WO2013011711A1 - Stage device and stage control system - Google Patents

Stage device and stage control system Download PDF

Info

Publication number
WO2013011711A1
WO2013011711A1 PCT/JP2012/054883 JP2012054883W WO2013011711A1 WO 2013011711 A1 WO2013011711 A1 WO 2013011711A1 JP 2012054883 W JP2012054883 W JP 2012054883W WO 2013011711 A1 WO2013011711 A1 WO 2013011711A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
slider
guided
guide
pressure
Prior art date
Application number
PCT/JP2012/054883
Other languages
French (fr)
Japanese (ja)
Inventor
小池 晴彦
加来 靖彦
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to CN201280034884.1A priority Critical patent/CN103648714B/en
Publication of WO2013011711A1 publication Critical patent/WO2013011711A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder

Definitions

  • the disclosed embodiment relates to a stage apparatus that moves a moving object to a target position and a stage control system including the stage apparatus, and particularly relates to a stage apparatus that requires high movement accuracy and a stage control system including the stage apparatus.
  • a stage device has a slider, a guide rail that regulates the moving direction of the slider, a drive device that generates thrust of the slider, and a position detection device that detects the position of the slider.
  • a linear motor or a linear scale is used as the drive device or the position detection device.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a stage apparatus capable of positioning at a level of 1 nm using a general-purpose servo amplifier without using a linear amplifier. And providing a stage control system including the same.
  • a stage device that moves a moving object to a target position, which includes a guide rail having a guide surface, and a guided surface facing the guide surface. And a slider whose movement direction is regulated by the guide rail, a drive device that generates thrust of the slider, and a position detection device that detects the position of the slider, the guide surface and the guided surface
  • the stage device to be controlled is applied so that the lubrication state becomes a mixed lubrication state including both boundary lubrication and fluid lubrication in at least some regions and the fluid lubrication state in other regions.
  • stage apparatus and the stage control system of the present invention it is possible to perform positioning at a 1 nm level using a general-purpose servo amplifier without using a linear amplifier.
  • FIG. 1 is a system configuration diagram conceptually showing an overall configuration of a stage control system while showing a front section of a stage apparatus according to an embodiment.
  • FIG. It is the elements on larger scale of the G section in FIG. It is explanatory drawing explaining an example of the surface processing of a guide member. It is a model figure explaining the spring elastic force by a guide member. It is the graph showing the relationship between a frictional force and the air pressure of compressed air, and the semilogarithm graph showing the relationship between a friction coefficient and the air pressure of compressed air. It is a graph showing a Stribeck curve. It is a graph showing the relationship between a thrust command and the displacement of the moving direction of a slider.
  • the stage control system represents a front section of a stage device according to a modification in which the guide member is also attached to the inner surface of the side plate portion of one guide rail, and the guided member is also attached to the side surface of the one insertion portion of the slider.
  • FIG. FIG. 6 is a front sectional view of a stage apparatus according to a modification in which guide members are also attached to the inner surfaces of the side plate portions of both guide rails, and a guided member is also attached to the side surfaces of both insertion portions of the slider.
  • FIG. 5 is a system configuration diagram conceptually showing an entire configuration of a stage control system, along with a front section of a stage apparatus according to a modification in which the air pressure of compressed air is varied by an electropneumatic regulator.
  • FIG. 6 is a front sectional view of a stage apparatus according to a modification in which the guide rail itself is made of CFRP and the slider itself is made of scissors. It is a front sectional view of a stage device concerning a modification which provides a magnetic attraction type linear motor as a drive device. It is a front sectional view of a stage device concerning a modification which provides a magnetic attraction type linear motor as a drive device. It is a front sectional view of a stage device concerning a modification which attaches a stage device to a ceiling. It is a front sectional view of a stage device concerning a modification which attaches a stage device to a wall.
  • a stage control system 1 supplies a controller 2, a stage device 3 that moves a moving object (not shown) to a target position, a general-purpose servo amplifier 4, and compressed air.
  • An air source 5, four regulators 6, 7, 8, 9 that adjust the air pressure of compressed air supplied from the air source 5, and an electromagnetic valve 10 are provided.
  • the stage device 3 includes a guide rail 12 having a substantially U-shape in two cross-sectional views installed in parallel so as to extend on the surface plate 11 in the front-rear direction (front side in FIG. 1-depth direction on the page).
  • a plate-like slider 13 whose movement direction is regulated by the rail 12, a top base 15 fixed to the slider 13 via two support members 14 provided on the slider 13, and a linear that generates thrust of the slider 13
  • a motor 16 (drive device) and a linear scale 17 (position detection device) for detecting the position of the slider 13 are provided.
  • Each guide rail 12 is provided with a concave strip 18, an upper plate 12u, a lower plate 12d, and a side plate 12s.
  • the upper plate portion 12u, the lower plate portion 12d, and the side plate portion 12s are configured as separate bodies and are connected by an appropriate connecting member (for example, a screw or an adhesive).
  • a guide member 19 is affixed to the inner surface (surface on the concave strip 18 side) of the lower plate portion 12d of each guide rail 12 with, for example, a screw or an adhesive.
  • the guide member 19 softens carbon fiber 191 that is a kind of fiber reinforced plastic (FRP: Fiber Reinforced Plastics) and has good lubricity, as shown in FIG. It is made of fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastics) hardened with an epoxy resin 192 that is elastically deformed. Specifically, the guide member 19 peels off the epoxy resin 192 on the surface, and is substantially parallel to the surface inside the epoxy resin 192 (front side in FIG. 2-depth direction on the paper surface, or FIG. 2). Surface processing is performed to expose a substantially circular carbon fiber 191 layer in a cross-sectional view extending in the left-right direction), and the carbon fiber 191 layer protrudes from the surface of the epoxy resin 192 on the surface. It is in a state.
  • FRP Fiber Reinforced Plastics
  • the protruding portion (exposed portion) of the carbon fiber 191 from the surface of the epoxy resin 192 is a “mountain”, and the surface of the epoxy resin 192 is a “valley”. That is, the surface of the guide member 19 has a surface roughness of 0.1 to 0.3 ⁇ m level.
  • the protruding amount of the carbon fiber 191 from the surface of the epoxy resin 192 is about 0.3 ⁇ m, and the flatness of the surface of the guide member 19 is about 3 ⁇ m.
  • the guide member 19 before the surface processing is in a state where the carbon fiber 191 layer is entirely covered with the epoxy resin 192.
  • the surface of the guide member 19 in such a state is polished using a polishing machine P (or may be lapped using a lapping machine) as shown in FIG.
  • the epoxy resin 192 on the surface is peeled off until the layer appears on the surface.
  • the epoxy resin 192 is several ⁇ m below (upper surface in FIG. 3) from the upper surface (upper surface in FIG. 3) of the carbon fiber 191 located on the front surface side.
  • the carbon fiber 191 sinks into the epoxy resin 192 and returns to its original position after the polishing is completed. Therefore, as shown in FIG. 3C, the guide member 19 after the surface processing has a state in which the layer of the carbon fiber 191 is exposed on the surface, that is, a state in which the layer of the carbon fiber 191 protrudes from the surface of the epoxy resin 192. Become.
  • the slider 13 is provided with insertion portions 20 inserted into the concave strip portions 18 of the guide rail 12 at both ends in the width direction (left-right direction in FIG. 1).
  • a guided member 21 composed of a heel that is a kind of chalcedony is affixed with, for example, a screw or an adhesive.
  • the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the inner surface 12sa of the side plate portion 12s and the surface 19a of the guide member 19 affixed to each guide rail 12 are described in the claims. It corresponds to the guide surface, and the upper surface 20a and the side surface 20b of each insertion portion 20 of the slider 13 and the surface 21a of each guided member 21 affixed to the slider 13 correspond to the guided surface described in the claims. To do. Note that the inner surface 12ua of the upper plate portion 12u and the inner surface 12sa of the side plate portion 12s and the surface 19a of the guide member 19 affixed to the guide rail 12 correspond to the guide surface.
  • the upper surface 20a and the side surface 20b of each insertion portion 20 of the slider 13 and the surface 21a of each guided member 21 affixed to the slider 13 are equivalent to the guided surface. 13 is equivalent to having a guided surface.
  • the inner surface 12ua of the upper plate portion 12u of the guide rail 12 and the inner surface 12sa of the side plate portion 12s and the surface 19a of the guide member 19 attached to the guide rail 12 will be collectively referred to as “guide surfaces”.
  • the upper surface 20a and the side surface 20b of the insertion portion 20 and the surface 21a of each guided member 21 attached to the slider 13 are collectively referred to as “guided surfaces”.
  • the slider 13 has compressed air ejection holes 22u connected to the air source 5 via the regulator 6 at both front and rear corners (in other words, four corners of the upper surface of the slider 13) of the upper surface 20a of each insertion portion 20.
  • Compressed air ejection holes 22d connected to the air source 5 via the solenoid valve 10 and the regulators 7 and 8 are provided at both front and rear corners of the surface 21a of each guided member 21 in the front and rear direction of the side surface 20b of each insertion portion 20.
  • both corners in other words, both front and rear corners on both sides of the slider 13
  • there are compressed air ejection holes 22s connected to the air source 5 via the regulator 9.
  • the number and arrangement positions of these compressed air ejection holes 22u, 22d, and 22s (hereinafter collectively referred to as “compressed air ejection holes 22” as appropriate) may be changed as appropriate.
  • the compressed air ejection hole 22u changes the lubrication state between the surfaces supplied from the air source 5 via the regulator 6 toward the inner surface 12ua of the upper plate portion 12u of the guide rail 12 facing in the vertical direction. Compressed air with a predetermined pressure adjusted to be discharged.
  • the friction coefficient is ⁇
  • the friction coefficient ⁇ is very small (for example, ⁇ ⁇ 0.01).
  • the inner surface 12ua of the upper plate portion 12u of the guide rail 12 in the fluid lubrication state and the upper surface 20a of the insertion portion 20 of the slider 13 are not in contact with each other and all the load is borne by the static pressure of the compressed air, That is, it will be in the non-contact state which interposes an air gap.
  • the compressed air ejection hole 22d is a fluid lubrication pressure (relatively high pressure supplied from the air source 5 through the regulator 7 and the electromagnetic valve 10 toward the surface 19a of the guide member 19 facing in the vertical direction.
  • the compressed air of the first pressure) or the compressed air of the mixed lubrication pressure (second pressure) which is a relatively low pressure supplied via the regulator 8 and the electromagnetic valve 10 is ejected.
  • the fluid lubrication pressure is the air pressure of compressed air for bringing the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 into the fluid lubrication state.
  • the carbon fiber 191 protrudes from the surface of the epoxy resin 192 and the epoxy resin 192. Both the surfaces do not come into contact with the surface of the guided member 22 and are in the non-contact state.
  • the mixed lubrication pressure is the air pressure of the compressed air for making the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 into a mixed lubrication state including both boundary lubrication and fluid lubrication.
  • the linear spring characteristic in which the relationship between the thrust of the linear motor 16 and the displacement generated thereby is a straight line in the minute movement region between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state. Compressed air pressure adjusted to occur.
  • the friction coefficient ⁇ is larger than that of fluid lubrication (for example, ⁇ > 0.1).
  • the friction coefficient ⁇ is between fluid lubrication and boundary lubrication (for example, 0.01 ⁇ ⁇ 0.1).
  • the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state are separated from the surface of the epoxy resin 192 in the carbon fiber 191 when viewed at the surface roughness level.
  • a part of the projecting portion adheres (contacts) to the surface of the guided member 22 and the surface of the epoxy resin 192 hardly contacts the surface of the guided member 22, and the load is mainly borne by the static pressure of the compressed air.
  • a state (hereinafter, referred to as “fine contact state” as appropriate) occurs, and a linear spring characteristic is generated between these surfaces in a minute movement region.
  • a soft epoxy resin 192 around the carbon fiber 191 functions as a spring element S and elastically deforms in the load direction (upward-downward direction in FIG. 4). Then, the epoxy resin 192 functions as the spring element S when the slider 13 moves in the lateral direction orthogonal to the load direction by about several tens of nanometers with the carbon fiber 191 adhered to the surface 21a of the guided member 21.
  • a spring elastic force is generated by elastically deforming in the lateral direction.
  • the compressed air ejection holes 22 s provide a lubrication state between the surfaces supplied from the air source 5 via the regulator 9 toward the inner surface 12 sa of the side plate portion 12 s of the guide rail 12 facing in the left-right direction. Compressed air having a predetermined pressure adjusted to achieve the fluid lubrication state is ejected.
  • the inner surface 12sa of the side plate portion 12s of the guide rail 12 in the fluid lubrication state and the side surface 20b of the insertion portion 20 of the slider 13 are not in contact with each other and are in the non-contact state.
  • the vertical direction is the load of the slider 13, the air pressure of the compressed air ejected from the compressed air ejection hole 22u, and the compressed air ejected from the compressed air ejection hole 22d.
  • the posture is maintained by a balance between the air pressure and the spring elastic force by the guide member 19.
  • the posture is maintained by a balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22s on the left side of the figure and the air pressure of the compressed air ejected from the compressed air ejection hole 22s on the right side of the figure.
  • the lubrication state of the guide surfaces of the guide rails 12 and the guided surfaces of the sliders 13 is at least partially. It is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22u, 22d, and 22s so that the mixed lubrication state is obtained in this region and the fluid lubrication state is obtained in the other regions. Specifically, a mixed lubrication state occurs between the surface 19 a of each guide member 19 and the surface 21 a of each guided member 21, and the inner surface 12 ua of the upper plate portion 12 u of each guide rail 12 and each insertion portion 20 of the slider 13.
  • the moving direction of the slider 13, that is, the position in the front-rear direction is detected by the linear scale 17.
  • the servo amplifier 4 receives a detection signal based on the position detection result of the slider 13 from the linear scale 17, and supplies a drive current to the linear motor 16 based on a deviation (position deviation) between the detection signal and a movement command from the controller 2.
  • the position of the slider 13 is controlled by outputting.
  • the servo amplifier 4 determines whether or not the slider 13 has approached the vicinity of the target position by determining whether or not the position deviation has become below a predetermined level set in advance.
  • the controller 2 outputs a switching command to the effect that the compressed air is the compressed air of the mixed lubrication pressure.
  • the servo amplifier 4 may output a switching command to the effect that the compressed air is compressed air of mixed lubrication pressure.
  • the regulator 6 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22u of the slider 13.
  • the compressed air whose air pressure is adjusted by the regulator 6 is supplied to the compressed air ejection hole 22u at the predetermined pressure.
  • the regulator 7 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 d of the slider 13.
  • the compressed air whose air pressure is adjusted by the regulator 7 is supplied to the compressed air ejection hole 22d through the electromagnetic valve 10 at the above-described fluid lubrication pressure.
  • the regulator 8 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 d of the slider 13.
  • the compressed air whose air pressure has been adjusted by the regulator 8 is supplied to the compressed air ejection hole 22d through the electromagnetic valve 10 at the mixed lubrication pressure.
  • the regulator 9 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 s of the slider 13.
  • the compressed air whose air pressure is adjusted by the regulator 9 is supplied to the compressed air ejection hole 22s at the predetermined pressure.
  • the solenoid valve 10 switches the opening and closing of the two ports on the basis of a switching command from the controller 2, whereby the compressed air supplied to the compressed air ejection hole 22 d of the slider 13 is adjusted for air pressure by the regulator 7.
  • the pressure is switched between the compressed air and the compressed air having the pressure for mixed lubrication whose air pressure is adjusted by the regulator 8.
  • the controller 2 uses the compressed air as the compressed air for the fluid lubrication pressure at substantially the same timing as when the movement command is output.
  • a switching command is output.
  • the solenoid valve 10 opens the port on the regulator 7 side and closes the port on the regulator 8 side, so that the compressed air supplied to the compressed air ejection hole 22d is compressed to the fluid lubrication pressure. Switch to air.
  • the controller 2 determines that the slider 13 has approached the vicinity of the target position by the servo amplifier 4, the compressed air is compressed into the compressed lubrication pressure. A switching command to the effect is output.
  • the solenoid valve 10 closes the regulator 7 side port and opens the regulator 8 side port, thereby compressing the compressed air supplied to the compressed air ejection hole 22d to the pressure of the mixed lubrication pressure. Switch to air.
  • the compressed air is supplied to the compressed air ejection holes 22u, 22d, and 22s of the slider 13, and the guide surface of each guide rail 12 is supplied by the compressed air pressure supplied to the compressed air ejection holes 22u, 22d, and 22s. And the lubrication state between the slider 13 and the guided surface of the slider 13 are controlled. Specifically, the air pressure of the compressed air supplied from the air source 5 is adjusted by the regulators 6, 7, 8, and 9, and the compressed air is adjusted by the air pressure adjusted by the regulators 6, 7, 8, and 9.
  • Compressed air supplied to the compressed air ejection holes 22d by switching the opening and closing of the two ports of the solenoid valve 10 is switched to the regulator 7 By switching to compressed air of fluid lubrication pressure whose air pressure is adjusted in (1) or to compressed air of mixed lubrication pressure whose air pressure is adjusted by the regulator 8). Control the lubrication with the surface.
  • the air source 5 and the regulators 6, 7, 8, and 9 correspond to the air supply device described in the claims.
  • the compressed air supplied to the compressed air ejection hole 22u among the compressed air ejection holes 22u, 22d, and 22s of the slider 13 has its air pressure adjusted by the regulator 6.
  • the compressed air fixed to the compressed air of a predetermined pressure and supplied to the compressed air ejection hole 22s is fixed to the compressed air of the predetermined pressure whose air pressure is adjusted by the regulator 9, but is supplied to the compressed air ejection hole 22d.
  • the compressed air is switched between when the slider 13 moves to the vicinity of the target position and when the slider 13 is positioned near the target position.
  • the controller 2 when the slider 13 is moved to the vicinity of the target position, the controller 2 outputs a switching command to the compressed air jet hole 22d to the compressed air jet hole 22d to output the compressed air to the compressed air of the fluid lubrication pressure.
  • the supplied compressed air is switched to compressed air having a fluid lubrication pressure whose air pressure is adjusted by the regulator 7.
  • compressed air with fluid lubrication pressure is supplied to the compressed air ejection hole 22d via the electromagnetic valve 10, and the surface 19a of each guide member 19 and the surface 21a of each guided member 21 are in a fluid lubrication state (non-contact state).
  • the controller 2 when positioning the slider 13 in the vicinity of the target position, the controller 2 outputs a switching command to the compressed air to the compressed air ejection hole 22d to the effect that the compressed air is compressed to the mixed lubrication pressure.
  • the compressed air to be used is switched to the compressed air of the mixed lubrication pressure whose air pressure is adjusted by the regulator 8.
  • compressed air with mixed lubrication pressure is supplied to the compressed air ejection holes 22d via the electromagnetic valve 10, and the surface 19a of each guide member 19 and the surface 21a of each guided member 21 are in a mixed lubrication state (fine contact state). ), And a linear spring characteristic is generated between these surfaces in a minute movement region.
  • the relationship between the friction force between the surface of the guide member 19 and the surface of the guided member 21 and the air pressure of the compressed air was measured. That is, the air pressure of the compressed air can be adjusted in units of 0.001 [MPa] by using the digital pressure switch ISE30A (manufactured by SMC Corporation), so the air pressure of the compressed air is changed from 0.07 [MPa] to 0.
  • the frictional force generated between the surface of the guide member 19 and the surface of the guided member 21 at each air pressure was measured by changing the pressure in increments of 0.005 [MPa] to 180 [MPa].
  • the frictional force was measured using a force gauge AD-4932A-50N (manufactured by A & D Co., Ltd.).
  • FIG. 5A shows the measurement result.
  • the vertical axis represents the frictional force [N]
  • the horizontal axis represents the compressed air pressure [MPa].
  • FIG. 5B shows the derivation result.
  • shaft is set to the friction coefficient (micro
  • 5 (a) and 5 (b) revealed the following. That is, if the compressed air pressure is less than 0.135 [MPa], the frictional force increases, but if the compressed air pressure is 0.140 [MPa] or higher, the frictional force is around 0.001 [N]. There was little change. The frictional force changed in the range from 0 [N] to 50 [N], and the friction coefficient ⁇ changed in the range of about 0.1 to 0.001.
  • the frictional force becomes very small in the vicinity of 0.135 [MPa], and the frictional force hardly changes even when the air pressure of the compressed air is further increased. Therefore, it is considered that the surface of the guide member 19 and the surface of the guided member 21 are in a fluid lubrication state (non-contact state).
  • FIG. 6 shows a general Stribeck curve (curved line) with the vertical axis representing the friction coefficient ⁇ and the horizontal axis representing the dimensionless number of bearing characteristics.
  • the Stribeck curve is a curve showing the relationship between the friction coefficient ⁇ and the number of bearing characteristics, and is a curve based on accurate measured values.
  • the number of bearing characteristics is represented by (viscosity ⁇ ⁇ speed q) / load W.
  • the Stribeck curve is for explaining the characteristics of a bearing lubricated with oil, but can also be used in the same way when explaining the characteristics of an aerostatic bearing.
  • the opposing surfaces are A and B
  • the mean square surface roughness (distance) of surface A is ⁇ A
  • the mean square surface roughness (distance) of surface B is ⁇ B.
  • the gap h can be considered as the distance between the average position of the roughness of the surface A and the average position of the roughness of the surface B
  • the film thickness ratio ⁇ It can be said that it is expressed in multiples.
  • the mixed lubrication state fine contact state in which the surface A and the surface B are in minute contact, that is, the load between the surface A and the surface B is applied to the surface. It becomes a state to bear both by the contact at the roughness level and by the static pressure of the compressed air. Therefore, by adjusting the air pressure of the compressed air, the flying height of the slider 13, that is, the gap h between the surface 19 a of the guide member 19 and the surface 21 a of the guided member 21 can be adjusted. Since it can be adjusted, it is considered that the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 can be controlled.
  • the slider 13 is moved from the position of displacement 0 [nm] in both the positive direction (for example, forward) and the negative direction (for example, backward) in the moving direction.
  • a fixed size was fed in increments of 5 [nm] with a width of 50 [nm]. Then, the thrust command [%] at each displacement was measured and recorded.
  • 7A shows the measurement result at 0.117 [MPa], FIG.
  • FIG. 7B shows the measurement result at 0.118 [MPa]
  • FIG. 7C shows 0.119 [MPa].
  • the measurement result in [MPa] is shown.
  • 7 (a) to 7 (c) the vertical axis is the thrust command [%]
  • the horizontal axis is the displacement [nm] in the moving direction of the slider 13, and measurements are performed in the order of the arrows in each figure. The measurement results are shown.
  • the air pressure of the compressed air is 0.117 [MPa], 0.118 [MPa], 0.119.
  • it is considered that nonlinear spring characteristics are generated between the surface of the guide member 19 and the surface of the guided member 21.
  • the compressed air pressure was 0.117 [MPa]
  • the most beautiful hysteresis curve was obtained.
  • FIG. 8A shows the measurement result.
  • the vertical axis is the thrust command [%] and the horizontal axis is the displacement [nm] in the moving direction of the slider 13, and measurement is performed from the measurement start point to the measurement end point in the order of the arrows in the figure. The measurement results are shown.
  • FIG. 8B shows the derivation result.
  • the vertical axis represents thrust [N]
  • the horizontal axis represents displacement [nm] in the moving direction of the slider 13.
  • the deviation (positional deviation) between the detection signal from the linear scale 17 and the movement command from the controller 2 should be zero, but in reality it is a number. Since minute vibration (vibration at the time of stoppage) remains at about the pulse, the standard deviation ⁇ is calculated by observing the position deviation signal that is oscillating for a certain period of time and performing statistical calculations, and the standard deviation ⁇ is tripled. 3 ⁇ (hereinafter referred to as “3 ⁇ of position deviation”) was used to evaluate the performance in the operation in the minute movement region as the range of variation.
  • the air pressure of the compressed air can be adjusted in units of 0.001 [MPa] by using a digital pressure switch ISE30A (manufactured by SMC Corporation).
  • the position deviation 3 ⁇ of the slider 13 is obtained on the controller 2 by a ladder program. In the controller 2, since the position command unit is set to [ ⁇ m] and the number of digits after the decimal point is set to 3, position information in units of 1 [ ⁇ m] can be acquired.
  • position deviation information is fetched every H scan (high-speed scan), and 3 ⁇ of the position deviation is derived using a function for obtaining the standard deviation on the controller 2. Since the ladder program is configured so that H scan is set to 0.5 [ms] and 3 ⁇ is calculated every 10 [s], the number of position deviation samples is 20000. This time, when the air pressure of the compressed air is increased from 0.130 [MPa] to 0.194 [MPa] in increments of 0.001 [MPa], the change in the positional deviation of the slider 13 at each air pressure is 3 ⁇ . Was measured.
  • FIG. 9 shows the measurement results. 9A and 9B, the vertical axis is 3 ⁇ [nm] of the positional deviation of the slider 13, the horizontal axis is the air pressure [MPa] of compressed air, and in FIG. 9A, the positional deviation is 3 ⁇ . Is in the range of 0 [nm] to 1200 [nm], and in FIG. 9B, 3 ⁇ of the positional deviation is shown in the range of 0 [nm] to 20 [nm].
  • 9 (a) and 9 (b) revealed the following. That is, when the air pressure of the compressed air is in the range of 0.130 [MPa] to 0.171 [MPa], the 3 ⁇ of the positional deviation of the slider 13 is stabilized between about 8 to 13 [nm]. When the compressed air pressure is in the range of 0.171 [MPa] to 0.194 [MPa], the positional deviation 3 ⁇ of the slider 13 is between 100 [nm] and 200 [nm] as the compressed air pressure increases. Although gradually increasing, 3 ⁇ of the positional deviation of the slider 13 suddenly increased when the compressed air pressure reached 0.194 [MPa].
  • the surface 19a of the guide member 19 is controlled by controlling the air pressure of the compressed air supplied to the compressed air ejection hole 22d of the slider 13 on the basis of the characteristics derived from the examinations (A) to (D). And the surface 21a of the guided member 21 are controlled to a desired lubrication state, and in a minute movement region between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state. Control to produce linear spring characteristics. As an example, since the curve representing the relationship between the friction coefficient ⁇ and the air pressure of the compressed air shows a tendency similar to the Stribeck curve, the first inflection point appearing in the curve (the side where the air pressure is small).
  • the second inflection point (air pressure side) is considered as the boundary between mixed lubrication and fluid lubrication, and the above fluid lubrication pressure is determined from the second inflection point.
  • a large air pressure is determined, and the pressure for mixed lubrication is determined to be an air pressure between two inflection points.
  • the fluid lubrication pressure is determined as an air pressure corresponding to the gap h where the film thickness ratio ⁇ is 3 or more, and the mixed lubrication pressure is set as the film. The air pressure corresponding to the gap h where the thickness ratio ⁇ is 1 to 3 is determined.
  • the air pressure of the compressed air is adjusted by the regulator 7, and the compressed air is supplied to the compressed air ejection hole 22d through the electromagnetic valve 10 at the determined fluid lubrication pressure, so that the surface 19a of the guide member 19 and the guided member
  • the lubrication state with the surface 21a of the member 21 is controlled to be a fluid lubrication state.
  • the air pressure of the compressed air is adjusted by the regulator 8, and the compressed air is supplied to the compressed air ejection hole 22 d through the electromagnetic valve 10 at the determined mixed lubrication pressure, so that the surface 19 a of the guide member 19 and the guided member
  • the lubrication state with the surface 21a of the member 21 is set to a mixed lubrication state, and control is performed so that a linear spring characteristic is generated between these surfaces in a minute movement region.
  • the guide surface of each guide rail 12 and the guided surface of the slider 13 are opposed to each other, and the slider 13 is positioned in the vicinity of the target position.
  • the lubrication state between these surfaces becomes a mixed lubrication state between the surface 19a of each guide member 19 and the surface 21a of each guided member 21, and the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the slider. 13 so as to be in a fluid lubrication state between the top surface 20a of each insertion portion 20 and between the inner surface 12sa of the side plate portion 12s of each guide rail 12 and the side surface 20b of each insertion portion 20 of the slider 13. Is done.
  • a method of positioning on the order of 1 nm using linear spring characteristics in a minute movement region of the rolling bearing is, for example, “Nonlinear characteristics of the mechanism and its control” by Shigeru Futami. The Journal of the Robotics Society of Japan, Vol 9, No. 4, pp. 439-497, 1991).
  • a synchronous AC linear motor is used as a drive device for a slider (movable table).
  • the slider is a linear motion type rolling bearing (rolling) using a ball. Guide).
  • a linear spring characteristic due to elastic deformation of the ball of the rolling bearing is exhibited, and in a slider movement amount range of 100 [nm] to 100 [ ⁇ m].
  • the non-linear spring characteristic is shown.
  • the spring constant in a minute movement region where the moving amount of the slider is approximately 100 [nm] or less is about 8.5 [N / ⁇ m].
  • the thrust control resolution in a general-purpose servo amplifier is examined in a stage apparatus using a linear motor similar to the stage apparatus described in the above document.
  • the maximum thrust of the linear motor is about 400 [N].
  • the spring constant in the minute movement region where the moving amount of the slider is approximately 100 [nm] or less is about 8.5 [N / ⁇ m]. That is, the reaction force of the spring necessary for the slider to be displaced by 1 [nm] is 0.0085 [N].
  • the maximum thrust is 400 / 0.0085 ⁇ 47059
  • the spring constant in the minute movement region can be set to 0.4155 ⁇ 10 9 [N / m] ⁇ 420 [N / ⁇ m] in the measurement based on the examination of (C). . That is, when the spring constant in the minute movement region in this embodiment is compared with the spring constant in the minute movement region in the above document, 420 / 8.5 ⁇ 50 Thus, the spring constant in the minute movement region in this embodiment is about 50 times larger than the spring constant in the minute movement region in the above document.
