and reaches the heat source while heating a plurality of tires stored in the pressure vessel. Then, it is discharged again from the airtight door side by the fan and the duct.
  • the vulcanizing can is configured to heat a plurality of sets of tires stored therein by circulating air heated in the pressure vessel in the extending direction.
  • the pressure in the pressure vessel is pressurized to, for example, about 6 to 8 atmospheres, and the pedestal tire and the tread rubber stored therein are heated and pressurized in the envelope and vulcanization proceeds. .
  • a method of changing the flow of air (airflow) in the pressure vessel instead of simply increasing the flow velocity of air flowing from the airtight door side to the fan side is also conceivable.
  • the air is discharged from the discharge port of the duct along the inner wall surface of the pressure vessel in the same circumferential direction to generate a swirling flow in the pressure vessel.
  • this method it can be expected that the entire air in the pressure vessel is moved from the airtight door side to the fan side by the swirling flow to reduce the temperature variation, but simply from the duct toward the same circumferential direction. Since only the air is discharged, the swirling flow cannot be controlled sufficiently, so that a sufficient effect as expected cannot be obtained.
  • Patent Document 1 as a facility for equalizing the temperature distribution, the furnace for storing the molded product has a double structure, a plurality of auxiliary heat sources are provided in the furnace, and the position corresponds to the position of the auxiliary heat source.
  • the structure in which the temperature difference in the furnace is made uniform by agitating and mixing the gas in the furnace by providing a stirring fan that rotates in the furnace is disclosed.
  • Patent Document 2 discloses that a plurality of duct valves for opening and closing a duct are provided, and turbulent flow is generated in the furnace by opening and closing the duct valve.
  • a driving source for opening and closing the duct valve is disclosed. And a control system are separately required, and problems such as an increase in equipment size and an increase in energy loss cannot be avoided.
  • the present invention has been made to solve the above-described problem, and avoids an increase in scale and increase in energy loss, and a vulcanizing can capable of uniformizing the temperature distribution in the pressure vessel, and the vulcanization
  • a method for manufacturing a tire using a can is provided.
  • a heat source and a fan installed on one end side inside the cylindrical pressure vessel, and an inner wall surface extending in the extending direction of the pressure vessel
  • a duct that discharges air blown by the fan at the other end of the pressure vessel, the duct is disposed on the circumference of the inner wall surface of the pressure vessel, and a discharge port of the duct discharges air blown by the fan. It was set as the structure discharged
  • the air flowing from one end side to the other end side turns into a swirl flow swirling along the circumferential direction of the pressure vessel, causing forced convection in the entire pressure vessel, and stopping in the pressure vessel
  • the air heated by the heat source reaches the inside of the pressure vessel, so that the temperature distribution in the pressure vessel can be made uniform. Therefore, according to the vulcanizing can of the present invention, the tire can be uniformly vulcanized regardless of the position inside the pressure vessel.
  • the duct outlet is provided with a plate extending in the circumferential direction of the pressure vessel.
  • a swirl flow in the pressure vessel is achieved with a simple configuration.
  • a plurality of ducts are arranged at positions equally divided in the circumferential direction on the inner wall surface circumference of the pressure vessel, and the plates of each discharge port are arranged in the same circumferential direction. The arrangement is extended.
  • the plates of the discharge ports of the plurality of ducts arranged in the circumferentially divided position on the inner wall surface of the pressure vessel are the same.
  • the air exhausted along the plate of each outlet can easily generate a swirling flow in the pressure vessel, and the flow velocity of the swirling flow on the inner wall surface can be made uniform.
  • the temperature distribution in the pressure vessel can be made more uniform.
  • a plurality of plates are provided at the discharge port of the duct, and a plurality of plates are provided at different angles along the same circumferential direction of the pressure vessel. According to this configuration, the air heated by the heat source and flowing into the open / close end side of the pressure vessel by the fan and the plurality of ducts is directed in the circumferential direction of the pressure vessel by the plurality of plates provided at the discharge port of the duct.
  • the air flowing from one end side to the other end side turns into a swirl flow swirling along the circumferential direction of the pressure vessel, causing forced convection in the entire pressure vessel, and stopping in the pressure vessel. Can be eliminated.
  • forced convection is generated in the entire pressure vessel, air heated by the heat source is distributed in the pressure vessel, so that the temperature distribution in the pressure vessel can be made uniform.
  • the direction of the plurality of plates discharged at different angles with respect to the circumferential direction it is possible to control the spread and direction of the air discharged from the duct outlet, so that the strength of the swirling flow The size can be controlled.
  • the forced convection generated in the whole pressure vessel is optimized by the swirling flow whose strength and size are controlled, and the air heated by the heat source is distributed in the pressure vessel by eliminating the retention in the pressure vessel. And the temperature distribution in the pressure vessel can be made uniform. Therefore, the tire vulcanized with the vulcanizing can of the present invention can be uniformly vulcanized regardless of the position inside the pressure vessel.
  • the size of the swirling flow is the width of the flow that flows spirally in the pressure vessel.
  • the plurality of plates are curved with different radii of curvature from one end side to the other end side of the pressure vessel, and as they go from the one end side in the circumferential direction toward the other end side in the duct.
  • the plurality of plates bend in one direction from one end side to the other end side in the duct, and extend from one end side to the other end side along the circumferential direction of the duct.
  • the air discharged from the duct outlet toward the circumferential direction of the pressure vessel can be discharged so as to be wider than the size of the duct, and is generated in the pressure vessel. Since the size of the swirl flow can be increased, the large swirl flow efficiently generates forced convection in the entire pressure vessel, eliminating the retention in the pressure vessel and making the temperature distribution in the pressure vessel uniform.
  • the plurality of plates are twisted in a direction close to the inner wall surface at different angles from one end side to the other end side of the pressure vessel, and from one end side to the other end side in the circumferential direction of the duct. It was set as the structure arrange
  • the air discharged from the duct outlet toward the circumferential direction of the pressure vessel is discharged in the circumferential direction while being drawn toward the inner wall surface. Since the flow rate of the air discharged from can be increased, a swirling flow having a strong flow can be generated in the pressure vessel. In other words, since it is possible to cause forced convection in the entire pressure vessel by the strong swirl flow, there is no retention in the pressure vessel, and the temperature distribution in the pressure vessel can be made uniform. Further, as another configuration relating to the vulcanizing can, the ducts are arranged to face each other on the inner wall surface circumference of the pressure vessel.
  • the plates of the respective discharge ports of the ducts that are arranged to face each other in the circumferential direction on the inner wall surface circumference of the pressure vessel are in the same circumferential direction.
  • the air discharged from the discharge ports of the ducts arranged opposite to each other easily generates a swirling flow generated in the pressure vessel, so that the flow velocity of the swirling flow is made uniform on the circumference. It is possible to make the temperature distribution in the pressure vessel even more uniform.
  • the duct is arranged at two locations on the inner wall surface circumference of the pressure vessel.
  • the arrangement of the ducts is two places on the inner wall surface circumference of the pressure vessel, so that the swirl flow can be reliably generated in the pressure vessel while suppressing the manufacturing cost.
  • a configuration in which the duct is disposed so as to avoid the lower portion of the floor plate laid inside the pressure vessel compared with the case where a duct is provided in the lower part of a floor board, it is not necessary to increase the durability of the floor board through which an operator or a loading carriage passes in order to protect the duct, and the manufacturing cost can be suppressed. .
  • a plurality of tires are stored in a cylindrical pressure vessel along the extending direction of the pressure vessel, and the pressure vessel is sealed, and the tire is installed on one end side inside the pressure vessel.
  • Driving the heat source and the fan, and discharging the air blown by the fan at the other end of the pressure vessel through the plurality of ducts, and the air discharged from each discharge port of the plurality of ducts is the same as the pressure vessel.
  • the tire was discharged in the circumferential direction, and a plurality of tires were vulcanized in a swirling flow swirling in the circumferential direction of the pressure vessel.
  • the thermal history received by the plurality of tires becomes uniform. Regardless of this, a tire having uniform performance can be obtained.
  • FIG. 1 is a schematic view showing the internal structure of a vulcanizing can 1 according to the present invention.
  • a vulcanizing can 1 is formed in a cylindrical shape with one end closed, and a pressure vessel 2 capable of storing a plurality of tires 10 therein, and an airtight door provided at the other end of the pressure vessel 2 so as to be opened and closed.
  • the peripheral wall portion of the pressure vessel 2 is lined with a heat insulating material (not shown) arranged in the circumferential direction without any gap, and a vulcanization capable of storing and vulcanizing a plurality of tires 10 inside. Region R1 is formed.
  • the hermetic door 3 is a door that can be opened and closed at the open end of the pressure vessel 2 and is formed concentrically with the cylindrical pressure vessel 2.
  • the hermetic door 3 closes the opening of the pressure vessel 2 through a seal material (not shown) disposed around the airtight door 3, and prevents the air supplied into the pressure vessel 2 from leaking to the outside. That is, the pressure vessel 2 whose one end is closed is maintained as a sealed space when the hermetic door 3 is closed.
  • the back surface 3A side of the hermetic door 3 that forms a sealed space with the pressure vessel 2 is recessed in a spherical shape on the opposite side to the internal space of the pressure vessel 2 so that the central axis of the pressure vessel 2 and the center of the spherical surface are concentric. Formed.
  • a floor plate 4 extending along the extending direction of the pressure vessel 2 is laid below the lower half of the pressure vessel 2.
  • a plurality of tires are carried from the open / close end side where the airtight door 3 is provided to the closed end side using a cart or the like that can travel on the floor plate 4.
  • the plurality of tires 10 are stored in a line along the extending direction of the pressure vessel 2 by being suspended in order from the provided hooks (not shown).
  • FIG. 17 is an exploded perspective view and a cross-sectional view in the width direction showing an unvulcanized retread tire as an example of the tire 10 vulcanized by the vulcanizing can 1.
  • the tire 10 includes a base tire 11 as a base, a cushion rubber 12 attached to a circumferential surface of the base tire 11, and a circumference of the base tire 11 via the cushion rubber 12.
  • the tread rubber 13 is wound around the directional surface.
  • the base tire 11 has a pair of bead portions 11A made of a member such as an annular steel cord, and a side portion 11B and a crown portion 11C extending in a toroidal shape so as to straddle the pair of bead portions 11A.
  • a plurality of belts are stacked in the radial direction inside the crown portion 11C.
  • the base tire 11 can be obtained, for example, by cutting (buffing) a tread portion of a used tire or by vulcanizing with a mold having a mold that does not have irregularities corresponding to the tread pattern on the surface.
  • the vulcanization degree of the base tire 11 may be a semi-vulcanized state equal to or lower than the vulcanization degree required for the product tire.
  • the cushion rubber 12 is an unvulcanized rubber having substantially the same composition as the base tire 11 and the tread rubber 13, and is vulcanized by the vulcanizing can 1 so that the base tire 11 and the tread rubber 13 are integrated. Functions as an adhesive layer.
  • the tread rubber 13 is a belt having a length corresponding to the circumferential length of the base tire 11, and is vulcanized in a state of being wound on the crown part 11C of the base tire 11, so that the tread part of the product tire It is a member.
  • the belt-like tread rubber 13 can be obtained, for example, by vulcanizing with a press-type vulcanizing device in which unevenness corresponding to a desired tread pattern is formed on one mold.
  • the belt-shaped tread rubber 13 obtained by the press-type vulcanizer is wound along the circumferential surface of the base tire 11 to which the cushion rubber 12 is adhered, and the ends are joined together.
  • the molding apparatus of the tread rubber 13 is not limited to the press die, and for example, the tread rubber 13 may be vulcanized by a dedicated mold capable of molding the annular tread rubber 13.
  • the tread rubber 13 is expanded on the outer peripheral side of the base tire 11 while the diameter of the tread rubber 13 is expanded by a non-illustrated diameter expanding device. And then reducing the diameter to the original outer diameter again.
  • the degree of vulcanization of the tread rubber 13 may be in a semi-vulcanized state equal to or less than the degree of vulcanization required for the product tire, similarly to the base tire 11.
  • the tire 10 having the above-described configuration is accommodated in a non-illustrated bag called an envelope and is suspended in the pressure vessel 2.
  • the pressure in the envelope is reduced to atmospheric pressure or less, and the inner surface of the envelope is in close contact with the outer surface of the tread rubber 13. That is, when the tire 10 is accommodated in the envelope, the tread rubber 13 is maintained in a state of being pressed against the circumferential surface of the base tire 11.
  • the retread tire provided with the vulcanized base tire 11 and the vulcanized tread rubber 13 was demonstrated as an example of the tire 10 stored in the pressure vessel 2 of the vulcanization can 1, vulcanization
  • the tire 10 stored in the can 1 is not limited to the above configuration, and any tire may be used as long as the molding process includes a vulcanization process.
  • An air supply region R ⁇ b> 2 is formed on the closed end side that is one end side in the pressure vessel 2.
  • the air supply region R2 is a region formed by the partition wall 7 that partitions the vulcanization region R1, and a heat source 5 and a fan 6 that circulate while heating the air in the vulcanization region R1 are installed in the region.
  • the heat source 5 is disposed at the center in the partition wall 7.
  • the heat source 5 is a heater that is electrically heated, for example, and generates heat to a predetermined temperature by controlling the power supplied to the heater.
  • the fan 6 is disposed on the closed end side with respect to the heat source 5, and includes a motor 6A and a rotary blade 6B that rotates by driving of the motor 6A.
  • the fan 6 is driven by the motor 6A so that the rotor blades 6B rotate and heat the heat source 5 while taking the air in the vulcanization region R1 into the air supply region R2, and compress the air in the air supply region R2. Then, air is sent out to an intake port 9A of a duct 8 described later that opens on the airtight door 3 side.
  • the duct 8 is a pipe that extends from the air supply region R ⁇ b> 2 to the airtight door 3 side through the vulcanization region R ⁇ b> 1 along the extending direction of the inner peripheral wall surface 2 ⁇ / b> A of the pressure vessel 2.
  • the duct 8 in this embodiment is disposed at two locations on the inner peripheral wall surface 2A of the pressure vessel 2 (hereinafter referred to as ducts 8A and 8B).
  • One duct 8 ⁇ / b> A and the other duct 8 ⁇ / b> B are disposed at equal intervals so as to face each other in the circumferential direction of the inner peripheral wall surface 2 ⁇ / b> A of the pressure vessel 2.
  • the one duct 8A and the other duct 8B are such that the horizontal plane passing through the vulcanization can center O passes through the center of the duct 8A and the duct 8B.
  • the inner circumferential wall surface 2 ⁇ / b> A is disposed at horizontal positions at equal intervals so as to face each other in the circumferential direction.
  • the ducts 8A and 8B have the same dimensions.
  • the ducts 8A and 8B are tubular bodies having a rectangular cross section extending along the extending direction of the pressure vessel 2, and a discharge port 9B for discharging the air heated by the heat source 5 opens on the airtight door 3 side.
  • the air heated and sent by the heat source 5 and the fan 6 positioned on the closed end side, which is one end side of the pressure vessel 2 passes through the ducts 8A and 8B to the open / close end side, which is the other end side of the pressure vessel 2. It is discharged toward the hermetic door 3 located.
  • FIG. 3 is an enlarged perspective view showing the vicinity of the discharge port 9 ⁇ / b> B of the duct 8 ⁇ / b>A; 8 ⁇ / b> B that discharges air toward the hermetic door 3.
  • the ducts 8A; 8B are connected to a pair of plate pieces 21; 21 and a pair of plate pieces 21; 21 that rise relative to the inner peripheral wall surface 2A of the pressure vessel 2, and the pressure vessel 2
  • This is a tubular body surrounded by the inner peripheral wall surface 2A and the air guide plate 22 facing the inner wall surface 2A.
  • a distance N between the pair of plate pieces 21; 21 is set to be separated by a distance smaller than at least 25% of the circumferential length M of the inner peripheral wall surface 2A.
  • the distance N between the plate pieces 21; 21 is set to be 15 to 20% of the circumferential length M of the inner peripheral wall surface 2A.
  • the air guide plate 22 is curved, for example, along the inner peripheral wall surface 2A of the pressure vessel 2 and is connected to the plate pieces 21; 21. Note that when the diameter of the tire 10 to be vulcanized by the vulcanizing can 1 is substantially the same size, the air guide plate 22 may be formed so as to correspond to the curvature of the outer peripheral surface of the tire 10. However, if the distance between the air guide plate 22 and the outer peripheral surface of the tire is equal to or less than a predetermined distance, the air exhausted to the open / close end side is obstructed to flow to the closed end side, and the tire may not be uniformly vulcanized. It is preferable to adjust the lengths of the plate pieces 21 and 21 so that the distance S between the air guide plate 22 and the tire outer peripheral surface does not become a predetermined distance or less.
  • a plurality of discharge plates 20 are provided at the discharge port 9B that terminates at the open / close end side of the ducts 8A; 8B.
  • the discharge plate 20 is a long plate body along the extending direction of the ducts 8A; 8B, and is disposed inside the ducts 8A; 8B. More specifically, the discharge plate 20 is fixed between the inner peripheral wall surface 2A of the pressure vessel 2 and the air guide plate 22 of the duct 8 via fastening means (not shown) or by welding.
  • the discharge plate 20 is curved toward the circumferential direction indicated by the arrow on the inner peripheral wall surface 2A as it goes from the inside of the duct 8A; 8B to the discharge port 9B, and the tip 20A is discharged to the discharge port 9B of the duct 8. Terminate at approximately the same position.
  • the length of the discharge plate 20 is set so that the linear length from the rear end portion to the front end portion 20A is 10 cm to 30 cm.
  • the length of the discharge plate 20 is set to 10 cm to 30 cm.
  • the discharge plate 20 is provided at intervals of, for example, 10 to 30 cm in the circumferential direction of the inner peripheral wall surface 2A in each duct 8A; 8B.
  • the discharge plate 20 that curves toward the circumferential direction of the inner peripheral wall surface 2A is provided at the discharge port 9B of the duct 8A; 8B, the flow of the air blown out from the discharge port 9B changes to the curve of the discharge plate 20. It becomes a flow along. Specifically, as shown by the arrows in FIG. 3, the same circumference is provided so that the heated air is in one direction along the circumferential direction of the inner peripheral wall surface 2A from the discharge port 9B of the duct 8A; 8B. It is discharged in the direction.
  • a discharge plate 20 extending in the same circumferential direction of the inner peripheral wall surface 2A is provided at the discharge port 9B of the plurality of ducts 8A; 8B arranged on the inner peripheral wall surface 2A, and heated air Is discharged from the discharge port 9B in the same circumferential direction of the inner peripheral wall surface 2A, so that a swirling flow can be generated in the pressure vessel 2.
  • FIG. 4 is a diagram schematically showing a swirling flow generated in the pressure vessel 2.
  • the air that passes through the discharge plates 20 of the ducts 8A and 8B and is discharged along the inner peripheral wall surface 2A collides with the airtight door 3 to form a vulcanized region R1.
  • 3 flows along the circumferential direction of the back surface 3 ⁇ / b> A, thereby generating a flow that rotates along the inner peripheral wall surface 2 ⁇ / b> A.
  • the rotating air flows spirally from the airtight door 3 side to the closed end side so as to draw a circle along the inner peripheral wall surface 2A, becomes a swirling flow in the pressure vessel 2, and is provided in the partition wall 7.
  • the air discharged from the discharge plate 20 of the duct 8A flows downward along the inner peripheral wall surface 2A to become one swirl flow F1 shown in FIG. 6, and is discharged from the discharge plate 20 of the duct 8B.
  • the air flows upward along the inner peripheral wall surface 2A to become the other swirl flow F2 shown in FIG. 6, and the ducts 8A and 8B are evenly provided so as to face each other, so that the swirl flow F2 becomes the swirl flow F1.
  • FIG. 5 (a) shows a graph showing the temperature change inside the conventional vulcanizing can
  • FIG. 5 (b) shows a graph showing the temperature change of the vulcanizing can 1 of the present invention.
  • FIG. 5A shows the time of the temperature on the airtight door 3 side and the temperature on the air supply region R2 side in the lower part of the vulcanization region of the conventional vulcanizing can (position corresponding to P1 in FIG. 4; Q1). It is the graph which showed the change.
  • 5 (b) shows the temperature change at the same position P1; Q1 at which the temperature was measured in FIG. 5 (a), and the position P1; the upper position P2 opposite to Q1; Q2 (see FIG. 4). It is the graph which showed the time change of temperature.
  • the temperature at the position P1 at the lower part on the airtight door 3 side rapidly rises compared to the temperature at the position Q1 at the lower part on the air supply region side. Is heated in a state in which a temperature difference of about 20 ° C. has occurred until the temperature becomes constant. Then, there is a difference of about 20 minutes before the temperature at the position P1 and the temperature at the position Q1 reach the maximum temperature.
  • the vulcanizing can 1 in the vulcanizing can 1 according to the present embodiment, as shown in FIG. 5 (b), the temperature P1 on the airtight door 3 side and the lower position P1; After the temperature of Q2 rises to approximately 60 ° C. with substantially the same temperature gradient, the temperature between the position P1 on the hermetic door 3 side; the temperature on the position P2 and the position Q1 on the air supply region R2 side; However, it rises again with almost the same temperature gradient.
  • the temperature difference between the position P1; P2 on the airtight door 3 side and the position Q1; Q2 on the air supply region R2 side is about 5 ° C. It is very small compared to it. That is, the vulcanizing can 1 of the present invention generates a swirling flow in the vulcanizing region R1 and circulates the air heated by the fan 6 to increase the temperature in the pressure vessel 2 substantially uniformly. It becomes possible.
  • the temperature in the pressure vessel 2 rises almost uniformly in the extending direction, and therefore, in vulcanizing a plurality of tires 10 stored side by side along the extending direction of the pressure vessel 2.
  • the tire 10 can be vulcanized by a uniform temperature rise regardless of the position where the tire 10 is stored. Furthermore, since the temperature rises uniformly at the upper and lower parts of the pressure vessel 2, the individual tires can be heated uniformly by raising the temperature uniformly from the circumferential direction, and the entire tire can be uniformly vulcanized. Can do.
  • Embodiment 2 In the first embodiment, the plurality of discharge plates 20 are configured in the same shape, but in the second embodiment, the shapes of the ducts 8A and 8B are different and the discharge plates 31 to 35 are formed to be curved with different curvatures. This is different from the first embodiment.
  • FIG. 6 is a front view of a duct 8A; 8B in which a plurality of discharge plates 31 to 35 according to the second embodiment are arranged.
  • FIG. 7 is an enlarged perspective view showing the vicinity of the discharge port 9 ⁇ / b> B of the duct 8 ⁇ / b>A; 8 ⁇ / b> B that discharges air toward the hermetic door 3.
  • symbol is attached
  • the ducts 8 ⁇ / b>A; 8 ⁇ / b> B are connected to the pair of plate pieces 21; 21 and the pair of plate pieces 21; 21 that rise relative to the inner peripheral wall surface 2 ⁇ / b> A of the pressure vessel 2.
  • This is a tubular body surrounded by the inner peripheral wall surface 2A and the air guide plate 22 facing the inner wall surface 2A.
  • the plate pieces 21; 21 are provided at a predetermined distance from each other and extend from the inner peripheral wall surface 2 A of the pressure vessel 2 toward the vulcanization can center O with the same length.
  • the distance between the pair of plate pieces 21; 21 is set so as to be separated by at least a distance smaller than 25% of the circumferential length of the inner peripheral wall surface 2A.
  • the separation distance N of the plate pieces 21; 21 is provided so as to be within a range of 15 to 20% of the circumferential length of the inner peripheral wall surface 2A.
  • the plate pieces 21; 21 extend in the vulcanization can center O direction, but may be provided so as to extend in the horizontal direction from the inner peripheral wall surface 2A as in the first embodiment.
  • the air guide plate 22 is curved along the inner peripheral wall surface 2A of the pressure vessel 2 and is connected to the plate pieces 21; 21.
  • the discharge port 9B of the duct 8A; 8B is provided with a plurality of discharge plates along the circumferential direction of the inner peripheral wall surface 2A.
  • the description will be made assuming that five discharge plates 31 to 35 are provided in each of the ducts 8A and 8B.
  • what is necessary is just to set the quantity of the discharge
  • FIG. 8A is a front view of the discharge plates 31 to 35
  • FIG. 8B is a side view of the discharge plates 31 to 35
  • the discharge plates 31 to 35 are plate bodies formed in a predetermined shape, and are formed so as to have different shapes. Specifically, as shown in FIGS. 8A and 8B, the discharge plates 31 to 35 are formed to be curved in one direction with different curvatures along the extension direction. For example, the curvature of the discharge plate 31 is the smallest, the curvature of the discharge plate 32 is the second smallest, the curvature of the discharge plate 33 is the third smallest, and the curvature of the discharge plate 34 is the fourth. Next, the curvature of the discharge plate 35 is the fifth smallest. In other words, the curvature of curvature of the discharge plate 31, the discharge plate 32, the discharge plate 32, the discharge plate 33, the discharge plate 34, and the discharge plate 35 is set so as to increase.
  • the lengths of the discharge plates 31 to 35 are set so that the linear length L from the rear end portions 31B to 35B to the front end portions 31A to 35A is 10 cm to 30 cm (see FIG. 8).
  • the curves of the discharge plates 31 to 35 may be formed with a uniform radius of curvature from the rear end portions 31B to 35B to the front end portions 31A to 35A, and from the rear end portions 31B to 35B to the front end portions 31A to 35A. You may form so that it may curve locally in the middle of.
  • each duct 8A, 8B the discharge plates 31 to 35 are fixed between the inner peripheral wall surface 2A of the pressure vessel 2 and the air guide plate 22 of the duct 8 through fastening means (not shown) or by welding,
  • the tip portions 31A to 35A terminate at substantially the same position as the discharge port 9B.
  • the discharge plates 31 to 35 are arranged at predetermined intervals along the circumferential direction in each of the ducts 8A and 8B.
  • the discharge plates 31 to 35 are evenly distributed along the circumferential direction so that the rear end portions 31B to 35B of the discharge plates 31 to 35 coincide with virtual radiation extending radially from the vulcanization can center O. Arranged at intervals.
  • the discharge plates 31 to 35 are preferably provided at intervals of, for example, 10 to 30 cm in the circumferential direction of the inner peripheral wall surface 2A in each of the ducts 8A and 8B. By providing the discharge plates 31 to 35 in this way, a swirl flow can be generated in the pressure vessel more efficiently.
  • the discharge plates 31 to 35 have a curved curvature that increases in the direction in which the discharge plates 31 to 35 are curved in the same circumferential direction and from one end side to the other end side in the circumferential direction in each duct 8A and 8B. It is provided to become.
  • the discharge plates 31 to 35 are provided such that the direction of curve is downward, the discharge plate 31 having the smallest curvature is disposed at the top, and the discharge plate is disposed below the discharge plate 31.
  • 32, the discharge plate 33, the discharge plate 34, the discharge plate 35, and the discharge plate 35 are arranged in this order so that the curvature gradually increases from top to bottom.
  • the discharge plates 31 to 35 are provided so that the curved direction is upward, the discharge plate 31 having the smallest curvature is disposed at the bottom, and the discharge plate 32, the discharge plate 33, The discharge plate 34, the discharge plate 35, and the discharge plate 35 are arranged in this order so that the curvature gradually increases from the bottom to the top.
  • the discharge plates 31 to 35 disposed in the ducts 8A and 8B have the same shape at positions facing each other across the vulcanization can center O with the curving direction facing the same circumferential direction. Provided. In other words, the discharge plates 31 to 35 provided in the duct 8A are rotated by 180 ° around the vulcanization can center O to be provided in the duct 8B.
  • the discharge plates 31 to 35 are provided in the ducts 8A and 8B, partial ducts A to F partitioned by the discharge plates 31 to 35 are formed in the discharge port 9B.
  • the partial duct A is formed by the discharge plate 31, the inner peripheral wall surface 2A, the plate piece 21, and the air guide plate 22, and the partial duct B is guided by the discharge plate 31, the discharge plate 32, and the inner peripheral wall surface 2A.
  • the partial duct C is formed by the discharge plate 32, the discharge plate 33, the inner peripheral wall surface 2A, and the air guide plate 22, and the partial duct D is formed by the discharge plate 33, the discharge plate 34, and the inner periphery.
  • the wall surface 2A and the air guide plate 22 are formed.
  • the partial duct E is formed by the discharge plate 34, the discharge plate 35, the inner peripheral wall surface 2A and the air guide plate 22.
  • the partial duct F is formed by the discharge plate 35 and the plate piece. 21, the inner peripheral wall surface 2 ⁇ / b> A, and the air guide plate 22.
  • the partial duct A is formed by the discharge plate 31, the inner peripheral wall surface 2A, the plate piece 21, and the air guide plate 22, and the partial duct B is formed by the discharge plate 31, the discharge plate 32, and the inner peripheral wall surface 2A.
  • the partial duct C is formed by the discharge plate 32, the discharge plate 33, the inner peripheral wall surface 2A, and the wind guide plate 22.
  • the partial duct D is formed by the discharge plate 33, the discharge plate 34, and the discharge plate 34.
  • the inner peripheral wall surface 2A and the air guide plate 22 are formed.
  • the partial duct E is formed by the discharge plate 34, the discharge plate 35, the inner peripheral wall surface 2A and the air guide plate 22.
  • the partial duct F is formed by the exhaust plate 35 and the air guide plate 22.
  • the plate piece 21, the inner peripheral wall surface 2 ⁇ / b> A, and the air guide plate 22 are formed.
  • FIG. 9A is a view showing the direction of air discharged by the partial ducts A to F formed in the duct 8A
  • FIG. 9B is discharged by the partial ducts A to F formed in the duct 8B. It is a figure which shows the direction of the air.
  • the air discharged from the partial duct A of the duct 8A is discharged along the inner peripheral wall surface 2A slightly downward with respect to the extending direction of the duct 8A and discharged from the partial duct B.
  • the air is discharged along the inner peripheral wall surface 2A downward from the air discharged from the partial duct A, and the air discharged from the partial duct C is directed downward to the inner peripheral wall surface 2A than the air discharged from the partial duct B.
  • the air discharged from the partial duct D is discharged along the inner peripheral wall surface 2A downward from the air discharged from the partial duct C, and the air discharged from the partial duct E is discharged from the partial duct D.
  • the air discharged from the partial duct F is discharged downward along the inner peripheral wall surface 2A downward from the air discharged from the partial duct E. . That is, the air that has passed through the duct 8A is discharged by the partial ducts A to F in the same circumferential direction along the inner peripheral wall surface 2A at different angles in a direction different from the extending direction of the duct 8A.
  • the air discharged from the partial duct A of the duct 8B is discharged along the inner peripheral wall surface 2A slightly upward with respect to the extending direction of the duct 8A, and is discharged from the partial duct B.
  • the discharged air is discharged along the inner peripheral wall surface 2A upward from the air discharged from the partial duct A, and the air discharged from the partial duct C is higher than the air discharged from the partial duct B.
  • the air discharged along the inner peripheral wall surface 2A and discharged from the partial duct D is discharged along the inner peripheral wall surface 2A upward from the air discharged from the partial duct C, and discharged from the partial duct E.
  • the air exhausted from the partial duct F is upward from the air exhausted from the partial duct E. It is discharged along. That is, the air that has passed through the duct 8B is discharged by the partial ducts A to F in the same circumferential direction along the inner peripheral wall surface 2A at different angles in a direction different from the extending direction of the duct 8B. Therefore, the flow of air discharged from the partial ducts A to F formed in the duct 8A and the duct 8B is a unidirectional flow around the vulcanization can center O.
  • FIG. 10 is a diagram illustrating a flow when the air discharged from the duct 8 ⁇ / b> A and the duct 8 ⁇ / b> B collides with the back surface 3 ⁇ / b> A of the airtight door 3.
  • the arrow shown as a continuous line shows the flow of the air discharged
  • the arrow shown with a broken line shows the flow of the air discharged
  • the air discharged by being directed in different directions by the discharge plates 31 to 35 of the ducts 8A and 8B collides with the back surface 3A of the hermetic door 3, and crosses the back surface 3A. Flowing.
  • the air discharged from the partial duct A of the duct 8A flows so as to cross slightly below the center of the hermetic door 3 on the back surface 3A of the hermetic door 3, and the air discharged from the partial duct B is backside.
  • 3A flows below the flow of air discharged from the partial duct A
  • the air discharged from the partial duct C flows below the flow of air discharged from the partial duct B on the back surface 3A.
  • the air discharged from D flows below the flow of air discharged from the partial duct C on the back surface 3A
  • the air discharged from the partial duct E flows from the flow of air discharged from the partial duct D on the back surface 3A.
  • the air discharged from the partial duct F flows below the flow of the air discharged from the partial duct E on the back surface 3A.
  • the air discharged from the duct 8B flows on the back surface 3A of the hermetic door 3 slightly above the center of the hermetic door 3 so as to cross the air discharged from the duct 8A in the opposite direction, and is discharged from the partial duct A.
  • the air that has been discharged flows so as to cross slightly above the center of the back surface 3A, the air discharged from the partial duct B flows above the air flow discharged from the partial duct A on the back surface 3A, and from the partial duct C.
  • the discharged air flows above the flow of air discharged from the partial duct B on the back surface 3A, and the air discharged from the partial duct D flows above the flow of air discharged from the partial duct C on the back surface 3A.
  • the air discharged from the partial duct E flows above the flow of the air discharged from the partial duct D on the back surface 3A and is discharged from the partial duct F. Air flows through the upper side of the flow of air discharged from the partial duct E on the back surface 3A.
  • the air discharged from the duct 8A is discharged in the opposite direction to the air discharged from the duct 8A, so that the air discharged from the duct 8A and the duct 8B is the same on the inner peripheral surface of the pressure vessel 2. It will flow in the circumferential direction. Therefore, the air discharged from the duct 8A and the duct 8B collides with the back surface 3A of the hermetic door 3 and flows across the back surface 3A, and then turns into the swirl flows F1 and F2 in the pressure vessel 2 and opens and closes. To the closed end side (see FIG. 11).
  • the ducts 8A and 8B are disposed opposite to each other at horizontal positions on the inner wall surface circumference of the pressure vessel, and the discharge plates 31 to 35 are curved at different angles to the ducts 8A and 8B.
  • the curvatures of the discharge plates 31 to 35 are gradually increased in one direction, so that the ducts 8A and 8B have the same circumferential direction.
  • the flow of the air blown out from each discharge port 9B of 8B flows as shown in FIGS. 9 and 10, and the swirling flows F1 and F2 can be generated over the entire pressure vessel 2.
  • the air discharged from the duct 8A and the duct is prevented from interfering with each other, and a swirling flow can be efficiently generated.
  • FIG. 11 is a diagram schematically showing a swirling flow generated in the pressure vessel 2.
  • the solid line indicates the flow of air from the duct 8A
  • the broken line indicates the flow of air from the duct 8B.
  • air that passes through the discharge plates 31 to 35 of the ducts 8A and 8B and is discharged from the partial ducts A to F at different angles is airtight along the circumferential direction of the inner peripheral wall surface 2A. It collides with the door 3 and flows so as to cross along the back surface 3A of the hermetic door 3.
  • the air flowing through the back surface 3A of the hermetic door 3 flows at a different angle with respect to the inner peripheral wall surface 2A, thereby generating a rotating flow along the circumferential direction of the inner peripheral wall surface 2A.
  • the rotating air flows spirally from the hermetic door 3 side to the closed end side so as to draw a circle along the inner peripheral wall surface 2A, becomes a swirling flow in the pressure vessel 2, and is provided in the partition wall 7. It passes through the heat source 5 and is taken into the air supply region R2.
  • the air discharged in a state directed by the discharge plates 31 to 35 of the duct 8A flows downward at different angles along the inner peripheral wall surface 2A to become one swirl flow F1 shown in FIG.
  • the air discharged from the discharge plate 20 of the duct 8B flows upward along the inner peripheral wall surface 2A to become the other swirl flow F2 shown in FIG.
  • the swirling flows F1 and F2 are flows that are shifted from each other by a half cycle.
  • One swirl flow F1 is a flow F1A discharged from the partial duct A of the duct 8A, a flow F1B discharged from the partial duct B, a flow F1C discharged from the partial duct C, and a partial duct D. Formed by the flow F1D discharged from the flow, the flow F1E discharged from the partial duct E, and the flow F1F discharged from the partial duct F.
  • the other swirl flow F2 is a flow F2A discharged from the partial duct A of the duct 8B, a flow F2B discharged from the partial duct B, a flow F2C discharged from the partial duct C, and a flow discharged from the partial duct D.
  • the flow F2E discharged from the partial duct E, and the flow F2F discharged from the partial duct F are formed. That is, by changing the curvature of curvature of the discharge plates 31 to 35 constituting the partial ducts A to F, the width W of the swirl flow F1 from the flow F1A to the flow F1F and the swirl flow from the flow F2A to the flow F2F.
  • the width W of F2 can be controlled. Accordingly, by changing the curvature of curvature of the discharge plates 31 to 35 so that the distance between the flow F1F of the swirl flow F1 and the flow F2A of the swirl flow F2 approaches, a strong swirl flow F1 throughout the vulcanization region R1. , F2 can be generated.
  • the temperature in the pressure vessel 2 rises almost uniformly in the extension direction, and therefore, in vulcanization of the plurality of tires 10 stored side by side along the extension direction of the pressure vessel 2.
  • the tire 10 can be vulcanized by a uniform temperature rise regardless of the position where the tire 10 is stored. Furthermore, since the temperature rises uniformly at the upper and lower parts of the pressure vessel 2, the individual tires can be heated uniformly by the uniform temperature rise from the circumferential direction, and the entire tire can be uniformly vulcanized. be able to.
  • Embodiment 3 In the second embodiment, the plurality of discharge plates 31 to 35 are formed to bend with different curvatures. However, in the third embodiment, the discharge plates 31 to 35 are unidirectionally directed from the rear end portions 31B to 35B toward the front end portions 31A to 35A.
  • the second embodiment is different from the second embodiment in that it is formed to be twisted at different angles.
  • FIG. 12A is a front view of the discharge plates 31 to 35 according to the third embodiment
  • FIG. 12B is a side view of the discharge plates 31 to 35 according to the third embodiment.
  • this embodiment will be described with reference to FIG.
  • symbol is attached
  • or 35 is provided are demonstrated as the same thing as Embodiment 2.
  • the discharge plates 31 to 35 are twisted toward the inner peripheral wall surface at different angles from the rear end portions 31B to 35B toward the front end portions 31A to 35A.
  • the tip portions 31A to 35A have the air guide plate 22 side within the tip portions 31A to 35A. It demonstrates as what is twisted so that it may rotate in the clockwise direction with respect to the surrounding wall surface 2 side, and it may approach 2 A of inner wall surfaces (FIG. 12).
  • the twist angle of the discharge plate 31 is the smallest, the twist angle of the discharge plate 32 is the second smallest, and the twist angle of the discharge plate 33 is the third smallest.
  • the twist angle of the discharge plate 34 is the fourth smallest, and the twist angle of the discharge plate 35 is the fifth smallest.
  • the angle of twisting in the order of the discharge plate 31, the discharge plate 32, the discharge plate 32, the discharge plate 33, the discharge plate 34, and the discharge plate 35 is set to increase.
  • the discharge plates 31 to 35 are arranged so that the twisting angle gradually increases from one end side to the other end side in the circumferential direction of the ducts 8A and 8B.
  • the lengths of the discharge plates 31 to 35 are set so that the linear length L from the rear end portions 31B to 35B to the front end portions 31A to 35A is 10 cm to 30 cm, as in the first and second embodiments. Is done.
  • the discharge plate 31 with the smallest twisting angle is at the top, and below that is the discharge plate 32, the discharge plate 33, the discharge plate 34, and the discharge plate 35 in this order from top to bottom.
  • the twisting angle is gradually increased.
  • the discharge plates 31 to 35 are provided so that the leading end portions 31A to 35A on the leading wind plate 22 side are clockwise and close to the inner peripheral wall surface 2A, and the discharge plate having the smallest twisting angle is provided.
  • 31 is arranged at the bottom, and the discharge plate 32, the discharge plate 33, the discharge plate 34, and the discharge plate 35 are arranged so that the twisting angle from the bottom to the top gradually increases. Therefore, the partial ducts A to F partitioned by the discharge plates 31 to 35 are formed at the discharge ports of the ducts 8A and 8B.
  • FIG. 13 is a diagram showing the direction of air discharged by the partial ducts A to F formed in the duct 8A.
  • the air discharged from the partial duct A of the duct 8A is slightly downward along the inner peripheral wall surface 2A so as to be pressed against the inner peripheral wall surface 2A by the twist of the tip 31A of the discharge plate 31. Discharged. Further, the air discharged from the partial duct B is pressed more strongly against the inner peripheral wall surface 2A than the air discharged from the partial duct A due to twisting of the distal end portion 31A of the discharge plate 31 and the distal end portion 32A of the discharge plate 32. Then, it is discharged downward along the inner peripheral wall surface 2A.
  • the air discharged from the partial duct C is pressed more strongly against the inner peripheral wall surface 2A than the air discharged from the partial duct B due to the twist of the distal end portion 32A of the discharge plate 32 and the distal end portion 33A of the discharge plate 33. Then, it is discharged downward along the inner peripheral wall surface 2A. Further, the air discharged from the partial duct D is pressed against the inner peripheral wall surface 2A more strongly than the air discharged from the partial duct C due to twisting of the distal end portion 33A of the discharge plate 33 and the distal end portion 34A of the discharge plate 34. Then, it is discharged downward along the inner peripheral wall surface 2A.
  • the air discharged from the partial duct E is pressed against the inner peripheral wall surface 2A more strongly than the air discharged from the partial duct D due to twisting of the distal end portion 34A of the discharge plate 34 and the distal end portion 35A of the discharge plate 35. Then, it is discharged downward along the inner peripheral wall surface 2A. Further, the air discharged from the partial duct F is along the inner peripheral wall surface 2A so that the air is pressed against the inner peripheral wall surface 2A more strongly than the air discharged from the partial duct E due to the twist of the tip portion 35A of the discharge plate 35. It is discharged downward.