  • the reaction force of the spring necessary for the slider 13 to be displaced by 1 [nm] is 0.42 [N].
  • the amount of displacement is 0.2 / 0.42 ⁇ 0.48 [nm] It becomes. Accordingly, even if the general-purpose servo amplifier 4 is used without using the linear amplifier, the surface 19a of each guide member 19 and the surface 21a of each guided member 21 that are in the mixed lubrication state are configured by appropriate materials, These surfaces are brought into a minute contact state to generate a spring elastic force, and it is possible to perform ultra-precise positioning at the 1 nm level using linear spring characteristics in a minute movement region. As a result, a linear proportional operation without hysteresis can be performed, and a back-and-forth backlash and a lack of movement amount with respect to a movement command can be prevented.
  • FIG. 10 is a schematic diagram schematically showing the hunting width when the slider is stopped.
  • FIG. 10A is a schematic view of a general linear guide type stage apparatus
  • FIG. 10B is a schematic view of a general air guide type stage apparatus.
  • the hunting width when the slider is stopped is ⁇ 5 [pulse] or more.
  • the hunting width when the slider is stopped is considered to be ⁇ 30 [pulse] or more.
  • the hunting width when the slider 13 is stopped is considered to be ⁇ 2 to 3 [pulse]. It is thought that it can be minimized.
  • FIG. 11 is a schematic diagram schematically showing the variation of the detection position in the 10 nm step feed operation.
  • FIG. 11A is a schematic view of a general linear guide type stage apparatus
  • FIG. 11B is a schematic view of a general air guide type stage apparatus.
  • the variation of the detection position in the 10 nm step feed operation is about ⁇ 5 [nm]
  • FIG. 12 is a schematic diagram schematically showing the vertical fluctuation caused by the vibration when the slider is stopped in the minute movement operation.
  • FIG. 12A is a schematic view of a general linear guide type stage apparatus
  • FIG. 12B is a schematic view of a general air guide type stage apparatus.
  • the vertical fluctuation due to the vibration when the slider is stopped in the minute movement operation is about ⁇ 5 [nm], which is generally shown in FIG.
  • the vertical fluctuation due to vibration when the slider is stopped in a minute movement operation is ⁇ 30 [nm] or more.
  • the vertical fluctuation due to vibration when the slider 13 is stopped in the minute movement operation is considered to be ⁇ 2 to 3 [nm]. It is considered that the fluctuation in the vertical direction when the slider 13 is stopped in the minute movement operation can be suppressed.
  • the slider 13 has the compressed air ejection holes 22u, 22d, 22s for ejecting the compressed air toward the guide surface of the guide rail 12 on the guided surface. Then, a relatively low pressure of compressed air for mixed lubrication is ejected from the compressed air ejection hole 22 on the guided surface to be in the mixed lubrication state, and from the compressed air ejection hole 22 on the guided surface to be in the fluid lubrication state.
  • the state of lubrication between the guide surface and the guided surface is controlled by the air pressure of the compressed air, such as by jetting compressed air having a relatively high pressure for fluid lubrication.
  • the lubrication state between the guide surface and the guided surface can be controlled to a desired lubrication state, and the lubrication state can be switched by changing the air pressure of the compressed air during driving. Furthermore, the air pressure can be adjusted so that a linear spring characteristic is generated between the surface 19a of the guide member 19 in the mixed lubrication state and the surface 21a of the guided member 21.
  • the air pressure of the compressed air is controlled so that a linear spring characteristic is generated between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state.
  • the reaction force of the linear spring in the minute movement region can be adjusted within the current control range of the general-purpose servo amplifier 4.
  • the thrust that balances the reaction force of the linear spring in the minute movement region can be controlled even on the order of 1 nm, and fluctuations when the slider 13 is stopped can be greatly reduced, so that vibration when the slider 13 is stopped can be greatly suppressed.
  • ultra-precise positioning at the 1 nm level can be performed using the linear spring characteristic in the minute movement region.
  • the strength of the linear spring in the minute movement region can be varied (the number of the linear springs to be adhered can be varied).
  • the spring constant of the linear spring characteristics can be adjusted according to the device configuration, etc., so the strength of the linear spring in the minute movement region is adjusted according to the minute current control range and required performance of the servo amplifier.
  • the guide member 19 is composed of CFRP which is a kind of FRP.
  • FRP a kind of FRP.
  • the strength of the guide member 19 can be increased.
  • the temperature coefficient of the epoxy resin 192 is positive and the temperature coefficient of the carbon fiber 191 is negative, the temperature coefficient of the guide member 19 can be kept small by configuring the guide member 19 with CFRP.
  • the guide member 19 is particularly subjected to surface processing for peeling the surface epoxy resin 192 and exposing the carbon fiber 191 layer (see FIG. 3). That is, in the guide member 19, a part of the protruding portion of the carbon fiber 191 exposed from the epoxy resin 192 adheres to the surface 21 a of the guided member 21. At this time, since the epoxy resin 192 holding the carbon fiber 191 is softer than the carbon fiber 191, if the carbon fiber 191 adhered to the surface 21a of the guided member 21 moves laterally by about several tens of nm, The epoxy resin 192 is elastically deformed to generate a spring elastic force.
  • the spring constant in the minute movement region in the present embodiment is about 50 times larger than the spring constant in the minute movement region in the above-described document, and therefore, the surface 19a of the guide member 19 and the surface 21a of the guided member 21.
  • a 1 nm level ultra-precise positioning can be performed using linear spring characteristics.
  • the carbon fiber 191 sinks due to the elastic deformation of the epoxy resin 192 while the carbon fiber 191 of the guide member 19 and the surface 21a of the guided member 21 are adhered. .
  • the original state can be restored within the elastic deformation range of the epoxy resin 192.
  • the carbon fiber 191 is hard and has good lubricity, it is difficult to wear even if it is in contact with the surface 21a of the guided member 21, and the epoxy resin 192 is almost in contact with the surface 21a of the guided member 21 in the mixed lubrication state. Therefore, the resin wear hardly occurs. Therefore, wear and dust generation of the guide rail 12 can be prevented.
  • the protruding portion of the carbon fiber 191 adheres to the surface 21a of the guided member 21, and the guide member 19 and the guided member 21 are connected to each other, so that minute vibrations are vertically generated therebetween. Even if it occurs, the distance between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 can be kept constant. Thereby, the vibration of the up-down direction between the guide member 19 and the to-be-guided member 21 can be suppressed significantly.
  • the guided member 21 is composed of a heel that is a kind of chalcedony.
  • the to-be-guided member 21 can be comprised with a hard material, and wear can be decreased.
  • chalcedony is a polycrystalline mineral in which very fine crystals of quartz are densely solidified, it has the advantage of being easy to process because it has less direction than single crystal materials such as quartz. As a result, it becomes easy to process pores such as the compressed air ejection holes 22 of the guided member 21 and to polish the surface.
  • Amber is a material that may be used for chemical mortar, balance fulcrum, ashtray, table clock, flint, etc. by utilizing its high hardness with Mohs hardness of 6.5-7. By configuring the guided member 21 with this scissors, wear can be further reduced in terms of hardness and friction coefficient.
  • the following effects can be obtained. That is, generally, when the guide surface of the guide rail and the guided surface of the slider come into contact with each other during the movement, these surfaces wear, and thus the clearance between the guide rail and the slider during movement (the amount of flying of the slider) is to some extent (eg, (About 5 ⁇ m) must be secured, and the running accuracy of the slider may be reduced.
  • the guide member 19 is made of CFRP having a small sliding friction
  • the guided member 21 is made of a ridge having a small sliding friction, so that the surface 19a of the guide member 19 and the surface of the guided member 21 are temporarily moved during movement. Even when 21a comes into contact, the wear of these surfaces can be reduced, and the gap between the guide rail 12 and the slider 13 during movement (the flying height of the slider 13) should be set narrow (for example, 1 ⁇ m or less). Can do.
  • the surface of the guide member 19 that has the air source 5 and the regulators 6, 7, 8, and 9 that adjust the air pressure of the compressed air supplied from the air source 5 is in a mixed lubrication state.
  • Compressed air is supplied at an air pressure adjusted so that a linear spring characteristic is generated between 19 a and the surface 21 a of the guided member 21.
  • the compressed air supplied to the compressed air ejection holes 22 d of the guided member 21 is compressed air with the fluid lubrication pressure adjusted by the regulator 7.
  • the solenoid valve 10 is switched to the compressed air of the mixed lubrication pressure whose air pressure is adjusted by the regulator 8.
  • the mixed lubrication pressure is applied to the compressed air ejection hole 22d.
  • the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 can be changed to the mixed lubrication state.
  • the slider 13 can be lifted and moved at high speed during movement, and the slider 13 can be brought into fine contact with each guide rail 12 during positioning to produce linear spring characteristics. Can be realized.
  • the air pressure is changed by switching to a plurality of air pressures determined in advance. The accuracy can be improved and stabilized.
  • the solenoid valve 10 and the compressed air ejection hole 22d are connected to each other and affixed to the inner surface 12da of the lower plate portion 12d of each guide rail 12 by the air pressure of the compressed air supplied to the compressed air ejection hole 22d.
  • the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 attached to the lower surface 20c of each insertion portion 20 of the slider 13 is controlled, but is not limited thereto.
  • the guide member 19 is affixed to the inner surface 12ua of the upper plate portion 12u instead of the inner surface 12da of the lower plate portion 12d of each guide rail 12, and the guided member 21 is attached to the lower surface 20c of each insertion portion 20 of the slider 13.
  • Each guide rail is attached to the upper surface by connecting the solenoid valve 10 and the compressed air ejection hole provided on the surface 21a of the guided member 21 and the compressed air pressure supplied to the compressed air ejection hole. 12 may control the lubrication state between the surface 19a of the guide member 19 affixed to the inner surface 12ua of the upper plate portion 12u and the surface 21a of the guided member 21 affixed to the upper surface 20a of each insertion portion 20 of the slider 13.
  • a regulator 6 may be connected to the compressed air ejection holes provided in the lower surface 20 c of each insertion portion 20 of the slider 13, and compressed air whose air pressure is adjusted by the regulator 6 may be supplied.
  • the guide member 19 is each guide rail. 12 is affixed to the inner surface 12da of the lower plate portion 12d and the guided member 21 is affixed to the lower surface 20c of each insertion portion 20 of the slider 13, but this is not restrictive. That is, the guide member 19 is also affixed to the inner surface 12sa of the side plate portion 12s of one guide rail 12 of the two guide rails 12, and the guided member 21 is inserted into one of the two insertion portions 20 of the slider 13. You may affix also to the side 20b of the part 20.
  • the stage control system 1A includes the controller 2, the stage device 3A, the servo amplifier 4, the air source 5, the regulators 6, 7, 8, regulators 9 ⁇ / b> A, 24 a, 24 b, the above-described solenoid valve 10, and the solenoid valve 25.
  • the configuration of the stage apparatus 3A is substantially the same as the stage apparatus 3 according to the above embodiment.
  • the inner surface 12da of the lower plate portion 12d of each guide rail 12 and one of the two guide rails 12 (in this example, the right guide rail 12 in FIG. 13).
  • the aforementioned guide member 19 is attached to the inner surface 12sa of the side plate portion 12s.
  • the lower surface 20c of each insertion portion 20 of the slider 13 and the side surface 20b of one insertion portion 20 (in this example, the right insertion portion 20 in FIG. 13) of the two insertion portions 20 of the slider 13 The aforementioned guided member 21 is affixed.
  • each insertion portion 20 When each insertion portion 20 is inserted into the concave portion 18 of each guide rail 12, the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the upper surface 20a of each insertion portion 20 face each other in the vertical direction.
  • the surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the rail 12 and the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20 are opposed to each other in the vertical direction.
  • the inner surface 12sa of the side plate portion 12s of the rail 12 and the side surface 20b of the left insertion portion 20 are opposed to each other in the left-right direction.
  • the surface 21b of the guided member 21 affixed to the side surface 20b of the insertion portion 20 faces in the left-right direction.
  • the inner surface 12ua of the upper plate portion 12u of each guide rail 12, the surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of each guide rail 12, and the side plate portion 12s of the left guide rail 12 are used.
  • the inner surface 12sa of the guide member 19 and the surface 19b of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s of the right guide rail 12 correspond to the guide surface described in the claims.
  • the inner surface 12ua of the upper plate portion 12u of the guide rail 12, the surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the guide rail 12, the inner surface 12sa of the side plate portion 12s of the left guide rail 12, The surface 19b of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s of the right guide rail 12 is collectively referred to as “guide surface”.
  • the upper surface 20 a of each insertion portion 20 of the slider 13 the surface 21 a of the guided member 21 attached to the lower surface 20 c of each insertion portion 20, the side surface 20 b of the left insertion portion 20, and the side surface 20 b of the right insertion portion 20.
  • the surface 21b of the guided member 21 affixed to corresponds to the guided surface described in the claims.
  • the upper surface 20a of each insertion portion 20 of the slider 13 the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20, the side surface 20b of the left insertion portion 20, and the side surface of the right insertion portion 20, as appropriate.
  • the surface 21b of the guided member 21 affixed to 20b is generically referred to as a “guided surface”.
  • the slider 13 has the compressed air ejection holes 22u and 22d described above, and is connected to the air source 5 via the regulator 9A at both front and rear corners of the side surface 20b of the left insertion portion 20.
  • the compressed air ejection holes 22 s (hereinafter referred to as “left compressed air ejection holes 22 s” as appropriate) are provided at the front and rear corners of the surface 21 b of the guided member 21 affixed to the side surface 20 b of the right insertion portion 20.
  • a compressed air ejection hole 22s connected to the air source 5 through the electromagnetic valve 25 and the regulators 24a and 24b hereinafter referred to as “right compressed air ejection hole 22s” as appropriate).
  • the left compressed air ejection hole 22s indicates the lubrication state between the surfaces supplied from the air source 5 via the regulator 9A toward the inner surface 12sa of the side plate portion 12s of the left guide rail 12 facing in the left-right direction. Compressed air of a predetermined pressure controlled so as to be in a fluid lubrication state.
  • the inner surface 12sa of the side plate portion 12s of the left guide rail 12 in the fluid lubrication state and the side surface 20b of the left insertion portion 20 of the slider 13 are not in contact with each other and are in the aforementioned non-contact state.
  • the compressed air ejection hole 22s on the right side is compressed air having the above-described fluid lubrication pressure supplied through the regulator 24a and the electromagnetic valve 25 toward the surface 19b of the guide member 19 facing in the left-right direction, or the regulator 24b. And the compressed air of the above-mentioned pressure for mixed lubrication supplied via the electromagnetic valve 25 is ejected.
  • the surface 19b of the guide member 19 in the fluid lubrication state and the surface 21b of the guided member 21 are in the aforementioned non-contact state.
  • the surface 19b of the guide member 19 in the mixed lubrication state and the surface 21b of the guided member 21 are in the above-described fine contact state, and a linear spring characteristic is generated in a minute movement region between these surfaces.
  • the load of the slider 13, the air pressure of the compressed air ejected from the compressed air ejection hole 22u, the air pressure of the compressed air ejected from the compressed air ejection hole 22d, and the guide member 19 are arranged.
  • the posture is maintained by a balance with the aforementioned spring elastic force.
  • the left-right direction depends on the balance between the air pressure of the compressed air ejected from the left compressed air ejection hole 22s, the air pressure of the compressed air ejected from the right compressed air ejection hole 22s, and the spring elastic force by the guide member 19. Maintain posture. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
  • the surface 19b of the guide member 19 affixed to the surface 21a of the affixed guided member 21 and the inner surface 12sa of the side plate portion 12s of the right guide rail 12 and the side surface 20b of the right insertion portion 20 of the slider 13 Between the inner surface 12 ua of the upper plate portion 12 u of each guide rail 12 and the upper surface 20 a of each insertion portion 20 of the slider 13, and the left side.
  • the surface 21b of the guided member 21 is in a fine contact state, and the other guide surfaces and the guided surface are in a non-contact state.
  • the regulator 9A adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22s on the left side of the slider 13.
  • the compressed air whose air pressure is adjusted by the regulator 9A is supplied to the left compressed air ejection hole 22s at the predetermined pressure.
  • the regulator 24 a adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 s on the right side of the slider 13.
  • the compressed air whose air pressure is adjusted by the regulator 24 a is supplied to the compressed air ejection hole 22 s on the right side through the electromagnetic valve 25 at the fluid lubrication pressure.
  • the regulator 24 b adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 s on the right side of the slider 13.
  • the compressed air whose air pressure has been adjusted by the regulator 24b is supplied to the compressed air ejection hole 22s on the right side through the electromagnetic valve 25 at the mixed lubrication pressure.
  • the solenoid valve 25 switches the opening and closing of the two ports on the basis of a switching command from the controller 2, whereby the compressed air supplied to the compressed air ejection hole 22 s on the right side of the slider 13 is adjusted to the air pressure by the regulator 24 a. Switching is performed between compressed air at the lubricating pressure and compressed air at the mixed lubricating pressure whose air pressure is adjusted by the regulator 24b. Specifically, when moving the slider 13 to the vicinity of the target position, the port on the regulator 24a side is opened based on the switching command to make the compressed air the compressed air of the fluid lubrication pressure.
  • the compressed air supplied to the compressed air ejection hole 22s on the right side is switched to compressed air having a fluid lubricating pressure.
  • the regulator 24a side port is closed and the regulator 24b side port is closed based on the switching command to make the compressed air the compressed air of the mixed lubrication pressure.
  • the compressed air supplied to the compressed air ejection hole 22s on the right side is switched to the compressed air having the mixed lubrication pressure.
  • stage control system 1A other than the above is the same as the stage control system 1 according to the above embodiment.
  • the air source 5 and the regulators 6, 7, 8, 9A, 24a, 24b correspond to the air supply device described in the claims.
  • the controller 2 when the slider 13 is moved to the vicinity of the target position, the controller 2 outputs a switching command to the solenoid valves 10 and 25 to make the compressed air the compressed air for the fluid lubrication pressure.
  • the compressed air supplied to the compressed air ejection hole 22d and the right compressed air ejection hole 22s is switched to the compressed air of the fluid lubrication pressure whose air pressure is adjusted by the regulators 7 and 24a.
  • the compressed air supplied to the compressed air ejection hole 22s on the right side is switched to the compressed air of the mixed lubricating pressure whose air pressure is adjusted by the regulators 8 and 24b.
  • compressed air of mixed lubrication pressure is supplied to the compressed air ejection holes 22d and the right side compressed air ejection holes 22s via the solenoid valves 10 and 25, and the surface of each guide member 19 and the surface of each guided member 21 becomes a mixed lubrication state (fine contact state), and a linear spring characteristic is generated between these surfaces in a minute movement region.
  • the same effect as the above embodiment can be obtained. Further, in addition to the guide surface of the guide rail 12 and the guided surface of the slider 13 that are opposed to each other in the vertical direction, the guide surface of the guide rail 12 and the guided surface of the slider 13 that are opposed to each other in the left and right direction are brought into a minute contact state. Therefore, it is possible to suppress minute fluctuations in the vertical direction of the slider 13 and to suppress minute fluctuations in the horizontal direction of the slider 13.
  • the guide member 19 is attached to each guide.
  • the guide member 21 is attached to the inner surface 12da of the lower plate portion 12d of the rail 12 and the lower surface 20c of each insertion portion 20 of the slider 13, the present invention is not limited to this. That is, the guide member 19 may be attached to the inner surfaces 12sa of the side plate portions 12s of the two guide rails 12, and the guided member 21 may be attached to the side surfaces 20b of the two insertion portions 20 of the slider 13.
  • the configuration of the stage apparatus 3B according to this modification is substantially the same as the stage apparatus 3A according to the modification (1).
  • the above-described guide member 19 is attached to the inner surface 12da of the lower plate portion 12d of each guide rail 12 and the inner surface 12sa of the side plate portion 12s of each guide rail 12.
  • the aforementioned guided member 21 is attached to the lower surface 20 c of each insertion portion 20 of the slider 13 and the side surfaces 20 b of the two insertion portions 20 of the slider 13.
  • each insertion portion 20 When each insertion portion 20 is inserted into the concave portion 18 of each guide rail 12, the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the upper surface 20a of each insertion portion 20 face each other in the vertical direction.
  • the surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the rail 12 and the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20 are opposed to each other in the vertical direction.
  • the surface 19b of the guide member 19 affixed to the inner surface 12sa of the 12 side plate portions 12s and the surface 21b of the guided member 21 affixed to the side surface 20b of each insertion portion 20 are opposed to each other in the left-right direction.
  • the inner surfaces 12ua of the upper plate portion 12u of each guide rail 12, the inner surfaces 12da of the lower plate portion 12d of each guide rail 12, and the surfaces 19a and 19b of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s are referred to as “guide”.
  • the inner surface 12ua of the upper plate portion 12u of the guide rail 12 and the surfaces 19a and 19b of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the guide rail 12 and the inner surface 12sa of the side plate portion 12s are referred to as “guide”.
  • each insertion portion 20 of the slider 13 and the surfaces 21a and 21b of the guided member 21 attached to the lower surface 20c and the side surface 20b of each insertion portion 20 are guided surfaces according to claims. It corresponds to.
  • the upper surface 20a of each insertion portion 20 of the slider 13 and the surfaces 21a and 21b of the guided member 21 attached to the lower surface 20c and the side surface 20b of each insertion portion 20 are collectively referred to as “guided surfaces”.
  • the slider 13 has the compressed air ejection holes 22u and 22d described above. Further, both front and rear corners of the surface 21b of the guided member 21 attached to the side surface 20b of the insertion portion 20 on the left side of the slider 13 are connected to the air source 5 via an electromagnetic valve and two regulators. Compressed air ejection holes 22 s (hereinafter referred to as “left compressed air ejection holes 22 s” as appropriate) are provided, and at the front and rear corners of the surface 21 b of the guided member 21 affixed to the side surface 20 b of the right insertion portion 20. A compressed air ejection hole 22s (hereinafter referred to as “right compressed air ejection hole 22s” as appropriate) connected to the air source 5 via an electromagnetic valve and two regulators is provided.
  • left compressed air ejection holes 22 s hereinafter referred to as “left compressed air ejection holes 22 s” as appropriate
  • the load of the slider 13, the air pressure of the compressed air ejected from the compressed air ejection hole 22u, the air pressure of the compressed air ejected from the compressed air ejection hole 22d, and the guide member 19 are arranged.
  • the posture is maintained by the balance with the spring elastic force described above.
  • the air pressure of the compressed air ejected from the left compressed air ejection hole 22s and the spring elastic force by the guide member 19, and the air pressure of the compressed air ejected from the right compressed air ejection hole 22s and the guide member 19 are shown.
  • the posture is maintained by the balance with the spring elastic force.
  • the slider 13 moves in the front-rear direction along the guide rail 12.
  • a linear spring characteristic is present in the minute movement region between the guide surface of each guide rail 12 in the mixed lubrication state and the guided surface of the slider 13. Jill so on, compressed air ejection holes 22u, 22 d, are controlled by the air pressure of the compressed air supplied to the 22s. Therefore, when positioning the slider 13 in the vicinity of the target position, the surface 19 a of the guide member 19 affixed to the inner surface 12 da of the lower plate portion 12 d of each guide rail 12 and the lower surface 20 c of each insertion portion 20 of the slider 13.
  • the surface 21b of the guide member 21 is in a fine contact state, and the other guide surfaces and the guided surface are in a non-contact state.
  • the guide surface of the guide rail 12 and the guided surface of the slider 13 opposed to each other in the vertical direction in addition to the guide surface of the guide rail 12 and the guided surface of the slider 13 opposed to each other in the vertical direction, the guide surface of the guide rail 12 opposed to the left and right directions. And the guided surface of the slider 13 can be brought into a fine contact state, so that a minute fluctuation in the vertical direction of the slider 13 can be suppressed and a minute fluctuation in the horizontal direction of the slider 13 can be suppressed.
  • the configuration is such that the compressed air supplied to the compressed air ejection hole 22d of the guided member 21 is switched by the electromagnetic valve 10.
  • the configuration is not limited, and the compressed air supplied to the compressed air ejection hole 22d of the guided member 21 may be varied by an electropneumatic regulator.
  • the configuration of the stage control system 1 ⁇ / b> C according to the present modification is substantially the same as that of the stage control system 1 according to the above-described embodiment, but instead of the regulators 7 and 8 and the electromagnetic valve 10, The difference is that an electropneumatic regulator 23 for changing the air pressure of the compressed air supplied from the air source 5 is provided.
  • the electropneumatic regulator 23 Based on the variable command from the controller 2, the electropneumatic regulator 23 converts the air pressure of the compressed air supplied to the compressed air ejection hole 22d of the slider 13 into the fluid lubrication pressure and the mixed lubrication pressure. Make it variable. Specifically, when the slider 13 is moved to the vicinity of the target position, the controller 2 sets the compressed air pressure to the fluid lubrication pressure at substantially the same timing as when the movement command is output. The variable command is output. Then, based on this variable command, the electropneumatic regulator 23 changes the air pressure of the compressed air supplied to the compressed air ejection hole 22d to the fluid lubrication pressure.
  • the air pressure of the compressed air is used for mixed lubrication.
  • the servo amplifier 4 may output a variable command indicating that the compressed air pressure is set to the mixed lubrication pressure.
  • the electropneumatic regulator 23 switches the air pressure of the compressed air supplied to the compressed air ejection hole 22d to the mixed lubrication pressure.
  • the compressed air whose air pressure has been varied by the electropneumatic regulator 23 is supplied to the compressed air ejection hole 22d at a fluid lubrication pressure or a mixed lubrication pressure.
  • the compressed air ejection hole 22d is fluid lubrication pressure or mixed lubrication pressure supplied from the air source 5 through the electropneumatic regulator 23 toward the surface of the guide member 19 of the above-described guide rail 12 facing in the vertical direction. Of compressed air.
  • stage control system 1C other than the above is the same as the stage control system 1 according to the above-described embodiment.
  • the air source 5, the aforementioned regulators 6 and 9, and the electropneumatic regulator 23 correspond to the air supply device described in the claims.
  • the controller 2 issues an electropneumatic variable command indicating that the air pressure of the compressed air is the fluid lubrication pressure.
  • the air pressure of the compressed air that is output to the regulator 23 and supplied to the compressed air ejection hole 22d is changed to the fluid lubrication pressure by the electropneumatic regulator 23.
  • compressed air having a pressure for fluid lubrication is supplied to the compressed air ejection hole 22d, and the surface of each guide member 19 and the surface of each guided member 21 of the slider 13 are in a fluid lubrication state (non-contact state). Become.
  • the controller 2 when positioning the slider 13 in the vicinity of the target position, the controller 2 outputs a variable command indicating that the air pressure of the compressed air is the mixed lubrication pressure to the electropneumatic regulator 23 and supplies it to the compressed air ejection hole 22d.
  • the compressed air pressure is changed to the mixed lubrication pressure by the electropneumatic regulator 23.
  • compressed air having a pressure for mixed lubrication is supplied to the compressed air ejection holes 22d, and the surface of each guide member 19 and the surface of each guided member 21 are in a mixed lubrication state (fine contact state).
  • a linear spring characteristic occurs in the minute movement region.
  • the air pressure of the compressed air supplied to the compressed air ejection hole 22d of the guided member 21 is varied between the fluid lubrication pressure and the mixed lubrication pressure.
  • An electropneumatic regulator 23 is provided.
  • the guide member 19 is also affixed to the inner surface 12sa of one or both of the side plate portions 12s of the two guide rails 12 as in the modified example (1) and the modified example (2) described above.
  • the guided member 21 is also attached to one or both side surfaces 20b of the two insertion portions 20, the compression supplied to the compressed air ejection holes 22 of the guided member 21 as in the modified example of (3) above.
  • a method of changing air with an electropneumatic regulator may be applied.
  • the guide rail itself is made of CFRP and the slider itself is made of heel
  • the guide member 19 made of CFRP is pasted on the guide rail 12 and the slider 13 is made of heel.
  • the guided member 21 is pasted, the present invention is not limited to this, and the guide rail itself may be made of CFRP, and the slider itself may be made of scissors.
  • the stage device 3D includes a guide rail 12D having a substantially T shape in a cross-sectional view installed on the surface plate 11 so as to extend in the front-rear direction, and a moving direction of the guide rail 12D.
  • the slider 13D is regulated, the linear motor 16 generates the thrust of the slider 13D, and the linear scale 17 detects the position of the slider 13D.
  • the guide rail 12D is made of CFRP that has been subjected to surface processing (see FIG. 3) that peels the epoxy resin 192 on the surface and exposes the carbon fiber 191 layer. And has an upright portion 12Dj and an upper plate portion 12Du.
  • the upper surface 12Da of the upper plate portion 12Du, the lower surfaces 12Db and 12Dc on the left and right sides, and the left and right side surfaces 12Dd and 12De across the upright portion 12Dj correspond to the guide surfaces described in the claims.
  • the upper surface 12Da, the left and right lower surfaces 12Db and 12Dc, and the left and right side surfaces 12Dd and 12De are collectively referred to as “guide surfaces” as appropriate.
  • the slider 13D is configured by a ridge, and includes an upper plate portion 13Du, a left lower plate portion 13Da, a right lower plate portion 13Db, a left plate portion 13Dc, and a right plate portion. 13Dd. Note that the upper surface of the upper plate portion 12Da of the guide rail 12D is opposed to the lower surface 13D1 of the upper plate portion 13Du in the vertical direction, and the upper surface of the lower left plate portion 13Da of the upper surface portion 12Du is opposed to the lower surface 12Db on the left side of the upper plate portion 12Du.
  • the left surface D5 of the right side plate portion 13Dd facing the right side surface 12De of 12Du corresponds to the guided surface described in the claims.