  • the air discharged from the partial duct A of the duct 8B is discharged slightly upward along the inner peripheral wall surface 2A so as to be pressed against the inner peripheral wall surface 2A by the twist of the tip 31A of the discharge plate 31. Further, the air discharged from the partial duct B is pressed more strongly against the inner peripheral wall surface 2A than the air discharged from the partial duct A due to twisting of the distal end portion 31A of the discharge plate 31 and the distal end portion 32A of the discharge plate 32. Then, it is discharged upward along the inner peripheral wall surface 2A.
  • the air discharged from the partial duct C is pressed more strongly against the inner peripheral wall surface 2A than the air discharged from the partial duct B due to the twist of the distal end portion 32A of the discharge plate 32 and the distal end portion 33A of the discharge plate 33. Then, it is discharged upward along the inner peripheral wall surface 2A. Further, the air discharged from the partial duct D is pressed against the inner peripheral wall surface 2A more strongly than the air discharged from the partial duct C due to twisting of the distal end portion 33A of the discharge plate 33 and the distal end portion 34A of the discharge plate 34. Then, it is discharged upward along the inner peripheral wall surface 2A.
  • the air discharged from the partial duct E is pressed against the inner peripheral wall surface 2A more strongly than the air discharged from the partial duct D due to twisting of the distal end portion 34A of the discharge plate 34 and the distal end portion 35A of the discharge plate 35. Then, it is discharged upward along the inner peripheral wall surface 2A. Further, the air discharged from the partial duct F is along the inner peripheral wall surface 2A so that the air is pressed against the inner peripheral wall surface 2A more strongly than the air discharged from the partial duct E due to the twist of the tip portion 35A of the discharge plate 35. It is discharged upward.
  • the air that has passed through the duct 8B is discharged in a direction different from the circumferential direction by the plurality of partial ducts A to F formed by the plurality of discharge plates 31 to 35 of the discharge port 9B, and is formed in the duct 8A.
  • the flow of air discharged from the partial ducts A to F and the flow of air discharged from the partial ducts A to F formed in the duct 8B are point-symmetrical flows around the vulcanization can center O.
  • the swirl flows F1 and F2 can be generated over the entire pressure vessel 2. That is, the discharge plates 31 to 35 are twisted from the rear end portions 31B to 35B toward the front end portions 31A to 35A at different angles in the inner peripheral surface proximity direction, and twisted along the circumferential direction of the ducts 8A and 8B.
  • the air discharged from the partial ducts A to F formed in each of the ducts 8A and 8B is circumferentially along the inner peripheral wall surface 2A as shown in FIG.
  • the flow flows at different angles and different strengths, and flows across the back surface 3A of the hermetic door 3 as shown in FIG. 10, so that swirl flows F1 and F2 over the entire pressure vessel 2 as shown in FIG. Can be generated.
  • the temperature in the pressure vessel 2 can be raised substantially uniformly in the extending direction, so that the tire 10 is stored in the vulcanization of the plurality of tires 10 stored side by side along the extending direction of the pressure vessel 2. Regardless of the position, vulcanization can be achieved by a uniform temperature rise. Furthermore, since the temperature rises uniformly at the upper and lower parts of the pressure vessel 2, the individual tires can be heated uniformly by the uniform temperature rise from the circumferential direction, and the entire tire can be uniformly vulcanized. be able to.
  • Embodiment 4 In the second embodiment, the plurality of discharge plates 31 to 35 are formed to be curved along the extension direction with different curvatures, and in the third embodiment, the discharge plates 31 to 35 are changed from the rear end portions 31B to 35B to the front end portions 31A to 35A. In the fourth embodiment, the plurality of discharge plates 31 to 35 are formed so as to be curved along the extension direction with different curvatures, and after the extension direction.
  • the second embodiment and the third embodiment are different in that they are formed so as to be twisted at different angles in one direction from the end portions 31B to 35B toward the tip portions 31A to 35A.
  • FIG. 14A is a front view of the discharge plates 31 to 35 according to the fourth embodiment
  • FIG. 14B is a side view of the discharge plates 31 to 35 according to the fourth embodiment.
  • this embodiment will be described with reference to FIG.
  • symbol is attached
  • or 35 spaces apart are demonstrated as the same thing as Embodiment 2 and Embodiment 3.
  • the discharge plates 31 to 35 in the fourth embodiment are curved in one direction with different curvatures along the extending direction, and the inner peripheral wall surface at different angles in one direction from the rear end portions 31B to 35B toward the front end portions 31A to 35A. Twist in the close direction.
  • the direction in which the discharge plates 31 to 35 are twisted when the discharge plates 31 to 35 are viewed from the front in a state where the discharge plates 31 to 35 are disposed in the duct A, the air guide plates of the tip portions 31A to 35A. Description will be made assuming that the 22 side rotates clockwise with respect to the inner peripheral wall surface 2 side of the tip portions 31A to 35A and is twisted so as to approach the inner peripheral wall surface 2A (FIG. 14).
  • the curvature and twist angle of the discharge plate 31 are the smallest, the curvature and twist angle of the discharge plate 32 are the second smallest, and the curvature and the twist of the discharge plate 33 are next.
  • the twisting angle is the third smallest, the curvature of the discharge plate 34 and the twisting angle are the fourth smallest, and the curvature and the twisting angle of the discharge plate 35 are the fifth smallest.
  • the curvature and the twisting angle of the discharge plate 31, the discharge plate 32, the discharge plate 32, the discharge plate 33, the discharge plate 34, and the discharge plate 35 are set so as to increase.
  • the discharge plates 31 to 35 are set so that the linear length from the rear end portions 31B to 35B to the front end portions 31A to 35A is 10 cm to 30 cm, for example, as in the first to third embodiments. .
  • the discharge plates 31 to 35 are provided with a curved curvature downward, and the discharge plate 31 having the smallest curvature and twisting angle is disposed at the top, and below that.
  • the discharge plate 32, the discharge plate 33, the discharge plate 34, and the discharge plate 35 are arranged so that the curvature and the twisting angle are gradually increased from the top to the bottom.
  • the discharge plates 31 to 35 are provided with the curved direction facing upward, the discharge plate 31 having the smallest curvature and twisting angle is disposed at the bottom, and the discharge plate is disposed thereon.
  • the discharge plate 33, the discharge plate 34, and the discharge plate 35 are arranged so that the curvature of curvature and the twisting angle gradually increase from bottom to top. Therefore, the partial ducts A to F partitioned by the discharge plates 31 to 35 are formed at the discharge ports of the ducts 8A and 8B.
  • FIG. 15 is a diagram showing the direction of air discharged by the partial ducts A to F formed in the duct 8A.
  • the air discharged from the partial duct A of the duct 8A is slightly downward with respect to the extending direction of the duct 8A due to the twist of the tip 31A in addition to the curvature of the discharge plate 31, and the inner periphery. It is discharged so as to be pressed against the wall surface 2A.
  • the air discharged from the partial duct B faces downward from the air discharged from the partial duct A due to the twisting of the tip portions 31 ⁇ / b> A and 32 ⁇ / b> A and to the inner peripheral wall surface 2 ⁇ / b> A. It is discharged so as to be pressed.
  • the air discharged from the partial duct C faces downward from the air discharged from the partial duct B due to the twisting of the tip portions 32A and 33A, and on the inner peripheral wall surface 2A. It is discharged so as to be pressed.
  • the air discharged from the partial duct D faces downward from the air discharged from the partial duct C due to the twisting of the tip portions 33A and 34A, and is directed to the inner peripheral wall surface 2A. It is discharged so as to be pressed.
  • the air discharged from the partial duct E faces downward to the air discharged from the partial duct D due to the torsion of the end portions 34 A and 35 A and is directed to the inner peripheral wall surface 2 A. It is discharged so as to be pressed.
  • the air discharged from the partial duct F is pressed downward to the air discharged from the partial duct E and pressed against the inner peripheral wall surface 2 ⁇ / b> A due to the twist of the tip 35 ⁇ / b> A. Discharged. That is, the air that has passed through the duct 8A is discharged in a direction different from the circumferential direction by the plurality of partial ducts A to G formed by the plurality of discharge plates 31 to 35 of the discharge port 9B.
  • the air discharged from the partial duct A of the duct 8B is pressed slightly upward with respect to the extending direction of the duct 8A and pressed against the inner peripheral wall surface 2A by the twist of the tip 31A. So that it is discharged.
  • the air discharged from the partial duct B faces upward from the air discharged from the partial duct A due to the twist of the tip portions 31A and 32A, and on the inner peripheral wall surface 2A. It is discharged so as to be pressed.
  • the air discharged from the partial duct C faces upward from the air discharged from the partial duct B due to the twist of the tip portions 32A and 33A, and is directed to the inner peripheral wall surface 2A. It is discharged so as to be pressed.
  • the air discharged from the partial duct D is upward from the air discharged from the partial duct C due to the twisting of the tip portions 33A and 34A, and is directed to the inner peripheral wall surface 2A. It is discharged so as to be pressed.
  • the air discharged from the partial duct E is upward from the air discharged from the partial duct D due to the twisting of the end portions 34A and 35A, and on the inner peripheral wall surface 2A. It is discharged so as to be pressed.
  • the air discharged from the partial duct F is upwardly pressed from the air discharged from the partial duct E and pressed against the inner peripheral wall surface 2 ⁇ / b> A due to the twist of the tip 35 ⁇ / b> A. Discharged.
  • the air that has passed through the duct 8B is discharged in a direction different from the circumferential direction by the plurality of partial ducts A to F formed by the plurality of discharge plates 31 to 35 of the discharge port 9B, and is formed in the duct 8A.
  • the flow of air discharged from the partial ducts A to F and the flow of point symmetry around the vulcanization can center O, in other words, a large flow in one direction is formed.
  • the swirl flows F1 and F2 can be generated over the entire pressure vessel 2. That is, the discharge plates 31 to 35 are curved in one direction with different curvatures along the extending direction, and approach the inner peripheral wall surface at different angles in one direction from the rear end portions 31B to 35B toward the front end portions 31A to 35A.
  • the direction of bending along the circumferential direction and the direction of twisting are set to the same direction, and further, the angle of bending along the circumferential direction of the discharge plates 31 to 35.
  • the twisting angle to gradually increase, the air discharged from the partial ducts A to F formed in each of the ducts 8A and 8B is circular along the inner peripheral wall surface 2A as shown in FIG.
  • the rotation over the entire pressure vessel 2 as shown in FIG. It is possible to generate the flow F1, F2.
  • the temperature in the pressure vessel 2 can be raised substantially uniformly in the extending direction, so that the tire 10 is stored in the vulcanization of the plurality of tires 10 stored side by side along the extending direction of the pressure vessel 2. Regardless of the position, vulcanization can be achieved by a uniform temperature rise. Furthermore, since the temperature rises uniformly at the upper and lower parts of the pressure vessel 2, the individual tires can be heated uniformly by the uniform temperature rise from the circumferential direction, and the entire tire can be uniformly vulcanized. be able to.
  • the pair of ducts 8A; 8B are arranged at the horizontal position of the vulcanizing can, and air is discharged at different angles in the same circumferential direction in each duct 8A; 8B.
  • discharge plates 31 to 35 have been described as being curved, the discharge plates 31 to 35 may be formed so as to be bent at different angles and provided in the ducts 8A and 8B.
  • Embodiment 5 the structure of the vulcanizing can 1 demonstrated in the said Embodiment 1 thru
  • the duct 8 disposed in the vulcanizing can 1 is provided as a pair of ducts 8A; 8B. 16 (a) to 16 (d) may be provided.
  • FIGS. 16A to 16D show an example in which the discharge plate 20 of the first embodiment is provided in the duct 8.
  • FIG. 16A differs from the first embodiment in that the duct 8 is provided over the entire inner peripheral wall surface 2A.
  • the other points are the same as in the first embodiment.
  • the same components as those in the above embodiment are denoted by the same reference numerals as those in FIGS. 1 to 3 described above, and detailed description thereof is omitted.
  • the modification applied to the same components as those in the first to fourth embodiments is also applied to the present embodiment.
  • the duct 8 of the present embodiment has a wind guide plate 22 formed in a cylindrical shape and is fixed to the inner peripheral wall surface 2A in the pressure vessel 2 by an unillustrated method. Air is circulated between 2A and the air guide plate 22, and heated air is sent from the air supply region R2 to the airtight door 3 side.
  • a plurality of discharge plates 20 extending in the same circumferential direction are equally provided in the circumferential direction between the inner peripheral wall surface 2 ⁇ / b> A on the airtight door 3 side and the air guide plate 22.
  • the entire air discharged from the discharge port 9B of the duct 8 of this embodiment is discharged along the inner peripheral wall surface 2A in the circumferential direction and collides with the airtight door 3.
  • the air that has collided with the hermetic door 3 becomes a spiral swirl flow along the inner peripheral surface of the air guide plate 22 and flows from the open / close end side to the closed end side, so that the heated air in the vulcanization region R1
  • the temperature of the entire vulcanization region R1 can be increased uniformly without stopping. Therefore, even if the duct 8 is configured as in this embodiment, the same effect as in the above embodiment can be obtained.
  • the discharge plates 31 to 35 described in the second to fourth embodiments can be applied instead of the discharge plate 20.
  • the discharge plates 31 to 35 are set as one unit, and the discharge plates 31 to 35 are repeated in the order of the same circumferential direction so that the extending direction of the discharge plates 31 to 35 for each unit is the same circumferential direction. What is necessary is just to arrange
  • Embodiment 6 As another embodiment in which the duct 8 is disposed in the vulcanizing can 1, as shown in FIG. 16 (b), the sixth embodiment has a uniform spacing in the circumferential direction of the inner peripheral wall surface 2 ⁇ / b> A of the pressure vessel 2.
  • the third embodiment differs from the first to fifth embodiments in that it is arranged at three locations. Specifically, the ducts 8A; 8B; 8C according to the present embodiment are arranged at three locations at equal intervals in the circumferential direction of the inner peripheral wall surface 2A of the pressure vessel 2 as shown in FIG.
  • Each of the ducts 8A; 8B; 8C is configured to extend in the same circumferential direction as the plurality of discharge plates 20.
  • the air discharged from the respective discharge ports 9B of the ducts 8A; 8B; 8C of the present embodiment is discharged along the circumferential direction of the inner peripheral wall surface 2A and collides with the airtight door 3.
  • the air that has collided with the airtight door 3 flows from the open / close end side to the closed end side as a swirling flow having a uniform flow velocity on the circumference of the inner peripheral wall surface 2A, so that the heated air is vulcanized region R1. Therefore, the temperature of the entire vulcanization region R1 can be increased uniformly. Therefore, even if the duct 8 is configured as in this embodiment, the same effect as in the above embodiment can be obtained.
  • the discharge plates 31 to 35 described in the second to fourth embodiments can be applied to the ducts 8A; 8B; 8C instead of the discharge plate 20.
  • Embodiment 7 Further, as another embodiment in which the duct 8 is disposed in the vulcanizing can 1, the form shown in FIG. 16C is such that the duct 8 faces each other in the circumferential direction of the inner peripheral wall surface 2 ⁇ / b> A of the pressure vessel 2. It differs from the said Embodiment 1 thru
  • the plurality of discharge plates 20 are arranged at four locations, and extend in the same circumferential direction in each of the ducts 8A; 8B; 8C; 8D. Note that the duct 8D faces the duct 8A and the duct 8C faces the duct 8B.
  • the air discharged from the discharge ports 9B of the ducts 8A; 8B; 8C; 8D of the present embodiment is discharged along the circumferential direction of the inner peripheral wall surface 2A and collides with the airtight door 3.
  • the air that collided with the hermetic door 3 flows from the open / close end side to the closed end side as a swirling flow having a uniform flow velocity on the circumference of the inner peripheral wall surface 2A, and is thus heated in the vulcanization region R1.
  • the temperature of the entire vulcanization region R1 can be increased uniformly without air being retained. Therefore, even if the duct 8 is configured as in the present embodiment, the same effects as those of the first to sixth embodiments can be obtained.
  • Embodiment 8 As another form in which the duct 8 is disposed in the vulcanizing can 1, the form shown in FIG. 16 (d) avoids the floor plate 4 and connects the duct 8 to each other in the circumferential direction of the inner peripheral wall surface 2 ⁇ / b> A of the pressure vessel 2. It differs from the said Embodiment 1 thru
  • the plurality of discharge plates 20 are arranged at four locations, and extend in the same circumferential direction in each of the ducts 8A; 8B; 8C; 8D.
  • the duct 8D faces the duct 8A
  • the duct 8C faces the duct 8B.
  • the combination of the duct 8A, the duct 8C, and the ducts 8B and 8D is disposed at a position equally divided in the circumferential direction.
  • the air discharged from the discharge ports 9B of the ducts 8A; 8B; 8C; 8D of the present embodiment is discharged along the circumferential direction of the inner peripheral wall surface 2A and collides with the airtight door 3.
  • the air that has collided with the airtight door 3 becomes a spiral swirl flow along the inner peripheral wall surface 2A and flows from the open / close end side to the closed end side, so that the heated air stops in the vulcanization region R1.
  • the temperature of the entire vulcanization region R1 can be increased uniformly. Therefore, even if the duct 8 is configured as in this embodiment, the same effect as in the above embodiment can be obtained.
  • the ducts 8A; 8B; 8C; 8D are disposed at four positions facing each other in the circumferential direction of the inner peripheral wall surface 2A of the pressure vessel 2 so as to avoid the floor plate 4. Therefore, it is not necessary to increase the durability of the floor board through which the worker and the carry-in cart pass, so that the manufacturing cost can be suppressed.
  • the discharge plates 31 to 35 described in the second to fourth embodiments can be applied to the ducts 8A; 8B; 8C; 8D instead of the discharge plate 20.
  • the plurality of tires 10 are stored in the cylindrical pressure vessel 2 along the extending direction of the pressure vessel 2, the pressure vessel 2 is sealed, The heat source 5 and the fan 6 installed on the closed end side which is one end side of the pressure vessel 2 are driven, and the air blown by the fan 6 is discharged by the plurality of ducts 8 on the open / close end side which is the other end side of the pressure vessel 2, The air discharged from the discharge ports 9 ⁇ / b> B of the plurality of ducts 8 is discharged toward the same circumferential direction of the pressure vessel 2, and the plurality of tires 10 are added in a swirling flow that turns in the circumferential direction of the pressure vessel 2.
  • the temperature inside the pressure vessel 2 can be made uniform and the tire 10 can be vulcanized.
  • the air heated by the heat source 5 and flowing into the open / close end side of the pressure vessel 2 from the air supply region R2 by the fan 6 and the plurality of ducts 8 is directed to the same circumferential direction toward the discharge port 9B side of the duct 8. Since the discharge plate 20 provided at an inclination is discharged in the same circumferential direction along the inner peripheral wall surface 2A of the pressure vessel 2, the air flowing from the open / close end side to the closed end side is circular in the pressure vessel 2 The swirl flow swirling along the circumferential direction causes a forced convection in the entire pressure vessel 2 and eliminates the retention in the pressure vessel 2, so that the air heated by the heat source 5 is within the pressure vessel 2. Therefore, the temperature distribution in the pressure vessel 2 can be made uniform.
  • the tire 10 vulcanized by the vulcanizing can 1 of the present invention is heated at a uniform temperature regardless of the position of the pressure vessel 2 in the extending direction and the position of the tire 10 in the circumferential direction.
  • the tire 10 can be vulcanized with a uniform degree of vulcanization regardless of the position in the sulfur can 1.
  • the discharge plate 20 may be provided in the airtight door 3 of the pressure vessel 2.
  • the discharge plate 20 of this embodiment is provided on the hermetic door 3 on the extension of the duct 8 and extends in the same circumferential direction along the circumferential direction of the inner peripheral wall surface 2A of the pressure vessel 2. . That is, the air discharged from the discharge port 9B of the duct 8 collides with the airtight door 3, and the air collided with the airtight door 3 is guided in the circumferential direction by the discharge plate 20 so as to be along the inner peripheral wall surface 2A. In the pressure vessel 2, a spiral swirl flow flows from the open / close end side to the closed end side.
  • the heat source 5 and the fan 6 are installed and driven on the closed end side, which is one end side inside the pressure vessel 2, so that the air heated by the heat source 5 and blown by the fan 6 is transmitted by the plurality of ducts 8.
  • the heat source 5 and the fan 6 are installed in the airtight door 3 on the open / close end side which is the other end side, and the air blown by the fan 6 is sent. May be discharged on the closed end side, which is one end side of the pressure vessel 2, by a plurality of ducts 8.
  • the duct 8 that opens on the closed end side is curved toward one side in the circumferential direction as indicated by the white arrow in FIG. What is necessary is just to provide the discharge
  • the temperature inside the pressure vessel 2 can be made uniform and the tire 10 can be vulcanized.
  • 1 vulcanized can 2 pressure vessel, 2A inner wall surface, 3 airtight door, 4 floor plate, 5 Heat source, 6 Fan, 6A Motor, 6B Rotor blade, 7 Bulkhead, 8; 8A-8D duct, 9A intake port, 9B discharge port, 10 tires, 20; 31 to 35 discharge plate, 20A tip portion, 21 plate piece, 22 air guide plate, F1; F2 swirl flow, R1 vulcanization region, R2 air supply region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