  • the lower surface 13D1 of the upper plate portion 13Du the upper surface 13D2 of the left lower plate portion 13Da, the upper surface 13D3 of the right lower plate portion 13Db, the right surface 13D4 of the left plate portion 13Dc, and the left surface D5 of the right plate portion 13Dd are referred to as “guided surface”. ".
  • the lower surface 13D1 of the upper plate portion 13Du of the slider 13D is provided with a compressed air ejection hole 22Du that ejects compressed air toward the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D that is opposed in the vertical direction.
  • the upper surface 13D2 of the plate portion 13Da is provided with a compressed air ejection hole 22Dd for injecting compressed air toward the lower surface 12Db on the left side of the upper plate portion 12Du of the guide rail 12D facing in the vertical direction, and the right lower plate portion 13Db
  • the upper surface 13D3 is provided with a compressed air ejection hole 22Dd for ejecting compressed air toward the lower surface 12Dc on the right side of the upper plate portion 12Du of the guide rail 12D facing in the vertical direction.
  • the right surface 13D4 of the left plate portion 13Dc has Compressed air ejection for ejecting compressed air toward the left side surface 12Dd of the upper plate portion 12Du of the guide rail 12D facing in the left-right direction 22Da is provided, and a compressed air ejection hole 22Db for ejecting compressed air toward the right side surface 12De of the upper plate portion 12Du of the guide rail 12D facing in the left-right direction is provided on the left surface D5 of the right side plate portion 13Dd.
  • the vertical direction is the air pressure of the compressed air ejected from the compressed air ejection hole 22Du, the aforementioned spring elastic force by the guide rail 12D, and the ejection from the compressed air ejection hole 22Dd.
  • the posture is maintained by the balance with the air pressure of the compressed air.
  • the posture in the left-right direction is maintained by a balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22Da and the air pressure of the compressed air ejected from the compressed air ejection hole 22Db. Then, due to the thrust generated by the linear motor 16, the slider 13D moves in the front-rear direction along the guide rail 12D.
  • the lubrication state between the guide surface of the guide rail 12D and the guided surface of the slider 13D is such that the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D and the slider 13D
  • a mixed lubrication state is established with the lower surface 13D1 of the upper plate portion 13Du, a fluid lubrication state is established in other regions, and there is a minute amount between the guide surface of the guide rail 12D and the guided surface of the slider 13D in the mixed lubrication state. It is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22Du, 22Dd, 22Da, and 22Db so that a linear spring characteristic is generated in the moving region.
  • the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D and the lower surface 13D1 of the upper plate portion 13Du of the slider 13D are in a fine contact state, and the other guide surfaces And the guided surface are in a non-contact state.
  • the lubrication state between the guide surface of the guide rail 12D and the guided surface of the slider 13D is determined by the upper plate of the guide rail 12D.
  • the mixed lubrication state is controlled between the upper surface 12Da of the portion 12Du and the lower surface 13D1 of the upper plate portion 13Du of the slider 13D, the fluid lubrication state is controlled in other regions.
  • the present invention is not limited to this.
  • the lubrication state between the right side surface 12De of the portion 12Du and the left surface D5 of the right side plate portion 13Dd of the slider 13D may also be controlled to be in a mixed lubrication state.
  • the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D, the lower surface 13D1 of the upper plate portion 13Du of the slider 13D, and the upper plate portion 12Du of the guide rail 12D when positioning the slider 13D in the vicinity of the target position, the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D, the lower surface 13D1 of the upper plate portion 13Du of the slider 13D, and the upper plate portion 12Du of the guide rail 12D.
  • the left side surface 12Dd and the right side surface 13D4 of the left side plate portion 13Dc of the slider 13D (or the right side surface 12De of the upper plate portion 12Du of the guide rail 12D and the left side surface D5 of the right side plate portion 13Dd of the slider 13D) are in a fine contact state.
  • the slider 13D when positioning the slider 13D in the vicinity of the target position, between the left side surface 12Dd of the upper plate portion 12Du of the guide rail 12D and the right surface 13D4 of the left side plate portion 13Dc of the slider 13D, and the upper plate of the guide rail 12D
  • the lubrication state between the right side surface 12De of the portion 12Du and the left side surface D5 of the right side plate portion 13Dd of the slider 13D may also be controlled to be in a mixed lubrication state.
  • the surface 12Dd and the right surface 13D4 of the left plate 13Dc of the slider 13D, and the right surface 12De of the upper plate 12Du of the guide rail 12D and the left surface D5 of the right plate 13Dd of the slider 13D are in a fine contact state.
  • the lower surface 12Db on the left side of the upper plate portion 12Du of the guide rail 12D and the upper surface 13D2 of the lower left plate portion 13Da of the slider 13D and the guide rail 12D may also be controlled to be in a mixed lubrication state.
  • the stage apparatus 3E When a magnetic attraction type linear motor is provided as a driving device (part 1) As shown in FIG. 17, the stage apparatus 3E according to the present modification includes two guide rails 12E installed in parallel so as to extend in the front-rear direction on a surface plate 11 having two guide members 19Eu attached to the upper surface.
  • the slider 13E having a substantially inverted U shape in a cross-sectional view whose movement direction is regulated by the guide rail 12E, a magnetic attraction type linear motor 16E (driving device) that generates thrust of the slider 13E, and the position of the slider 13E are detected.
  • the linear scale 17 is provided.
  • a guide member 19Es is affixed to the inner surface 12Ea of each guide rail 12E.
  • the guide member 19Eu attached to the upper surface 11a of the surface plate 11 and the guide member 19Es attached to the inner surface 12Ea of the guide rail 12 will be collectively referred to as “guide member 19E” as appropriate.
  • the guide member 19E is made of CFRP that has been subjected to surface processing (see FIG. 3) that peels the epoxy resin 192 on the surface and exposes the carbon fiber 191 layer, like the guide member 19 according to the above-described embodiment. ing.
  • the slider 13E includes left and right side wall portions 13Es.
  • a guided member 21Ed is attached to the lower surface 13E1 of the left and right side wall portions 13Es, and a guided member 21Es is disposed on the outer side surface 13E2 of the left and right side wall portions 13Es. It is affixed.
  • the guided member 21Ed and the guided member 21Es will be collectively referred to as “guided member 21E” as appropriate.
  • the guided member 21 ⁇ / b> E is configured with a heel.
  • each guided member 21Ed is vertically opposed to the surface 19E1 of each guide member 19Eu affixed to the upper surface 11a of the surface plate 11, and the surface 21E2 of each guided member 21Es is each guide rail 12E. This is opposed to the surface of the guide member 19Es affixed to the inner surface 12Ea.
  • each guide member 19Eu affixed to the upper surface 11a of the surface plate 11 and the surface of the guide member 19Es affixed to the inner surface 12Ea of each guide rail 12E are the guide surfaces described in the claims.
  • each guide member 19Eu and the surface of each guide member 19Es are collectively referred to as “guide surfaces”, and the surface 21E1 of each guided member 21Ed and the surface 21E2 of each guided member 21Es are referred to as “guided surfaces”.
  • each guided member 21Ed of the slider 13E is provided with a compressed air ejection hole 22Ed that ejects compressed air toward the surface 19E1 of the guide member 19Eu facing in the vertical direction, and the left side wall of the slider 13E.
  • the guide member 21Es affixed to the outer side surface 13E2 of the portion 13Es (hereinafter referred to as “left guided member 21Es” as appropriate) is attached to the inner surface 12Ea of the left guide rail 12E facing in the left-right direction.
  • Compressed air ejection holes 22Es (hereinafter, referred to as “left compressed air ejection holes 22Es” as appropriate) for ejecting compressed air toward the surface 19E2 of the guide member 19Es are provided, and the outer side surface 13E2 of the right side wall portion 13Es.
  • Guided member 21Es (hereinafter referred to as “right guided member 21Es” as appropriate) )
  • the load of the slider 13E, the air pressure of the compressed air ejected from the compressed air ejection hole 22Ed, the aforementioned spring elastic force by the guide member 19Eu, and the magnetic attraction force by the linear motor 16E Maintain posture by balance.
  • the left and right directions are the air pressure of the compressed air ejected from the left compressed air ejection hole 22Es and the spring elastic force by the left guide member 19Es, the air pressure of the compressed air ejected from the right compressed air ejection hole 22Es and the right side.
  • the posture is maintained by a balance with the spring elastic force of the guide member 19Es.
  • the slider 13E moves in the front-rear direction along the guide rail 12E by the thrust generated by the linear motor 16E.
  • the lubrication state of the guide surface of the surface plate 11 and each guide rail 12E and the guided surface of the slider 13E is in a mixed lubrication state in all regions. Further, the pressure is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22Ed and 22Es and the electromagnetic attraction force by the linear motor 16E. Specifically, a mixed lubrication state is established between the surface 19E1 of each guide member 19Eu and the surface 21E1 of each guided member 21Ed, and between the surface of each guide member 19Es and the surface 21E2 of each guided member 21Es.
  • Control is performed so that a linear spring characteristic is generated in the minute movement region between the guide surface of each guide rail 12E in the mixed lubrication state and the guided surface of the slider 13E. Therefore, when positioning the slider 13E in the vicinity of the target position, the surface 19E1 of each guide member 19Eu, the surface 21E1 of each guided member 21Ed, and the surface of each guide member 19Es and the surface 21E2 of each guided member 21Es. Becomes a fine contact state.
  • the stage device 3F When a magnetic attraction type linear motor is provided as a driving device (part 2) As shown in FIG. 18, the stage device 3F according to this modification includes a guide rail 12F installed on the surface plate 11 so as to extend in the front-rear direction, a slider 13F whose movement direction is restricted by the guide rail 12F, A magnetic attraction type linear motor 16F (driving device) that generates thrust of the slider 13F and a linear scale (position detecting device) (not shown) for detecting the position of the slider 13F are provided.
  • a magnetic attraction type linear motor 16F driving device
  • a linear scale position detecting device
  • Guide members 19Fu are attached to the left and right ends of the upper surface 12Fa of the guide rail 12F, and guide members 19Fs are attached to the left and right side surfaces 12Fb of the guide rail 12F.
  • guide member 19F is made of CFRP that has been subjected to surface processing (see FIG. 3) that peels the epoxy resin 192 on the surface and exposes the carbon fiber 191 layer, like the guide member 19 according to the above-described embodiment. ing.
  • the slider 13F includes an upper plate portion 13Fu and left and right side plate portions 13Fs.
  • a concave portion 26 is provided on the lower surface of the upper plate portion 13Fu.
  • Guided members 21Fd are affixed to both the left and right sides of the recess 26 in the upper plate portion 13Fu, and the guided members 21Fs are affixed to the inner side surfaces 13Fa of the left and right side plate portions 13Fs.
  • the guided member 21Fd and the guided member 21Fs are collectively referred to as “guided member 21F” as appropriate.
  • the guided member 21 ⁇ / b> F is configured by a scissors.
  • each guided member 21Fd is vertically opposed to the surface 19Fa of each guide member 19Fu attached to the upper surface 12Fa of the guide rail 12F, and the surface 21Fb of each guided member 21Fs is the surface of the guide rail 12F. It is opposed to each guide member 19Fs affixed to the side surface 12Fb in the left-right direction.
  • the surface 19Fa of the guide member 19Fu affixed to the left and right ends of the upper surface 12Fa of the guide rail 12F and the surface 19Fb of the guide member 19Fs affixed to the left and right side surfaces 12Fb of the guide rail 12F Is attached to the surface 21Fa of the guided member 21Fd that is affixed on both the left and right sides of the recess 26 in the upper plate portion 13Fu of the slider 13F and the inner side surface 13Fa of each side plate portion 13Fs of the slider 13F.
  • the surface 21Fb of the guided member 21Fs corresponds to the guided surface described in the claims.
  • each guide member 19Fu and the surface 19Fb of each guide member 19Fs are collectively referred to as “guide surfaces”, and the surface 21Fa of each guided member 21Fd and the surface 21Fb of each guided member 21Fs are “guided surfaces” as appropriate.
  • each guided member 21Fd of the slider 13F is provided with a compressed air ejection hole 22Fd that ejects compressed air toward the surface 19Fa of the guide member 19Fu facing in the vertical direction, and the left side plate portion 13Fs.
  • the guide member 19Fs affixed to the left side surface of the guide rail 12F facing in the left-right direction is provided on the surface of the guided member 21Fs affixed to the inner side surface 13Fa (hereinafter referred to as “left guided member 21Fs” as appropriate).
  • a compressed air ejection hole 22Fs for ejecting compressed air toward the surface 19Fb (hereinafter, referred to as “left compressed air ejection hole 22Fs” as appropriate) is provided, and is guided on the inner side surface 13Fa of the right side plate portion 13Fs.
  • a compressed air ejection hole 22Fs for ejecting compressed air toward the surface 19Fb of the guide member 19Fs affixed to the right side surface 12Fb of the drag 12F (hereinafter, referred to as “right compressed air ejection hole 22Fs” as appropriate) is provided. .
  • the vertical direction includes the load of the slider 13F, the air pressure of the compressed air ejected from the compressed air ejection hole 22Fd, the aforementioned spring elastic force by the guide member 19Fu, and the magnetic attraction force by the linear motor 16F.
  • Maintain posture by balance The left and right directions are the air pressure of the compressed air ejected from the left compressed air ejection hole 22Fs and the spring elastic force by the left guide member 19Fs, the air pressure of the compressed air ejected from the right compressed air ejection hole 22Fs and the right side.
  • the posture is maintained by the balance with the spring elastic force by the guide member 19Fs.
  • the slider 13F moves in the front-rear direction along the guide rail 12F by the thrust generated by the linear motor 16F.
  • the compressed air jets When positioning the slider 13F in the vicinity of the target position, the compressed air jets so that the lubrication state between the guide surface of the guide rail 12F and the guided surface of the slider 13F becomes a mixed lubrication state in all regions. It is controlled by the air pressure of the compressed air supplied to the holes 22Fd and 22Fs and the electromagnetic attraction force by the linear motor 16F. Specifically, the mixed lubrication is performed between the surface 19Fa of each guide member 19Fu and the surface 21Fa of each guided member 21Fd, and between the surface 19Fb of each guide member 19Fs and the surface 21Fb of each guided member 21Fs.
  • control is performed so that a linear spring characteristic is generated in the minute movement region between the guide surface of the guide rail 12F in the mixed lubrication state and the guided surface of the slider 13F. Therefore, when positioning the slider 13F in the vicinity of the target position, the surface 19Fa of each guide member 19Fu and the surface 21Fa of each guided member 21Fd, and the surface 19Fb of each guide member 19Fs and the surface of each guided member 21Fs 21Fb is in a fine contact state.
  • the guide member 19Fs is attached to the left and right side surfaces 12Fb of the guide rail 12F, and the guided member 21Fs is attached to the inner side surface 13Fa of the left and right side plate portions 13Fs of the slider 13F.
  • the guide member 19Fs may be attached only to one side surface 12Fb of the guide rail 12F, and the guided member 21Fs may be attached only to the inner side surface 13Fa of one side plate portion 13Fs of the slider 13F.
  • the left compressed air ejection hole 22Fs is Compressed air is ejected at an air pressure at which the lubrication state between the opposing surfaces becomes a fluid lubrication state.
  • the compressed air ejection hole 22Fs and the compressed air ejection hole 22Fd on the right side move to the vicinity of the target position, the compressed air is ejected at an air pressure at which the lubrication state between the opposing surfaces becomes a fluid lubrication state,
  • the compressed air is ejected at an air pressure at which the lubrication state between the opposing surfaces becomes a mixed lubrication state.
  • This modification is an optimal modification when attaching a stage apparatus to a ceiling.
  • the configuration of the stage apparatus 3G according to the present modification is substantially the same as the stage apparatus 3 according to the above-described embodiment.
  • the surface opposite to the installation surface of the guide rail 12 of the surface plate 11 is fixed to the ceiling 27 in the upside down state in which the stage apparatus 3 shown in FIG. Therefore, the lower part in FIG. 1 corresponds to the upper part in FIG. 19, the upper part in FIG. 1 corresponds to the lower part in FIG. 19, the right side in FIG. 1 corresponds to the left side in FIG. The left side in 1 corresponds to the right side in FIG.
  • the above-mentioned guide member 19 is affixed on the inner surface 12ua of the upper plate part 12u of each guide rail 12.
  • FIG. Further, the aforementioned guided member 21 is attached to the lower surface 20c (the lower surface in FIG. 19) of each insertion portion 20 of the slider 13.
  • the surface of the guide member 19 affixed to the inner surface 12 ua of the upper plate portion 12 u of each guide rail 12 and the lower surface 20 c of each insertion portion 20.
  • the surface 21a of the affixed guided member 21 is opposed to the vertical direction (upper-lower direction in FIG.
  • the surface 19a of the guide member 19 affixed to the inner surface 12ua of the upper plate portion 12u of each guide rail 12, the inner surface 12da of the lower plate portion 12d of each guide rail 12, and the inner surface 12sa of the side plate portion 12s corresponds to the guide surface described in the claims.
  • the surface 19a of the guide member 19 affixed to the inner surface 12ua of the upper plate portion 12u of the guide rail 12 and the inner surface 12da of the lower plate portion 12d of the guide rail 12 and the inner surface 12sa of the side plate portion 12s are appropriately referred to as “guide surfaces”.
  • the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion part 20 of the slider 13, and the upper surface 20a and the side surface 20b of each insertion part 20 are equivalent to the guided surface as described in a claim. To do.
  • the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20 of the slider 13 and the upper surface 20a and the side surface 20b of each insertion portion 20 are collectively referred to as “guided surfaces” as appropriate.
  • a compressed air ejection hole 22 Gu that ejects compressed air toward the surface 19 a of the guide member 19 facing in the vertical direction is provided for each insertion portion.
  • 20 has an upper surface 20a, a compressed air ejection hole 22Gd for ejecting compressed air toward the inner surface 12da of the lower plate portion 12d of the guide rail 12 facing in the vertical direction, and a side surface 20b of each insertion portion 20
  • a compressed air ejection hole 22Gs that ejects compressed air toward the inner surface 12sa of the side plate portion 12s of the guide rail 12 facing in the left-right direction is provided.
  • the posture is maintained by the balance with the air pressure of the compressed air.
  • the posture is maintained by a balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22Gs on the left side of the figure and the air pressure of the compressed air ejected from the compressed air ejection hole 22Gs on the right side of the figure. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
  • the lubrication state of the guide surface of each guide rail 12 and the guided surface of the slider 13 depends on the surface 19 a of each guide member 19 and the surface of each guided member 21.
  • 21a is in a mixed lubrication state, in a fluid lubrication state in other regions, and in a minute movement region between a guide surface of each guide rail 12 and a guided surface of the slider 13 in a mixed lubrication state. It is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22Gu, 22Gd, 22Gs so that the characteristics are generated.
  • This modification is an optimal modification when attaching a stage apparatus to a wall.
  • the configuration of the stage apparatus 3H according to this modification is substantially the same as the stage apparatus 3 according to the above-described embodiment.
  • the surface opposite to the installation surface of the guide rail 12 of the surface plate 11 is fixed to the wall 28 in a state where the stage device 3 shown in FIG. Accordingly, the lower side in FIG. 1 corresponds to the left side in FIG. 20, the upper side in FIG. 1 corresponds to the right side in FIG. 20, the right side in FIG. 1 corresponds to the lower side in FIG. The left side in FIG. 1 corresponds to the upper side in FIG.
  • the above-mentioned guide member 19 is affixed on the inner surface 12sa of the side plate part 12s of the lower guide rail 12 in the figure.
  • the aforementioned guided member 21 is attached to the lower surface 20b (the lower surface in FIG. 20) of the insertion portion 20 on the lower side of the slider 13 in the figure.
  • the surface 19a of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s corresponds to the guide surface described in the claims.
  • the inner surface 12ua of the upper plate portion 12u and the inner surface 12da of the lower plate portion 12d of the guide rail 12, the inner surface 12sa of the side plate portion 12s of the upper guide rail 12 and the side plate portion 12s of the lower guide rail 12 are appropriately shown below.
  • the surface 19a of the guide member 19 affixed to the inner surface 12sa is collectively referred to as a “guide surface”.
  • the surface 21a of the guided member 21 affixed to the right and left surfaces 20a and 20c of each insertion portion 20 of the slider 13, the upper surface 20b of the upper insertion portion 20 and the lower surface 20b of the lower insertion portion 20 as appropriate. are collectively referred to as “guided surfaces”.
  • each insertion portion 20 of the slider 13 has a compressed air ejection hole 22Hu that ejects compressed air toward the inner surface 12ua of the upper plate portion 12u of the guide rail 12 facing in the left-right direction.
  • the left surface 20c of each insertion portion 20 is provided with a compressed air ejection hole 22Hd for ejecting compressed air toward the inner surface 12da of the lower plate portion 12d of the guide rail 12 facing in the left-right direction.
  • the upper surface 20b of the portion 20 is provided with a compressed air ejection hole 22Hs for ejecting compressed air toward the inner surface 12sa of the side plate portion 12s of the upper guide rail 12 in the up-down direction, and the surface 21a of the guided member 21 Is provided with a compressed air ejection hole 22Hs for ejecting compressed air toward the surface 19a of the guide member 19 facing in the vertical direction.
  • the stage device 3H in the vertical direction, the load on the slider 13 and the like, the air pressure of the compressed air ejected from the compressed air ejection hole 22Hs on the upper side in the figure, and the compression ejected from the compressed air ejection hole 22Hs on the lower side in the figure.
  • the posture is maintained by a balance between the air pressure of the air and the aforementioned spring elastic force by the guide member 19.
  • the horizontal direction is maintained by the balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22Hu and the air pressure of the compressed air ejected from the compressed air ejection hole 22Hd. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
  • the lubrication state of the guide surface of each guide rail 12 and the guided surface of the slider 13 depends on the surface 19a of the guide member 19 and the surface 21a of the guided member 21.
  • a linear spring characteristic is obtained in a minute movement region.
  • the air pressure of the compressed air supplied to the compressed air ejection holes 22Hu, 22Hd, and 22Hs is controlled so as to occur.
  • the surface 19a of the guide member 19 and the surface 21a of the guided member 21 are in a fine contact state, and the other guide surfaces and the guided surface are not in contact with each other. It becomes a state.
  • the guide member 19 or the like of the guide rail 12 (or the guide rail 12D itself) is made of CFRP, which is a kind of FRP, and the guided member 21 or the like of the slider 13 (or the slider 13D itself). It was made up of cocoons, a kind of chalcedony, but is not limited to this. Contrary to the above, the guide member of the guide rail (or the guide rail itself) may be constituted by a hook or the like, and the guided member of the slider (or the slider itself) may be constituted by CFRP or the like.
  • the guide member 19 and the like of the guide rail 12 are made of CFRP, which is a kind of FRP, but are not limited thereto. That is, the guide member of the guide rail (or the guide rail itself) or the guided member of the slider (or the slider itself) is composed of other types of FRP such as glass fiber reinforced plastic (GFRP). May be. Or you may comprise with materials other than FRP, for example, the material which hardened the carbon nanotube with resin.
  • GFRP glass fiber reinforced plastic
  • the guided member 21 of the slider 13 is configured with a heel that is a kind of chalcedony, but is not limited thereto.
  • the guided member of the slider (or the slider itself) or the guide member of the guide rail (or the guide rail itself) is composed of other types of chalcedony such as red crest, green crest, jasper, blood stone, etc. Also good. Or you may comprise with materials other than a chalcedony, for example, quartz, ceramics, ruby, diamond-like carbon (DLC: Diamond-Like Carbon), etc.
  • the linear motor 16 or the like is used as the drive device, but the present invention is not limited to this, and another drive device may be used.
  • the linear scale 17 is used as the position detection device.
  • the position detection device is not limited to this, and other position detection devices may be used.
  • Stage control system 1A C Stage control system 2 Controller 3 Stage device 3A, B, D, E, F, G, H Stage device 4 Servo amplifier 5 Air source 6 Regulator 7 Regulator 8 Regulator 9 Regulator 9A Regulator 10 Solenoid valve 11 Surface plate 12 Guide rail 12d Lower plate portion 12s Side plate portion 12u Upper plate portion 12D Guide rail 12Dj Standing portion 12Du Upper plate portion 12E, F Guide rail 13 Slider 13D Slider 13Da Left lower plate portion 13Db Right lower plate portion 13Dc Left plate portion 1 3Dd Right side plate portion 13Du Upper plate portion 13E Slider 13Es Side plate portion 13F Slider 13Fs Side plate portion 13Fu Upper plate portion 14 Support member 15 Top base 16 Linear motor (drive device) 16E, F Linear motor (drive device) 17 Linear scale (position detection device) 18 Concave portion 19 Guide member 19 Es, Eu Guide member 19 Fs, Fu Guide member 20 Insertion portion 21 Guided member 21 Ed, Es Guided member 20 Insertion portion 21 Guided member 21 Ed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Sliding-Contact Bearings (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Machine Tool Units (AREA)

Abstract

[Problem] To make positioning on the order of 1 nm possible using a universal servo amp and without using a linear amp. [Solution] The stage device (3) is provided with: two guide rails (12) having guiding surfaces; a slider (13), which has guided surfaces that correspond to the guiding surfaces and the movement direction of which is controlled by the guide rails (12); a linear motor (16) that generates the thrust of the slider (13); and a linear scale (17) that detects the position of the slider (13). The state of lubrication between the guiding surfaces and guided surfaces is controlled so as to be a mixed lubrication state comprising both boundary film lubrication and fluid film lubrication in at least one area, and to be a fluid film lubrication state in the other areas.

Description

ステージ装置及びステージ制御システムStage device and stage control system
 開示の実施形態は、移動対象物を目標位置に移動させるステージ装置及びこれを備えたステージ制御システムに関し、特に高い移動精度が要求されるステージ装置及びこれを備えたステージ制御システムに関する。 The disclosed embodiment relates to a stage apparatus that moves a moving object to a target position and a stage control system including the stage apparatus, and particularly relates to a stage apparatus that requires high movement accuracy and a stage control system including the stage apparatus.
 一般にステージ装置は、スライダと、スライダの移動方向を規制するガイドレールと、スライダの推力を発生させる駆動装置と、スライダの位置を検出する位置検出装置とを有している。駆動装置や位置検出装置としては、例えばリニアモータやリニアスケールが用いられる。 Generally, a stage device has a slider, a guide rail that regulates the moving direction of the slider, a drive device that generates thrust of the slider, and a position detection device that detects the position of the slider. For example, a linear motor or a linear scale is used as the drive device or the position detection device.
 従来、スライダをガイドレールに対し移動可能に支持する軸受として、ボールやローラを循環させる転がり軸受(例えば、特許文献1参照)や、圧縮エアの噴出によりスライダを浮上させ、スライダとガイドレールとを非接触とするエア軸受(例えば、特許文献2参照)が知られている。 Conventionally, as a bearing that slidably supports the slider with respect to the guide rail, a rolling bearing that circulates balls and rollers (see, for example, Patent Document 1), or the slider is levitated by blowing compressed air, A non-contact air bearing (for example, see Patent Document 2) is known.
特開平7-242912号公報Japanese Patent Laid-Open No. 7-242912 特開2004-36680号公報JP 2004-36680 A
 近年、例えばプリント基板、半導体、液晶、バイオ関連分野等においては、ステージ装置に対し1nmレベルの超精密な位置決め精度が要求されている。 In recent years, for example, in printed circuit boards, semiconductors, liquid crystals, bio-related fields, etc., ultra-precision positioning accuracy of 1 nm level is required for stage devices.
 転がり軸受を用いたステージ装置で1nmレベルの超精密位置決めを行う場合、転がり軸受のボールやローラの微小移動領域における線形バネ特性を利用して位置決めを行う手法が知られている。しかしながら、転がり軸受を用いたステージ装置では、転がり摩擦による発熱によりガイドレールが数μm程度撓むため、位置再現性がないという課題があった。また、線形バネ特性下でも微小な推力制御が必要となるため、入手や保守が容易な汎用のサーボアンプ(例えば電流検出分解能が11ビット程度のPWM制御方式のサーボアンプ)を用いて位置決めを行う場合、位置決め精度はサブミクロン(0.1μm=100nm)レベルにしかならないという課題があった。 When performing ultra-precision positioning at a level of 1 nm with a stage apparatus using a rolling bearing, a technique is known that performs positioning using the linear spring characteristics in the minute movement region of the ball or roller of the rolling bearing. However, in a stage apparatus using a rolling bearing, the guide rail bends by about several μm due to heat generated by rolling friction, and thus there is a problem that there is no position reproducibility. In addition, since minute thrust control is required even under linear spring characteristics, positioning is performed using a general-purpose servo amplifier that is easy to obtain and maintain (for example, a PWM control servo amplifier with a current detection resolution of about 11 bits). In this case, there is a problem that the positioning accuracy is only a submicron (0.1 μm = 100 nm) level.
 一方、エア軸受を用いたステージ装置では、スライダとガイドレールとが非接触であるため、上記のように発熱により位置再現性がなくなることはないが、スライダとガイドレールとの摩擦が極めて少ないため、慣性力がダイレクトに作用する。このため、上記汎用のサーボアンプを用いた場合、位置決め停止時(サーボロック時)のリップルが増大してしまい、発振状態となり、ハンチング幅が大きくなってしまう。また、スライダがエアにより完全に浮上しているため、エア源からのエアの脈動やエア自体の圧縮膨張を起因とする振動が発生するという課題があった。 On the other hand, in a stage device using an air bearing, since the slider and the guide rail are not in contact with each other, the position reproducibility is not lost due to heat generation as described above, but the friction between the slider and the guide rail is extremely small. Inertial force acts directly. For this reason, when the general-purpose servo amplifier is used, the ripple at the time of positioning stop (during servo lock) is increased, and the oscillation state is caused and the hunting width is increased. In addition, since the slider is completely levitated by the air, there is a problem that vibration is generated due to pulsation of air from the air source and compression / expansion of the air itself.