 圧力容器内における温度分布を均一化することが可能な加硫缶、及び、当該加硫缶を用いたタイヤの製造方法を提供するために、円筒状の圧力容器内部の一端側に設置された熱源及びファンと、圧力容器の延長方向に延長して内壁面円周上に配設され、ファンによって送風された空気を圧力容器の他端側で排出するダクトとを備え、ダクトの排出口がファンによって送風された空気を圧力容器の円周方向に向けて排出するように加硫缶を構成した。

Description

加硫缶、及び、タイヤの製造方法
 本発明は、タイヤを加硫成形する際に好適に用いられる加硫缶に関し、特に内部の温度分布を均一化することが可能な加硫缶、及び、当該加硫缶によりタイヤを製造する方法に関する。
 リトレッドタイヤと呼ばれるタイヤの製造方法の一工程として、タイヤの基礎となる台タイヤと、当該台タイヤの円周方向に貼着されるトレッドゴムとをエンベロープ内に収容し、エンベロープ内の圧力を減圧した状態で加硫缶内に投入することにより、台タイヤとトレッドゴムとの間に介在する接着層としてのクッションゴムを加硫し、両者を強固に一体化する加硫工程が存在することが知られている。
 加硫工程において用いられる加硫缶は、エンベロープに収容された複数組のタイヤ(台タイヤ及びトレッドゴム)を格納可能な円筒状の圧力容器と、円筒状の圧力容器の延長方向一側部に設けられ、圧力容器内の空気を加熱する熱源と、当該熱源の近傍に配設され、熱源によって加熱された空気を循環させるファンと、圧力容器の延長方向他側部に開閉自在に設けられた気密扉とを備える。
 また、圧力容器の内壁面には、圧力容器の延長方向に沿って延長するダクトが配設され、熱源によって加熱された空気は、ファンによりダクト内に供給され、ダクト内を通る空気がファンとは反対側に設けられた気密扉側において排出される。
 そして、気密扉側において排出された空気は、気密扉の壁面に衝突して圧力容器内をファン側に向かって流れ出し、圧力容器内に格納された複数組のタイヤを加熱しながら熱源に到達し、ファン及びダクトによって再び気密扉側から排出される。
 つまり、加硫缶は、圧力容器内において加熱された空気を延長方向に向かって循環させることにより、内部に格納された複数組のタイヤを加熱する構成である。また、圧力容器内の圧力は、例えば6気圧から8気圧程度にまで加圧されており、格納された台タイヤ及びトレッドゴムは、エンベロープ内において加熱,加圧された状態で加硫が進行する。
特開2006-88049号公報 特表2008-500898号公報
 しかしながら、図18(a)に示す気流分布から明らかなように、従来の加硫缶においては、気密扉側において排出された空気が圧力容器内をファン側へ向けて流れ込む過程において上昇気流となり易く、圧力容器上部においては空気が活発に流動するものの、圧力容器下部においては空気の滞留が生じ易くなる。
 また、図18(b)に示す温度分布から明らかなように、圧力容器内における気流分布の差は圧力容器内における温度分布の差として表れ、特に滞留部における温度上昇が遅くなり、結果として加硫時間が長くなるという問題が生じる。
 例えば、上昇気流の発生を抑制する方法の一つとして、気密扉側に排出された空気が、圧力容器内をファン側に流れるときの流速を速くする方法が考えられる。そこで、圧力容器内の流速を速くするために、ファンに大きな流量の送出を可能にする遠心ファンを適用し、気密扉側からファン側に流れる空気の流速を上げて、圧力容器内の空気の流れと温度分布に関する実験を行なった。その結果、図18(c)に示すように、気密扉に衝突した気流は、圧力容器下部を這うように進むことで、圧力容器下部における空気の停留を抑制し、圧力容器内の温度のバラツキに多少の改善が見られるものの、十分な効果を得られるものではなかった。
 また、上昇気流の発生を抑制する他の方法として、単に気密扉側からファン側に流れる空気の流速を上げるのではなく、圧力容器内における空気の流れ方(気流)を変化させる方法も考えられる。例えば、ダクトの排出口から空気を圧力容器の内壁面に沿って同一円周方向に空気を排出させ、圧力容器内に旋回流を生じさせる方法である。この方法によれば、旋回流により圧力容器内の空気全体を気密扉側からファン側に移動させて、温度のバラツキを低減させることが期待できるが、単純にダクトから同一円周方向に向けて空気を排出させるだけでは、旋回流を十分に制御することができないため、期待するほどの十分な効果を得ることができない。
 さらに、圧力容器内には通常、複数組のタイヤを格納して加硫を行うが、温度分布が不均一であることに起因して、加熱された空気から各タイヤが受ける熱履歴が圧力容器内における位置によってそれぞれ異なることとなるため、同一の加硫缶によって加硫されたタイヤであっても熱履歴の違いによる品質のバラツキが生じることが懸念される。具体的には、熱履歴の違いがタイヤの転がり抵抗性に影響を及ぼすものと考えられるため、圧力容器内における位置によってタイヤの転がり抵抗性にバラツキが生じることが懸念される。
 特許文献1には、温度分布を均一化するための設備として、成形物を格納する炉を二重構造とするとともに、炉内に複数の補助熱源を設け、さらに補助熱源の位置に対応するように炉内において回転する撹拌用のファンを設けることにより、炉内のガスを撹拌,混合し、炉内の温度差を均一化する構造が開示されているが、当該設備は、従来の加硫缶と比して大型であって、さらに複数の動力源が必要であることからエネルギー損失が極めて大きくなるという問題がある。
 また、特許文献2には、ダクトを開閉する複数のダクトバルブを設け、ダクトバルブを開閉動作させることにより炉内に乱流を発生させることが開示されているが、ダクトバルブを開閉させる駆動源や制御システムが別途必要となり、設備の大型化、エネルギー損失の増大といった問題点を避けることはできない。
 本発明は上記課題を解決すべくなされたものであり、規模の大型化及びエネルギー損失の増大を避け、圧力容器内における温度分布を均一化することが可能な加硫缶、及び、当該加硫缶を用いたタイヤの製造方法を提供する。
 上記課題を解決するための加硫缶に係る構成として、円筒状の圧力容器内部の一端側に設置された熱源及びファンと、圧力容器の延長方向に延長して内壁面円周上に配設され、ファンによって送風された空気を圧力容器の他端側で排出するダクトとを備え、ダクトが圧力容器の内壁面円周上に配設され、ダクトの排出口がファンによって送風された空気を圧力容器の円周方向に向けて排出する構成とした。
 本構成によれば、一端側に設置された熱源によって加熱され、ファン及び複数のダクトによって圧力容器の他端側に流れ込んだ空気が、ダクトの排出口から圧力容器の円周方向に向けて排出されるため、一端側から他端側へ流れ込む空気が圧力容器の円周方向に沿って旋回する旋回流となって、圧力容器内全体に強制的な対流を生じさせ、圧力容器内の停留がなくなることにより、熱源によって加熱された空気が圧力容器内に行き渡るので、圧力容器内における温度分布を均一化することが可能となる。よって、本発明の加硫缶によれば、圧力容器内部における位置にかかわらず、タイヤを均一に加硫することができる。
 また、加硫缶に係る他の構成として、ダクトの排出口が、圧力容器の円周方向に延長するプレートを備える構成とした。
 本構成によれば、排出口から排出される空気が圧力容器の円周方向に傾斜するプレートに沿って排出されるため、前記構成から生じる効果に加え、簡易な構成により圧力容器内に旋回流を発生させることができる。
 また、加硫缶に係る他の構成として、ダクトが圧力容器の内壁面円周上において円周方向に均等分割された位置に複数配設され、各排出口のプレート同士を同一円周方向に延長して配設する構成とした。
 本構成によれば、各構成から生じる効果に加え、ダクトが圧力容器の内壁面円周上において円周方向に均等分割された位置に複数配設されたダクトの各排出口のプレート同士が同一円周方向に延長するため、各排出口のプレートに沿って排出された空気が圧力容器内において旋回流を容易に生じさせるとともに、内壁面円周上における旋回流の流速を均一化することで、圧力容器内における温度分布をより一層均一化することが可能となる。
 また、加硫缶に係る他の構成として、プレートは、ダクトの排出口に複数設けられ、複数のプレートを互いに異なる角度で圧力容器の同一円周方向に沿って設ける構成とした。
 本構成によれば、熱源によって加熱され、ファン及び複数のダクトによって圧力容器の開閉端側に流れ込んだ空気が、ダクトの排出口に設けられた複数のプレートによって圧力容器の円周方向に向けて排出されるため、一端側から他端側へ流れ込む空気が圧力容器の円周方向に沿って旋回する旋回流となって圧力容器内全体に強制的な対流を生じさせ、圧力容器内の停留をなくすことができる。また、圧力容器内全体に強制的な対流が生じることにより、熱源によって加熱された空気が圧力容器内に行き渡るので、圧力容器内における温度分布を均一化することが可能となる。さらに、円周方向に対して異なる角度で排出する複数のプレートの向きを制御することにより、ダクトの排出口から排出される空気の広がりや向きを制御することができるので、旋回流の強さや大きさを制御することが可能となる。そして、強さや大きさが制御された旋回流により、圧力容器内全体に生じる強制的な対流を最適化し、圧力容器内の停留をなくすことで熱源によって加熱された空気を圧力容器内に行き渡らせることが可能となり、圧力容器内における温度分布を均一化することができる。よって、本発明の加硫缶で加硫されたタイヤは、圧力容器内部における位置に関わらず均一に加硫することができる。なお、旋回流の大きさとは、圧力容器内を螺旋状に流れる流れの幅である。
 また、加硫缶に係る他の構成として、複数のプレートは、圧力容器の一端側から他端側に向かって異なる曲率半径で湾曲し、ダクトにおける円周方向一端側から他端側に向かうに従ってプレートの湾曲する曲率半径が漸次大きくなるように配設される構成とした。
 本構成によれば、上記構成の効果に加え、複数のプレートがダクト内において一端側から他端側に向かって一方向に湾曲し、ダクトの円周方向に沿う一端側から他端側に向かって湾曲する角度が漸増することにより、ダクトの排出口から圧力容器の円周方向に向けて排出される空気は、ダクトの大きさよりも広がるように排出することが可能となり、圧力容器内に生じる旋回流の大きさを大きくすることができるので、大きな旋回流により効率良く圧力容器内全体に強制的な対流を生じさせて、圧力容器内の停留をなくし、圧力容器内における温度分布を均一化することが可能となる。
 また、加硫缶に係る他の構成として、複数のプレートは、圧力容器の一端側から他端側に向かって異なる角度で内壁面近接方向に捻れ、ダクトにおける円周方向一端側から他端側に向かうに従って捻れる角度が漸次大きくなるように配設される構成とした。
 本構成によれば、上記構成の効果に加え、複数のプレートがダクト内において閉塞端側から開口端側に向かって内壁面近接方向に捻れ、ダクトの円周方向一端側から他端側に向かって捻れる角度が漸増することにより、ダクトの排出口から圧力容器の円周方向に向けて排出される空気は、内壁面方向に寄せられた状態で円周方向に排出されるため、排出口から排出する空気の流速を速くすることができるので、流れの強い旋回流を圧力容器内に生じさせることができる。つまり、強い旋回流により圧力容器内全体に強制的な対流を生じさせることが可能になるので、圧力容器内の停留がなくなり、圧力容器内における温度分布を均一化することが可能となる。
 また、加硫缶に係る他の構成として、ダクトが圧力容器の内壁面円周上において互いに対向して配設される構成とした。
 本構成によれば、各構成から生じる効果に加え、ダクトが圧力容器の内壁面円周上において円周方向に互いに対向して配設されたダクトの各排出口のプレートが同一円周方向に延長するため、互いに対向して配設されるダクトの各排出口から排出された空気が、圧力容器内において発生する旋回流を容易に生じさせるので、旋回流の流速を円周上において均一化することができ、圧力容器内における温度分布をより一層均一化することが可能となる。
 また、加硫缶に係る他の構成として、ダクトの配置を圧力容器の内壁面円周上において2箇所とする構成とした。
 本構成によれば、ダクトの配置が圧力容器の内壁面円周上において2箇所とすることにより、製造コストを抑制しつつ、圧力容器内に確実に旋回流を発生させることができる。
 また、加硫缶に係る他の構成として、ダクトが圧力容器内部に敷設された床板下部を避けて配設される構成とした。
 本構成によれば、ダクトを床板下部に設けた場合と比較して、ダクトを保護するために作業者や搬入台車が通る床板の耐久性を高める必要がなくなり、製造コストを抑制することができる。
 また、タイヤの製造方法に関する形態として、円筒状の圧力容器内部に当該圧力容器の延長方向に沿って複数のタイヤを格納し、圧力容器を密閉する工程と、圧力容器内部の一端側に設置された熱源及びファンを駆動し、ファンによって送風された空気を複数のダクトにより圧力容器の他端側で排出する工程とを備え、複数のダクトの各排出口から排出される空気を圧力容器の同一円周方向に向けて排出し、複数のタイヤを圧力容器の円周方向に旋回する旋回流内で加硫する形態とした。
 本形態によれば、複数のタイヤが圧力容器の円周方向に旋回する旋回流内で加硫されることにより、複数のタイヤが受ける熱履歴が均一なものとなるため、圧力容器内における位置によらず、均一な性能を有するタイヤを得ることが可能となる。
本発明に係る加硫缶を示す概略図である。 複数のダクトを示す正面図である(実施形態1)。 ダクトの排出口を示す拡大斜視図である(実施形態1)。 旋回流を模式的に示す概略図である(実施形態1)。 従来の加硫缶及び本発明の加硫缶内部の温度変化示すグラフである(実施形態1)。 複数のダクトを示す正面図である(実施形態2)。 ダクトの排出口を示す拡大斜視図である(実施形態2)。 排出プレートの正面図及び側面図である(実施形態2)。 部分ダクトから排出される空気の方向を示す図である(実施形態2)。 ダクトから排出された空気が蓋体に衝突した後の流れを示す図である(実施形態2)。 圧力容器内に発生する旋回流を模式的に示す図である(実施形態2)。 排出プレートの他の形態の正面図及び側面図である(実施形態3)。 部分ダクトから排出される空気の方向を示す図である(実施形態3)。 排出プレートの他の形態の正面図及び側面図である(実施形態4)。 部分ダクトから排出される空気の方向を示す図である(実施形態4)。 ダクトの他の実施形態を示す概略図である(実施形態5乃至実施形態8)。 タイヤを示す分解斜視図及び幅方向断面図である。 従来の加硫缶内部の気流分布、及び、温度分布を示す模式図である。
実施形態1
 図1は、本発明に係る加硫缶1の内部構造を示す概略図である。
 同図において加硫缶1は、一端が閉塞した円筒状に形成され、内部に複数のタイヤ10を格納可能な圧力容器2と、圧力容器2の他端部において開閉自在に設けられた気密扉3とを備える。
 圧力容器2の周壁部は、内部に円周方向に沿って隙間なく配置された図外の断熱材等によるライニングが施されており、内部に複数のタイヤ10を格納,加硫可能な加硫領域R1が形成される。
 気密扉3は、圧力容器2の開口した端部において開閉自在に設けられる扉であって、円筒状の圧力容器2と同心に形成される。気密扉3は、周囲に配設された図外のシール材等を介して圧力容器2の開口部を閉塞し、圧力容器2内に供給される空気が外部に漏洩することを防止する。つまり、一端が閉塞した圧力容器2は、気密扉3が閉じられることにより密閉空間として維持される。圧力容器2とともに密閉空間を形成する気密扉3の裏面3A側は、圧力容器2の内部空間とは逆側に球面状に窪み、圧力容器2の中心軸と球面の中心とが同心となるように形成される。
 圧力容器2の下側半部よりも下方には、圧力容器2の延長方向に沿って延長する床板4が敷設される。圧力容器2内への搬入に際しては、床板4上を走行可能な台車等を用いて複数のタイヤを気密扉3が設けられた開閉端側から閉塞端側へと搬入し、圧力容器2内に設けられた図外のフックに順に吊下げ、複数のタイヤ10を圧力容器2の延長方向に沿って並べて格納する。
 ここで、本実施形態に係る加硫缶1内に格納されるタイヤ10について概説する。図17は、加硫缶1によって加硫されるタイヤ10の一例としての未加硫のリトレッドタイヤを分解して示す斜視図及び幅方向断面図である。同図に示すように、タイヤ10は、土台となる台タイヤ11と、台タイヤ11の円周方向表面に貼着されるクッションゴム12、及び、クッションゴム12を介して台タイヤ11の円周方向表面に巻き付けられるトレッドゴム13とから構成される。
 台タイヤ11は、環状のスチールコード等の部材からなる一対のビード部11Aと、一対のビード部11Aを跨ぐようにトロイダル状に延長するサイド部11B及びクラウン部11Cを有する。クラウン部11Cの内部には、複数のベルトが半径方向に積層される。台タイヤ11は、例えば使用済みタイヤのトレッド部を切削(バフ掛け)することや、表面にトレッドパターンに対応する凹凸を有さない金型を備えるモールドによって加硫することにより得ることができる。また、台タイヤ11の加硫度は、製品タイヤに要求される加硫度以下の半加硫の状態であってもよい。
 クッションゴム12は、台タイヤ11及びトレッドゴム13と略同様の組成からなる未加硫のゴムであって、加硫缶1によって加硫されることにより、台タイヤ11とトレッドゴム13とを一体化させる接着層として機能する。トレッドゴム13は、台タイヤ11の周長に対応する長さを有する帯状であって、台タイヤ11のクラウン部11C上に巻き付けられた状態で加硫されることにより、製品タイヤのトレッド部となる部材である。帯状のトレッドゴム13は、例えば一方の金型に所望のトレッドパターンに対応する凹凸が形成されたプレス型の加硫装置にて加硫することにより得ることができる。
 また、プレス型の加硫装置によって得られた帯状のトレッドゴム13は、台タイヤ11のクッションゴム12が貼着された円周方向表面に沿って巻き付けられ、端部同士が接合されることにより台タイヤ11と予備的に一体化される。
 なお、トレッドゴム13の成形装置は、プレス型に限られるものではなく、例えば円環状のトレッドゴム13を成形可能な専用のモールドによって加硫成形してもよい。当該専用のモールドによって成形された円環状のトレッドゴム13を台タイヤ11に巻き付けるためには、図外の拡径装置によってトレッドゴム13を拡径しつつ、トレッドゴム13を台タイヤ11の外周側に配置し、再び元の外径に縮径することにより行われる。また、トレッドゴム13の加硫度は、台タイヤ11と同様に、製品タイヤに要求される加硫度以下の半加硫の状態であってもよい。
 上述の構成を備えるタイヤ10は、エンベロープと呼ばれる図外の袋体に収容され、圧力容器2内に吊り下げられる。エンベロープ内の圧力は大気圧以下に減圧されており、エンベロープの内表面はトレッドゴム13の外表面に密着する。つまり、タイヤ10がエンベロープ内に収容されると、トレッドゴム13は、台タイヤ11の円周方向表面に対して押し付けられた状態のまま維持される。
 なお、加硫缶1の圧力容器2内に格納されるタイヤ10の一例として、加硫済みの台タイヤ11、及び、加硫済みのトレッドゴム13とを備えるリトレッドタイヤについて説明したが、加硫缶1に格納されるタイヤ10は、上記構成に限られるものではなく、成形過程に加硫を工程を含むものであれば如何なるタイヤであってもよい。
 図1に戻り、再び圧力容器2の構造について説明する。
 圧力容器2内の一端側である閉塞端側には、空気供給領域R2が形成される。空気供給領域R2は、加硫領域R1を仕切る隔壁7によって形成された領域であって、当該領域内には、加硫領域R1内の空気を加熱しつつ循環させる熱源5及びファン6が設置される。
 熱源5は、隔壁7内の中央に配置される。熱源5は、例えば電気的に加熱されるヒータであって、ヒータに供給する電力を制御することにより所定温度に発熱する。
 ファン6は、熱源5よりも閉塞端側に配置され、モータ6Aとモータ6Aの駆動により回転する回転翼6Bとにより構成される。ファン6は、モータ6Aを駆動することにより回転翼6Bが回転し、加硫領域R1内の空気を空気供給領域R2内に取り込みながら熱源5によって加熱するとともに、空気供給領域R2内の空気を圧縮して、気密扉3側で開口する後述のダクト8の取り込み口9Aに空気を送出する。
 つまり、ファン6が駆動することにより加硫領域R1側から空気供給領域R2側に流入する空気を熱源5によって加熱しながら空気供給領域R2の気圧を高めることにより、空気供給領域R2内に設けられた複数のダクト8の取り込み口9Aに空気を流入させて、気密扉3側で開口するダクト8の排出口9Bから加熱された空気を排出する構成である。
 図1に示すように、ダクト8は、圧力容器2の内周壁面2Aの延長方向に沿って空気供給領域R2から加硫領域R1を経て気密扉3側へと延長する配管である。また、図2の正面図に示すように、本実施例におけるダクト8は、圧力容器2の内周壁面2Aに対して2箇所配設される(以下、ダクト8A,8Bとする)。一方のダクト8Aと他方のダクト8Bとは、圧力容器2の内周壁面2Aの円周方向において互いに相対峙するように均等な間隔をもって配設される。本実施形態では、図2に示すように、一方のダクト8Aと他方のダクト8Bとは、加硫缶中心Oを通る水平面が、ダクト8A及びダクト8Bの中央を通るように、圧力容器2の内周壁面2Aの円周方向において互いに相対峙するように均等な間隔をもって水平位置に配設される。なお、ダクト8A;8Bは、同一寸法であるものとする。
 ダクト8A;8Bは、圧力容器2の延長方向に沿って延長する断面矩形の管体であって、熱源5によって加熱された空気を排出する排出口9Bが気密扉3側において開口する。
 つまり、圧力容器2の一端側である閉塞端側に位置する熱源5及びファン6によって加熱,送出された空気は、ダクト8A;8Bを通って圧力容器2の他端側である開閉端側に位置する気密扉3に向けて排出される。
 図3は、気密扉3に向けて空気を排出するダクト8A;8Bの排出口9B近傍を示す拡大斜視図である。
 同図に示すように、ダクト8A;8Bは、圧力容器2の内周壁面2Aから相対峙して立ち上がる一対の板片21;21と、一対の板片21;21と連接し、圧力容器2の内周壁面2Aと対向する導風板22とに囲まれた管体である。
 一対の板片21;21同士の離間する距離Nは、少なくとも内周壁面2Aの円周長Mの25%よりも小さい距離で離間するように設定される。好ましくは、板片21;21の離間する距離Nは、内周壁面2Aの円周長Mの15~20%の範囲で離間するように設けるとよい。
 導風板22は、例えば、圧力容器2の内周壁面2Aに沿って湾曲し、板片21;21と連接する。なお、加硫缶1により加硫するタイヤ10の直径が略同一寸法のときには、導風板22をタイヤ10の外周面の曲率に対応するように形成してもよい。但し、導風板22とタイヤ外周面との距離が所定距離以下になると、開閉端側に排出された空気が閉塞端側に流れる妨げとなり、タイヤを均一に加硫できなく虞があるため、導風板22とタイヤ外周面との距離Sが所定距離以下にならないように、板片21,21の長さを調整することが好ましい。
 ダクト8A;8Bにおける開閉端側で終端する排出口9Bには、複数の排出プレート20が設けられる。排出プレート20は、ダクト8A;8Bの延長方向に沿って長尺な板体であって、ダクト8A;8Bの内部に配設される。
 より詳細には、排出プレート20は、圧力容器2の内周壁面2Aとダクト8の導風板22との間に図外の締結手段を介して、或いは、溶接により固定される。また、排出プレート20は、ダクト8A;8Bの内部から排出口9Bに向かうに従って、内周壁面2Aの矢印で示す円周方向の一方に向けて湾曲し、先端部20Aがダクト8の排出口9Bとほぼ同一位置で終端する。
 排出プレート20の長さは、後端部から先端部20Aまでの直線長さが10cm~30cmとなるように設定される。排出プレート20の長さを10cm~30cmとすることで、必要かつ十分な効果を得ることができるとともに、ダクト8A,8B内に排出プレート20を取り付けるときのスペース的な問題や取り付けにかかる手間を省略することができる。また、排出プレート20は、各ダクト8A;8Bにおいて、内周壁面2Aの円周方向に例えば、10~30cmの間隔で設けられる。このように複数の排出プレート20を各ダクト8A;8Bに設けることにより、より効率的に圧力容器内に旋回流を生じさせることができる。
 ダクト8A;8Bの排出口9Bに内周壁面2Aの円周方向の一方に向けて湾曲する排出プレート20が設けられたことにより、排出口9Bから吹き出す空気の流れは、排出プレート20の湾曲に沿った流れとなる。具体的には、図3の矢印に示すように、ダクト8A;8Bの排出口9Bからは、加熱された空気が内周壁面2Aの円周方向に沿って一方向となるように同一円周方向に向けて排出される。このように、内周壁面2Aに対して複数配設されたダクト8A;8Bの排出口9Bに、内周壁面2Aの同一円周方向に向けて延長する排出プレート20を設け、加熱された空気を排出口9Bから内周壁面2Aの同一円周方向に向けて排出することにより、圧力容器2内に旋回流を発生させることができる。
 図4は、圧力容器2内に発生する旋回流を模式的に示す図である。
 同図に示すように、ダクト8A;8Bの排出プレート20を通過し、内周壁面2Aに沿うように排出された空気は、それぞれ気密扉3に衝突し、加硫領域R1を形成する気密扉3の裏面3Aを円周方向に沿って流れることで、内周壁面2Aに沿って回転する流れが生じる。そして、回転する空気は、気密扉3側から閉塞端側に内周壁面2Aに沿って円を描くように螺旋状に流れて、圧力容器2内における旋回流となって、隔壁7に設けられた熱源5を通過して空気供給領域R2に取り込まれる。具体的には、ダクト8Aの排出プレート20から排出された空気が、内周壁面2Aに沿って下向きに流れて図6に示す一方の旋回流F1となり、ダクト8Bの排出プレート20から排出された空気が内周壁面2Aに沿って上向きに流れて図6に示す他方の旋回流F2となり、ダクト8A;8Bが、互いに対向して均等に設けられているので、旋回流F2は旋回流F1に対してちょうど半周期ずれたように対向した位置を流れる旋回流となる。
 図5(a)は従来の加硫缶内部の温度変化を示すグラフを示し、図5(b)は本発明の加硫缶1の温度変化を示すグラフを示す。詳細には、図5(a)は従来の加硫缶の加硫領域内下部(図4のP1;Q1に相当する位置)における気密扉3側の温度及び空気供給領域R2側の温度の時間変化を示したグラフである。また、図5(b)は、図5(a)で温度を測定した同一の位置P1;Q1の温度変化と、位置P1;Q1に対向する上部の位置P2;Q2(図4参照)とにおける温度の時間変化を示したグラフである。
 従来の加硫缶では、図5(a)に示すように、気密扉3側下部の位置P1の温度が空気供給領域側下部の位置Q1の温度に比べて急速に上昇し、加硫缶内の温度が一定となるまでに、約20℃の温度差が生じた状態で加熱されている。そして、位置P1の温度と位置Q1の温度とが最高温度に到達するまでに、およそ20分の差が生じている。
 一方、本実施形態にかかる加硫缶1では、図5(b)に示すように、気密扉3側上部及び下部の位置P1;P2の温度と、空気供給領域R2側上部及び下部の位置Q1;Q2の温度とが60℃近傍までほぼ同一の温度勾配で上昇した後に、気密扉3側の位置P1;位置P2の温度と、空気供給領域R2側の位置Q1;位置Q2との間に温度に差が生じるものの、再びほぼ同一の温度勾配で上昇している。気密扉3側の位置P1;P2の温度と、空気供給領域R2側の位置Q1;Q2との間での温度の差は約5℃程度のもので、従来の加硫缶で生じる温度差に比べて非常に小さなものとなる。つまり、本発明の加硫缶1は、加硫領域R1内に旋回流を発生させて、ファン6によって加熱された空気を循環させることにより、圧力容器2内をほぼ均一に温度上昇させることが可能となる。
 したがって、本発明の加硫缶1では、圧力容器2内の温度が延長方向においてほぼ均一に温度上昇するので、圧力容器2の延長方向に沿って並べて格納された複数のタイヤ10の加硫において、タイヤ10が格納される位置にかかわらず均一な温度上昇により加硫することができる。さらに、圧力容器2の上部,下部についても均一に温度上昇するので、個々のタイヤに対して円周方向から均一な温度上昇により均一に加熱することができ、タイヤ全体を均一に加硫することができる。
実施形態2
 実施形態1では、複数の排出プレート20を同一の形状で構成したが、実施形態2では、ダクト8A;8Bの形状が異なる点及び複数の排出プレート31乃至35を異なる曲率で湾曲するように形成した点で実施形態1と異なる。
 図6は、実施形態2に係る複数の排出プレート31乃至35を配置したダクト8A;8Bの正面図である。図7は、気密扉3に向けて空気を排出するダクト8A;8Bの排出口9B近傍を示す拡大斜視図である。
 以下、図6及び図7を用いて説明する。なお、実施形態1と同一構成については同一の符号を付し説明を省略する。
 図6に示すように、ダクト8A;8Bは、圧力容器2の内周壁面2Aから相対峙して立ち上がる一対の板片21;21と、一対の板片21;21と連接し、圧力容器2の内周壁面2Aと対向する導風板22とに囲まれた管体である。
 板片21;21は、互いに所定距離離間して設けられ、圧力容器2の内周壁面2Aから加硫缶中心Oに向けて同一の長さで延長する。一対の板片21;21の離間する距離は、実施形態1と同様に、少なくとも内周壁面2Aの円周長の25%よりも小さい距離で離間するように設定される。好ましくは、板片21;21の離間する距離Nは、内周壁面2Aの円周長の15~20%の範囲で離間するように設けるとよい。
 なお、板片21;21は、加硫缶中心O方向に延長するとしたが、実施形態1のように、内周壁面2Aから水平方向に延長するように設けてもよい。
 導風板22は、例えば、圧力容器2の内周壁面2Aに沿って湾曲し、板片21;21と連接する。
 ダクト8A;8Bの排出口9Bには、内周壁面2Aの円周方向に沿って複数の排出プレートがそれぞれ設けられる。本実施形態では、排出プレートは、ダクト8A,8Bそれぞれに31乃至35の5つが設けられるものとして説明する。なお、排出プレートの数量は、前記枚数に限らず、適宜設定すればよい。
 図8(a)は、排出プレート31乃至35の正面図、図8(b)は、排出プレート31乃至35の側面図である。
 排出プレート31乃至35は、所定形状に成形される板体であって、それぞれ形状が異なるように形成される。具体的には、図8(a),(b)に示すように、排出プレート31乃至35は、延長方向に沿ってそれぞれ異なる曲率で一方向に湾曲するように形成される。例えば、排出プレート31の湾曲する曲率が1番小さく、次に排出プレート32の曲率が2番目に小さく、次に排出プレート33の曲率が3番目に小さく、次に排出プレート34の曲率が4番目に小さく、次に排出プレート35の曲率が5番目に小さい。換言すると、排出プレート31,排出プレート32,排出プレート32,排出プレート33,排出プレート34,排出プレート35の順に湾曲する曲率が大きくなるように設定される。
 排出プレート31乃至35の長さは、後端部31B乃至35Bから先端部31A乃至35Aまでの直線長さLが10cm~30cmとなるように設定される(図8参照)。排出プレート31乃至35の長さを10cm~30cmとすることで、必要かつ十分な効果を得ることができるとともに、ダクト8A,8B内に排出プレート31乃至35を取り付けるときのスペース的な問題や取り付けにかかる手間を省略することができる。
 なお、排出プレート31乃至35の湾曲は、後端部31B乃至35Bから先端部31A乃至35Aまで一律の曲率半径によって形成しても良く、また、後端部31B乃至35Bから先端部31A乃至35Aまでの途中において、局所的に湾曲するように形成してもよい。
 図6,図7に戻り排出プレート31乃至35について説明する。
 排出プレート31乃至35は、各ダクト8A,8Bにおいて、圧力容器2の内周壁面2Aとダクト8の導風板22との間に図外の締結手段を介して、或いは、溶接により固定され、先端部31A乃至35Aが排出口9Bと略同一位置で終端する。
 排出プレート31乃至35は、各ダクト8A;8Bにおいて、円周方向に沿って所定の間隔をもって配設される。例えば、排出プレート31乃至35は、排出プレート31乃至35の後端部31B乃至35Bが、加硫缶中心Oから放射状に延長する仮想の放射線と一致する位置に、円周方向に沿って均等な間隔で配置される。
 また、排出プレート31乃至35は、各ダクト8A;8Bにおいて、内周壁面2Aの円周方向に例えば、10~30cmの間隔で設けるようにすると良い。このように排出プレート31乃至35を設けることで、より効率的に圧力容器内に旋回流を生じさせることができる。
 各ダクト8A,8Bにおいて、排出プレート31乃至35は、湾曲する方向が同一円周方向を向き、各ダクト8A,8Bにおける円周方向の一端側から他端側に向かうに従って、湾曲する曲率が大きくなるように設けられる。
 具体的には、一方のダクト8Aにおいて、排出プレート31乃至35は、湾曲する方向が下向きとなるように設けられ、曲率の最も小さい排出プレート31が最も上に配設され、その下に排出プレート32、排出プレート33、排出プレート34、排出プレート35、排出プレート35の順に上から下に向かって曲率が漸次大きくなるように配設される。他方のダクト8Bにおいて、排出プレート31乃至35は湾曲する方向が上向きとなるように設けられ、曲率の最も小さい排出プレート31が最も下に配設され、その上に排出プレート32、排出プレート33、排出プレート34、排出プレート35、排出プレート35の順に下から上に向かって曲率が漸次大きくなるように配設される。
 よって、各ダクト8A,8Bに配設された各排出プレート31乃至35は、湾曲する方向を同一円周方向に向けて、加硫缶中心Oを挟んで互いに対向する位置に同一形状のものが設けられる。換言すれば、ダクト8Aに設けられた排出プレート31乃至35を加硫缶中心O周りに180°回転させてダクト8Bに設けた状態となる。
 排出プレート31乃至35が、ダクト8A,8Bに設けられたことにより排出口9Bには排出プレート31乃至35によって区画される部分ダクトA乃至Fが形成される。
 ダクト8Aにおいて、部分ダクトAは、排出プレート31と内周壁面2Aと板片21と導風板22とで形成され、部分ダクトBは、排出プレート31と排出プレート32と内周壁面2Aと導風板22とで形成され、部分ダクトCは、排出プレート32と排出プレート33と内周壁面2Aと導風板22とで形成され、部分ダクトDは、排出プレート33と排出プレート34と内周壁面2Aと導風板22とで形成され、部分ダクトEは、排出プレート34と排出プレート35と内周壁面2Aと導風板22とで形成され、部分ダクトFは、排出プレート35と板片21と内周壁面2Aと導風板22とで形成される。
 また、ダクト8Bにおいて、部分ダクトAは、排出プレート31と内周壁面2Aと板片21と導風板22とで形成され、部分ダクトBは、排出プレート31と排出プレート32と内周壁面2Aと導風板22とで形成され、部分ダクトCは、排出プレート32と排出プレート33と内周壁面2Aと導風板22とで形成され、部分ダクトDは、排出プレート33と排出プレート34と内周壁面2Aと導風板22とで形成され、部分ダクトEは、排出プレート34と排出プレート35と内周壁面2Aと導風板22とで形成され、部分ダクトFは、排出プレート35と板片21と内周壁面2Aと導風板22とで形成される。
 図9(a)は、ダクト8Aに形成された部分ダクトA乃至Fにより排出される空気の方向を示す図、図9(b)は、ダクト8Bに形成された部分ダクトA乃至Fにより排出される空気の方向を示す図である。