 なお、汎用のサーボアンプの代わりに特殊なリニアアンプを採用することで、エアの脈動等に起因する振動の発生以外については、上述の問題を抑制することが可能であるが、リニアアンプは汎用サーボアンプと比べて大きさ、価格、電源容量等が大きいため、現状社会問題となっている省エネに対応できず、専用設計となるため、品種が少なく、入手し難いという問題があった。 By adopting a special linear amplifier instead of a general-purpose servo amplifier, it is possible to suppress the above-mentioned problems except for the occurrence of vibration caused by air pulsation, etc. Since the size, price, power supply capacity, etc. are large compared to the servo amplifier, there is a problem that it is difficult to obtain because there are few varieties because it is not designed to deal with energy saving, which is a social problem at present.
 本発明はこのような問題点に鑑みてなされたものであり、本発明の目的とするところは、リニアアンプを用いなくても、汎用のサーボアンプを用いて1nmレベルの位置決めが可能なステージ装置及びこれを備えたステージ制御システムを提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a stage apparatus capable of positioning at a level of 1 nm using a general-purpose servo amplifier without using a linear amplifier. And providing a stage control system including the same.
 上記課題を解決するため、本発明の一の観点によれば、移動対象物を目標位置に移動させるステージ装置であって、ガイド面を有するガイドレールと、前記ガイド面と相対する被ガイド面を有し、前記ガイドレールに移動方向を規制されるスライダと、前記スライダの推力を発生する駆動装置と、前記スライダの位置を検出する位置検出装置と、を備え、前記ガイド面と前記被ガイド面との潤滑状態が、少なくとも一部の領域で境界潤滑と流体潤滑の両者を含む混合潤滑状態となり、その他の領域で流体潤滑状態となるように、制御されるステージ装置が適用される。 In order to solve the above-described problem, according to one aspect of the present invention, a stage device that moves a moving object to a target position, which includes a guide rail having a guide surface, and a guided surface facing the guide surface. And a slider whose movement direction is regulated by the guide rail, a drive device that generates thrust of the slider, and a position detection device that detects the position of the slider, the guide surface and the guided surface The stage device to be controlled is applied so that the lubrication state becomes a mixed lubrication state including both boundary lubrication and fluid lubrication in at least some regions and the fluid lubrication state in other regions.
 本発明のステージ装置及びステージ制御システムによれば、リニアアンプを用いなくても、汎用のサーボアンプを用いて1nmレベルの位置決めをすることができる。 According to the stage apparatus and the stage control system of the present invention, it is possible to perform positioning at a 1 nm level using a general-purpose servo amplifier without using a linear amplifier.
一実施の形態に係るステージ装置の正断面を表すと共に、ステージ制御システムの全体構成を概念的に表すシステム構成図である。1 is a system configuration diagram conceptually showing an overall configuration of a stage control system while showing a front section of a stage apparatus according to an embodiment. FIG. 図1中のG部の部分拡大図である。It is the elements on larger scale of the G section in FIG. ガイド部材の表面加工の一例について説明する説明図である。It is explanatory drawing explaining an example of the surface processing of a guide member. ガイド部材によるバネ弾性力を説明するモデル図である。It is a model figure explaining the spring elastic force by a guide member. 摩擦力と圧縮エアの空気圧との関係を表すグラフ、及び、摩擦係数と圧縮エアの空気圧との関係を表す片対数グラフである。It is the graph showing the relationship between a frictional force and the air pressure of compressed air, and the semilogarithm graph showing the relationship between a friction coefficient and the air pressure of compressed air. ストライベック曲線を表すグラフである。It is a graph showing a Stribeck curve. 推力指令とスライダの移動方向の変位との関係を表すグラフである。It is a graph showing the relationship between a thrust command and the displacement of the moving direction of a slider. 推力指令とスライダの移動方向の変位との関係を表すグラフ、及び、推力とスライダの移動方向の変位との関係を表すグラフである。It is a graph showing the relationship between the thrust command and the displacement in the moving direction of the slider, and the graph showing the relationship between the thrust and the displacement in the moving direction of the slider. スライダの位置偏差の3σと圧縮エアの空気圧との関係を表すグラフである。It is a graph showing the relationship between 3σ of the positional deviation of a slider and the air pressure of compressed air. スライダ停止時のハンチング幅に関して模式化して示す模式図である。It is a mimetic diagram showing typically about the hunting width at the time of a slider stop. 10nmステップ送り動作での検出位置を模式化して示す模式図である。It is a schematic diagram which shows typically the detection position in 10 nm step feeding operation | movement. 微小移動動作でのスライダ停止時の振動による上下方向変動に関して模式化して示す模式図である。It is a schematic diagram which shows typically about the up-down direction fluctuation | variation by the vibration at the time of the slider stop in a micro movement operation | movement. ガイド部材を一方のガイドレールの側板部の内面にも貼付し、被ガイド部材をスライダの一方の挿入部の側面にも貼付する変形例に係る、ステージ装置の正断面を表すと共に、ステージ制御システムの全体構成を概念的に表すシステム構成図である。The stage control system represents a front section of a stage device according to a modification in which the guide member is also attached to the inner surface of the side plate portion of one guide rail, and the guided member is also attached to the side surface of the one insertion portion of the slider. FIG. ガイド部材を両方のガイドレールの側板部の内面にも貼付し、被ガイド部材をスライダの両方の挿入部の側面にも貼付する変形例に係る、ステージ装置の正断面図である。FIG. 6 is a front sectional view of a stage apparatus according to a modification in which guide members are also attached to the inner surfaces of the side plate portions of both guide rails, and a guided member is also attached to the side surfaces of both insertion portions of the slider. 圧縮エアの空気圧を電空レギュレータで可変する変形例に係る、ステージ装置の正断面を表すと共に、ステージ制御システムの全体構成を概念的に表すシステム構成図である。FIG. 5 is a system configuration diagram conceptually showing an entire configuration of a stage control system, along with a front section of a stage apparatus according to a modification in which the air pressure of compressed air is varied by an electropneumatic regulator. ガイドレール自体をCFRPで構成し、スライダ自体を瑪瑙で構成する変形例に係る、ステージ装置の正断面図である。FIG. 6 is a front sectional view of a stage apparatus according to a modification in which the guide rail itself is made of CFRP and the slider itself is made of scissors. 駆動装置として磁気吸引式のリニアモータを設ける変形例に係る、ステージ装置の正断面図である。It is a front sectional view of a stage device concerning a modification which provides a magnetic attraction type linear motor as a drive device. 駆動装置として磁気吸引式のリニアモータを設ける変形例に係る、ステージ装置の正断面図である。It is a front sectional view of a stage device concerning a modification which provides a magnetic attraction type linear motor as a drive device. ステージ装置を天井に取り付ける変形例に係る、ステージ装置の正断面図である。It is a front sectional view of a stage device concerning a modification which attaches a stage device to a ceiling. ステージ装置を壁に取り付ける変形例に係る、ステージ装置の正断面図である。It is a front sectional view of a stage device concerning a modification which attaches a stage device to a wall.
 以下、一実施の形態について図面を参照して説明する。 Hereinafter, an embodiment will be described with reference to the drawings.
 図1に示すように、本実施形態に係るステージ制御システム1は、コントローラ2と、図示しない移動対象物を目標位置に移動させるステージ装置3と、汎用のサーボアンプ4と、圧縮エアを供給するエア源5と、エア源5から供給される圧縮エアの空気圧を調整する4つのレギュレータ6,7,8,9と、電磁弁10とを備えている。 As shown in FIG. 1, a stage control system 1 according to this embodiment supplies a controller 2, a stage device 3 that moves a moving object (not shown) to a target position, a general-purpose servo amplifier 4, and compressed air. An air source 5, four regulators 6, 7, 8, 9 that adjust the air pressure of compressed air supplied from the air source 5, and an electromagnetic valve 10 are provided.
 ステージ装置3は、定盤11上に前後方向(図1中の紙面手前-紙面奥行き方向)に延びるように平行に設置された2つの断面視において略コの字形状のガイドレール12と、ガイドレール12に移動方向を規制された板状のスライダ13と、スライダ13上に設けられた2つの支持部材14を介してスライダ13に固定されたトップベース15と、スライダ13の推力を発生するリニアモータ16(駆動装置)と、スライダ13の位置を検出するリニアスケール17(位置検出装置)とを備えている。 The stage device 3 includes a guide rail 12 having a substantially U-shape in two cross-sectional views installed in parallel so as to extend on the surface plate 11 in the front-rear direction (front side in FIG. 1-depth direction on the page). A plate-like slider 13 whose movement direction is regulated by the rail 12, a top base 15 fixed to the slider 13 via two support members 14 provided on the slider 13, and a linear that generates thrust of the slider 13 A motor 16 (drive device) and a linear scale 17 (position detection device) for detecting the position of the slider 13 are provided.
 各ガイドレール12は、凹条部18、上板部12u、下板部12d、及び側板部12sを備えている。上板部12u、下板部12d、及び側板部12sは、別体として構成されており、適宜の連結部材(例えばネジや接着剤等)により連結されている。なお、上板部12u、下板部12d、及び側板部12sを一体的に構成してもよい。各ガイドレール12の下板部12dの内面(凹条部18側の面)には、ガイド部材19が、例えばネジや接着剤等により貼付されている。 Each guide rail 12 is provided with a concave strip 18, an upper plate 12u, a lower plate 12d, and a side plate 12s. The upper plate portion 12u, the lower plate portion 12d, and the side plate portion 12s are configured as separate bodies and are connected by an appropriate connecting member (for example, a screw or an adhesive). In addition, you may comprise the upper board part 12u, the lower board part 12d, and the side board part 12s integrally. A guide member 19 is affixed to the inner surface (surface on the concave strip 18 side) of the lower plate portion 12d of each guide rail 12 with, for example, a screw or an adhesive.
 ガイド部材19は、図1中のG部の部分拡大図に相当する図2に示すように、繊維強化プラスチック(FRP:Fiber Reinforced Plastics)の一種である、硬く潤滑性が良い炭素繊維191を柔らかく弾性変形するエポキシ樹脂192で固めた繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)で構成されている。具体的には、ガイド部材19は、表面のエポキシ樹脂192を剥離して、エポキシ樹脂192の内部で表面に対して略平行する方向(図2中の紙面手前-紙面奥行き方向、又は、図2中の左-右方向)に延びる断面視において略円形状の炭素繊維191の層を露出させる表面加工が行われており、その表面は、炭素繊維191の層がエポキシ樹脂192の表面から突出した状態となっている。わかりやすく言えば、炭素繊維191におけるエポキシ樹脂192の表面からの突出部分(露出部分)が「山」、エポキシ樹脂192の表面が「谷」となるような状態となっている。すなわち、ガイド部材19の表面には、0.1~0.3μmレベルの表面粗さが存在する。この例では、炭素繊維191におけるエポキシ樹脂192の表面からの突出量は0.3μm程度であり、ガイド部材19の表面の平面度は3μm程度の状態となっている。 The guide member 19 softens carbon fiber 191 that is a kind of fiber reinforced plastic (FRP: Fiber Reinforced Plastics) and has good lubricity, as shown in FIG. It is made of fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastics) hardened with an epoxy resin 192 that is elastically deformed. Specifically, the guide member 19 peels off the epoxy resin 192 on the surface, and is substantially parallel to the surface inside the epoxy resin 192 (front side in FIG. 2-depth direction on the paper surface, or FIG. 2). Surface processing is performed to expose a substantially circular carbon fiber 191 layer in a cross-sectional view extending in the left-right direction), and the carbon fiber 191 layer protrudes from the surface of the epoxy resin 192 on the surface. It is in a state. In other words, the protruding portion (exposed portion) of the carbon fiber 191 from the surface of the epoxy resin 192 is a “mountain”, and the surface of the epoxy resin 192 is a “valley”. That is, the surface of the guide member 19 has a surface roughness of 0.1 to 0.3 μm level. In this example, the protruding amount of the carbon fiber 191 from the surface of the epoxy resin 192 is about 0.3 μm, and the flatness of the surface of the guide member 19 is about 3 μm.
 ここで、図3を用いてガイド部材19の表面加工の一例について説明する。図3(a)に示すように、表面加工前のガイド部材19は、炭素繊維191の層が全てエポキシ樹脂192により覆われた状態となっている。このような状態のガイド部材19の表面を、図3(b)に示すように、研磨機Pを用いて研磨加工し(あるいは、ラップ盤を用いてラッピング加工してもよい)、炭素繊維191の層が表面に出現するまで、表面のエポキシ樹脂192を剥離する。このとき、炭素繊維191が硬く、エポキシ樹脂192が柔らかいため、エポキシ樹脂192は、表面側に位置する炭素繊維191の上面(図3中の上側の面)から数μm下側(図3中の下側)まで研磨により剥離され、炭素繊維191は、エポキシ樹脂192の内部に沈んで研磨終了後元の位置に戻る。したがって、図3(c)に示すように、表面加工後のガイド部材19は、表面に炭素繊維191の層が露出した状態、すなわち炭素繊維191の層がエポキシ樹脂192の表面から突出した状態となる。 Here, an example of surface processing of the guide member 19 will be described with reference to FIG. As shown in FIG. 3A, the guide member 19 before the surface processing is in a state where the carbon fiber 191 layer is entirely covered with the epoxy resin 192. The surface of the guide member 19 in such a state is polished using a polishing machine P (or may be lapped using a lapping machine) as shown in FIG. The epoxy resin 192 on the surface is peeled off until the layer appears on the surface. At this time, since the carbon fiber 191 is hard and the epoxy resin 192 is soft, the epoxy resin 192 is several μm below (upper surface in FIG. 3) from the upper surface (upper surface in FIG. 3) of the carbon fiber 191 located on the front surface side. The carbon fiber 191 sinks into the epoxy resin 192 and returns to its original position after the polishing is completed. Therefore, as shown in FIG. 3C, the guide member 19 after the surface processing has a state in which the layer of the carbon fiber 191 is exposed on the surface, that is, a state in which the layer of the carbon fiber 191 protrudes from the surface of the epoxy resin 192. Become.
 図1に戻り、スライダ13は、その幅方向(図1中の左-右方向)両端側に、上記ガイドレール12の凹条部18に挿入される挿入部20を備えている。各挿入部20の下面(図1中の下側の面)には、玉髄の一種である瑪瑙で構成された被ガイド部材21が、例えばネジや接着剤等により貼付されている。各挿入部20が各ガイドレール12の凹条部18に挿入されたとき、上記各ガイドレール12の上板部12uの内面12ua(凹条部18側の面)と各挿入部20の上面20a(図1中の上側の面)とが上下方向(図1中の上-下方向)に相対し、上記各ガイドレール12に貼付されたガイド部材19の表面19aと各挿入部20に貼付された被ガイド部材21の表面21aとが上下方向に相対し、上記各ガイドレール12の側板部12sの内面12sa(凹条部18側の面)と各挿入部20の側面20bとが左右方向(図1中の左-右方向)に相対する。 Returning to FIG. 1, the slider 13 is provided with insertion portions 20 inserted into the concave strip portions 18 of the guide rail 12 at both ends in the width direction (left-right direction in FIG. 1). On the lower surface of each insertion portion 20 (the lower surface in FIG. 1), a guided member 21 composed of a heel that is a kind of chalcedony is affixed with, for example, a screw or an adhesive. When each insertion portion 20 is inserted into the concave portion 18 of each guide rail 12, the inner surface 12ua (surface on the concave portion 18 side) of the upper plate portion 12u of each guide rail 12 and the upper surface 20a of each insertion portion 20. (Upper surface in FIG. 1) is opposed to the vertical direction (upper-lower direction in FIG. 1), and is affixed to the surface 19a of the guide member 19 affixed to each of the guide rails 12 and to each insertion portion 20. The surface 21a of the guided member 21 is opposed in the vertical direction, and the inner surface 12sa (surface on the concave strip 18 side) of the side plate portion 12s of each guide rail 12 and the side surface 20b of each insertion portion 20 are laterally directed ( It is relative to the left-right direction in FIG.
 本実施形態では、各ガイドレール12の上板部12uの内面12ua及び側板部12sの内面12saと、各ガイドレール12に貼付されたガイド部材19の表面19aとが、特許請求の範囲に記載のガイド面に相当し、スライダ13の各挿入部20の上面20a及び側面20bと、スライダ13に貼付された各被ガイド部材21の表面21aとが、特許請求の範囲に記載の被ガイド面に相当する。なお、ガイドレール12の上板部12uの内面12ua及び側板部12sの内面12saと、ガイドレール12に貼付されたガイド部材19の表面19aとがガイド面に相当することは、ガイドレール12がガイド面を有することと同等であり、スライダ13の各挿入部20の上面20a及び側面20bと、スライダ13に貼付された各被ガイド部材21の表面21aとが被ガイド面に相当することは、スライダ13が被ガイド面を有することと同等である。以下適宜、ガイドレール12の上板部12uの内面12ua及び側板部12sの内面12saと、ガイドレール12に貼付されたガイド部材19の表面19aとを「ガイド面」と総称し、スライダ13の各挿入部20の上面20a及び側面20bと、スライダ13に貼付された各被ガイド部材21の表面21aとを「被ガイド面」と総称する。 In the present embodiment, the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the inner surface 12sa of the side plate portion 12s and the surface 19a of the guide member 19 affixed to each guide rail 12 are described in the claims. It corresponds to the guide surface, and the upper surface 20a and the side surface 20b of each insertion portion 20 of the slider 13 and the surface 21a of each guided member 21 affixed to the slider 13 correspond to the guided surface described in the claims. To do. Note that the inner surface 12ua of the upper plate portion 12u and the inner surface 12sa of the side plate portion 12s and the surface 19a of the guide member 19 affixed to the guide rail 12 correspond to the guide surface. The upper surface 20a and the side surface 20b of each insertion portion 20 of the slider 13 and the surface 21a of each guided member 21 affixed to the slider 13 are equivalent to the guided surface. 13 is equivalent to having a guided surface. Hereinafter, the inner surface 12ua of the upper plate portion 12u of the guide rail 12 and the inner surface 12sa of the side plate portion 12s and the surface 19a of the guide member 19 attached to the guide rail 12 will be collectively referred to as “guide surfaces”. The upper surface 20a and the side surface 20b of the insertion portion 20 and the surface 21a of each guided member 21 attached to the slider 13 are collectively referred to as “guided surfaces”.
 また、スライダ13は、各挿入部20の上面20aの前後方向両隅(言い換えれば、スライダ13の上面の四隅)に、レギュレータ6を介してエア源5に連結された圧縮エア噴出孔22uを、各被ガイド部材21の表面21aの前後方向両隅に、電磁弁10及びレギュレータ7,8を介してエア源5に連結された圧縮エア噴出孔22dを、各挿入部20の側面20bの前後方向両隅(言い換えれば、スライダ13の両側面の前後方向両隅)に、レギュレータ9を介してエア源5に連結された圧縮エア噴出孔22sを有している。なお、これら圧縮エア噴出孔22u,22d,22s(以下適宜、「圧縮エア噴出孔22」と総称する)の個数及び配置位置は適宜に変更してもよい。 In addition, the slider 13 has compressed air ejection holes 22u connected to the air source 5 via the regulator 6 at both front and rear corners (in other words, four corners of the upper surface of the slider 13) of the upper surface 20a of each insertion portion 20. Compressed air ejection holes 22d connected to the air source 5 via the solenoid valve 10 and the regulators 7 and 8 are provided at both front and rear corners of the surface 21a of each guided member 21 in the front and rear direction of the side surface 20b of each insertion portion 20. At both corners (in other words, both front and rear corners on both sides of the slider 13), there are compressed air ejection holes 22s connected to the air source 5 via the regulator 9. The number and arrangement positions of these compressed air ejection holes 22u, 22d, and 22s (hereinafter collectively referred to as “compressed air ejection holes 22” as appropriate) may be changed as appropriate.
 圧縮エア噴出孔22uは、上下方向に相対するガイドレール12の上板部12uの内面12uaに向けて、エア源5からレギュレータ6を介して供給された、面同士の潤滑状態を流体潤滑状態にするように調整された所定圧力の圧縮エアを噴出する。流体潤滑では、摩擦係数をμとした場合に摩擦係数μが非常に小さくなる(例えば、μ<0.01程度となる)。流体潤滑状態となったガイドレール12の上板部12uの内面12uaとスライダ13の挿入部20の上面20aとは、互いに接触しないで、圧縮エアの静圧で荷重を全て負担している状態、すなわちエアギャップを介在する非接触状態となる。 The compressed air ejection hole 22u changes the lubrication state between the surfaces supplied from the air source 5 via the regulator 6 toward the inner surface 12ua of the upper plate portion 12u of the guide rail 12 facing in the vertical direction. Compressed air with a predetermined pressure adjusted to be discharged. In fluid lubrication, when the friction coefficient is μ, the friction coefficient μ is very small (for example, μ <0.01). The inner surface 12ua of the upper plate portion 12u of the guide rail 12 in the fluid lubrication state and the upper surface 20a of the insertion portion 20 of the slider 13 are not in contact with each other and all the load is borne by the static pressure of the compressed air, That is, it will be in the non-contact state which interposes an air gap.
 圧縮エア噴出孔22dは、上下方向に相対するガイド部材19の表面19aに向けて、エア源5から、レギュレータ7及び電磁弁10を介して供給された比較的高圧力である流体潤滑用圧力(第1圧力)の圧縮エア、又は、レギュレータ8及び電磁弁10を介して供給された比較的低圧力である混合潤滑用圧力(第2圧力)の圧縮エアを噴出する。 The compressed air ejection hole 22d is a fluid lubrication pressure (relatively high pressure supplied from the air source 5 through the regulator 7 and the electromagnetic valve 10 toward the surface 19a of the guide member 19 facing in the vertical direction. The compressed air of the first pressure) or the compressed air of the mixed lubrication pressure (second pressure) which is a relatively low pressure supplied via the regulator 8 and the electromagnetic valve 10 is ejected.
 流体潤滑用圧力とは、ガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を上記流体潤滑状態にするための圧縮エアの空気圧である。流体潤滑状態となったガイド部材19の表面19aと被ガイド部材21の表面21aとは、表面粗さレベルで見た場合、炭素繊維191におけるエポキシ樹脂192の表面からの突出部分及びエポキシ樹脂192の表面が共に被ガイド部材22の表面に接触しないで、上記非接触状態となる。 The fluid lubrication pressure is the air pressure of compressed air for bringing the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 into the fluid lubrication state. When the surface 19a of the guide member 19 and the surface 21a of the guided member 21 that are in a fluid lubrication state are viewed at the surface roughness level, the carbon fiber 191 protrudes from the surface of the epoxy resin 192 and the epoxy resin 192. Both the surfaces do not come into contact with the surface of the guided member 22 and are in the non-contact state.
 混合潤滑用圧力とは、ガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を境界潤滑と上記流体潤滑との両者を含む混合潤滑状態にするための圧縮エアの空気圧であり、混合潤滑状態であるガイド部材19の表面19aと被ガイド部材21の表面21aとの間の微小移動領域において上記リニアモータ16の推力とそれによって生じる変位との関係が直線となる線形バネ特性が生じるように調整された圧縮エアの空気圧である。境界潤滑では、摩擦係数μが流体潤滑よりも大きくなる(例えば、μ>0.1程度となる)。混合潤滑では、摩擦係数μが流体潤滑と境界潤滑との間(例えば、0.01<μ<0.1)となる。混合潤滑状態となったガイド部材19の表面19aと被ガイド部材21の表面21aとは、図2に示すように、表面粗さレベルで見た場合、炭素繊維191におけるエポキシ樹脂192の表面からの突出部分の一部分が被ガイド部材22の表面に凝着(接触)すると共に、エポキシ樹脂192の表面が被ガイド部材22の表面にほとんど接触しないで、圧縮エアの静圧で荷重を主に負担する状態(以下適宜、「微接触状態」と称する)となり、これら面同士の間に微小移動領域において線形バネ特性が生じる。 The mixed lubrication pressure is the air pressure of the compressed air for making the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 into a mixed lubrication state including both boundary lubrication and fluid lubrication. The linear spring characteristic in which the relationship between the thrust of the linear motor 16 and the displacement generated thereby is a straight line in the minute movement region between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state. Compressed air pressure adjusted to occur. In boundary lubrication, the friction coefficient μ is larger than that of fluid lubrication (for example, μ> 0.1). In mixed lubrication, the friction coefficient μ is between fluid lubrication and boundary lubrication (for example, 0.01 <μ <0.1). As shown in FIG. 2, the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state are separated from the surface of the epoxy resin 192 in the carbon fiber 191 when viewed at the surface roughness level. A part of the projecting portion adheres (contacts) to the surface of the guided member 22 and the surface of the epoxy resin 192 hardly contacts the surface of the guided member 22, and the load is mainly borne by the static pressure of the compressed air. A state (hereinafter, referred to as “fine contact state” as appropriate) occurs, and a linear spring characteristic is generated between these surfaces in a minute movement region.
 すなわち、ガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態が混合潤滑状態となった場合、図4に示すように、被ガイド部材21の表面21aと凝着した(図4中では凝着部分を符号Fで示す)炭素繊維191の周りの柔らかいエポキシ樹脂192がバネ要素Sとして機能して荷重方向(図4中の上-下方向)に弾性変形する。そして、炭素繊維191が被ガイド部材21の表面21aと凝着した状態のまま、スライダ13が数十nm程度荷重方向と直交する横方向に動くと、エポキシ樹脂192がバネ要素Sとして機能して横方向に弾性変形してバネ弾性力を発生させる。このとき、複数のバネ要素Sが連なるようにエポキシ樹脂192が存在していることから、上記のような数十nm程度のスライダ13の移動量が微小な微小移動領域においては、ガイド部材19の表面19aと被ガイド部材21の表面21aとの間に線形バネ特性が生じるようになっている。なお、スライダ13の移動量がある程度大きい移動範囲においては、ガイド部材19の表面19aと被ガイド部材21の表面21aとの間に非線形バネ特性が生じるようになっている。 That is, when the lubrication state of the surface 19a of the guide member 19 and the surface 21a of the guided member 21 becomes a mixed lubrication state, as shown in FIG. 4, it adheres to the surface 21a of the guided member 21 (FIG. 4). A soft epoxy resin 192 around the carbon fiber 191 functions as a spring element S and elastically deforms in the load direction (upward-downward direction in FIG. 4). Then, the epoxy resin 192 functions as the spring element S when the slider 13 moves in the lateral direction orthogonal to the load direction by about several tens of nanometers with the carbon fiber 191 adhered to the surface 21a of the guided member 21. A spring elastic force is generated by elastically deforming in the lateral direction. At this time, since the epoxy resin 192 exists so that a plurality of spring elements S are connected, in the minute movement region where the movement amount of the slider 13 of about several tens of nanometers is minute as described above, A linear spring characteristic is generated between the surface 19 a and the surface 21 a of the guided member 21. It should be noted that a nonlinear spring characteristic is generated between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in a moving range where the moving amount of the slider 13 is large to some extent.
 図1に戻り、圧縮エア噴出孔22sは、左右方向に相対するガイドレール12の側板部12sの内面12saに向けて、エア源5からレギュレータ9を介して供給された、面同士の潤滑状態を上記流体潤滑状態にするように調整された所定圧力の圧縮エアを噴出する。流体潤滑状態となったガイドレール12の側板部12sの内面12saとスライダ13の挿入部20の側面20bとは、互いに接触しないで、上記非接触状態となる。 Returning to FIG. 1, the compressed air ejection holes 22 s provide a lubrication state between the surfaces supplied from the air source 5 via the regulator 9 toward the inner surface 12 sa of the side plate portion 12 s of the guide rail 12 facing in the left-right direction. Compressed air having a predetermined pressure adjusted to achieve the fluid lubrication state is ejected. The inner surface 12sa of the side plate portion 12s of the guide rail 12 in the fluid lubrication state and the side surface 20b of the insertion portion 20 of the slider 13 are not in contact with each other and are in the non-contact state.
 上記のように構成されたステージ装置3においては、上下方向は、スライダ13の荷重と、圧縮エア噴出孔22uから噴出される圧縮エアのエア圧力と、圧縮エア噴出孔22dから噴出される圧縮エアのエア圧力及びガイド部材19によるバネ弾性力とのバランスにより姿勢維持する。左右方向は、図示左側の圧縮エア噴出孔22sから噴出される圧縮エアのエア圧力と、図示右側の圧縮エア噴出孔22sから噴出される圧縮エアのエア圧力とのバランスにより姿勢維持する。そして、リニアモータ16で発生した推力により、スライダ13がガイドレール12に沿って前後方向に移動する。 In the stage apparatus 3 configured as described above, the vertical direction is the load of the slider 13, the air pressure of the compressed air ejected from the compressed air ejection hole 22u, and the compressed air ejected from the compressed air ejection hole 22d. The posture is maintained by a balance between the air pressure and the spring elastic force by the guide member 19. In the left-right direction, the posture is maintained by a balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22s on the left side of the figure and the air pressure of the compressed air ejected from the compressed air ejection hole 22s on the right side of the figure. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
 スライダ13の出発位置から目標位置までの移動のうち、出発位置から目標位置の所定範囲手前(例えば、目標位置の100nm手前)までの移動、すなわち目標位置近傍までの移動を行う際には、各ガイドレール12のガイド面とスライダ13の被ガイド面の潤滑状態が、全ての領域で流体潤滑状態となるように、圧縮エア噴出孔22u,22d,22sに供給される圧縮エアの空気圧により制御される。したがって、スライダ13の目標位置近傍までの移動を行う際には、各ガイドレール12のガイド面とスライダ13の被ガイド面とは全て非接触状態となる。 Of the movements from the starting position of the slider 13 to the target position, when moving from the starting position to a position before the target position (for example, 100 nm before the target position), that is, when moving to the vicinity of the target position, The lubrication state of the guide surface of the guide rail 12 and the guided surface of the slider 13 is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22u, 22d, and 22s so that the fluid lubrication state is achieved in all regions. The Therefore, when the slider 13 is moved to the vicinity of the target position, the guide surface of each guide rail 12 and the guided surface of the slider 13 are all in a non-contact state.
 一方、目標位置近傍から目標位置までの微小移動、すなわち目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12のガイド面とスライダ13の被ガイド面の潤滑状態が、少なくとも一部の領域で混合潤滑状態となり、その他の領域で流体潤滑状態となるように、圧縮エア噴出孔22u,22d,22sに供給される圧縮エアの空気圧により制御される。具体的には、各ガイド部材19の表面19aと各被ガイド部材21の表面21aとの間で混合潤滑状態となり、各ガイドレール12の上板部12uの内面12uaとスライダ13の各挿入部20の上面20aとの間、及び、各ガイドレール12の側板部12sの内面12saとスライダ13の各挿入部20の側面20bとの間で流体潤滑状態となり、混合潤滑状態となった各ガイドレール12のガイド面とスライダ13の被ガイド面との間に微小移動領域において線形バネ特性が生じるように、制御される。したがって、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19aとスライダ13の各挿入部20の下面20cに貼付された被ガイド部材21の表面21aとが微接触状態となり、それ以外のガイド面と被ガイド面とは非接触状態となる。 On the other hand, when performing minute movement from the vicinity of the target position to the target position, that is, positioning the slider 13 in the vicinity of the target position, the lubrication state of the guide surfaces of the guide rails 12 and the guided surfaces of the sliders 13 is at least partially. It is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22u, 22d, and 22s so that the mixed lubrication state is obtained in this region and the fluid lubrication state is obtained in the other regions. Specifically, a mixed lubrication state occurs between the surface 19 a of each guide member 19 and the surface 21 a of each guided member 21, and the inner surface 12 ua of the upper plate portion 12 u of each guide rail 12 and each insertion portion 20 of the slider 13. Between each of the guide rails 12 and the inner surfaces 12sa of the side plate portions 12s of the guide rails 12 and the side surfaces 20b of the insertion portions 20 of the sliders 13, and the respective guide rails 12 in a mixed lubrication state. The linear spring characteristic is controlled in the minute movement region between the guide surface of the slider 13 and the guided surface of the slider 13. Therefore, when positioning the slider 13 in the vicinity of the target position, the surface 19 a of the guide member 19 affixed to the inner surface 12 da of the lower plate portion 12 d of each guide rail 12 and the lower surface 20 c of each insertion portion 20 of the slider 13. The adhered surface 21a of the guided member 21 is in a fine contact state, and the other guide surfaces and the guided surface are in a non-contact state.
 また、スライダ13の移動方向すなわち前後方向の位置は、リニアスケール17で検出される。 Further, the moving direction of the slider 13, that is, the position in the front-rear direction is detected by the linear scale 17.
 サーボアンプ4は、リニアスケール17からのスライダ13の位置検出結果に基づく検出信号を入力し、当該検出信号とコントローラ2からの移動指令との偏差(位置偏差)に基づきリニアモータ16に駆動電流を出力して、スライダ13の位置を制御する。このとき、サーボアンプ4は、上記位置偏差が予め設定された所定レベル以下となったかどうかを判定することで、スライダ13が目標位置近傍まで近接したかどうかを判断する。そして、上記位置偏差が所定レベル以下となったら、スライダ13が目標位置近傍まで近接したと判断し、コントローラ2から圧縮エアを混合潤滑用圧力の圧縮エアとする旨の切替指令を出力させる。なお、サーボアンプ4が圧縮エアを混合潤滑用圧力の圧縮エアとする旨の切替指令を出力するようにしてもよい。 The servo amplifier 4 receives a detection signal based on the position detection result of the slider 13 from the linear scale 17, and supplies a drive current to the linear motor 16 based on a deviation (position deviation) between the detection signal and a movement command from the controller 2. The position of the slider 13 is controlled by outputting. At this time, the servo amplifier 4 determines whether or not the slider 13 has approached the vicinity of the target position by determining whether or not the position deviation has become below a predetermined level set in advance. When the position deviation is equal to or less than a predetermined level, it is determined that the slider 13 has approached the vicinity of the target position, and the controller 2 outputs a switching command to the effect that the compressed air is the compressed air of the mixed lubrication pressure. Note that the servo amplifier 4 may output a switching command to the effect that the compressed air is compressed air of mixed lubrication pressure.
 レギュレータ6は、スライダ13の圧縮エア噴出孔22uに供給する圧縮エアの空気圧を調整する。レギュレータ6により空気圧が調整された圧縮エアは、圧縮エア噴出孔22uに上記所定圧力で供給される。レギュレータ7は、スライダ13の圧縮エア噴出孔22dに供給する圧縮エアの空気圧を調整する。レギュレータ7により空気圧が調整された圧縮エアは、電磁弁10を介して圧縮エア噴出孔22dに上記流体潤滑用圧力で供給される。レギュレータ8は、スライダ13の圧縮エア噴出孔22dに供給する圧縮エアの空気圧を調整する。レギュレータ8により空気圧が調整された圧縮エアは、電磁弁10を介して圧縮エア噴出孔22dに上記混合潤滑用圧力で供給される。レギュレータ9は、スライダ13の圧縮エア噴出孔22sに供給する圧縮エアの空気圧を調整する。レギュレータ9により空気圧が調整された圧縮エアは、圧縮エア噴出孔22sに上記所定圧力で供給される。 The regulator 6 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22u of the slider 13. The compressed air whose air pressure is adjusted by the regulator 6 is supplied to the compressed air ejection hole 22u at the predetermined pressure. The regulator 7 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 d of the slider 13. The compressed air whose air pressure is adjusted by the regulator 7 is supplied to the compressed air ejection hole 22d through the electromagnetic valve 10 at the above-described fluid lubrication pressure. The regulator 8 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 d of the slider 13. The compressed air whose air pressure has been adjusted by the regulator 8 is supplied to the compressed air ejection hole 22d through the electromagnetic valve 10 at the mixed lubrication pressure. The regulator 9 adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 s of the slider 13. The compressed air whose air pressure is adjusted by the regulator 9 is supplied to the compressed air ejection hole 22s at the predetermined pressure.
 電磁弁10は、コントローラ2からの切替指令に基づき、2ポートの開閉を切り替えることで、スライダ13の圧縮エア噴出孔22dに供給する圧縮エアを、レギュレータ7で空気圧が調整された上記流体潤滑用圧力の圧縮エアと、レギュレータ8で空気圧が調整された上記混合潤滑用圧力の圧縮エアとの間で切り替える。具体的には、スライダ13の目標位置近傍までの移動を行う際には、コントローラ2が、移動指令を出力するのとほぼ同じタイミングで、圧縮エアを流体潤滑用圧力の圧縮エアとする旨の切替指令を出力する。すると、この切替指令に基づき、電磁弁10が、レギュレータ7側のポートを開放すると共にレギュレータ8側のポートを閉鎖することで、圧縮エア噴出孔22dに供給する圧縮エアを流体潤滑用圧力の圧縮エアに切り替える。一方、目標位置近傍においてスライダ13の位置決めを行う際には、コントローラ2が、スライダ13が目標位置近傍まで近接したとサーボアンプ4により判断された場合に、圧縮エアを混合潤滑用圧力の圧縮エアとする旨の切替指令を出力する。すると、この切替指令に基づき、電磁弁10が、レギュレータ7側のポートを閉鎖すると共にレギュレータ8側のポートを開放することで、圧縮エア噴出孔22dに供給する圧縮エアを混合潤滑用圧力の圧縮エアに切り替える。 The solenoid valve 10 switches the opening and closing of the two ports on the basis of a switching command from the controller 2, whereby the compressed air supplied to the compressed air ejection hole 22 d of the slider 13 is adjusted for air pressure by the regulator 7. The pressure is switched between the compressed air and the compressed air having the pressure for mixed lubrication whose air pressure is adjusted by the regulator 8. Specifically, when the slider 13 is moved to the vicinity of the target position, the controller 2 uses the compressed air as the compressed air for the fluid lubrication pressure at substantially the same timing as when the movement command is output. A switching command is output. Then, based on this switching command, the solenoid valve 10 opens the port on the regulator 7 side and closes the port on the regulator 8 side, so that the compressed air supplied to the compressed air ejection hole 22d is compressed to the fluid lubrication pressure. Switch to air. On the other hand, when positioning the slider 13 in the vicinity of the target position, if the controller 2 determines that the slider 13 has approached the vicinity of the target position by the servo amplifier 4, the compressed air is compressed into the compressed lubrication pressure. A switching command to the effect is output. Then, based on this switching command, the solenoid valve 10 closes the regulator 7 side port and opens the regulator 8 side port, thereby compressing the compressed air supplied to the compressed air ejection hole 22d to the pressure of the mixed lubrication pressure. Switch to air.
 本実施形態では、スライダ13の圧縮エア噴出孔22u,22d,22sに圧縮エアを供給し、これら圧縮エア噴出孔22u,22d,22sに供給する圧縮エアの空気圧により、各ガイドレール12のガイド面とスライダ13の被ガイド面との潤滑状態を制御する。具体的には、エア源5から供給された圧縮エアの空気圧を各レギュレータ6,7,8,9で調整し、これら各レギュレータ6,7,8,9で調整された空気圧で圧縮エアをスライダ13の圧縮エア噴出孔22u,22d,22sに供給する(圧縮エア噴出孔22dに関しては、電磁弁10の2ポートの開閉を切り替えることで、圧縮エア噴出孔22dに供給する圧縮エアを、レギュレータ7で空気圧が調整された流体潤滑用圧力の圧縮エア、又は、レギュレータ8で空気圧が調整された混合潤滑用圧力の圧縮エアに切り替える)ことにより、各ガイドレール12のガイド面とスライダ13の被ガイド面との潤滑状態を制御する。なお、本実施形態では、エア源5及びレギュレータ6,7,8,9が、特許請求の範囲に記載のエア供給装置に相当する。 In the present embodiment, the compressed air is supplied to the compressed air ejection holes 22u, 22d, and 22s of the slider 13, and the guide surface of each guide rail 12 is supplied by the compressed air pressure supplied to the compressed air ejection holes 22u, 22d, and 22s. And the lubrication state between the slider 13 and the guided surface of the slider 13 are controlled. Specifically, the air pressure of the compressed air supplied from the air source 5 is adjusted by the regulators 6, 7, 8, and 9, and the compressed air is adjusted by the air pressure adjusted by the regulators 6, 7, 8, and 9. 13 Compressed air supplied to the compressed air ejection holes 22d by switching the opening and closing of the two ports of the solenoid valve 10 is switched to the regulator 7 By switching to compressed air of fluid lubrication pressure whose air pressure is adjusted in (1) or to compressed air of mixed lubrication pressure whose air pressure is adjusted by the regulator 8). Control the lubrication with the surface. In the present embodiment, the air source 5 and the regulators 6, 7, 8, and 9 correspond to the air supply device described in the claims.
 以上のように構成されたステージ制御システム1においては、スライダ13の圧縮エア噴出孔22u,22d,22sのうち、圧縮エア噴出孔22uに供給される圧縮エアは、レギュレータ6で空気圧が調整された所定圧力の圧縮エアに固定され、圧縮エア噴出孔22sに供給される圧縮エアは、レギュレータ9で空気圧が調整された所定圧力の圧縮エアに固定されているが、圧縮エア噴出孔22dに供給される圧縮エアは、スライダ13の目標位置近傍までの移動を行う際と、目標位置近傍においてスライダ13の位置決めを行う際とで切り替えられるようになっている。すなわち、スライダ13の目標位置近傍までの移動を行う際には、コントローラ2から圧縮エアを流体潤滑用圧力の圧縮エアとする旨の切替指令が電磁弁10に出力され、圧縮エア噴出孔22dに供給される圧縮エアが、レギュレータ7で空気圧が調整された流体潤滑用圧力の圧縮エアに切り替えられる。これにより、電磁弁10を介し流体潤滑用圧力の圧縮エアが圧縮エア噴出孔22dに供給され、各ガイド部材19の表面19aと各被ガイド部材21の表面21aとが流体潤滑状態(非接触状態)となる。一方、目標位置近傍においてスライダ13の位置決めを行う際には、コントローラ2から圧縮エアを混合潤滑用圧力の圧縮エアとする旨の切替指令が電磁弁10に出力され、圧縮エア噴出孔22dに供給される圧縮エアが、レギュレータ8で空気圧が調整された混合潤滑用圧力の圧縮エアに切り替えられる。これにより、電磁弁10を介し混合潤滑用圧力の圧縮エアが圧縮エア噴出孔22dに供給され、各ガイド部材19の表面19aと各被ガイド部材21の表面21aとが混合潤滑状態(微接触状態)となり、これら面同士の間に微小移動領域において線形バネ特性が生じる。 In the stage control system 1 configured as described above, the compressed air supplied to the compressed air ejection hole 22u among the compressed air ejection holes 22u, 22d, and 22s of the slider 13 has its air pressure adjusted by the regulator 6. The compressed air fixed to the compressed air of a predetermined pressure and supplied to the compressed air ejection hole 22s is fixed to the compressed air of the predetermined pressure whose air pressure is adjusted by the regulator 9, but is supplied to the compressed air ejection hole 22d. The compressed air is switched between when the slider 13 moves to the vicinity of the target position and when the slider 13 is positioned near the target position. That is, when the slider 13 is moved to the vicinity of the target position, the controller 2 outputs a switching command to the compressed air jet hole 22d to the compressed air jet hole 22d to output the compressed air to the compressed air of the fluid lubrication pressure. The supplied compressed air is switched to compressed air having a fluid lubrication pressure whose air pressure is adjusted by the regulator 7. As a result, compressed air with fluid lubrication pressure is supplied to the compressed air ejection hole 22d via the electromagnetic valve 10, and the surface 19a of each guide member 19 and the surface 21a of each guided member 21 are in a fluid lubrication state (non-contact state). ) On the other hand, when positioning the slider 13 in the vicinity of the target position, the controller 2 outputs a switching command to the compressed air to the compressed air ejection hole 22d to the effect that the compressed air is compressed to the mixed lubrication pressure. The compressed air to be used is switched to the compressed air of the mixed lubrication pressure whose air pressure is adjusted by the regulator 8. As a result, compressed air with mixed lubrication pressure is supplied to the compressed air ejection holes 22d via the electromagnetic valve 10, and the surface 19a of each guide member 19 and the surface 21a of each guided member 21 are in a mixed lubrication state (fine contact state). ), And a linear spring characteristic is generated between these surfaces in a minute movement region.
 以上説明した本実施形態に関して、本願発明者等による検討結果について説明する。 Regarding the present embodiment described above, the results of examination by the inventors will be described.
 (A)相対する面同士の潤滑状態を圧縮エアの空気圧により制御するための検討
 まず、本実施形態に係るステージ装置3において、ガイドレール12のガイド部材19の表面19aとスライダ13の被ガイド部材21の表面21aとの潤滑状態を圧縮エアの空気圧により制御するための検討結果について説明する。
(A) Study for controlling the lubrication state of opposing surfaces by the air pressure of compressed air First, in the stage device 3 according to the present embodiment, the surface 19a of the guide member 19 of the guide rail 12 and the guided member of the slider 13 The result of examination for controlling the lubrication state with the surface 21a of 21 by the air pressure of the compressed air will be described.
 ここでは、まず、ガイド部材19の表面と被ガイド部材21の表面との間の摩擦力と圧縮エアの空気圧との関係を測定した。すなわち、圧縮エアの空気圧は、デジタル圧力スイッチISE30A(SMC株式会社製)を用いることで0.001[MPa]単位で調整することができるので、圧縮エアの空気圧を0.07[MPa]から0.180[MPa]まで0.005[MPa]刻みで変化させ、各空気圧でのガイド部材19の表面と被ガイド部材21の表面との間に生じる摩擦力を測定した。摩擦力は、フォースゲージAD-4932A-50N(株式会社エー・アンド・デイ社製)を用いて測定した。圧縮エアの空気圧を調整し、リニアモータ16を駆動するサーボアンプ4をサーボオフした状態で、スライダ13を横方向からフォースゲージで押し、約100[μm]移動するまでに生じた摩擦力を記録した。測定時には同じ位置での測定を行うため、測定毎にスライダ13について原点復帰を行った。図5(a)に、その測定結果を示す。図5(a)では、縦軸を摩擦力[N]とし、横軸を圧縮エアの空気圧[MPa]としている。 Here, first, the relationship between the friction force between the surface of the guide member 19 and the surface of the guided member 21 and the air pressure of the compressed air was measured. That is, the air pressure of the compressed air can be adjusted in units of 0.001 [MPa] by using the digital pressure switch ISE30A (manufactured by SMC Corporation), so the air pressure of the compressed air is changed from 0.07 [MPa] to 0. The frictional force generated between the surface of the guide member 19 and the surface of the guided member 21 at each air pressure was measured by changing the pressure in increments of 0.005 [MPa] to 180 [MPa]. The frictional force was measured using a force gauge AD-4932A-50N (manufactured by A & D Co., Ltd.). With the air pressure of the compressed air adjusted and the servo amplifier 4 that drives the linear motor 16 servo-off, the slider 13 was pushed with a force gauge from the lateral direction, and the frictional force generated until it moved about 100 [μm] was recorded. . In order to perform measurement at the same position during measurement, the origin return was performed for the slider 13 for each measurement. FIG. 5A shows the measurement result. In FIG. 5A, the vertical axis represents the frictional force [N], and the horizontal axis represents the compressed air pressure [MPa].
 次に、その測定結果を用いてガイド部材19の表面と被ガイド部材21の表面との間の摩擦係数μと圧縮エアの空気圧との関係を導出した。摩擦係数μは、摩擦力及び可動子の質量等を用いて概算した。図5(b)に、その導出結果を示す。図5(b)では、縦軸を摩擦係数μとし、横軸を圧縮エアの空気圧[MPa]として、片対数グラフで示している。 Next, using the measurement results, the relationship between the friction coefficient μ between the surface of the guide member 19 and the surface of the guided member 21 and the air pressure of the compressed air was derived. The friction coefficient μ was estimated using the frictional force and the mass of the mover. FIG. 5B shows the derivation result. In FIG.5 (b), the vertical axis | shaft is set to the friction coefficient (micro | micron | mu), and the horizontal axis | shaft is shown by the semi-logarithmic graph as the air pressure [MPa] of compressed air.
 図5(a)及び図5(b)により次のようなことがわかった。すなわち、圧縮エアの空気圧を0.135[MPa]より小さくすると、摩擦力は大きくなるが、圧縮エアの空気圧を0.140[MPa]以上とすると、摩擦力は0,001[N]前後でほとんど変化しなかった。また、摩擦力は0[N]から50[N]までの範囲で変化し、摩擦係数μは0.1から0.001程度の範囲内で変化した。 5 (a) and 5 (b) revealed the following. That is, if the compressed air pressure is less than 0.135 [MPa], the frictional force increases, but if the compressed air pressure is 0.140 [MPa] or higher, the frictional force is around 0.001 [N]. There was little change. The frictional force changed in the range from 0 [N] to 50 [N], and the friction coefficient μ changed in the range of about 0.1 to 0.001.
 したがって、当該測定においては、0.135[MPa]付近で摩擦力が非常に小さくなり、それ以上圧縮エアの空気圧を大きくしてもほとんど摩擦力が変化しないことから、0.135[MPa]付近でガイド部材19の表面と被ガイド部材21の表面とが流体潤滑状態(非接触状態)となっていると考えられる。 Therefore, in this measurement, the frictional force becomes very small in the vicinity of 0.135 [MPa], and the frictional force hardly changes even when the air pressure of the compressed air is further increased. Therefore, it is considered that the surface of the guide member 19 and the surface of the guided member 21 are in a fluid lubrication state (non-contact state).
 また、図5(b)に示す摩擦係数μと圧縮エアの空気圧との関係を表す曲線がストライベック曲線に似た傾向を示した。図6に、縦軸を摩擦係数μとし、横軸を無次元数である軸受特性数として、一般的なストライベック曲線(実線示す曲線)を示す。ストライベック曲線とは、摩擦係数μと軸受特性数との関係を示す曲線であり、正確な実測値に基づいた曲線である。軸受特性数は、(粘度η×速度q)/荷重Wで表される。ストライベック曲線は、油で潤滑している軸受の特性を説明するためのものであるが、空気静圧軸受の特性を説明する場合にも同様に使用することができる。 Also, the curve representing the relationship between the friction coefficient μ and the compressed air pressure shown in FIG. 5B tended to resemble the Stribeck curve. FIG. 6 shows a general Stribeck curve (curved line) with the vertical axis representing the friction coefficient μ and the horizontal axis representing the dimensionless number of bearing characteristics. The Stribeck curve is a curve showing the relationship between the friction coefficient μ and the number of bearing characteristics, and is a curve based on accurate measured values. The number of bearing characteristics is represented by (viscosity η × speed q) / load W. The Stribeck curve is for explaining the characteristics of a bearing lubricated with oil, but can also be used in the same way when explaining the characteristics of an aerostatic bearing.
 このとき、例えば、橋本巨著の「基礎から学ぶトライボロジー」(森北出版株式会社、2006年、p93~p95)に基づいて、軸受特性数を媒介変数とする、相対する面同士の摩擦係数μ及び膜厚比Λのグラフを描くことができる。すなわち、空気静圧軸受の荷重Wと相対する面同士の隙間h等との関係は、例えば、田中久一郎著の「摩擦のおはなし」(日本規格協会、1985年、p189~p199)に基づいて、
  W=3qηL(b+1/2)/h   ・・・(式1)
と表される。なお、上記(式1)中のb及びLは、構造による定数である。また、空気静圧軸受の荷重Wと隙間h等との関係を定数Kを用いて表すと、上記(式1)は、
  W=Kqη/h   ・・・(式2)
と表される。したがって、軸受特性数=(粘度η×速度q)/荷重Wは、上記(式2)を変形して、
  ηq/W=h/K   ・・・(式3)
と表される。これにより、軸受特性数を媒介変数として、ストライベック曲線を隙間hで表すことができる。すなわち、ストライベック曲線をfs(ηq/W)とすると、
  fs(ηq/W)=fs(h/K)   ・・・(式4)
と表されるので、上記(式4)を計算することで、ストライベック曲線を、横軸を隙間hとして示すことができる。
At this time, for example, based on “Tribology Learned from the Basics” by Hiroshi Hashimoto (Morikita Publishing Co., Ltd., 2006, p93-p95), the friction coefficient μ between the faces and the film with the number of bearing characteristics as a parameter. A graph of the thickness ratio Λ can be drawn. That is, the relationship between the load W of the aerostatic bearing and the gap h between the opposing surfaces is based on, for example, “The Story of Friction” by Kuichiro Tanaka (Japanese Standards Association, 1985, p189-p199).
W = 3qηL (b + 1/2) / h 3 (Expression 1)
It is expressed. In the above (Formula 1), b and L are constants depending on the structure. Moreover, when the relationship between the load W of the aerostatic bearing and the gap h is expressed using a constant K, the above (Equation 1) is
W = Kqη / h 3 (Expression 2)
It is expressed. Therefore, the number of bearing characteristics = (viscosity η × speed q) / load W is obtained by modifying the above (Equation 2),
ηq / W = h 3 / K (Formula 3)
It is expressed. As a result, the Stribeck curve can be represented by the gap h with the number of bearing characteristics as a parameter. That is, if the Stribeck curve is fs (ηq / W),
fs (ηq / W) = fs (h 3 / K) (Formula 4)
Therefore, by calculating the above (Formula 4), the Stribeck curve can be shown with the horizontal axis as the gap h.
 ここで、膜厚比Λをあわせて考察すると、相対する面をA及びBとし、面Aの平均二乗面粗さ(距離)をσA、面Bの平均二乗面粗さ(距離)をσBとしたとき、これら相対する面A,Bの平均二乗面粗さσは、
  σ=SQRT(σA+σB)   ・・・(式5)
と表される。そして、膜厚比Λは、
  Λ=h/σ   ・・・(式6)
と定義される。これにより、隙間hは、面Aの粗さの平均位置と面Bの粗さの平均位置との距離である考えることができるので、膜厚比Λは、隙間hを平均二乗粗さσの倍数で表したものであると言える。
Here, considering the film thickness ratio Λ, the opposing surfaces are A and B, the mean square surface roughness (distance) of surface A is σA, and the mean square surface roughness (distance) of surface B is σB. Then, the mean square surface roughness σ of these opposing surfaces A and B is
σ = SQRT (σA 2 + σB 2 ) (Formula 5)
It is expressed. And the film thickness ratio Λ is
Λ = h / σ (Formula 6)
Is defined. Thus, since the gap h can be considered as the distance between the average position of the roughness of the surface A and the average position of the roughness of the surface B, the film thickness ratio Λ It can be said that it is expressed in multiples.
 以上により、軸受特性数を媒介変数として計算することで、図6に示すように、相対する面同士の摩擦係数μ(実線示す曲線)及び膜厚比Λ(破線示す曲線)のグラフを描くことができる。ここで、膜厚比Λが3以上となる場合は、面Aと面Bとの平均位置が粗さの3σ以上離れている場合であり、面Aと面Bとが完全に離れている上記流体潤滑状態(非接触状態)、すなわち面Aと面Bとの間の荷重を圧縮エアの静圧のみで負担する状態となる。また、膜厚比Λが1~3となる場合は、面Aと面Bとが微小に接触している混合潤滑状態(微接触状態)、すなわち面Aと面Bとの間の荷重を表面粗さレベルでの接触と圧縮エアの静圧との両方で負担する状態となる。したがって、圧縮エアの空気圧を調整することで、スライダ13の浮上量、すなわちガイド部材19の表面19aと被ガイド部材21の表面21aとの隙間hを調整でき、これら面同士の膜厚比Λを調整できるので、ガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を制御できると考えられる。 Thus, by calculating the number of bearing characteristics as a parameter, draw a graph of the friction coefficient μ (curved line) and the film thickness ratio Λ (curved line) between the opposing surfaces as shown in FIG. Can do. Here, when the film thickness ratio Λ is 3 or more, the average position between the surface A and the surface B is separated by 3σ or more of the roughness, and the surface A and the surface B are completely separated from each other. The fluid lubrication state (non-contact state), that is, a state where the load between the surface A and the surface B is borne only by the static pressure of the compressed air. When the film thickness ratio Λ is 1 to 3, the mixed lubrication state (fine contact state) in which the surface A and the surface B are in minute contact, that is, the load between the surface A and the surface B is applied to the surface. It becomes a state to bear both by the contact at the roughness level and by the static pressure of the compressed air. Therefore, by adjusting the air pressure of the compressed air, the flying height of the slider 13, that is, the gap h between the surface 19 a of the guide member 19 and the surface 21 a of the guided member 21 can be adjusted. Since it can be adjusted, it is considered that the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 can be controlled.
 また、当該測定においては、図5(b)に示す摩擦係数μと圧縮エアの空気圧との関係を表す曲線と図6中実線で示すストライベック曲線との比較結果から、0.100[MPa]から0.140[MPa]までの範囲でガイド部材19の表面19aと被ガイド部材21の表面21aとが混合潤滑状態(微接触状態)となっていると考えられる。 Further, in this measurement, from a comparison result between a curve representing the relationship between the friction coefficient μ and the compressed air pressure shown in FIG. It is considered that the surface 19a of the guide member 19 and the surface 21a of the guided member 21 are in a mixed lubrication state (fine contact state) in a range from 1 to 0.140 [MPa].
 (B)相対する面同士の間に非線形バネ特性が生じているかどうかについての検討
 次に、本実施形態に係るステージ装置3において、ガイドレール12のガイド部材19の表面19aとスライダ13の被ガイド部材21の表面21aとの間に非線形バネ特性が生じているかどうかについての検討結果について説明する。
(B) Examination of whether non-linear spring characteristics are generated between the opposing surfaces Next, in the stage device 3 according to the present embodiment, the surface 19a of the guide member 19 of the guide rail 12 and the guided member of the slider 13 The examination result about whether the nonlinear spring characteristic has arisen between the surface 21a of the member 21 is demonstrated.
 ここでは、上記(A)の検討による測定結果によりガイド部材19の表面と被ガイド部材21の表面との潤滑状態が混合潤滑状態になったと思われる圧縮エアの空気圧の範囲のうち、0.117[MPa]、0.118[MPa]、0.119[MPa]において、スライダ13を変位0[nm]の位置から移動方向における正方向(例えば前方)と負方向(例えば後方)との両方向に50[nm]幅で5[nm]刻みで定寸送りした。そして、各変位での推力指令[%]を測定し、記録した。図7(a)に、0.117[MPa]での測定結果を示し、図7(b)に、0.118[MPa]での測定結果を示し、図7(c)に、0.119[MPa]での測定結果を示す。これら図7(a)~図7(c)では、縦軸を推力指令[%]とし、横軸をスライダ13の移動方向の変位[nm]として、各図中矢印の順番通りに測定を行った場合の測定結果を示している。 Here, 0.117 out of the range of compressed air pressure in which the lubrication state between the surface of the guide member 19 and the surface of the guided member 21 is considered to be a mixed lubrication state based on the measurement result of the examination of (A) above. At [MPa], 0.118 [MPa], and 0.119 [MPa], the slider 13 is moved from the position of displacement 0 [nm] in both the positive direction (for example, forward) and the negative direction (for example, backward) in the moving direction. A fixed size was fed in increments of 5 [nm] with a width of 50 [nm]. Then, the thrust command [%] at each displacement was measured and recorded. 7A shows the measurement result at 0.117 [MPa], FIG. 7B shows the measurement result at 0.118 [MPa], and FIG. 7C shows 0.119 [MPa]. The measurement result in [MPa] is shown. 7 (a) to 7 (c), the vertical axis is the thrust command [%], and the horizontal axis is the displacement [nm] in the moving direction of the slider 13, and measurements are performed in the order of the arrows in each figure. The measurement results are shown.