 図9(a)に示すように、ダクト8Aの部分ダクトAから排出される空気はダクト8Aの延長方向に対してやや下向きに内周壁面2Aに沿って排出され、部分ダクトBから排出される空気は部分ダクトAから排出された空気よりも下向きに内周壁面2Aに沿って排出され、部分ダクトCから排出される空気は部分ダクトBから排出された空気よりも下向きに内周壁面2Aに沿って排出され、部分ダクトDから排出される空気は部分ダクトCから排出された空気よりも下向きに内周壁面2Aに沿って排出され、部分ダクトEから排出された空気は部分ダクトDから排出された空気よりも下向きに内周壁面2Aに沿って排出され、部分ダクトFから排出された空気は部分ダクトEから排出された空気よりも下向きに内周壁面2Aに沿って排出される。つまり、ダクト8Aを通過した空気は、部分ダクトA乃至Fにより、ダクト8Aの延長方向とは異なる方向に、互いに異なる角度で内周壁面2Aに沿って同一円周方向に排出される。
 また、図9(b)に示すように、ダクト8Bの部分ダクトAから排出される空気は、ダクト8Aの延長方向に対してやや上向きに内周壁面2Aに沿って排出され、部分ダクトBから排出される空気は、部分ダクトAから排出された空気よりも上向きに内周壁面2Aに沿って排出され、部分ダクトCから排出される空気は、部分ダクトBから排出された空気よりも上向きに内周壁面2Aに沿って排出され、部分ダクトDから排出される空気は、部分ダクトCから排出された空気よりも上向きに内周壁面2Aに沿って排出され、部分ダクトEから排出された空気は、部分ダクトDから排出された空気よりも上向きに内周壁面2Aに沿って排出され、部分ダクトFから排出された空気は、部分ダクトEから排出された空気よりも上向きに内周壁面2Aに沿って排出される。つまり、ダクト8Bを通過した空気は、部分ダクトA乃至Fにより、ダクト8Bの延長方向とは異なる方向に、互いに異なる角度で内周壁面2Aに沿って同一円周方向に排出される。
 よって、ダクト8A及びダクト8Bに形成された部分ダクトA乃至Fから排出される空気の流れは、加硫缶中心O周りの一方向の流れとなる。
 図10は、ダクト8A及びダクト8Bから排出された空気が気密扉3の裏面3Aに衝突したときの流れを示す図である。同図において、実線で示す矢印は、ダクト8Aから排出された空気の流れを示し、破線で示す矢印は、ダクト8Bから排出された空気の流れを示す。
 図10に示すように、ダクト8A,8Bの排出プレート31乃至35によって、異なる方向に方向付けされて排出された空気は、それぞれ、気密扉3の裏面3Aに衝突し、裏面3Aを横切るように流れる。詳細には、ダクト8Aの部分ダクトAから排出された空気は、気密扉3の裏面3Aにおいて気密扉3の中心よりもやや下側を横切るように流れ、部分ダクトBから排出された空気が裏面3Aにおいて部分ダクトAから排出された空気の流れよりも下側を流れ、部分ダクトCから排出された空気が裏面3Aにおいて部分ダクトBから排出された空気の流れよりも下側を流れ、部分ダクトDから排出された空気が裏面3Aにおいて部分ダクトCから排出された空気の流れよりも下側を流れ、部分ダクトEから排出された空気が裏面3Aにおいて部分ダクトDから排出された空気の流れよりも下側を流れ、部分ダクトFから排出された空気が裏面3Aにおいて部分ダクトEから排出された空気の流れよりも下側を流れる。
 また、ダクト8Bから排出された空気は、気密扉3の裏面3Aにおいて気密扉3の中心よりもやや上側をダクト8Aから排出された空気とは逆向きに横切るように流れ、部分ダクトAから排出された空気が裏面3Aの中心よりもやや上側を横切るように流れ、部分ダクトBから排出された空気が裏面3Aにおいて部分ダクトAから排出された空気の流れよりも上側を流れ、部分ダクトCから排出された空気が裏面3Aにおいて部分ダクトBから排出された空気の流れよりも上側を流れ、部分ダクトDから排出された空気が裏面3Aにおいて部分ダクトCから排出された空気の流れよりも上側を流れ、部分ダクトEから排出された空気が裏面3Aにおいて部分ダクトDから排出された空気の流れよりも上側を流れ、部分ダクトFから排出された空気が裏面3Aにおいて部分ダクトEから排出された空気の流れよりも上側を流れる。
 つまり、ダクト8Aから排出される空気に対して、ダクト8Bから排出される空気を逆向きに排出させることで、ダクト8A及びダクト8Bから排出された空気は、圧力容器2の内周面において同一円周方向に流れることになる。よって、ダクト8A及びダクト8Bから排出された空気は、気密扉3の裏面3Aに衝突し、裏面3Aを横切るように流れた後に、圧力容器2内における旋回流F1,F2となって開閉端側から閉塞端側に流れることになる(図11参照)。
 以上、説明したように、ダクト8A,8Bを圧力容器の内壁面円周上の水平位置に互いに対向して配設し、各ダクト8A,8Bに異なる角度で湾曲する排出プレート31乃至35の湾曲する方向を同一円周方向となるように設けるとともに、各ダクト8A,8Bにおいて、排出プレート31乃至35の湾曲する曲率が一方向に向けて漸次大きくなるように設けられたことにより、ダクト8A,8Bの各排出口9Bから吹き出される空気の流れは、図9,図10に示すように流れ、圧力容器2内全体に亘るに旋回流F1,F2を発生させることができる。また、ダクト8A;8Bの円周方向に沿う長さXを内周壁面2Aの円周長Lの25%以下としたことで、図10に示すように、ダクト8Aから排出された空気とダクト8Bから排出された空気とが互いに干渉することが防止され、効率良く旋回流を生じさせることができる。
 図11は、圧力容器2内に発生する旋回流を模式的に示す図である。同図において、実線は、ダクト8Aからの空気の流れを示し、破線は、ダクト8Bからの空気の流れを示している。
 同図に示すように、ダクト8A;8Bの排出プレート31乃至35を通過し、部分ダクトA乃至Fから異なる角度で排出された空気は、内周壁面2Aを円周方向に沿いながら、それぞれ気密扉3に衝突し、気密扉3の裏面3Aに沿って横切るように流れる。そして、気密扉3の裏面3Aを流れた空気は、内周壁面2Aに対してそれぞれ異なる角度で傾斜した状態で流れることで、内周壁面2Aの円周方向に沿うような回転する流れを生じさせる。さらに、回転する空気は、気密扉3側から閉塞端側に内周壁面2Aに沿って円を描くように螺旋状に流れて、圧力容器2内における旋回流となって、隔壁7に設けられた熱源5を通過して空気供給領域R2に取り込まれることになる。
 具体的には、ダクト8Aの排出プレート31乃至35によって方向付けされた状態で排出された空気は、内周壁面2Aに沿って下向きに異なる角度で流れて図11に示す一方の旋回流F1となり、ダクト8Bの排出プレート20から排出された空気が内周壁面2Aに沿って上向きに流れて図11に示す他方の旋回流F2となる。また、ダクト8A;8Bが、互いに対向して均等に設けられているため、旋回流F1,F2は互いに半周期ずれた流れとなる。
 一方の旋回流F1は、同図に示すように、ダクト8Aの部分ダクトAから排出された流れF1A、部分ダクトBから排出された流れF1B、部分ダクトCから排出された流れF1C、部分ダクトDから排出された流れF1D、部分ダクトEから排出された流れF1E、部分ダクトFから排出された流れF1Fによって形成される。また、他方の旋回流F2は、ダクト8Bの部分ダクトAから排出された流れF2A、部分ダクトBから排出された流れF2B、部分ダクトCから排出された流れF2C、部分ダクトDから排出された流れF2D、部分ダクトEから排出された流れF2E、部分ダクトFから排出された流れF2Fによって形成される。つまり、部分ダクトA乃至Fを構成する排出プレート31乃至35の湾曲する曲率を変化させることで、流れF1Aから流れF1Fまでの旋回流F1の幅W、及び、流れF2Aから流れF2Fまでの旋回流F2の幅Wを制御することができる。よって、旋回流F1の流れF1Fと旋回流F2の流れF2Aとの距離が近づくように排出プレート31乃至35の湾曲する曲率を変化させることにより、加硫領域R1内の全体に亘る強い旋回流F1,F2を生じさせることが可能となる。
 以上説明したように、本実施形態では、圧力容器2内の温度が延長方向においてほぼ均一に温度上昇するので、圧力容器2の延長方向に沿って並べて格納された複数のタイヤ10の加硫において、タイヤ10が格納される位置に関わらず均一な温度上昇により加硫することができる。さらに、圧力容器2の上部、下部についても均一に温度上昇するので、個々のタイヤに対しても円周方向から均一な温度上昇により均一に加熱することができ、タイヤ全体を均一に加硫することができる。
実施形態3
 実施形態2では複数の排出プレート31乃至35を異なる曲率で湾曲するように形成したが、実施形態3では排出プレート31乃至35を後端部31B乃至35Bから先端部31A乃至35Aに向かって一方向に異なる角度で捻れるように形成した点で実施形態2と異なる。
 図12(a)は、実施形態3に係る排出プレート31乃至35の正面図、図12(b)は、実施形態3に係る排出プレート31乃至35の側面図である。
 以下、同図を用いて本実施形態について説明する。なお、実施形態2と同一構成については、同一の符号を付し、説明を省略する。なお、各ダクト8A;8Bの構成及び各排出プレート31乃至35が設けられる間隔は、実施形態2と同じものとして説明する。
 実施形態3における排出プレート31乃至35は、後端部31B乃至35Bから先端部31A乃至35Aに向かって、それぞれ異なる角度で内周壁面近接方向に捻れる。本実施形態では、ダクトAに排出プレート31乃至35が配設された状態において排出プレート31乃至35を正面視したときに、先端部31A乃至35Aの導風板22側が先端部31A乃至35Aの内周壁面2側に対して右回りに回転して内周壁面2Aに近接するように捻れているものとして説明する(図12)。排出プレート31乃至35は、排出プレート31の捩れる角度が1番小さく、次に排出プレート32の捩れる角度が2番目に小さく、次に排出プレート33の捩れる角度が3番目に小さく、次に排出プレート34の捩れる角度が4番目に小さく、次に排出プレート35の捩れる角度が5番目に小さく形成される。換言すると、排出プレート31,排出プレート32,排出プレート32,排出プレート33,排出プレート34,排出プレート35の順に捩れる角度が大きくなるように設定される。また、排出プレート31乃至35は、各ダクト8A,8Bの円周方向において一端側から他端側に向かうに従って捻れる角度が漸次大きくなるように配設される。なお、排出プレート31乃至35の長さは、実施形態1及び実施形態2と同様に、後端部31B乃至35Bから先端部31A乃至35Aまでの直線長さLが10cm~30cmとなるように設定される。
 具体的には、一方のダクト8Aにおいて、捩れる角度の最も小さい排出プレート31が最も上に、その下に排出プレート32、排出プレート33、排出プレート34、排出プレート35の順に上から下に向かって捩れる角度が漸次大きくなるように配設される。
 また、他方のダクト8Bにおいて、排出プレート31乃至35は、先導風板22側の先端部31A乃至35Aが右回りに内周壁面2Aに近接するように設けられ、捩れる角度の最も小さい排出プレート31が最も下に、その上に排出プレート32、排出プレート33、排出プレート34、排出プレート35の順に下から上に向かって捻れる角度が漸次大きくなるように配設される。
 よって、ダクト8A,8Bの排出口には、排出プレート31乃至35で区画される部分ダクトA乃至Fが形成される。
 図13は、ダクト8Aに形成された部分ダクトA乃至Fにより排出される空気の方向を示す図である。同図に示すように、ダクト8Aの部分ダクトAから排出される空気は、排出プレート31の先端部31Aの捻れにより内周壁面2Aに押し付けられるように、内周壁面2Aに沿ってやや下向きに排出される。また、部分ダクトBから排出される空気は、排出プレート31の先端部31A及び排出プレート32の先端部32Aの捻れにより部分ダクトAから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って下向きに排出される。また、部分ダクトCから排出される空気は、排出プレート32の先端部32A及び排出プレート33の先端部33Aの捻れにより部分ダクトBから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って下向きに排出される。また、部分ダクトDから排出される空気は、排出プレート33の先端部33A及び排出プレート34の先端部34Aの捻れにより部分ダクトCから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って下向きに排出される。また、部分ダクトEから排出される空気は、排出プレート34の先端部34A及び排出プレート35の先端部35Aの捻れにより部分ダクトDから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って下向きに排出される。また、部分ダクトFから排出される空気は、排出プレート35の先端部35Aの捻れにより部分ダクトEから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って下向きに排出される。
 また、ダクト8Bの部分ダクトAから排出される空気は、排出プレート31の先端部31Aの捻れにより内周壁面2Aに押し付けられように、内周壁面2Aに沿ってやや上向きに排出される。また、部分ダクトBから排出される空気は、排出プレート31の先端部31A及び排出プレート32の先端部32Aの捻れにより部分ダクトAから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って上向きに排出される。また、部分ダクトCから排出される空気は、排出プレート32の先端部32A及び排出プレート33の先端部33Aの捻れにより部分ダクトBから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って上向きに排出される。また、部分ダクトDから排出される空気は、排出プレート33の先端部33A及び排出プレート34の先端部34Aの捻れにより部分ダクトCから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って上向きに排出される。また、部分ダクトEから排出される空気は、排出プレート34の先端部34A及び排出プレート35の先端部35Aの捻れにより部分ダクトDから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って上向きに排出される。また、部分ダクトFから排出される空気は、排出プレート35の先端部35Aの捻れにより部分ダクトEから排出された空気よりも強く内周壁面2Aに押し付けられるように、内周壁面2Aに沿って上向きに排出される。
 つまり、ダクト8Bを通過した空気は、排出口9Bの複数の排出プレート31乃至35によって形成される複数の部分ダクトA乃至Fにより円周方向に対して異なる方向に排出され、ダクト8Aに形成された部分ダクトA乃至Fから排出される空気の流れと、ダクト8Bに形成される部分ダクトA乃至Fから排出される空気の流れとは、加硫缶中心O周りの点対称の流れとなる。
 本実施形態のように、排出プレート31乃至35を構成しても、圧力容器2内全体に亘るに旋回流F1,F2を発生させることができる。
 即ち、排出プレート31乃至35を後端部31B乃至35Bから先端部31A乃至35Aに向かって、それぞれ異なる角度で内周面近接方向に捻り、各ダクト8A,8Bの円周方向に沿って捻れる角度が漸次大きくなるように配置することにより、各ダクト8A,8Bに形成される部分ダクトA乃至Fから排出された空気は、図9に示すように内周壁面2Aに沿って円周方向に対して異なる角度及び異なる強さで流れ、図10に示すように気密扉3の裏面3Aを横切るように流れることで、図11に示すような圧力容器2内全体に亘る旋回流F1,F2を発生させることができる。
 よって、圧力容器2内の温度が延長方向において略均一に温度上昇させることができるので、圧力容器2の延長方向に沿って並べて格納された複数のタイヤ10の加硫において、タイヤ10が格納される位置に関わらず均一な温度上昇により加硫することができる。さらに、圧力容器2の上部、下部についても均一に温度上昇するので、個々のタイヤに対しても円周方向から均一な温度上昇により均一に加熱することができ、タイヤ全体を均一に加硫することができる。
実施形態4
 実施形態2では複数の排出プレート31乃至35を異なる曲率で延長方向に沿って湾曲するように形成し、実施形態3では排出プレート31乃至35を後端部31B乃至35Bから先端部31A乃至35Aに向かって一方向に異なる角度で捻れるように形成したが、本実施形態4では、複数の排出プレート31乃至35を異なる曲率で延長方向に沿って湾曲するように形成するとともに、延長方向の後端部31B乃至35Bから先端部31A乃至35Aに向かって一方向に異なる角度で捻れるように形成した点で実施形態2及び実施形態3と異なる。
 図14(a)は、実施形態4に係る排出プレート31乃至35の正面図、図14(b)は、実施形態4に係る排出プレート31乃至35の側面図である。以下、同図を用いて本実施形態について説明する。なお、実施形態1と同一構成については、同一の符号を付し、説明を省略する。なお、各ダクト8A;8Bの構成及び各排出プレート31乃至35が離間する間隔は、実施形態2及び実施形態3と同じものとして説明する。
 実施形態4における排出プレート31乃至35は、延長方向に沿ってそれぞれ異なる曲率で一方向に湾曲し、後端部31B乃至35Bから先端部31A乃至35Aに向かって一方向に異なる角度で内周壁面近接方向に捩れる。なお、排出プレート31乃至35の捻れる方向については、ダクトAに排出プレート31乃至35が配設された状態において排出プレート31乃至35を正面視したときに、先端部31A乃至35Aの導風板22側が先端部31A乃至35Aの内周壁面2側に対して右回りに回転して内周壁面2Aに近接するように捻れているものとして説明する(図14)。
 例えば、排出プレート31乃至35は、排出プレート31の湾曲する曲率及び捩れる角度が1番小さく、次に排出プレート32の曲率及び捩れる角度が2番目に小さく、次に排出プレート33の曲率及び捩れる角度が3番目に小さく、次に排出プレート34の曲率及び捩れる角度が4番目に小さく、次に排出プレート35の曲率及び捩れる角度が5番目に小さい。換言すると、排出プレート31,排出プレート32,排出プレート32,排出プレート33,排出プレート34,排出プレート35の順に湾曲する曲率及び捩れる角度が大きくなるように設定される。なお、排出プレート31乃至35は、例えば、実施形態1乃至実施形態3と同様に、後端部31B乃至35Bから先端部31A乃至35Aまでの直線長さが10cm~30cmとなるように設定される。
 具体的には、一方のダクト8Aにおいて、排出プレート31乃至35は、湾曲する曲率が下向きに設けられ、湾曲する曲率及び捩れる角度の最も小さい排出プレート31が最も上に配設され、その下に排出プレート32、排出プレート33、排出プレート34、排出プレート35の順に上から下に向かって、湾曲する曲率及び捩れる角度が漸次大きくなるように配設される。また、他方のダクト8Bにおいて、排出プレート31乃至35は、湾曲する方向が上向きに設けられ、湾曲する曲率及び捩れる角度の最も小さい排出プレート31が最も下に配設され、その上に排出プレート32、排出プレート33、排出プレート34、排出プレート35の順に下から上に向かって、湾曲する曲率及び捩れる角度が漸次大きくなるように配設される。
 よって、ダクト8A,8Bの排出口には、排出プレート31乃至35に区画される部分ダクトA乃至Fが形成される。
 図15は、ダクト8Aに形成された部分ダクトA乃至Fにより排出される空気の方向を示す図である。同図に示すように、ダクト8Aの部分ダクトAから排出される空気は、排出プレート31の湾曲に加え、先端部31Aの捻れにより、ダクト8Aの延長方向に対してやや下向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトBから排出される空気は、排出プレート31及び32の湾曲に加え、先端部31A及び32Aの捻れにより、部分ダクトAから排出される空気よりも下向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトCから排出される空気は、排出プレート32及び33の湾曲に加え、先端部32A及び33Aの捻れにより、部分ダクトBから排出される空気よりも下向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトDから排出される空気は、排出プレート33及び34の湾曲に加え、先端部33A及び34Aの捻れにより、部分ダクトCから排出される空気よりも下向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトEから排出される空気は、排出プレート34及び35の湾曲に加え、先端部34A及び35Aの捻れにより、部分ダクトDから排出される空気よりも下向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトFから排出される空気は、排出プレート35の湾曲に加え、先端部35Aの捻れにより、部分ダクトEから排出される空気よりも下向き、かつ、内周壁面2Aに押し付けられるように排出される。
 つまり、ダクト8Aを通過した空気は、排出口9Bの複数の排出プレート31乃至35によって形成される複数の部分ダクトA乃至Gにより円周方向に対して異なる方向に排出される。
 また、ダクト8Bの部分ダクトAから排出される空気は、排出プレート31の湾曲に加え、先端部31Aの捻れにより、ダクト8Aの延長方向に対してやや上向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトBから排出される空気は、排出プレート31及び32の湾曲に加え、先端部31A及び32Aの捻れにより、部分ダクトAから排出される空気よりも上向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトCから排出される空気は、排出プレート32及び33の湾曲に加え、先端部32A及び33Aの捻れにより、部分ダクトBから排出される空気よりも上向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトDから排出される空気は、排出プレート33及び34の湾曲に加え、先端部33A及び34Aの捻れにより、部分ダクトCから排出される空気よりも上向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトEから排出される空気は、排出プレート34及び35の湾曲に加え、先端部34A及び35Aの捻れにより、部分ダクトDから排出される空気よりも上向き、かつ、内周壁面2Aに押し付けられるように排出される。また、部分ダクトFから排出される空気は、排出プレート35の湾曲に加え、先端部35Aの捻れにより、部分ダクトEから排出される空気よりも上向き、かつ、内周壁面2Aに押し付けられるように排出される。
 つまり、ダクト8Bを通過した空気は、排出口9Bの複数の排出プレート31乃至35によって形成される複数の部分ダクトA乃至Fにより円周方向に対して異なる方向に排出され、ダクト8Aに形成された部分ダクトA乃至Fから排出される空気の流れと加硫缶中心O周りに点対称の流れ、換言すれば、一方向の大きな流れを形成する。
 本実施形態のように、排出プレート31乃至35を構成しても、圧力容器2内全体に亘るに旋回流F1,F2を発生させることができる。
 即ち、排出プレート31乃至35を延長方向に沿ってそれぞれ異なる曲率で一方向に湾曲し、後端部31B乃至35Bから先端部31A乃至35Aに向かって一方向に異なる角度で内周壁面近接方向に捩れるように構成し、各ダクト8A,8Bにおいて、円周方向に沿って湾曲する方向、及び捻れる方向を同一方向とし、さらに、排出プレート31乃至35の円周方向に沿って湾曲する角度及び捻れる角度を漸次大きくなるように配置することにより、各ダクト8A,8Bに形成される部分ダクトA乃至Fから排出された空気は、図9に示すように内周壁面2Aに沿って円周方向に対して異なる角度及び異なる強さで流れ、図10に示すように気密扉3の裏面3Aを横切るように流れることで、図11に示すような圧力容器2内全体に亘る旋回流F1,F2を発生させることができる。
 よって、圧力容器2内の温度が延長方向において略均一に温度上昇させることができるので、圧力容器2の延長方向に沿って並べて格納された複数のタイヤ10の加硫において、タイヤ10が格納される位置に関わらず均一な温度上昇により加硫することができる。さらに、圧力容器2の上部、下部についても均一に温度上昇するので、個々のタイヤに対しても円周方向から均一な温度上昇により均一に加熱することができ、タイヤ全体を均一に加硫することができる。
 以上、実施形態2乃至実施形態4で説明したように、一対のダクト8A;8Bを加硫缶の水平位置に配置し、各ダクト8A;8Bにおいて同一円周方向に異なる角度で空気を排出するように複数の排出プレートをダクト8A;8Bにそれぞれ設けることで、圧力容器内全体に亘るより強い旋回流を生じさせることが可能となり、圧力容器内の温度上昇を略均一にすることができる。よって、圧力容器内に格納されるタイヤ10の位置に関わらず均一な加硫をすることができる。
 なお、排出プレート31乃至35を湾曲させるとして説明したが、排出プレート31乃至35をそれぞれ異なる角度で折り曲げるように形成し、ダクト8A,8Bに設けるようにしてもよい。
実施形態5
 また、上記実施形態1乃至実施形態4で説明した加硫缶1の構成は、一例であって、上記構成とは異なる構成であってもよい。例えば、上記実施形態1乃至実施形態4では、加硫缶1内に配設するダクト8を一対のダクト8A;8Bとして設けたが、加硫缶1に配設するダクト8の他の形態として、図16(a)乃至図16(d)に示すように設けてもよい。図16(a)乃至図16(d)は、ダクト8に上記実施形態1の排出プレート20を設けた例を示している。
 図16(a)は、ダクト8を内周壁面2A全域に設けた点で上記実施形態1と異なる。それ以外の点については、上記実施形態1と同様である。なお、以下の説明において、上記形態と同様の構成部分については、先に説明した図1乃至図3と同様の符号を付し、その詳細な説明を省略する。また、上記実施形態1乃至実施形態4と同様の構成部分について適用される変形例は、本実施形態についても同様に適用される。
 本実施形態のダクト8は、図16(a)に示すように、導風板22を円筒状に形成して図外の方法によって圧力容器2内の内周壁面2Aに固定され、内周壁面2Aと導風板22との間に空気を流通させて空気供給領域R2から気密扉3側まで加熱された空気を送出するようにしたものである。ダクト8には、気密扉3側の内周壁面2Aと導風板22との間に、同一円周方向に延長する複数の排出プレート20が、円周方向に均等に設けられる。
 即ち、本形態のダクト8の排出口9Bから排出された空気は、全体が内周壁面2Aを円周方向に沿うように排出され、気密扉3に衝突する。気密扉3に衝突した空気は、導風板22の内周面に沿って螺旋状の旋回流となって開閉端側から閉塞端側へ流れるので、加硫領域R1内に加熱された空気が停留することがなく、加硫領域R1全体を均等に温度上昇させることができる。
 よって、本形態のようにダクト8を構成しても、上記形態と同様の効果を得ることができる。
 また、本実施形態5において、排出プレート20に換えて、実施形態2乃至実施形態4で説明した排出プレート31乃至35を適用することもできる。この場合、排出プレート31乃至35を1つの単位とし、この単位毎の排出プレート31乃至35の延長方向が同一円周方向となるように、排出プレート31乃至35の順に繰り返し、内周壁面2A全域に配設すれば良い。
実施形態6
 また、ダクト8を加硫缶1に配設する他の実施形態として、図16(b)に示すように、実施形態6は、圧力容器2の内周壁面2Aの円周方向において均等な間隔をもって3箇所配設するようにした点で上記実施形態1乃至実施形態5と異なる。
 具体的には、本形態のダクト8A;8B;8Cは、図16(b)に示すように、圧力容器2の内周壁面2Aの円周方向において均等な間隔をもって3箇所配設される。各ダクト8A;8B;8Cには、複数の排出プレート20同一円周方向に延長するように構成される。
 即ち、本形態のダクト8A;8B;8Cの各排出口9Bから排出された空気は、それぞれ内周壁面2Aを円周方向に沿うように排出され気密扉3に衝突する。気密扉3に衝突した空気は、それぞれ内周壁面2Aの円周上において均一化された流速の旋回流となって開閉端側から閉塞端側へ流れるので、加熱された空気が加硫領域R1内に停留することがなく、加硫領域R1全体を均等に温度上昇させることができる。よって、本形態のようにダクト8を構成しても、上記形態と同様の効果を得ることができる。
 また、本実施形態6において、排出プレート20に換えて、実施形態2乃至実施形態4で説明した排出プレート31乃至35をダクト8A;8B;8Cに適用することもできる。
実施形態7
 また、ダクト8を加硫缶1に配設する他の実施形態として、図16(c)に示す形態は、ダクト8を圧力容器2の内周壁面2Aの円周方向において互いに対向するように均等な間隔をもって4箇所配設する点で上記実施形態1乃至実施形態6と異なる。
 具体的には、本実施形態のダクト8A;8B;8C;8Dは、図16(c)に示すように、圧力容器2の内周壁面2Aの円周方向において互いに対向するとともに均等な間隔をもって4箇所配設され、各ダクト8A;8B;8C;8Dに、複数の排出プレート20を同一円周方向に延長するように構成したものである。なお、ダクト8Aに対してダクト8Dが対向し、ダクト8Bに対してダクト8Cが対向する位置関係にある。
 即ち、本実施形態のダクト8A;8B;8C;8Dの各排出口9Bから排出された空気は、それぞれ内周壁面2Aを円周方向に沿うように排出されて気密扉3に衝突する。気密扉3に衝突した空気は、それぞれ内周壁面2Aの円周上において均一化された流速の旋回流となって開閉端側から閉塞端側へ流れるので、加硫領域R1内に加熱された空気が停留することがなく、加硫領域R1全体を均等に温度上昇させることができる。よって、本形態のようにダクト8を構成しても、上記実施形態1乃至実施形態6と同様の効果を得ることができる。
実施形態8
 また、ダクト8を加硫缶1に配設する他の形態として、図16(d)に示す形態は、床板4を避けてダクト8を圧力容器2の内周壁面2Aの円周方向において互いに対向するように4箇所配設した点で上記実施形態1乃至実施形態7と異なる。
 具体的には、本実施形態のダクト8A;8B;8C;8Dは、図16(d)に示すように、圧力容器2の内周壁面2Aの円周方向において互いに対向するとともに均等な間隔をもって4箇所配設され、各ダクト8A;8B;8C;8Dに、複数の排出プレート20を同一円周方向に延長するように構成したものである。なお、ダクト8Aに対してダクト8Dが対向し、ダクト8Bに対してダクト8Cが対向する位置関係にある。また、ダクト8A及びダクト8C、ダクト8B及び8Dの組み合わせは、円周方向に均等分割された位置に配置される。
 即ち、本実施形態のダクト8A;8B;8C;8Dの各排出口9Bから排出された空気は、それぞれ内周壁面2Aを円周方向に沿うように排出されて気密扉3に衝突する。気密扉3に衝突した空気は、内周壁面2Aに沿ってそれぞれ螺旋状の旋回流となって開閉端側から閉塞端側へ流れるので、加硫領域R1内に加熱された空気が停留することがなく、加硫領域R1全体を均等に温度上昇させることができる。よって、本形態のようにダクト8を構成しても、上記形態と同様の効果を得ることができる。さらに、床板4を避けるようにダクト8A;8B;8C;8Dを圧力容器2の内周壁面2Aの円周方向において互いに対向する4箇所に配設したことにより、ダクト8A;8B;8C;8Dを保護するために作業者や搬入台車が通る床板の耐久性を高める必要がなくなり、製造コストを抑制することができる。
 また、本実施形態7において、排出プレート20に換えて、実施形態2乃至実施形態4で説明した排出プレート31乃至35をダクト8A;8B;8C;8Dに適用することもできる。
 以上説明したように、本発明によれば、円筒状の圧力容器2内部に当該圧力容器2の延長方向に沿って複数のタイヤ10を格納し、圧力容器2を密閉して、圧力容器2内部の一端側である閉塞端側に設置された熱源5及びファン6を駆動し、ファン6によって送風された空気を複数のダクト8により圧力容器2の他端側である開閉端側で排出し、複数のダクト8の各排出口9Bから排出される空気を圧力容器2の同一円周方向に向けて排出して、複数のタイヤ10を圧力容器2の円周方向に旋回する旋回流内で加硫することにより、圧力容器2内部の温度を均一にしてタイヤ10を加硫することができる。
 即ち、熱源5によって加熱され、ファン6及び複数のダクト8によって空気供給領域R2から圧力容器2の開閉端側に流れ込んだ空気が、ダクト8の排出口9B側に同一円周方向を向くように傾斜して設けられた排出プレート20から圧力容器2の内周壁面2Aに沿うように同一円周方向に向けて排出されるため、開閉端側から閉塞端側へ流れ込む空気が圧力容器2の円周方向に沿って旋回する旋回流となって、圧力容器2内全体に強制的な対流を生じさせ、圧力容器2内の停留をなくすことにより、熱源5によって加熱された空気が圧力容器2内に行き渡るので、圧力容器2内における温度分布を均一化することが可能となる。よって、本発明の加硫缶1によって加硫されたタイヤ10は、圧力容器2の延長方向における位置、及び、タイヤ10の円周方向の位置にかかわらず均一な温度によって加熱されるため、加硫缶1における位置にかかわらず均一な加硫度でタイヤ10を加硫することができる。
 また、排出プレート20をダクト8に設ける他の形態としては、図示しないが、排出プレート20を圧力容器2の気密扉3に設けてもよい。
 具体的には、本形態の排出プレート20をダクト8の延長上の気密扉3に設け、圧力容器2の内周壁面2Aの円周方向に沿うように同一円周方向に延長するようにした。
 即ち、ダクト8の排出口9Bから排出された空気は気密扉3に衝突し、気密扉3に衝突した空気が排出プレート20によって円周方向にガイドされることで内周壁面2Aに沿うように流れ、圧力容器2内において螺旋状の旋回流となって開閉端側から閉塞端側へ流れる。圧力容器2内に旋回流が生じることで加硫領域R1内に加熱された空気は停留することがなく、加硫領域R1全体を均等に温度上昇させることができる。よって、本形態のように排出プレート20を構成しても、上記形態と同様の効果を得ることができる。
 また、上記形態では、圧力容器2内部の一端側である閉塞端側に熱源5及びファン6を設置,駆動することで、熱源5によって加熱されファン6によって送風された空気を複数のダクト8により圧力容器2の他端側である開閉端側で排出するとして説明したが、他端側である開閉端側の例えば気密扉3に熱源5及びファン6を設置し、ファン6によって送風された空気を複数のダクト8により圧力容器2の一端側である閉塞端側で排出するようにしてもよい。
 つまり、閉塞端側で開口するダクト8に、ダクト8の内部から排出口に向かうに従って、内周壁面2Aの図3の白抜き矢印で示すような円周方向の一方に向けて湾曲し、先端部20Aがダクト8の排出口とほぼ同一位置で終端するように排出プレート20を設ければよい。このように構成しても、複数のダクト8の各排出口から排出される空気を圧力容器2の同一円周方向に向けて排出して、複数のタイヤ10を圧力容器2の円周方向に旋回する旋回流内で加硫することにより、圧力容器2内部の温度を均一にしてタイヤ10を加硫することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に限定されるものではない。上記実施の形態に多様な変更、改良を加え得ることは当業者にとって明らかであり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
1 加硫缶、2 圧力容器、2A 内周壁面、3 気密扉、4 床板、
5 熱源、6 ファン、6A モータ、6B 回転翼、7 隔壁、
8;8A~8D ダクト、9A 取り込み口、9B 排出口、
10 タイヤ、20;31乃至35 排出プレート、
20A 先端部、21 板片、22 導風板、F1;F2 旋回流、
R1 加硫領域、R2 空気供給領域。
 