 図7(a)~図7(c)により次のようなことがわかった。すなわち、図7(a)~図7(c)に示す推力指令とスライダ13の変位との関係は、ヒステリシスの特性を示した。また、圧縮エアの空気圧を大きくするに従って、推力指令とスライダ13の変位との関係を表すヒステリシスな曲線(ヒステリシス曲線)の縦幅(推力指令方向)は小さく扁平になっていき、値は振動的となった。 7 (a) to 7 (c) revealed the following. That is, the relationship between the thrust command and the displacement of the slider 13 shown in FIGS. 7A to 7C shows a hysteresis characteristic. Further, as the air pressure of the compressed air is increased, the vertical width (thrust command direction) of the hysteresis curve (hysteresis curve) representing the relationship between the thrust command and the displacement of the slider 13 becomes smaller and flat, and the value is oscillatory. It became.
 したがって、当該測定においては、推力指令とスライダ13の変位との関係を表す曲線がヒステリシス曲線を描くことから、圧縮エアの空気圧が0.117[MPa]、0.118[MPa]、0.119[MPa]であるときには、ガイド部材19の表面と被ガイド部材21の表面との間に非線形バネ特性が生じていると考えられる。また、圧縮エアの空気圧が0.117[MPa]であるときが、最もきれいな形状のヒステリシス曲線となった。 Therefore, in this measurement, since the curve representing the relationship between the thrust command and the displacement of the slider 13 draws a hysteresis curve, the air pressure of the compressed air is 0.117 [MPa], 0.118 [MPa], 0.119. When it is [MPa], it is considered that nonlinear spring characteristics are generated between the surface of the guide member 19 and the surface of the guided member 21. When the compressed air pressure was 0.117 [MPa], the most beautiful hysteresis curve was obtained.
 (C)相対する面同士の間に微小移動領域において線形バネ特性が生じているかどうかについての検討
 次に、本実施形態に係るステージ装置3において、混合潤滑状態となったガイドレール12のガイド部材19の表面19aとスライダ13の被ガイド部材21の表面21aとの間に微小移動領域において線形バネ特性が生じているかどうかについての検討結果について説明する。
(C) Examination as to whether linear spring characteristics are generated in the minute movement region between the opposing surfaces Next, in the stage device 3 according to the present embodiment, the guide member of the guide rail 12 in the mixed lubrication state A description will be given of the examination results as to whether or not a linear spring characteristic is generated in the minute movement region between the surface 19a of 19 and the surface 21a of the guided member 21 of the slider 13.
 ここでは、まず、上記(A)の検討による測定結果によりガイド部材19の表面と被ガイド部材21の表面との潤滑状態が混合潤滑状態になったと思われる圧縮エアの空気圧の範囲のうち、上記(B)の検討による測定結果において最もきれいな形状のヒステリシス曲線となった0.117[MPa]において、スライダ13を変位0[nm]の位置から移動方向における正方向(例えば前方)と負方向(例えば後方)との両方向に10[nm]幅で1[nm]刻みで定寸送りした。そして、各変位での推力指令[%]を測定し、記録した。図8(a)に、その測定結果を示す。図8(a)では、縦軸を推力指令[%]とし、横軸をスライダ13の移動方向の変位[nm]として、図中測定開始点から矢印の順番通りに測定終了点まで測定を行った場合の測定結果を示している。 Here, first, out of the range of compressed air pressure in which the lubrication state between the surface of the guide member 19 and the surface of the guided member 21 is considered to be a mixed lubrication state based on the measurement result by the examination of (A) above, At 0.117 [MPa], which is the hysteresis curve with the cleanest shape in the measurement result by the examination of (B), the slider 13 is moved from the position of displacement 0 [nm] in the positive direction (for example, forward) and negative direction (for example, forward). For example, the sheet was fed at a fixed rate in increments of 1 [nm] with a width of 10 [nm] in both directions. Then, the thrust command [%] at each displacement was measured and recorded. FIG. 8A shows the measurement result. In FIG. 8A, the vertical axis is the thrust command [%] and the horizontal axis is the displacement [nm] in the moving direction of the slider 13, and measurement is performed from the measurement start point to the measurement end point in the order of the arrows in the figure. The measurement results are shown.
 次に、その測定結果における推力指令[%]を推力[N]に変換したグラフを導出した。図8(b)に、その導出結果を示す。図8(b)では、縦軸を推力[N]とし、横軸をスライダ13の移動方向の変位[nm]としている。 Next, a graph in which the thrust command [%] in the measurement result is converted to the thrust [N] was derived. FIG. 8B shows the derivation result. In FIG. 8B, the vertical axis represents thrust [N], and the horizontal axis represents displacement [nm] in the moving direction of the slider 13.
 図8(a)及び図8(b)により次のようなことがわかった。すなわち、測定結果をグラフにプロットすると、ほぼ直線となった。また、測定開始点から正方向に10[nm]移動後、負方向に20[nm]移動させ、その後さらに正方向に10[nm]移動させると、測定終了点で推力指令は測定開始点に近い値を示した。また、図8(b)に示す推力とスライダ13の変位との関係から、最小二乗法で一次関数として近似関数を求めた結果、y=0.4155x+5.3366という関数となった。 8 (a) and 8 (b) revealed the following. That is, when the measurement result was plotted on a graph, it was almost a straight line. In addition, after moving 10 [nm] in the positive direction from the measurement start point, moving 20 [nm] in the negative direction, and then moving further 10 [nm] in the positive direction, the thrust command becomes the measurement start point at the measurement end point. It showed a close value. Further, as a result of obtaining an approximate function as a linear function by the least square method from the relationship between the thrust and the displacement of the slider 13 shown in FIG. 8B, a function y = 0.4155x + 5.3366 was obtained.
 したがって、当該測定においては、推力指令(推力)とスライダ13の変位との関係が線形であることから、圧縮エアの空気圧が0.117[MPa]であるときには、混合潤滑状態となったガイド部材19の表面と被ガイド部材21の表面との間に微小移動領域において線形バネ特性が生じていると考えられる。また、推力とスライダ13の変位との関係から最小二乗法で一次関数として近似関数を求めると、その傾きが0.4155となることから、バネ定数は0.4155×10[N/m]となった。 Therefore, in this measurement, since the relationship between the thrust command (thrust) and the displacement of the slider 13 is linear, when the compressed air pressure is 0.117 [MPa], the guide member is in a mixed lubrication state. It is considered that a linear spring characteristic is generated in the minute movement region between the surface 19 and the surface of the guided member 21. Further, when the approximate function is obtained as a linear function by the least square method from the relationship between the thrust and the displacement of the slider 13, the slope is 0.4155, so the spring constant is 0.4155 × 10 9 [N / m]. It became.
 (D)微小移動領域における動作での性能についての検討
 次に、本実施形態に係るステージ装置3において、微小移動領域における動作での性能についての検討結果について説明する。
(D) Examination of performance in operation in minute movement region Next, in the stage apparatus 3 according to the present embodiment, a study result on performance in operation in the minute movement region will be described.
 ここでは、スライダ13の位置決め動作を行って、スライダ13の位置決め完了後はリニアスケール17からの検出信号とコントローラ2からの移動指令との偏差(位置偏差)は0となるべきであるが実際は数パルス程度で微小な振動(停止時の振動)が残るということから、微小振動している位置偏差信号を一定時間観測して統計演算することで標準偏差σを計算し、標準偏差σを3倍した3σ(以下、「位置偏差の3σ」と称する)を用いて、バラツキの範囲として微小移動領域における動作での性能を評価することとした。 Here, after the positioning operation of the slider 13 is performed and the positioning of the slider 13 is completed, the deviation (positional deviation) between the detection signal from the linear scale 17 and the movement command from the controller 2 should be zero, but in reality it is a number. Since minute vibration (vibration at the time of stoppage) remains at about the pulse, the standard deviation σ is calculated by observing the position deviation signal that is oscillating for a certain period of time and performing statistical calculations, and the standard deviation σ is tripled. 3σ (hereinafter referred to as “3σ of position deviation”) was used to evaluate the performance in the operation in the minute movement region as the range of variation.
 すなわち、スライダ13の位置偏差の3σと圧縮エアの空気圧との関係について測定した。圧縮エアの空気圧は、デジタル圧力スイッチISE30A(SMC株式会社製)を用いることで0.001[MPa]単位で調整することができる。スライダ13の位置偏差の3σは、コントローラ2上でラダープログラムによって求めている。コントローラ2では、位置の指令単位を[μm]と設定し、小数点以下桁数を3と設定しているので、1[μm]単位での位置情報を取得することができる。リニアモータ16を駆動するサーボアンプ4をサーボオンした状態で、位置偏差の情報をHスキャン(高速スキャン)毎に取り込み、コントローラ2上で標準偏差を求める関数を用いて位置偏差の3σを導出する。Hスキャンを0.5[ms]と設定し、10[s]毎に3σを計算するようにラダープログラムを構成したので位置偏差のサンプル数は20000点である。今回は、圧縮エアの空気圧を0.130[MPa]から0.194[MPa]まで0.001[MPa]刻みで上昇させていったとき、各空気圧でのスライダ13の位置偏差の3σの変化を測定した。なお、圧縮エアの空気圧を変化させている最中に、スライダ13の位置偏差を位置偏差の3σの演算に用いると正確な値が測定できないと考え、圧縮エアの空気圧を変化させてから20[s]以上経過してからデータを記録するようにした。図9に、その測定結果を示す。図9(a)及び図9(b)では、縦軸をスライダ13の位置偏差の3σ[nm]とし、横軸を圧縮エアの空気圧[MPa]として、図9(a)では位置偏差の3σを0[nm]~1200[nm]の範囲で、図9(b)では位置偏差の3σを0[nm]~20[nm]の範囲で示している。 That is, the relationship between the positional deviation 3σ of the slider 13 and the compressed air pressure was measured. The air pressure of the compressed air can be adjusted in units of 0.001 [MPa] by using a digital pressure switch ISE30A (manufactured by SMC Corporation). The position deviation 3σ of the slider 13 is obtained on the controller 2 by a ladder program. In the controller 2, since the position command unit is set to [μm] and the number of digits after the decimal point is set to 3, position information in units of 1 [μm] can be acquired. In a state where the servo amplifier 4 that drives the linear motor 16 is in a servo-on state, position deviation information is fetched every H scan (high-speed scan), and 3σ of the position deviation is derived using a function for obtaining the standard deviation on the controller 2. Since the ladder program is configured so that H scan is set to 0.5 [ms] and 3σ is calculated every 10 [s], the number of position deviation samples is 20000. This time, when the air pressure of the compressed air is increased from 0.130 [MPa] to 0.194 [MPa] in increments of 0.001 [MPa], the change in the positional deviation of the slider 13 at each air pressure is 3σ. Was measured. When the position deviation of the slider 13 is used for the calculation of 3σ of the position deviation while the compressed air pressure is being changed, it is considered that an accurate value cannot be measured. s] The data was recorded after the lapse of the time. FIG. 9 shows the measurement results. 9A and 9B, the vertical axis is 3σ [nm] of the positional deviation of the slider 13, the horizontal axis is the air pressure [MPa] of compressed air, and in FIG. 9A, the positional deviation is 3σ. Is in the range of 0 [nm] to 1200 [nm], and in FIG. 9B, 3σ of the positional deviation is shown in the range of 0 [nm] to 20 [nm].
 図9(a)及び図9(b)により次のようなことがわかった。すなわち、圧縮エアの空気圧が0.130[MPa]~0.171[MPa]の範囲では、スライダ13の位置偏差の3σは概ね8~13[nm]程度の間で安定した。圧縮エアの空気圧が0.171[MPa]~0.194[MPa]の範囲では、圧縮エアの空気圧が大きくなるに従ってスライダ13の位置偏差の3σは100[nm]~200[nm]の間で徐々に大きくなるが、圧縮エアの空気圧が0.194[MPa]に到達するとスライダ13の位置偏差の3σは急激に大きくなった。なお、今回の測定では測定範囲外であったが、上記(C)の検討による測定結果により混合潤滑状態となったガイドレール12のガイド部材19の表面19aとスライダ13の被ガイド部材21の表面21aとの間に微小移動領域において線形バネ特性を生じさせることができたと思われる圧縮エアの空気圧である0.117[MPa]においても同様に、スライダ13の位置偏差の3σは概ね8~13[nm]程度の間で安定すると考えられる。 9 (a) and 9 (b) revealed the following. That is, when the air pressure of the compressed air is in the range of 0.130 [MPa] to 0.171 [MPa], the 3σ of the positional deviation of the slider 13 is stabilized between about 8 to 13 [nm]. When the compressed air pressure is in the range of 0.171 [MPa] to 0.194 [MPa], the positional deviation 3σ of the slider 13 is between 100 [nm] and 200 [nm] as the compressed air pressure increases. Although gradually increasing, 3σ of the positional deviation of the slider 13 suddenly increased when the compressed air pressure reached 0.194 [MPa]. Note that the surface 19a of the guide member 19 of the guide rail 12 and the surface of the guided member 21 of the slider 13 which were out of the measurement range in this measurement, but in a mixed lubrication state based on the measurement result of the study of (C) above. Similarly, in the case of 0.117 [MPa], which is the air pressure of the compressed air that seems to have been able to generate the linear spring characteristic in the minute movement region, the positional deviation 3σ of the slider 13 is approximately 8 to 13 It is considered to be stable between [nm].
 本実施形態では、上記(A)~(D)の検討により導出された特質に基づき、スライダ13の圧縮エア噴出孔22dに供給する圧縮エアの空気圧を制御することで、ガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を所望の潤滑状態に制御すると共に、混合潤滑状態となったガイド部材19の表面19aと被ガイド部材21の表面21aとの間に微小移動領域において線形バネ特性を生じるように制御する。一例としては、摩擦係数μと圧縮エアの空気圧との関係を表す曲線がストライベック曲線に似た傾向を示すことから、上記曲線に出現する、1つ目の変曲点(空気圧が小さい側)を境界潤滑及び混合潤滑の境界と考え、2つ目の変曲点(空気圧が大きい側)を混合潤滑及び流体潤滑の境界と考えて、上記流体潤滑用圧力を2つ目の変曲点より大きい空気圧に決定し、上記混合潤滑用圧力を2つ変曲点の間の空気圧に決定する。別の例としては、隙間hと膜厚比Λとの関係から、上記流体潤滑用圧力を膜厚比Λが3以上となる隙間hに対応する空気圧に決定し、上記混合潤滑用圧力を膜厚比Λが1~3となる隙間hに対応する空気圧に決定する。そして、レギュレータ7で圧縮エアの空気圧を調整し、電磁弁10を介して圧縮エア噴出孔22dに上記決定した流体潤滑用圧力で圧縮エアを供給することで、ガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を流体潤滑状態とするように制御する。また、レギュレータ8で圧縮エアの空気圧を調整し、電磁弁10を介して圧縮エア噴出孔22dに上記決定した混合潤滑用圧力で圧縮エアを供給することで、ガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を混合潤滑状態とし、これら面同士の間に微小移動領域において線形バネ特性を生じるように制御する。 In the present embodiment, the surface 19a of the guide member 19 is controlled by controlling the air pressure of the compressed air supplied to the compressed air ejection hole 22d of the slider 13 on the basis of the characteristics derived from the examinations (A) to (D). And the surface 21a of the guided member 21 are controlled to a desired lubrication state, and in a minute movement region between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state. Control to produce linear spring characteristics. As an example, since the curve representing the relationship between the friction coefficient μ and the air pressure of the compressed air shows a tendency similar to the Stribeck curve, the first inflection point appearing in the curve (the side where the air pressure is small). Is considered as the boundary between boundary lubrication and mixed lubrication, and the second inflection point (air pressure side) is considered as the boundary between mixed lubrication and fluid lubrication, and the above fluid lubrication pressure is determined from the second inflection point. A large air pressure is determined, and the pressure for mixed lubrication is determined to be an air pressure between two inflection points. As another example, based on the relationship between the gap h and the film thickness ratio Λ, the fluid lubrication pressure is determined as an air pressure corresponding to the gap h where the film thickness ratio Λ is 3 or more, and the mixed lubrication pressure is set as the film. The air pressure corresponding to the gap h where the thickness ratio Λ is 1 to 3 is determined. Then, the air pressure of the compressed air is adjusted by the regulator 7, and the compressed air is supplied to the compressed air ejection hole 22d through the electromagnetic valve 10 at the determined fluid lubrication pressure, so that the surface 19a of the guide member 19 and the guided member The lubrication state with the surface 21a of the member 21 is controlled to be a fluid lubrication state. Further, the air pressure of the compressed air is adjusted by the regulator 8, and the compressed air is supplied to the compressed air ejection hole 22 d through the electromagnetic valve 10 at the determined mixed lubrication pressure, so that the surface 19 a of the guide member 19 and the guided member The lubrication state with the surface 21a of the member 21 is set to a mixed lubrication state, and control is performed so that a linear spring characteristic is generated between these surfaces in a minute movement region.
 以上説明したように、本実施形態に係るステージ制御システム1においては、各ガイドレール12のガイド面とスライダ13の被ガイド面とは相対しており、目標位置近傍においてスライダ13の位置決めを行う際には、これら面同士の潤滑状態が、各ガイド部材19の表面19aと各被ガイド部材21の表面21aとの間で混合潤滑状態となり、各ガイドレール12の上板部12uの内面12uaとスライダ13の各挿入部20の上面20aとの間、及び、各ガイドレール12の側板部12sの内面12saとスライダ13の各挿入部20の側面20bとの間で流体潤滑状態となるように、制御される。 As described above, in the stage control system 1 according to this embodiment, the guide surface of each guide rail 12 and the guided surface of the slider 13 are opposed to each other, and the slider 13 is positioned in the vicinity of the target position. In this case, the lubrication state between these surfaces becomes a mixed lubrication state between the surface 19a of each guide member 19 and the surface 21a of each guided member 21, and the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the slider. 13 so as to be in a fluid lubrication state between the top surface 20a of each insertion portion 20 and between the inner surface 12sa of the side plate portion 12s of each guide rail 12 and the side surface 20b of each insertion portion 20 of the slider 13. Is done.
 ここで、転がり軸受を用いたステージ装置において、転がり軸受の微小移動領域における線形バネ特性を利用して1nmオーダの位置決めを行う手法が、例えば二見茂著の「機構の非線形特性とその制御」(日本ロボット学会誌 Vol9,No4,pp.439~497,1991)に開示されている。この文献に記載されたステージ装置(一軸ステージ機構)では、スライダ(可動テーブル)の駆動装置として同期型のACリニアモータが使用されており、スライダは、ボールを用いた直動型転がり軸受(転がり案内)で案内される。そして、スライダの移動量が概ね100[nm]以下の微小移動領域では、転がり軸受のボールの弾性変形による線形バネ特性を示し、スライダの移動量が100[nm]~100[μm]の範囲では、非線形バネ特性を示すようになっている。また、スライダの移動量が概ね100[nm]以下の微小移動領域でのバネ定数は、約8.5[N/μm]となっている。 Here, in a stage device using a rolling bearing, a method of positioning on the order of 1 nm using linear spring characteristics in a minute movement region of the rolling bearing is, for example, “Nonlinear characteristics of the mechanism and its control” by Shigeru Futami. The Journal of the Robotics Society of Japan, Vol 9, No. 4, pp. 439-497, 1991). In the stage device (single-axis stage mechanism) described in this document, a synchronous AC linear motor is used as a drive device for a slider (movable table). The slider is a linear motion type rolling bearing (rolling) using a ball. Guide). In a minute movement region where the slider movement amount is approximately 100 [nm] or less, a linear spring characteristic due to elastic deformation of the ball of the rolling bearing is exhibited, and in a slider movement amount range of 100 [nm] to 100 [μm]. The non-linear spring characteristic is shown. In addition, the spring constant in a minute movement region where the moving amount of the slider is approximately 100 [nm] or less is about 8.5 [N / μm].
 またここで、上記文献に記載されたステージ装置に類似したリニアモータを用いたステージ装置において、汎用のサーボアンプでの推力制御分解能を検討する。例えば、スライダの可動部の質量が40[kg]であり、1[G]程度の加速度である場合、リニアモータの最大推力は、約400[N]となる。また、バネ定数を上記文献と同程度と仮定すると、スライダの移動量が概ね100[nm]以下の微小移動領域でのバネ定数は、約8.5[N/μm]となる。すなわち、スライダが1[nm]変位するために必要なバネの反力は、0.0085[N]であり、これを推力の最小分解能とすると、最大推力では、
  400/0.0085≒47059
となり、16ビット(=65536)程度の分解能が必要なことがわかる。汎用のサーボアンプでは、電流検出分解能が11ビット(=2048)程度であるので、推力の分解能も同程度となり、推力の最小分解能は、
  400/2048≒0.2[N]
となる。単純にこのままスライダが変位すると考えると、
  0.2/0.0085≒24[nm]
となり、約24[nm]毎の制御となる。このため、入手や保守が容易ではあるが電流制御の分解能が低い汎用のサーボアンプを用いる場合には、位置決め精度はサブミクロン(0.1μm=100nm)レベルにしかならず、1nmオーダの位置決めを行うためには、推力を極めて微小に制御できる電流制御の直線性に優れたリニアアンプを用いる必要があった。
Here, the thrust control resolution in a general-purpose servo amplifier is examined in a stage apparatus using a linear motor similar to the stage apparatus described in the above document. For example, when the mass of the movable part of the slider is 40 [kg] and the acceleration is about 1 [G], the maximum thrust of the linear motor is about 400 [N]. Assuming that the spring constant is about the same as that in the above document, the spring constant in the minute movement region where the moving amount of the slider is approximately 100 [nm] or less is about 8.5 [N / μm]. That is, the reaction force of the spring necessary for the slider to be displaced by 1 [nm] is 0.0085 [N]. If this is the minimum resolution of the thrust, the maximum thrust is
400 / 0.0085 ≒ 47059
Thus, it is understood that a resolution of about 16 bits (= 65536) is necessary. In a general-purpose servo amplifier, the current detection resolution is about 11 bits (= 2048), so the resolution of thrust is about the same, and the minimum resolution of thrust is
400/2048 ≒ 0.2 [N]
It becomes. If you simply think that the slider is displaced,
0.2 / 0.0085≈24 [nm]
Thus, the control is performed every about 24 [nm]. For this reason, when using a general-purpose servo amplifier that is easy to obtain and maintain but has a low current control resolution, the positioning accuracy is only a submicron (0.1 μm = 100 nm) level, and positioning is performed on the order of 1 nm. Therefore, it was necessary to use a linear amplifier excellent in current control linearity capable of controlling the thrust very finely.
 これに対し本実施形態では、上記(C)の検討による測定において、微小移動領域でのバネ定数を0.4155×10[N/m]≒420[N/μm]とすることができた。すなわち、本実施形態における微小移動領域でのバネ定数と、上記文献における微小移動領域でのバネ定数とを比較すると、
  420/8.5≒50
となり、本実施形態における微小移動領域でのバネ定数は、上記文献における微小移動領域でのバネ定数より約50倍大きい。微小移動領域でのバネ定数が420[N/μm]となる場合、スライダ13が1[nm]変位するために必要なバネの反力は、0.42[N]であり、上述した汎用のサーボアンプでの推力の最小分解能0.2[N]で、単純にスライダ13が変位すると考えると、その変位量は、
  0.2/0.42≒0.48[nm]
となる。したがって、リニアアンプを用いず、汎用のサーボアンプ4を用いても、混合潤滑状態とする各ガイド部材19の表面19aと各被ガイド部材21の表面21aとを適宜の材質で構成することによって、これらの面同士を微接触状態としてバネ弾性力を発生させ、微小移動領域における線形バネ特性を利用して1nmレベルの超精密位置決めを行うことが可能となる。その結果、ヒステリシスのないリニアな比例動作を行うことができ、行き帰りのバックラッシュや移動指令に対する移動量の不足現象を防止できる。
On the other hand, in the present embodiment, the spring constant in the minute movement region can be set to 0.4155 × 10 9 [N / m] ≈420 [N / μm] in the measurement based on the examination of (C). . That is, when the spring constant in the minute movement region in this embodiment is compared with the spring constant in the minute movement region in the above document,
420 / 8.5 ≒ 50
Thus, the spring constant in the minute movement region in this embodiment is about 50 times larger than the spring constant in the minute movement region in the above document. When the spring constant in the minute movement region is 420 [N / μm], the reaction force of the spring necessary for the slider 13 to be displaced by 1 [nm] is 0.42 [N]. Assuming that the slider 13 is simply displaced with a minimum thrust resolution of 0.2 [N] in the servo amplifier, the amount of displacement is
0.2 / 0.42≈0.48 [nm]
It becomes. Accordingly, even if the general-purpose servo amplifier 4 is used without using the linear amplifier, the surface 19a of each guide member 19 and the surface 21a of each guided member 21 that are in the mixed lubrication state are configured by appropriate materials, These surfaces are brought into a minute contact state to generate a spring elastic force, and it is possible to perform ultra-precise positioning at the 1 nm level using linear spring characteristics in a minute movement region. As a result, a linear proportional operation without hysteresis can be performed, and a back-and-forth backlash and a lack of movement amount with respect to a movement command can be prevented.
 また、各ガイド部材19の表面19aと各被ガイド部材21の表面21aとの潤滑状態を混合潤滑状態とすることにより、スライダ13と各ガイドレール12との間に微小な摩擦を発生させて、慣性力を抑制することができる。その結果、汎用のサーボアンプ4を用いた場合でも、位置決め停止時(サーボロック時)のリップルを鈍らせて発振状態となるのを抑制し、ハンチング幅を最小限とすることができる。図10に、スライダ停止時のハンチング幅に関して模式化した模式図を示す。図10(a)は、一般的なリニアガイド式のステージ装置での模式図であり、図10(b)は、一般的なエアガイド式のステージ装置での模式図であり、図10(c)は、本実施形態に係るステージ装置3での模式図である。図10(a)に示す一般的なリニアガイド式のステージ装置では、スライダ停止時のハンチング幅は±5[pulse]以上となり、図10(b)に示す一般的なエアガイド式のステージ装置では、スライダ停止時のハンチング幅は±30[pulse]以上となると考えられる。これに対し、図10(c)に示す本実施形態に係るステージ装置3では、スライダ13停止時のハンチング幅は±2~3[pulse]となると考えられるので、スライダ13停止時のハンチング幅を最小限とすることができると考えられる。 Further, by making the lubrication state of the surface 19a of each guide member 19 and the surface 21a of each guided member 21 into a mixed lubrication state, minute friction is generated between the slider 13 and each guide rail 12, Inertial force can be suppressed. As a result, even when the general-purpose servo amplifier 4 is used, it is possible to suppress the oscillating state by dulling the ripple when the positioning is stopped (during servo lock), and to minimize the hunting width. FIG. 10 is a schematic diagram schematically showing the hunting width when the slider is stopped. FIG. 10A is a schematic view of a general linear guide type stage apparatus, and FIG. 10B is a schematic view of a general air guide type stage apparatus. ) Is a schematic diagram of the stage apparatus 3 according to the present embodiment. In the general linear guide type stage apparatus shown in FIG. 10A, the hunting width when the slider is stopped is ± 5 [pulse] or more. In the general air guide type stage apparatus shown in FIG. The hunting width when the slider is stopped is considered to be ± 30 [pulse] or more. On the other hand, in the stage apparatus 3 according to this embodiment shown in FIG. 10C, the hunting width when the slider 13 is stopped is considered to be ± 2 to 3 [pulse]. It is thought that it can be minimized.
 また、混合潤滑状態ではスライダ13が完全には浮上していないため、エア源5からの圧縮エアの脈動や圧縮エア自体の圧縮膨張を起因とする振動を抑制することができる。図11に、10nmステップ送り動作での検出位置の変動に関して模式化した模式図を示す。図11(a)は、一般的なリニアガイド式のステージ装置での模式図であり、図11(b)は、一般的なエアガイド式のステージ装置での模式図であり、図11(c)は、本実施形態に係るステージ装置3での模式図である。図11(a)に示す一般的なリニアガイド式のステージ装置では、10nmステップ送り動作での検出位置の変動は±5[nm]程度となり、図11(b)に示す一般的なエアガイド式のステージ装置では、10nmステップ送り動作での検出位置の変動は±10[nm]以上となると考えられる。これに対し、図11(c)に示す本実施形態に係るステージ装置3では、10nmステップ送り動作での検出位置の変動は±2~3[nm]となると考えられるので、10nmステップ送り動作時の振動を抑制することができると考えられる。図12に、微小移動動作でのスライダ停止時の振動による上下方向変動に関して模式化した模式図を示す。図12(a)は、一般的なリニアガイド式のステージ装置での模式図であり、図12(b)は、一般的なエアガイド式のステージ装置での模式図であり、図12(c)は、本実施形態に係るステージ装置3での模式図である。図12(a)に示す一般的なリニアガイド式のステージ装置では、微小移動動作でのスライダ停止時の振動による上下方向変動は±5[nm]程度となり、図12(b)に示す一般的なエアガイド式のステージ装置では、微小移動動作でのスライダ停止時の振動による上下方向変動は±30[nm]以上となると考えられる。これに対し、図12(c)に示す本実施形態に係るステージ装置3では、微小移動動作でのスライダ13停止時の振動による上下方向変動は±2~3[nm]となると考えられるので、微小移動動作でのスライダ13停止時の上下方向の変動を抑制することができると考えられる。 Further, since the slider 13 is not completely lifted in the mixed lubrication state, vibration caused by the pulsation of the compressed air from the air source 5 and the compression and expansion of the compressed air itself can be suppressed. FIG. 11 is a schematic diagram schematically showing the variation of the detection position in the 10 nm step feed operation. FIG. 11A is a schematic view of a general linear guide type stage apparatus, and FIG. 11B is a schematic view of a general air guide type stage apparatus. ) Is a schematic diagram of the stage apparatus 3 according to the present embodiment. In the general linear guide type stage apparatus shown in FIG. 11A, the variation of the detection position in the 10 nm step feed operation is about ± 5 [nm], and the general air guide type shown in FIG. In the stage apparatus, the variation of the detection position in the 10 nm step feed operation is considered to be ± 10 [nm] or more. On the other hand, in the stage apparatus 3 according to the present embodiment shown in FIG. 11C, the variation of the detection position in the 10 nm step feed operation is considered to be ± 2 to 3 [nm]. It is thought that the vibration of the can be suppressed. FIG. 12 is a schematic diagram schematically showing the vertical fluctuation caused by the vibration when the slider is stopped in the minute movement operation. FIG. 12A is a schematic view of a general linear guide type stage apparatus, and FIG. 12B is a schematic view of a general air guide type stage apparatus. ) Is a schematic diagram of the stage apparatus 3 according to the present embodiment. In the general linear guide type stage apparatus shown in FIG. 12A, the vertical fluctuation due to the vibration when the slider is stopped in the minute movement operation is about ± 5 [nm], which is generally shown in FIG. In such an air guide type stage apparatus, it is considered that the vertical fluctuation due to vibration when the slider is stopped in a minute movement operation is ± 30 [nm] or more. On the other hand, in the stage apparatus 3 according to the present embodiment shown in FIG. 12C, the vertical fluctuation due to vibration when the slider 13 is stopped in the minute movement operation is considered to be ± 2 to 3 [nm]. It is considered that the fluctuation in the vertical direction when the slider 13 is stopped in the minute movement operation can be suppressed.
 したがって、リニアアンプを用いなくても、汎用のサーボアンプ4を用いて1nmオーダの位置決めをすることができる。 Therefore, it is possible to perform positioning on the order of 1 nm using the general-purpose servo amplifier 4 without using a linear amplifier.
 また、本実施形態では特に、スライダ13が、ガイドレール12のガイド面に向けて圧縮エアを噴出する圧縮エア噴出孔22u,22d,22sを被ガイド面に有している。そして、混合潤滑状態とする被ガイド面の圧縮エア噴出孔22からは比較的低圧の上記混合潤滑用圧力の圧縮エアを噴出し、流体潤滑状態とする被ガイド面の圧縮エア噴出孔22からは比較的高圧の上記流体潤滑用圧力の圧縮エアを噴出するといったように、ガイド面と被ガイド面との潤滑状態は、圧縮エアの空気圧により制御される。これにより、ガイド面と被ガイド面との潤滑状態を所望の潤滑状態に制御できると共に、駆動中に圧縮エアの空気圧を変動させることで、潤滑状態を切り替えることも可能となる。さらに、混合潤滑状態のガイド部材19の表面19aと被ガイド部材21の表面21aとの間に線形バネ特性が生じるように空気圧を調整することも可能となる。 In the present embodiment, the slider 13 has the compressed air ejection holes 22u, 22d, 22s for ejecting the compressed air toward the guide surface of the guide rail 12 on the guided surface. Then, a relatively low pressure of compressed air for mixed lubrication is ejected from the compressed air ejection hole 22 on the guided surface to be in the mixed lubrication state, and from the compressed air ejection hole 22 on the guided surface to be in the fluid lubrication state. The state of lubrication between the guide surface and the guided surface is controlled by the air pressure of the compressed air, such as by jetting compressed air having a relatively high pressure for fluid lubrication. Accordingly, the lubrication state between the guide surface and the guided surface can be controlled to a desired lubrication state, and the lubrication state can be switched by changing the air pressure of the compressed air during driving. Furthermore, the air pressure can be adjusted so that a linear spring characteristic is generated between the surface 19a of the guide member 19 in the mixed lubrication state and the surface 21a of the guided member 21.
 また、本実施形態では特に、混合潤滑状態であるガイド部材19の表面19aと被ガイド部材21の表面21aとの間に線形バネ特性が生じるように、圧縮エアの空気圧が制御される。圧縮エアの空気圧を細かく調整することで、微小移動領域での線形バネの反力を汎用のサーボアンプ4の電流制御範囲に調整できる。これにより、1nmオーダでも微小移動領域での線形バネの反力をつり合うような推力が制御でき、スライダ13停止時の変動を大幅に低減できるので、スライダ13停止時の振動を大幅に抑制できる。これにより、微小移動領域における線形バネ特性を利用して1nmレベルの超精密位置決めを行うことができる。その結果、ヒステリシスのないリニアな比例動作を行うことができ、行き帰りのバックラッシュや移動指令に対する移動量の不足現象を防止できる。また、線形バネ特性が生じることにより、微小な反転動作を行っても機械的には連続であり、スティックスリップの発生を抑制できる。その結果、極低速の一定速送りの高精度化や位置決め動作の精度を向上することができる。また、空気圧を調整することで、ガイド部材19の表面19aと被ガイド部材21の表面21aとの隙間(スライダ13の浮上量)を変化させ、これらの間の動摩擦係数を変化(前述した凝着に関わる面積を変化)させることができ、微小移動領域(静摩擦領域)での線形バネの強さを可変(前述した凝着する線形バネの数を可変)させることができる。これにより、線形バネ特性のバネ定数を装置構成等に応じて調整することが可能となるので、サーボアンプの微小電流制御範囲や要求性能に合わせ、微小移動領域での線形バネの強さを調整でき、設計の自由度を向上できる。例えば、汎用のサーボアンプ(PWM制御方式のサーボアンプ等)を用いた場合では1nmレベル、高分解能のサーボアンプ(リニアアンプ等)を用いた場合ではサブnm(0.1nm=100pm)レベルの停止安全性が出せる可能性がある。 In this embodiment, particularly, the air pressure of the compressed air is controlled so that a linear spring characteristic is generated between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 in the mixed lubrication state. By finely adjusting the air pressure of the compressed air, the reaction force of the linear spring in the minute movement region can be adjusted within the current control range of the general-purpose servo amplifier 4. As a result, the thrust that balances the reaction force of the linear spring in the minute movement region can be controlled even on the order of 1 nm, and fluctuations when the slider 13 is stopped can be greatly reduced, so that vibration when the slider 13 is stopped can be greatly suppressed. Thereby, ultra-precise positioning at the 1 nm level can be performed using the linear spring characteristic in the minute movement region. As a result, a linear proportional operation without hysteresis can be performed, and a back-and-forth backlash and a lack of movement amount with respect to a movement command can be prevented. Further, since the linear spring characteristic is generated, even if a minute reversing operation is performed, it is mechanically continuous and the occurrence of stick-slip can be suppressed. As a result, it is possible to improve the accuracy of the extremely low speed constant feed and the accuracy of the positioning operation. Further, by adjusting the air pressure, the gap between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 (the flying height of the slider 13) is changed, and the dynamic friction coefficient between them is changed (adhesion described above). And the strength of the linear spring in the minute movement region (static friction region) can be varied (the number of the linear springs to be adhered can be varied). As a result, the spring constant of the linear spring characteristics can be adjusted according to the device configuration, etc., so the strength of the linear spring in the minute movement region is adjusted according to the minute current control range and required performance of the servo amplifier. And the degree of design freedom can be improved. For example, when a general-purpose servo amplifier (such as a servo amplifier of PWM control system) is used, the sub-nm (0.1 nm = 100 pm) level is stopped when a high-resolution servo amplifier (such as a linear amplifier) is used. There is a possibility of safety.
 また、本実施形態では特に、ガイド部材19は、FRPの一種であるCFRPで構成されている。ガイド部材19をFRPで構成することにより、ガイド部材19の強度を高めることができる。また、エポキシ樹脂192は温度係数が正であり、炭素繊維191は温度係数が負であるため、ガイド部材19をCFRPで構成することにより、ガイド部材19の温度係数を小さく抑えることができる。これにより、温度変化によるガイド部材19の変形を小さくすることができるので、ガイド部材19の表面19aの面精度を向上できる。その結果、スライダ13の動作状態でのピッチング、ヨーイング、真直度などの姿勢精度を向上できる。 In the present embodiment, in particular, the guide member 19 is composed of CFRP which is a kind of FRP. By configuring the guide member 19 with FRP, the strength of the guide member 19 can be increased. Moreover, since the temperature coefficient of the epoxy resin 192 is positive and the temperature coefficient of the carbon fiber 191 is negative, the temperature coefficient of the guide member 19 can be kept small by configuring the guide member 19 with CFRP. Thereby, since the deformation of the guide member 19 due to a temperature change can be reduced, the surface accuracy of the surface 19a of the guide member 19 can be improved. As a result, posture accuracy such as pitching, yawing and straightness in the operating state of the slider 13 can be improved.
 また、本実施形態では特に、ガイド部材19は、表面のエポキシ樹脂192を剥離して炭素繊維191の層を露出させる表面加工が行われている(図3を参照)。すなわち、ガイド部材19では、エポキシ樹脂192から露出した炭素繊維191の突出部分の一部分が被ガイド部材21の表面21aに凝着する。このとき、炭素繊維191を保持しているエポキシ樹脂192は炭素繊維191よりも柔らかいため、被ガイド部材21の表面21aと凝着している炭素繊維191が数十nm程度横方向に動くと、エポキシ樹脂192が弾性変形してバネ弾性力を発生させる。上述したように、本実施形態における微小移動領域でのバネ定数は、上述した文献における微小移動領域でのバネ定数より約50倍大きいので、ガイド部材19の表面19aと被ガイド部材21の表面21aとの間でバネ弾性力を発生させることで、線形バネ特性を利用して1nmレベルの超精密位置決めを行うことができる。また、圧縮エアの供給が停止された場合、ガイド部材19の炭素繊維191と被ガイド部材21の表面21aとが凝着したまま、エポキシ樹脂192が弾性変形して炭素繊維191が沈むと考えられる。したがって、圧縮エアの供給・停止によるスライダ13の浮上・下降が繰り返し行われても、エポキシ樹脂192の弾性変形範囲内においては元の状態が復元できるため、軸受特性の変化(微接触状態の変化)を小さくできる。さらに、炭素繊維191は固く潤滑性が良いため、被ガイド部材21の表面21aと接触していても摩耗し難く、また混合潤滑状態においてはエポキシ樹脂192は被ガイド部材21の表面21aとほとんど接触しないため、樹脂の摩耗はほとんど生じない。したがって、ガイドレール12の摩耗、発塵を防止できる。またさらに、炭素繊維191の突出部分の一部分が被ガイド部材21の表面21aに凝着し、ガイド部材19と被ガイド部材21とを連結することで、これらの間に上下方向に微小な振動が発生した場合でも、ガイド部材19の表面19aと被ガイド部材21の表面21aとの間隔を一定に保つことができる。これにより、ガイド部材19と被ガイド部材21との間の上下方向の振動を大幅に抑制することができる。 Further, in the present embodiment, the guide member 19 is particularly subjected to surface processing for peeling the surface epoxy resin 192 and exposing the carbon fiber 191 layer (see FIG. 3). That is, in the guide member 19, a part of the protruding portion of the carbon fiber 191 exposed from the epoxy resin 192 adheres to the surface 21 a of the guided member 21. At this time, since the epoxy resin 192 holding the carbon fiber 191 is softer than the carbon fiber 191, if the carbon fiber 191 adhered to the surface 21a of the guided member 21 moves laterally by about several tens of nm, The epoxy resin 192 is elastically deformed to generate a spring elastic force. As described above, the spring constant in the minute movement region in the present embodiment is about 50 times larger than the spring constant in the minute movement region in the above-described document, and therefore, the surface 19a of the guide member 19 and the surface 21a of the guided member 21. By generating a spring elastic force between the two, a 1 nm level ultra-precise positioning can be performed using linear spring characteristics. Further, when the supply of compressed air is stopped, it is considered that the carbon fiber 191 sinks due to the elastic deformation of the epoxy resin 192 while the carbon fiber 191 of the guide member 19 and the surface 21a of the guided member 21 are adhered. . Therefore, even if the slider 13 is repeatedly raised and lowered by the supply / stop of compressed air, the original state can be restored within the elastic deformation range of the epoxy resin 192. ) Can be reduced. Further, since the carbon fiber 191 is hard and has good lubricity, it is difficult to wear even if it is in contact with the surface 21a of the guided member 21, and the epoxy resin 192 is almost in contact with the surface 21a of the guided member 21 in the mixed lubrication state. Therefore, the resin wear hardly occurs. Therefore, wear and dust generation of the guide rail 12 can be prevented. Furthermore, a part of the protruding portion of the carbon fiber 191 adheres to the surface 21a of the guided member 21, and the guide member 19 and the guided member 21 are connected to each other, so that minute vibrations are vertically generated therebetween. Even if it occurs, the distance between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 can be kept constant. Thereby, the vibration of the up-down direction between the guide member 19 and the to-be-guided member 21 can be suppressed significantly.
 また、本実施形態では特に、被ガイド部材21は、玉髄の一種である瑪瑙で構成されている。これにより、被ガイド部材21を硬い材質で構成でき、摩耗を少なくできる。また、玉髄は、石英の非常に細かい結晶が緻密に固まった多結晶の鉱物であるため、石英などの単結晶材料に比べて方向性がないので加工し易いという利点がある。その結果、被ガイド部材21の圧縮エア噴出孔22などの細孔加工や、表面研磨がし易くなる。また、瑪瑙は、モース硬度が6.5~7であり、硬度が高いのを利用して、化学用の乳鉢、天秤の支点、灰皿、置時計、火打石等に使われることもある材料である。この瑪瑙で被ガイド部材21を構成することにより、硬さや摩擦係数の点で摩耗をさらに少なくできる。 Further, particularly in the present embodiment, the guided member 21 is composed of a heel that is a kind of chalcedony. Thereby, the to-be-guided member 21 can be comprised with a hard material, and wear can be decreased. In addition, since chalcedony is a polycrystalline mineral in which very fine crystals of quartz are densely solidified, it has the advantage of being easy to process because it has less direction than single crystal materials such as quartz. As a result, it becomes easy to process pores such as the compressed air ejection holes 22 of the guided member 21 and to polish the surface. Amber is a material that may be used for chemical mortar, balance fulcrum, ashtray, table clock, flint, etc. by utilizing its high hardness with Mohs hardness of 6.5-7. By configuring the guided member 21 with this scissors, wear can be further reduced in terms of hardness and friction coefficient.
 また、本実施形態では特に、次のような効果を得ることができる。すなわち、一般に移動時にガイドレールのガイド面とスライダの被ガイド面とが接触した場合、これらの面が摩耗するため、移動時のガイドレールとスライダとの隙間(スライダの浮上量)をある程度(例えば5μm程度)確保する必要があり、スライダの走り精度が低下するおそれがある。本実施形態では、ガイド部材19をすべり摩擦の小さいCFRPで構成し、被ガイド部材21をすべり摩擦の小さい瑪瑙で構成することで、仮に移動時にガイド部材19の表面19aと被ガイド部材21の表面21aとが接触した場合でも、これらの面の摩耗を少なくすることができ、移動時のガイドレール12とスライダ13との隙間(スライダ13の浮上量)を狭く(例えば1μm以下に)設定することができる。 In addition, in the present embodiment, the following effects can be obtained. That is, generally, when the guide surface of the guide rail and the guided surface of the slider come into contact with each other during the movement, these surfaces wear, and thus the clearance between the guide rail and the slider during movement (the amount of flying of the slider) is to some extent (eg, (About 5 μm) must be secured, and the running accuracy of the slider may be reduced. In the present embodiment, the guide member 19 is made of CFRP having a small sliding friction, and the guided member 21 is made of a ridge having a small sliding friction, so that the surface 19a of the guide member 19 and the surface of the guided member 21 are temporarily moved during movement. Even when 21a comes into contact, the wear of these surfaces can be reduced, and the gap between the guide rail 12 and the slider 13 during movement (the flying height of the slider 13) should be set narrow (for example, 1 μm or less). Can do.
 また、本実施形態では特に、エア源5と、エア源5から供給される圧縮エアの空気圧を調整するレギュレータ6,7,8,9とを有し、混合潤滑状態であるガイド部材19の表面19aと被ガイド部材21の表面21aとの間に線形バネ特性が生じるように調整された空気圧で圧縮エアを供給する。これにより、上述したようにスライダ13停止時の振動を大幅に抑制できるので、微小移動領域における線形バネ特性を利用して1nmレベルの超精密位置決めを行うことができる。その結果、ヒステリシスのないリニアな比例動作を行うことができ、行き帰りのバックラッシュや移動指令に対する移動量の不足現象を防止できる。また、空気圧を調整することで、上述したように線形バネ特性のバネ定数を装置構成等に応じて調整することが可能となるので、設計の自由度を向上できる。 In the present embodiment, in particular, the surface of the guide member 19 that has the air source 5 and the regulators 6, 7, 8, and 9 that adjust the air pressure of the compressed air supplied from the air source 5 is in a mixed lubrication state. Compressed air is supplied at an air pressure adjusted so that a linear spring characteristic is generated between 19 a and the surface 21 a of the guided member 21. As a result, the vibration when the slider 13 is stopped can be significantly suppressed as described above, so that the 1 nm level ultra-precise positioning can be performed using the linear spring characteristic in the minute movement region. As a result, a linear proportional operation without hysteresis can be performed, and a back-and-forth backlash and a lack of movement amount with respect to a movement command can be prevented. Further, by adjusting the air pressure, it becomes possible to adjust the spring constant of the linear spring characteristic according to the device configuration or the like as described above, so that the degree of freedom in design can be improved.
 また、本実施形態では特に、コントローラ2からの切替指令に基づき、被ガイド部材21の圧縮エア噴出孔22dに供給する圧縮エアを、レギュレータ7で空気圧が調整された流体潤滑用圧力の圧縮エアと、レギュレータ8で空気圧が調整された混合潤滑用圧力の圧縮エアとに切り替える電磁弁10を備えている。コントローラ2からの切替指令により電磁弁10の2ポートの開閉を切り替えることで、スライダ13の目標位置近傍までの移動を行う際には、圧縮エア噴出孔22dに流体潤滑用圧力の圧縮エアを供給してガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を流体潤滑状態とし、目標位置近傍においてスライダ13の位置決めを行う際には、圧縮エア噴出孔22dに混合潤滑用圧力の圧縮エアを供給してガイド部材19の表面19aと被ガイド部材21の表面21aとの潤滑状態を混合潤滑状態とすることができる。これにより、移動時にはスライダ13を浮上させて高速に移動させ、位置決め時にはスライダ13を各ガイドレール12に対し微接触状態として線形バネ特性を生じさせることができるので、高速移動且つ超高精度な位置決めが可能なステージ制御システム1を実現できる。また、後述の(3)の変形例のように圧縮エアの空気圧を電空レギュレータで可変させる場合に比べ、本実施形態では予め定められた複数の空気圧に切り替えることで空気圧を変化させるため、空気圧の精度を高め、安定させることができる。 In the present embodiment, in particular, based on a switching command from the controller 2, the compressed air supplied to the compressed air ejection holes 22 d of the guided member 21 is compressed air with the fluid lubrication pressure adjusted by the regulator 7. The solenoid valve 10 is switched to the compressed air of the mixed lubrication pressure whose air pressure is adjusted by the regulator 8. By switching the opening and closing of the two ports of the solenoid valve 10 according to the switching command from the controller 2, when the slider 13 is moved to the vicinity of the target position, the compressed air at the fluid lubrication pressure is supplied to the compressed air ejection hole 22d. Then, when the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 is set to the fluid lubrication state and the slider 13 is positioned in the vicinity of the target position, the mixed lubrication pressure is applied to the compressed air ejection hole 22d. Thus, the lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 can be changed to the mixed lubrication state. As a result, the slider 13 can be lifted and moved at high speed during movement, and the slider 13 can be brought into fine contact with each guide rail 12 during positioning to produce linear spring characteristics. Can be realized. Further, compared to the case where the air pressure of the compressed air is varied by the electropneumatic regulator as in the modification (3) described later, in this embodiment, the air pressure is changed by switching to a plurality of air pressures determined in advance. The accuracy can be improved and stabilized.
 なお、上記実施形態では、電磁弁10と圧縮エア噴出孔22dとを連結し、圧縮エア噴出孔22dに供給する圧縮エアの空気圧により、各ガイドレール12の下板部12dの内面12daに貼付したガイド部材19の表面19aと、スライダ13の各挿入部20の下面20cに貼付した被ガイド部材21の表面21aとの潤滑状態を制御していたが、これに限られない。例えば、ガイド部材19を、各ガイドレール12の下板部12dの内面12daに代えて上板部12uの内面12uaに貼付すると共に、被ガイド部材21を、スライダ13の各挿入部20の下面20cに代えて上面に貼付し、電磁弁10と被ガイド部材21の表面21aに設けられた圧縮エア噴出孔とを連結して、当該圧縮エア噴出孔に供給する圧縮エアの空気圧により、各ガイドレール12の上板部12uの内面12uaに貼付したガイド部材19の表面19aと、スライダ13の各挿入部20の上面20aに貼付した被ガイド部材21の表面21aとの潤滑状態を制御してもよい。この場合、スライダ13の各挿入部20の下面20cに設けられた圧縮エア噴出孔には、レギュレータ6を連結し、レギュレータ6により空気圧が調整された圧縮エアを供給すればよい。 In the above-described embodiment, the solenoid valve 10 and the compressed air ejection hole 22d are connected to each other and affixed to the inner surface 12da of the lower plate portion 12d of each guide rail 12 by the air pressure of the compressed air supplied to the compressed air ejection hole 22d. The lubrication state between the surface 19a of the guide member 19 and the surface 21a of the guided member 21 attached to the lower surface 20c of each insertion portion 20 of the slider 13 is controlled, but is not limited thereto. For example, the guide member 19 is affixed to the inner surface 12ua of the upper plate portion 12u instead of the inner surface 12da of the lower plate portion 12d of each guide rail 12, and the guided member 21 is attached to the lower surface 20c of each insertion portion 20 of the slider 13. Each guide rail is attached to the upper surface by connecting the solenoid valve 10 and the compressed air ejection hole provided on the surface 21a of the guided member 21 and the compressed air pressure supplied to the compressed air ejection hole. 12 may control the lubrication state between the surface 19a of the guide member 19 affixed to the inner surface 12ua of the upper plate portion 12u and the surface 21a of the guided member 21 affixed to the upper surface 20a of each insertion portion 20 of the slider 13. . In this case, a regulator 6 may be connected to the compressed air ejection holes provided in the lower surface 20 c of each insertion portion 20 of the slider 13, and compressed air whose air pressure is adjusted by the regulator 6 may be supplied.
 また、実施の形態は、上記内容に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を順を追って説明する。 Further, the embodiment is not limited to the above contents, and various modifications can be made without departing from the spirit and technical idea thereof. Hereinafter, such modifications will be described in order.
 (1)ガイド部材を一方のガイドレールの側板部の内面にも貼付し、被ガイド部材をスライダの一方の挿入部の側面にも貼付する場合
 上記実施形態においては、ガイド部材19を各ガイドレール12の下板部12dの内面12daに貼付し、被ガイド部材21をスライダ13の各挿入部20の下面20cに貼付していたが、これに限られない。すなわち、ガイド部材19を、2つのガイドレール12のうち一方のガイドレール12の側板部12sの内面12saにも貼付し、被ガイド部材21を、スライダ13の2つの挿入部20のうち一方の挿入部20の側面20bにも貼付してもよい。
(1) When a guide member is also affixed also to the inner surface of the side plate part of one guide rail, and a to-be-guided member is also affixed also to the side surface of one insertion part of a slider In the said embodiment, the guide member 19 is each guide rail. 12 is affixed to the inner surface 12da of the lower plate portion 12d and the guided member 21 is affixed to the lower surface 20c of each insertion portion 20 of the slider 13, but this is not restrictive. That is, the guide member 19 is also affixed to the inner surface 12sa of the side plate portion 12s of one guide rail 12 of the two guide rails 12, and the guided member 21 is inserted into one of the two insertion portions 20 of the slider 13. You may affix also to the side 20b of the part 20. FIG.
 図13に示すように、本変形例に係るステージ制御システム1Aは、前述のコントローラ2と、ステージ装置3Aと、前述のサーボアンプ4と、前述のエア源5と、前述のレギュレータ6,7,8と、レギュレータ9A,24a,24bと、前述の電磁弁10と、電磁弁25とを備えている。 As shown in FIG. 13, the stage control system 1A according to this modification includes the controller 2, the stage device 3A, the servo amplifier 4, the air source 5, the regulators 6, 7, 8, regulators 9 </ b> A, 24 a, 24 b, the above-described solenoid valve 10, and the solenoid valve 25.
 ステージ装置3Aの構成は、上記実施形態に係るステージ装置3とほぼ同様である。但し、ステージ装置3Aでは、各ガイドレール12の下板部12dの内面12da、及び、2つのガイドレール12のうち一方のガイドレール12(この例では、図13中の右側のガイドレール12)の側板部12sの内面12saに、前述のガイド部材19が貼付されている。また、スライダ13の各挿入部20の下面20c、及び、スライダ13の2つの挿入部20のうち一方の挿入部20(この例では、図13中の右側の挿入部20)の側面20bに、前述の被ガイド部材21が貼付されている。各挿入部20が各ガイドレール12の凹条部18に挿入されたとき、各ガイドレール12の上板部12uの内面12uaと各挿入部20の上面20aとが上下方向に相対し、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19aと各挿入部20の下面20cに貼付された被ガイド部材21の表面21aとが上下方向に相対し、左側のガイドレール12の側板部12sの内面12saと左側の挿入部20の側面20bとが左右方向に相対し、右側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19aと右側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bとが左右方向に相対する。 The configuration of the stage apparatus 3A is substantially the same as the stage apparatus 3 according to the above embodiment. However, in the stage apparatus 3A, the inner surface 12da of the lower plate portion 12d of each guide rail 12 and one of the two guide rails 12 (in this example, the right guide rail 12 in FIG. 13). The aforementioned guide member 19 is attached to the inner surface 12sa of the side plate portion 12s. Further, on the lower surface 20c of each insertion portion 20 of the slider 13 and the side surface 20b of one insertion portion 20 (in this example, the right insertion portion 20 in FIG. 13) of the two insertion portions 20 of the slider 13, The aforementioned guided member 21 is affixed. When each insertion portion 20 is inserted into the concave portion 18 of each guide rail 12, the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the upper surface 20a of each insertion portion 20 face each other in the vertical direction. The surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the rail 12 and the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20 are opposed to each other in the vertical direction. The inner surface 12sa of the side plate portion 12s of the rail 12 and the side surface 20b of the left insertion portion 20 are opposed to each other in the left-right direction. The surface 21b of the guided member 21 affixed to the side surface 20b of the insertion portion 20 faces in the left-right direction.
 本変形例では、各ガイドレール12の上板部12uの内面12ua、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19a、左側のガイドレール12の側板部12sの内面12sa、及び右側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19bが、特許請求の範囲に記載のガイド面に相当する。以下適宜、ガイドレール12の上板部12uの内面12ua、ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19a、左側のガイドレール12の側板部12sの内面12sa、及び右側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19bを「ガイド面」と総称する。また、スライダ13の各挿入部20の上面20a、各挿入部20の下面20cに貼付された被ガイド部材21の表面21a、左側の挿入部20の側面20b、及び右側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bが、特許請求の範囲に記載の被ガイド面に相当する。以下適宜、スライダ13の各挿入部20の上面20a、各挿入部20の下面20cに貼付された被ガイド部材21の表面21a、左側の挿入部20の側面20b、及び右側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bを「被ガイド面」と総称する。 In this modification, the inner surface 12ua of the upper plate portion 12u of each guide rail 12, the surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of each guide rail 12, and the side plate portion 12s of the left guide rail 12 are used. The inner surface 12sa of the guide member 19 and the surface 19b of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s of the right guide rail 12 correspond to the guide surface described in the claims. As appropriate, the inner surface 12ua of the upper plate portion 12u of the guide rail 12, the surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the guide rail 12, the inner surface 12sa of the side plate portion 12s of the left guide rail 12, The surface 19b of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s of the right guide rail 12 is collectively referred to as “guide surface”. Further, the upper surface 20 a of each insertion portion 20 of the slider 13, the surface 21 a of the guided member 21 attached to the lower surface 20 c of each insertion portion 20, the side surface 20 b of the left insertion portion 20, and the side surface 20 b of the right insertion portion 20. The surface 21b of the guided member 21 affixed to corresponds to the guided surface described in the claims. Hereinafter, the upper surface 20a of each insertion portion 20 of the slider 13, the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20, the side surface 20b of the left insertion portion 20, and the side surface of the right insertion portion 20, as appropriate. The surface 21b of the guided member 21 affixed to 20b is generically referred to as a “guided surface”.
 また、本変形例では、スライダ13は、前述の圧縮エア噴出孔22u,22dを有すると共に、左側の挿入部20の側面20bの前後方向両隅に、レギュレータ9Aを介してエア源5に連結された圧縮エア噴出孔22s(以下適宜、「左側の圧縮エア噴出孔22s」と称する)を、右側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bの前後方向両隅に、電磁弁25及びレギュレータ24a,24bを介してエア源5に連結された圧縮エア噴出孔22s(以下適宜、「右側の圧縮エア噴出孔22s」と称する)を有している。 In this modification, the slider 13 has the compressed air ejection holes 22u and 22d described above, and is connected to the air source 5 via the regulator 9A at both front and rear corners of the side surface 20b of the left insertion portion 20. The compressed air ejection holes 22 s (hereinafter referred to as “left compressed air ejection holes 22 s” as appropriate) are provided at the front and rear corners of the surface 21 b of the guided member 21 affixed to the side surface 20 b of the right insertion portion 20. A compressed air ejection hole 22s connected to the air source 5 through the electromagnetic valve 25 and the regulators 24a and 24b (hereinafter referred to as “right compressed air ejection hole 22s” as appropriate).