Claims (10)

  1.  円筒状の圧力容器内部の一端側に設置された熱源及びファンと、
    前記圧力容器の延長方向に延長して内壁面円周上に配設され、前記ファンによって送風された空気を圧力容器の他端側で排出するダクトと、
    を備え、
    前記ダクトの排出口が前記ファンによって送風された空気を前記圧力容器の円周方向に向けて排出する加硫缶。
  2.  前記ダクトの排出口が、前記圧力容器の円周方向に延長するプレートを備えた請求項1記載の加硫缶。
  3.  前記ダクトが前記圧力容器の内壁面円周上において円周方向に均等分割された位置に複数配設され、各排出口のプレート同士を同一円周方向に延長して配設する請求項2記載の加硫缶。
  4.  前記プレートは、ダクトの排出口に複数設けられ、前記複数のプレートを互いに異なる角度で前記圧力容器の同一円周方向に沿って設けた請求項2又は請求項3記載の加硫缶。
  5.  前記複数のプレートは、前記圧力容器の一端側から他端側に向かって異なる曲率半径で湾曲し、
    前記ダクトにおける円周方向一端側から他端側に向かうに従って前記プレートの湾曲する曲率半径が漸次大きくなるように配設される請求項4記載の加硫缶。
  6.  前記複数のプレートは、前記圧力容器の一端側から他端側に向かって異なる角度で内壁面近接方向に捻れ、
    前記ダクトにおける円周方向一端側から他端側に向かうに従って捻れる角度が漸次大きくなるように配設される請求項4又は請求項5記載の加硫缶。
  7.  前記ダクトが前記圧力容器の内壁面円周上において互いに対向して配設された請求項1乃至請求項6いずれか記載の加硫缶。
  8.  前記ダクトの配置を前記圧力容器の内壁面円周上において2箇所とした請求項1乃至請求項7いずれか記載の加硫缶。
  9.  前記ダクトが前記圧力容器内部に敷設された床板下部を避けて配設された請求項1乃至請求項8いずれか記載の加硫缶。
  10.  円筒状の圧力容器内部に当該圧力容器の延長方向に沿って複数のタイヤを格納し、前記圧力容器を密閉する工程と、
    前記圧力容器内部の一端側に設置された熱源及びファンを駆動し、前記ファンによって送風された空気を複数のダクトにより圧力容器の他端側で排出する工程とを備え、
    複数のダクトの各排出口から排出される空気を前記圧力容器の同一円周方向に向けて排出し、前記複数のタイヤを前記圧力容器の円周方向に旋回する旋回流内で加硫するタイヤの製造方法。
     
PCT/JP2012/067902 2011-07-15 2012-07-13 加硫缶、及び、タイヤの製造方法 WO2013011934A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12814962.2A EP2732948A4 (en) 2011-07-15 2012-07-13 VULCANIZER AND METHOD FOR MANUFACTURING TIRES
US14/232,973 US9758001B2 (en) 2011-07-15 2012-07-13 Autoclave and tire manufacturing method
CN201280043976.6A CN103781608B (zh) 2011-07-15 2012-07-13 硫化罐和轮胎制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011157048A JP5702241B2 (ja) 2011-07-15 2011-07-15 加硫缶、及び、タイヤの製造方法
JP2011-157048 2011-07-15
JP2011-233886 2011-10-25
JP2011233886A JP5702261B2 (ja) 2011-10-25 2011-10-25 加硫缶

Publications (1)

Publication Number Publication Date
WO2013011934A1 true WO2013011934A1 (ja) 2013-01-24

Family

ID=47558112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067902 WO2013011934A1 (ja) 2011-07-15 2012-07-13 加硫缶、及び、タイヤの製造方法

Country Status (4)

Country Link
US (1) US9758001B2 (ja)
EP (1) EP2732948A4 (ja)
CN (1) CN103781608B (ja)
WO (1) WO2013011934A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752214A (zh) * 2014-01-10 2014-04-30 长园电子(集团)有限公司 一种过氧化物硫化体系橡胶制件的制造设备及其制备方法
JP2016055552A (ja) * 2014-09-10 2016-04-21 株式会社ブリヂストン 加硫缶及びタイヤの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498401B2 (ja) * 2014-09-05 2019-04-10 株式会社ブリヂストン タイヤ製造方法、及びタイヤ製造設備
US10309726B2 (en) * 2015-09-29 2019-06-04 The Boeing Company Hinged baffle for autoclave that deploys at a target temperature during a run cycle
US9802377B2 (en) * 2015-12-21 2017-10-31 The Goodyear Tire & Rubber Company Autoclave
DE102018112986B4 (de) * 2018-05-30 2020-02-06 Gerlach Maschinenbau Gmbh Einrichtung zum Vulkanisieren von kontinuierlichen Profilen
KR102152933B1 (ko) * 2018-11-05 2020-09-08 주식회사 화승알앤에이 고무호스 제조장치
CN113878970B (zh) * 2021-10-12 2023-05-26 天津北玻玻璃工业技术有限公司 超大夹胶玻璃高压釜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110135A (ja) * 1987-09-21 1989-04-26 Teknor Apex Co 予備加硫トレツドを設けたタイヤ及びその製造法
JPH0214730A (ja) * 1988-06-30 1990-01-18 Ashida Seisakusho:Kk オートクレーブのガス循環方法及びその装置
JPH04144714A (ja) * 1990-10-06 1992-05-19 Ashida Seisakusho:Kk オートクレーブ成形における物温制御方法
JPH067665A (ja) * 1991-08-09 1994-01-18 Ashida Seisakusho:Kk オートクレーブのガス流制御方法
JP2006088049A (ja) 2004-09-24 2006-04-06 Ashida Seisakusho:Kk オートクレーブの熱風循環方法・装置
JP2008500898A (ja) 2004-05-28 2008-01-17 タリコ,タリ 複合空気流を備えるオートクレーブ
JP2009000838A (ja) * 2007-06-19 2009-01-08 Bridgestone Corp 更生タイヤの加硫方法及び装置
JP2010540279A (ja) * 2007-09-27 2010-12-24 ソシエテ ド テクノロジー ミシュラン ゴム製物品の硬化時間調節

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150303B2 (en) 2001-05-04 2006-12-19 Michelin Recherche Et Technique S.A. Autoclave for curing retreaded tires
JP5116504B2 (ja) 2008-02-18 2013-01-09 株式会社ブリヂストン 更生タイヤの製造方法
JP2011012945A (ja) 2009-07-04 2011-01-20 Ashida Mfg Co Ltd オートクレーブの熱風循環方法とオートクレーブの熱風循環装置
JP5409218B2 (ja) 2009-09-07 2014-02-05 株式会社ブリヂストン 加硫用袋体及びタイヤの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110135A (ja) * 1987-09-21 1989-04-26 Teknor Apex Co 予備加硫トレツドを設けたタイヤ及びその製造法
JPH0214730A (ja) * 1988-06-30 1990-01-18 Ashida Seisakusho:Kk オートクレーブのガス循環方法及びその装置
JPH04144714A (ja) * 1990-10-06 1992-05-19 Ashida Seisakusho:Kk オートクレーブ成形における物温制御方法
JPH067665A (ja) * 1991-08-09 1994-01-18 Ashida Seisakusho:Kk オートクレーブのガス流制御方法
JP2008500898A (ja) 2004-05-28 2008-01-17 タリコ,タリ 複合空気流を備えるオートクレーブ
JP2006088049A (ja) 2004-09-24 2006-04-06 Ashida Seisakusho:Kk オートクレーブの熱風循環方法・装置
JP2009000838A (ja) * 2007-06-19 2009-01-08 Bridgestone Corp 更生タイヤの加硫方法及び装置
JP2010540279A (ja) * 2007-09-27 2010-12-24 ソシエテ ド テクノロジー ミシュラン ゴム製物品の硬化時間調節

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2732948A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752214A (zh) * 2014-01-10 2014-04-30 长园电子(集团)有限公司 一种过氧化物硫化体系橡胶制件的制造设备及其制备方法
JP2016055552A (ja) * 2014-09-10 2016-04-21 株式会社ブリヂストン 加硫缶及びタイヤの製造方法

Also Published As

Publication number Publication date
CN103781608B (zh) 2016-06-22
EP2732948A4 (en) 2015-04-08
US20140158284A1 (en) 2014-06-12
US9758001B2 (en) 2017-09-12
EP2732948A1 (en) 2014-05-21
CN103781608A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2013011934A1 (ja) 加硫缶、及び、タイヤの製造方法
JP5702261B2 (ja) 加硫缶
WO2018074196A1 (ja) タイヤ
WO2018074197A1 (ja) タイヤ
JPH0839576A (ja) 空気入りタイヤの製造方法及びその装置
JP6117820B2 (ja) タイヤを加硫するための方法及び装置
JP4787531B2 (ja) 生タイヤの加熱装置
JP5702241B2 (ja) 加硫缶、及び、タイヤの製造方法
US3852008A (en) Apparatus for cooling tires during post-inflation
JP2001260244A (ja) 自身のタイヤ一様性を補正するタイヤ、およびその製造方法
US9738043B2 (en) Tire vulcanizing apparatus
JP6383615B2 (ja) 加硫缶及びタイヤの製造方法
JP4901512B2 (ja) 加硫後タイヤ冷却装置
JP2015205502A (ja) 加硫缶
US4028168A (en) Kettle used in the retreading or repair of tires
JP5400182B2 (ja) 加硫機
JP2008188825A (ja) 加硫後タイヤ冷却装置
JP2008062496A (ja) タイヤ成形用剛体コアの加熱方法および装置
US9802377B2 (en) Autoclave
EP3812171A1 (en) Tire
JP4420756B2 (ja) タイヤ加硫装置及びタイヤ加硫方法
JP2010030323A (ja) 加硫機
WO2019244789A1 (ja) タイヤ
EP3081360B1 (en) Tire vulcanizer
JP2019055518A (ja) 空気入りタイヤの製造方法、及び、ポストキュアインフレーション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012814962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14232973

Country of ref document: US