 左側の圧縮エア噴出孔22sは、左右方向に相対する左側のガイドレール12の側板部12sの内面12saに向けて、エア源5からレギュレータ9Aを介して供給された、面同士の潤滑状態を前述の流体潤滑状態にするように制御された所定圧力の圧縮エアを噴出する。流体潤滑状態となった左側のガイドレール12の側板部12sの内面12saとスライダ13の左側の挿入部20の側面20bとは、互いに接触しないで、前述の非接触状態となる。 The left compressed air ejection hole 22s indicates the lubrication state between the surfaces supplied from the air source 5 via the regulator 9A toward the inner surface 12sa of the side plate portion 12s of the left guide rail 12 facing in the left-right direction. Compressed air of a predetermined pressure controlled so as to be in a fluid lubrication state. The inner surface 12sa of the side plate portion 12s of the left guide rail 12 in the fluid lubrication state and the side surface 20b of the left insertion portion 20 of the slider 13 are not in contact with each other and are in the aforementioned non-contact state.
 右側の圧縮エア噴出孔22sは、左右方向に相対するガイド部材19の表面19bに向けて、レギュレータ24a及び電磁弁25を介して供給された前述の流体潤滑用圧力の圧縮エア、又は、レギュレータ24b及び電磁弁25を介して供給された前述の混合潤滑用圧力の圧縮エアを噴出する。流体潤滑状態となったガイド部材19の表面19bと被ガイド部材21の表面21bとは、前述の非接触状態となる。混合潤滑状態となったガイド部材19の表面19bと被ガイド部材21の表面21bとは、前述の微接触状態となり、これら面同士の間に微小移動領域において線形バネ特性が生じる。 The compressed air ejection hole 22s on the right side is compressed air having the above-described fluid lubrication pressure supplied through the regulator 24a and the electromagnetic valve 25 toward the surface 19b of the guide member 19 facing in the left-right direction, or the regulator 24b. And the compressed air of the above-mentioned pressure for mixed lubrication supplied via the electromagnetic valve 25 is ejected. The surface 19b of the guide member 19 in the fluid lubrication state and the surface 21b of the guided member 21 are in the aforementioned non-contact state. The surface 19b of the guide member 19 in the mixed lubrication state and the surface 21b of the guided member 21 are in the above-described fine contact state, and a linear spring characteristic is generated in a minute movement region between these surfaces.
 ステージ装置3Aにおいては、上下方向は、スライダ13の荷重と、圧縮エア噴出孔22uから噴出される圧縮エアのエア圧力と、圧縮エア噴出孔22dから噴出される圧縮エアのエア圧力及びガイド部材19による前述のバネ弾性力とのバランスにより姿勢維持する。左右方向は、左側の圧縮エア噴出孔22sから噴出される圧縮エアのエア圧力と、右側の圧縮エア噴出孔22sから噴出される圧縮エアのエア圧力及びガイド部材19によるバネ弾性力とのバランスにより姿勢維持する。そして、リニアモータ16で発生した推力により、スライダ13がガイドレール12に沿って前後方向に移動する。 In the stage apparatus 3A, in the vertical direction, the load of the slider 13, the air pressure of the compressed air ejected from the compressed air ejection hole 22u, the air pressure of the compressed air ejected from the compressed air ejection hole 22d, and the guide member 19 are arranged. The posture is maintained by a balance with the aforementioned spring elastic force. The left-right direction depends on the balance between the air pressure of the compressed air ejected from the left compressed air ejection hole 22s, the air pressure of the compressed air ejected from the right compressed air ejection hole 22s, and the spring elastic force by the guide member 19. Maintain posture. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
 そして、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19aとスライダ13の各挿入部20の下面20cに貼付された被ガイド部材21の表面21aとの間、及び、右側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19bとスライダ13の右側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bとの間で混合潤滑状態となり、各ガイドレール12の上板部12uの内面12uaとスライダ13の各挿入部20の上面20aとの間、及び、左側のガイドレール12の側板部12sの内面12saとスライダ13の左側の挿入部20の側面20bとの間で流体潤滑状態となり、混合潤滑状態となった各ガイドレール12のガイド面とスライダ13の被ガイド面との間に微小移動領域において線形バネ特性が生じるように、圧縮エア噴出孔22u,22d,22sに供給される圧縮エアの空気圧により制御される。したがって、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19aとスライダ13の各挿入部20の下面20cに貼付された被ガイド部材21の表面21a、及び、右側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19bとスライダ13の右側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bが微接触状態となり、それ以外のガイド面と被ガイド面とは非接触状態となる。 Then, when positioning the slider 13 in the vicinity of the target position, the surface 19 a of the guide member 19 affixed to the inner surface 12 da of the lower plate portion 12 d of each guide rail 12 and the lower surface 20 c of each insertion portion 20 of the slider 13. The surface 19b of the guide member 19 affixed to the surface 21a of the affixed guided member 21 and the inner surface 12sa of the side plate portion 12s of the right guide rail 12 and the side surface 20b of the right insertion portion 20 of the slider 13 Between the inner surface 12 ua of the upper plate portion 12 u of each guide rail 12 and the upper surface 20 a of each insertion portion 20 of the slider 13, and the left side. Between the inner surface 12sa of the side plate portion 12s of the guide rail 12 and the side surface 20b of the insertion portion 20 on the left side of the slider 13, Compression supplied to the compressed air ejection holes 22u, 22d, and 22s so that a linear spring characteristic is generated in the minute movement region between the guide surface of each guide rail 12 and the guided surface of the slider 13 in the combined lubrication state. It is controlled by the air pressure. Therefore, when positioning the slider 13 in the vicinity of the target position, the surface 19 a of the guide member 19 affixed to the inner surface 12 da of the lower plate portion 12 d of each guide rail 12 and the lower surface 20 c of each insertion portion 20 of the slider 13. Affixed to the surface 21a of the guided member 21 that is affixed, the surface 19b of the guide member 19 that is affixed to the inner surface 12sa of the side plate portion 12s of the right guide rail 12, and the side surface 20b of the right insertion portion 20 of the slider 13. The surface 21b of the guided member 21 is in a fine contact state, and the other guide surfaces and the guided surface are in a non-contact state.
 レギュレータ9Aは、スライダ13の左側の圧縮エア噴出孔22sに供給する圧縮エアの空気圧を調整する。レギュレータ9Aにより空気圧が調整された圧縮エアは、左側の圧縮エア噴出孔22sに上記所定圧力で供給される。レギュレータ24aは、スライダ13の右側の圧縮エア噴出孔22sに供給する圧縮エアの空気圧を調整する。レギュレータ24aにより空気圧が調整された圧縮エアは、電磁弁25を介して右側の圧縮エア噴出孔22sに上記流体潤滑用圧力で供給される。レギュレータ24bは、スライダ13の右側の圧縮エア噴出孔22sに供給する圧縮エアの空気圧を調整する。レギュレータ24bにより空気圧が調整された圧縮エアは、電磁弁25を介して右側の圧縮エア噴出孔22sに上記混合潤滑用圧力で供給される。 The regulator 9A adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22s on the left side of the slider 13. The compressed air whose air pressure is adjusted by the regulator 9A is supplied to the left compressed air ejection hole 22s at the predetermined pressure. The regulator 24 a adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 s on the right side of the slider 13. The compressed air whose air pressure is adjusted by the regulator 24 a is supplied to the compressed air ejection hole 22 s on the right side through the electromagnetic valve 25 at the fluid lubrication pressure. The regulator 24 b adjusts the air pressure of the compressed air supplied to the compressed air ejection hole 22 s on the right side of the slider 13. The compressed air whose air pressure has been adjusted by the regulator 24b is supplied to the compressed air ejection hole 22s on the right side through the electromagnetic valve 25 at the mixed lubrication pressure.
 電磁弁25は、コントローラ2からの切替指令に基づき、2ポートの開閉を切り替えることで、スライダ13の右側の圧縮エア噴出孔22sに供給する圧縮エアを、レギュレータ24aで空気圧が調整された上記流体潤滑用圧力の圧縮エアと、レギュレータ24bで空気圧が調整された上記混合潤滑用圧力の圧縮エアとの間で切り替える。具体的には、スライダ13の目標位置近傍までの移動を行う際には、前述の圧縮エアを流体潤滑用圧力の圧縮エアとする旨の切替指令に基づき、レギュレータ24a側のポートを開放すると共にレギュレータ24b側のポートを閉鎖することで、右側の圧縮エア噴出孔22sに供給する圧縮エアを流体潤滑用圧力の圧縮エアに切り替える。一方、目標位置近傍においてスライダ13の位置決めを行う際には、前述の圧縮エアを混合潤滑用圧力の圧縮エアとする旨の切替指令に基づき、レギュレータ24a側のポートを閉鎖すると共にレギュレータ24b側のポートを開放することで、右側の圧縮エア噴出孔22sに供給する圧縮エアを混合潤滑用圧力の圧縮エアに切り替える。 The solenoid valve 25 switches the opening and closing of the two ports on the basis of a switching command from the controller 2, whereby the compressed air supplied to the compressed air ejection hole 22 s on the right side of the slider 13 is adjusted to the air pressure by the regulator 24 a. Switching is performed between compressed air at the lubricating pressure and compressed air at the mixed lubricating pressure whose air pressure is adjusted by the regulator 24b. Specifically, when moving the slider 13 to the vicinity of the target position, the port on the regulator 24a side is opened based on the switching command to make the compressed air the compressed air of the fluid lubrication pressure. By closing the port on the regulator 24b side, the compressed air supplied to the compressed air ejection hole 22s on the right side is switched to compressed air having a fluid lubricating pressure. On the other hand, when positioning the slider 13 in the vicinity of the target position, the regulator 24a side port is closed and the regulator 24b side port is closed based on the switching command to make the compressed air the compressed air of the mixed lubrication pressure. By opening the port, the compressed air supplied to the compressed air ejection hole 22s on the right side is switched to the compressed air having the mixed lubrication pressure.
 上記以外のステージ制御システム1Aの構成は、上記実施形態に係るステージ制御システム1と同様である。なお、本変形例では、エア源5及びレギュレータ6,7,8,9A,24a,24bが、特許請求の範囲に記載のエア供給装置に相当する。 The configuration of the stage control system 1A other than the above is the same as the stage control system 1 according to the above embodiment. In this modification, the air source 5 and the regulators 6, 7, 8, 9A, 24a, 24b correspond to the air supply device described in the claims.
 ステージ制御システム1Aにおいては、スライダ13の目標位置近傍までの移動を行う際には、コントローラ2から圧縮エアを流体潤滑用圧力の圧縮エアとする旨の切替指令が電磁弁10,25に出力され、圧縮エア噴出孔22d及び右側の圧縮エア噴出孔22sに供給される圧縮エアが、レギュレータ7,24aで空気圧が調整された流体潤滑用圧力の圧縮エアに切り替えられる。これにより、電磁弁10,25を介し流体潤滑用圧力の圧縮エアが圧縮エア噴出孔22d及び右側の圧縮エア噴出孔22sに供給され、各ガイド部材19の表面と各被ガイド部材21の表面とが流体潤滑状態(非接触状態)となる。一方、目標位置近傍においてスライダ13の位置決めを行う際には、コントローラ2から圧縮エアを混合潤滑用圧力の圧縮エアとする旨の切替指令が電磁弁10,25に出力され、圧縮エア噴出孔22d及び右側の圧縮エア噴出孔22sに供給される圧縮エアが、レギュレータ8,24bで空気圧が調整された混合潤滑用圧力の圧縮エアに切り替えられる。これにより、電磁弁10,25を介し混合潤滑用圧力の圧縮エアが圧縮エア噴出孔22d及び右側の圧縮エア噴出孔22sに供給され、各ガイド部材19の表面と各被ガイド部材21の表面とが混合潤滑状態(微接触状態)となり、これら面同士の間に微小移動領域において線形バネ特性が生じる。 In the stage control system 1A, when the slider 13 is moved to the vicinity of the target position, the controller 2 outputs a switching command to the solenoid valves 10 and 25 to make the compressed air the compressed air for the fluid lubrication pressure. The compressed air supplied to the compressed air ejection hole 22d and the right compressed air ejection hole 22s is switched to the compressed air of the fluid lubrication pressure whose air pressure is adjusted by the regulators 7 and 24a. As a result, compressed air with fluid lubrication pressure is supplied to the compressed air ejection hole 22d and the right compressed air ejection hole 22s via the solenoid valves 10 and 25, and the surface of each guide member 19 and the surface of each guided member 21 Becomes a fluid lubrication state (non-contact state). On the other hand, when positioning the slider 13 in the vicinity of the target position, the controller 2 outputs a switching command to the electromagnetic valves 10 and 25 to the effect that the compressed air is compressed air of the mixed lubrication pressure, and the compressed air ejection hole 22d. The compressed air supplied to the compressed air ejection hole 22s on the right side is switched to the compressed air of the mixed lubricating pressure whose air pressure is adjusted by the regulators 8 and 24b. As a result, compressed air of mixed lubrication pressure is supplied to the compressed air ejection holes 22d and the right side compressed air ejection holes 22s via the solenoid valves 10 and 25, and the surface of each guide member 19 and the surface of each guided member 21 Becomes a mixed lubrication state (fine contact state), and a linear spring characteristic is generated between these surfaces in a minute movement region.
 本変形例によれば、上記実施形態と同様の効果を得ることができる。また、上下方向に相対するガイドレール12のガイド面とスライダ13の被ガイド面とに加え、左右方向に相対するガイドレール12のガイド面とスライダ13の被ガイド面とを微接触状態とすることができるので、スライダ13の上下方向の微小な変動を抑制すると共に、スライダ13の左右方向の微小な変動を抑制することができる。 According to this modification, the same effect as the above embodiment can be obtained. Further, in addition to the guide surface of the guide rail 12 and the guided surface of the slider 13 that are opposed to each other in the vertical direction, the guide surface of the guide rail 12 and the guided surface of the slider 13 that are opposed to each other in the left and right direction are brought into a minute contact state. Therefore, it is possible to suppress minute fluctuations in the vertical direction of the slider 13 and to suppress minute fluctuations in the horizontal direction of the slider 13.
 (2)ガイド部材を両方のガイドレールの側板部の内面にも貼付し、被ガイド部材をスライダの両方の挿入部の側面にも貼付する場合
 前述の実施形態においては、ガイド部材19を各ガイドレール12の下板部12dの内面12daに貼付し、被ガイド部材21をスライダ13の各挿入部20の下面20cに貼付していたが、これに限られない。すなわち、ガイド部材19を、2つのガイドレール12の側板部12sの内面12saにも貼付し、被ガイド部材21を、スライダ13の2つの挿入部20の側面20bにも貼付してもよい。
(2) When the guide member is also affixed to the inner surfaces of the side plate portions of both guide rails and the guided member is also affixed to the side surfaces of both the insertion portions of the slider In the above-described embodiment, the guide member 19 is attached to each guide. Although the guide member 21 is attached to the inner surface 12da of the lower plate portion 12d of the rail 12 and the lower surface 20c of each insertion portion 20 of the slider 13, the present invention is not limited to this. That is, the guide member 19 may be attached to the inner surfaces 12sa of the side plate portions 12s of the two guide rails 12, and the guided member 21 may be attached to the side surfaces 20b of the two insertion portions 20 of the slider 13.
 図14に示すように、本変形例に係るステージ装置3Bの構成は、上記(1)の変形例に係るステージ装置3Aとほぼ同様である。但し、ステージ装置3Bでは、各ガイドレール12の下板部12dの内面12da、及び、各ガイドレール12の側板部12sの内面12saに、前述のガイド部材19が貼付されている。また、スライダ13の各挿入部20の下面20c、及び、スライダ13の2つの挿入部20の側面20bに、前述の被ガイド部材21が貼付されている。各挿入部20が各ガイドレール12の凹条部18に挿入されたとき、各ガイドレール12の上板部12uの内面12uaと各挿入部20の上面20aとが上下方向に相対し、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19aと各挿入部20の下面20cに貼付された被ガイド部材21の表面21aとが上下方向に相対し、各ガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19bと各挿入部20の側面20bに貼付された被ガイド部材21の表面21bとが左右方向に相対する。 As shown in FIG. 14, the configuration of the stage apparatus 3B according to this modification is substantially the same as the stage apparatus 3A according to the modification (1). However, in the stage apparatus 3B, the above-described guide member 19 is attached to the inner surface 12da of the lower plate portion 12d of each guide rail 12 and the inner surface 12sa of the side plate portion 12s of each guide rail 12. The aforementioned guided member 21 is attached to the lower surface 20 c of each insertion portion 20 of the slider 13 and the side surfaces 20 b of the two insertion portions 20 of the slider 13. When each insertion portion 20 is inserted into the concave portion 18 of each guide rail 12, the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the upper surface 20a of each insertion portion 20 face each other in the vertical direction. The surface 19a of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the rail 12 and the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20 are opposed to each other in the vertical direction. The surface 19b of the guide member 19 affixed to the inner surface 12sa of the 12 side plate portions 12s and the surface 21b of the guided member 21 affixed to the side surface 20b of each insertion portion 20 are opposed to each other in the left-right direction.
 本変形例では、各ガイドレール12の上板部12uの内面12uaと、各ガイドレール12の下板部12dの内面12da及び側板部12sの内面12saに貼付されたガイド部材19の表面19a,19bとが、特許請求の範囲に記載のガイド面に相当する。以下適宜、ガイドレール12の上板部12uの内面12uaと、ガイドレール12の下板部12dの内面12da及び側板部12sの内面12saに貼付されたガイド部材19の表面19a,19bとを「ガイド面」と総称する。また、スライダ13の各挿入部20の上面20aと、各挿入部20の下面20c及び側面20bに貼付された被ガイド部材21の表面21a,21bとが、特許請求の範囲に記載の被ガイド面に相当する。以下適宜、スライダ13の各挿入部20の上面20aと、各挿入部20の下面20c及び側面20bに貼付された被ガイド部材21の表面21a,21bとを「被ガイド面」と総称する。 In this modification, the inner surfaces 12ua of the upper plate portion 12u of each guide rail 12, the inner surfaces 12da of the lower plate portion 12d of each guide rail 12, and the surfaces 19a and 19b of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s. Corresponds to the guide surface described in the claims. Hereinafter, the inner surface 12ua of the upper plate portion 12u of the guide rail 12 and the surfaces 19a and 19b of the guide member 19 affixed to the inner surface 12da of the lower plate portion 12d of the guide rail 12 and the inner surface 12sa of the side plate portion 12s are referred to as “guide”. Collectively referred to as “surface”. Further, the upper surface 20a of each insertion portion 20 of the slider 13 and the surfaces 21a and 21b of the guided member 21 attached to the lower surface 20c and the side surface 20b of each insertion portion 20 are guided surfaces according to claims. It corresponds to. Hereinafter, the upper surface 20a of each insertion portion 20 of the slider 13 and the surfaces 21a and 21b of the guided member 21 attached to the lower surface 20c and the side surface 20b of each insertion portion 20 are collectively referred to as “guided surfaces”.
 また、本変形例では、スライダ13は、前述の圧縮エア噴出孔22u,22dを有する。また、スライダ13の左側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bの前後方向両隅には、電磁弁及び2つのレギュレータを介して前述のエア源5に連結された圧縮エア噴出孔22s(以下適宜、「左側の圧縮エア噴出孔22s」と称する)が設けられ、右側の挿入部20の側面20bに貼付された被ガイド部材21の表面21bの前後方向両隅に、電磁弁及び2つのレギュレータを介して前述のエア源5に連結された圧縮エア噴出孔22s(以下適宜、「右側の圧縮エア噴出孔22s」と称する)が設けられている。 In this modification, the slider 13 has the compressed air ejection holes 22u and 22d described above. Further, both front and rear corners of the surface 21b of the guided member 21 attached to the side surface 20b of the insertion portion 20 on the left side of the slider 13 are connected to the air source 5 via an electromagnetic valve and two regulators. Compressed air ejection holes 22 s (hereinafter referred to as “left compressed air ejection holes 22 s” as appropriate) are provided, and at the front and rear corners of the surface 21 b of the guided member 21 affixed to the side surface 20 b of the right insertion portion 20. A compressed air ejection hole 22s (hereinafter referred to as “right compressed air ejection hole 22s” as appropriate) connected to the air source 5 via an electromagnetic valve and two regulators is provided.
 ステージ装置3Bにおいては、上下方向は、スライダ13の荷重と、圧縮エア噴出孔22uから噴出される圧縮エアのエア圧力と、圧縮エア噴出孔22dから噴出される圧縮エアのエア圧力及びガイド部材19による前述のバネ弾性力とのバランスにより姿勢維持する。左右方向は、左側の圧縮エア噴出孔22sから噴出される圧縮エアのエア圧力及びガイド部材19によるバネ弾性力と、右側の圧縮エア噴出孔22sから噴出される圧縮エアのエア圧力及びガイド部材19によるバネ弾性力とのバランスにより姿勢維持する。そして、リニアモータ16で発生した推力により、スライダ13がガイドレール12に沿って前後方向に移動する。 In the stage device 3B, in the vertical direction, the load of the slider 13, the air pressure of the compressed air ejected from the compressed air ejection hole 22u, the air pressure of the compressed air ejected from the compressed air ejection hole 22d, and the guide member 19 are arranged. The posture is maintained by the balance with the spring elastic force described above. In the left-right direction, the air pressure of the compressed air ejected from the left compressed air ejection hole 22s and the spring elastic force by the guide member 19, and the air pressure of the compressed air ejected from the right compressed air ejection hole 22s and the guide member 19 are shown. The posture is maintained by the balance with the spring elastic force. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
 そして、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19aとスライダ13の各挿入部20の下面20cに貼付された被ガイド部材21の表面21aとの間、及び、各ガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19aとスライダ13の各挿入部20の側面20bに貼付された被ガイド部材21の表面21bとの間で混合潤滑状態となり、各ガイドレール12の上板部12uの内面12uaとスライダ13の各挿入部20の上面20aとの間で流体潤滑状態となり、混合潤滑状態となった各ガイドレール12のガイド面とスライダ13の被ガイド面との間に微小移動領域において線形バネ特性が生じるように、圧縮エア噴出孔22u,22d,22sに供給される圧縮エアの空気圧により制御される。したがって、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12の下板部12dの内面12daに貼付されたガイド部材19の表面19aとスライダ13の各挿入部20の下面20cに貼付された被ガイド部材21の表面21a、及び、各ガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19bとスライダ13の各挿入部20の側面20bに貼付された被ガイド部材21の表面21bが微接触状態となり、それ以外のガイド面と被ガイド面とは非接触状態となる。 Then, when positioning the slider 13 in the vicinity of the target position, the surface 19 a of the guide member 19 affixed to the inner surface 12 da of the lower plate portion 12 d of each guide rail 12 and the lower surface 20 c of each insertion portion 20 of the slider 13. Affixed to the surface 21a of the guided member 21 that is affixed, and to the surface 19a of the guide member 19 that is affixed to the inner surface 12sa of the side plate portion 12s of each guide rail 12 and the side surface 20b of each insertion portion 20 of the slider 13. Between the inner surface 12 ua of the upper plate portion 12 u of each guide rail 12 and the upper surface 20 a of each insertion portion 20 of the slider 13. A linear spring characteristic is present in the minute movement region between the guide surface of each guide rail 12 in the mixed lubrication state and the guided surface of the slider 13. Jill so on, compressed air ejection holes 22u, 22 d, are controlled by the air pressure of the compressed air supplied to the 22s. Therefore, when positioning the slider 13 in the vicinity of the target position, the surface 19 a of the guide member 19 affixed to the inner surface 12 da of the lower plate portion 12 d of each guide rail 12 and the lower surface 20 c of each insertion portion 20 of the slider 13. The surface 21 a of the guided member 21 that is affixed, the surface 19 b of the guide member 19 that is affixed to the inner surface 12 sa of the side plate portion 12 s of each guide rail 12, and the side surface 20 b of each insertion portion 20 of the slider 13. The surface 21b of the guide member 21 is in a fine contact state, and the other guide surfaces and the guided surface are in a non-contact state.
 本変形例によれば、上記(1)の変形例と同様、上下方向に相対するガイドレール12のガイド面とスライダ13の被ガイド面とに加え、左右方向に相対するガイドレール12のガイド面とスライダ13の被ガイド面とを微接触状態とすることができるので、スライダ13の上下方向の微小な変動を抑制すると共に、スライダ13の左右方向の微小な変動を抑制することができる。 According to this modification, in the same manner as the modification (1), in addition to the guide surface of the guide rail 12 and the guided surface of the slider 13 opposed to each other in the vertical direction, the guide surface of the guide rail 12 opposed to the left and right directions. And the guided surface of the slider 13 can be brought into a fine contact state, so that a minute fluctuation in the vertical direction of the slider 13 can be suppressed and a minute fluctuation in the horizontal direction of the slider 13 can be suppressed.
 (3)圧縮エアの空気圧を電空レギュレータで可変する場合
 前述の実施形態においては、被ガイド部材21の圧縮エア噴出孔22dに供給する圧縮エアを電磁弁10で切り替える構成としたが、これに限られず、被ガイド部材21の圧縮エア噴出孔22dに供給する圧縮エアを電空レギュレータで可変させる構成としてもよい。
(3) When the air pressure of the compressed air is varied by the electropneumatic regulator In the above-described embodiment, the configuration is such that the compressed air supplied to the compressed air ejection hole 22d of the guided member 21 is switched by the electromagnetic valve 10. The configuration is not limited, and the compressed air supplied to the compressed air ejection hole 22d of the guided member 21 may be varied by an electropneumatic regulator.
 図15に示すように、本変形例に係るステージ制御システム1Cの構成は、前述の実施形態に係るステージ制御システム1とほぼ同様であるが、レギュレータ7,8及び電磁弁10に代えて、前述のエア源5から供給される圧縮エアの空気圧を可変させる電空レギュレータ23を設けた点が異なる。 As shown in FIG. 15, the configuration of the stage control system 1 </ b> C according to the present modification is substantially the same as that of the stage control system 1 according to the above-described embodiment, but instead of the regulators 7 and 8 and the electromagnetic valve 10, The difference is that an electropneumatic regulator 23 for changing the air pressure of the compressed air supplied from the air source 5 is provided.
 電空レギュレータ23は、前述のコントローラ2からの可変指令に基づき、前述のスライダ13の圧縮エア噴出孔22dに供給する圧縮エアの空気圧を、前述の流体潤滑用圧力と前述の混合潤滑用圧力とに可変させる。具体的には、スライダ13の目標位置近傍までの移動を行う際には、コントローラ2が、前述の移動指令を出力するのとほぼ同じタイミングで、圧縮エアの空気圧を流体潤滑用圧力とする旨の可変指令を出力する。すると、この可変指令に基づき、電空レギュレータ23が、圧縮エア噴出孔22dに供給する圧縮エアの空気圧を流体潤滑用圧力に可変させる。一方、目標位置近傍においてスライダ13の位置決めを行う際には、コントローラ2が、スライダ13が目標位置近傍まで近接したと前述のサーボアンプ4により判断された場合に、圧縮エアの空気圧を混合潤滑用圧力とする旨の可変指令を出力する。なお、サーボアンプ4が圧縮エアの空気圧を混合潤滑用圧力とする旨の可変指令を出力してもよい。すると、この可変指令に基づき、電空レギュレータ23が、圧縮エア噴出孔22dに供給する圧縮エアの空気圧を混合潤滑用圧力に切り替える。電空レギュレータ23により空気圧が可変された圧縮エアは、圧縮エア噴出孔22dに流体潤滑用圧力又は混合潤滑用圧力で供給される。圧縮エア噴出孔22dは、上下方向に相対する前述のガイドレール12のガイド部材19の表面に向けて、エア源5から電空レギュレータ23を介して供給された流体潤滑用圧力又は混合潤滑用圧力の圧縮エアを噴出する。 Based on the variable command from the controller 2, the electropneumatic regulator 23 converts the air pressure of the compressed air supplied to the compressed air ejection hole 22d of the slider 13 into the fluid lubrication pressure and the mixed lubrication pressure. Make it variable. Specifically, when the slider 13 is moved to the vicinity of the target position, the controller 2 sets the compressed air pressure to the fluid lubrication pressure at substantially the same timing as when the movement command is output. The variable command is output. Then, based on this variable command, the electropneumatic regulator 23 changes the air pressure of the compressed air supplied to the compressed air ejection hole 22d to the fluid lubrication pressure. On the other hand, when positioning the slider 13 in the vicinity of the target position, if the controller 2 determines that the slider 13 is close to the target position, the air pressure of the compressed air is used for mixed lubrication. Outputs a variable command indicating pressure. The servo amplifier 4 may output a variable command indicating that the compressed air pressure is set to the mixed lubrication pressure. Then, based on this variable command, the electropneumatic regulator 23 switches the air pressure of the compressed air supplied to the compressed air ejection hole 22d to the mixed lubrication pressure. The compressed air whose air pressure has been varied by the electropneumatic regulator 23 is supplied to the compressed air ejection hole 22d at a fluid lubrication pressure or a mixed lubrication pressure. The compressed air ejection hole 22d is fluid lubrication pressure or mixed lubrication pressure supplied from the air source 5 through the electropneumatic regulator 23 toward the surface of the guide member 19 of the above-described guide rail 12 facing in the vertical direction. Of compressed air.
 上記以外のステージ制御システム1Cの構成は、前述の実施形態に係るステージ制御システム1と同様である。なお、本変形例では、エア源5、前述のレギュレータ6,9、及び電空レギュレータ23が、特許請求の範囲に記載のエア供給装置に相当する。 The configuration of the stage control system 1C other than the above is the same as the stage control system 1 according to the above-described embodiment. In the present modification, the air source 5, the aforementioned regulators 6 and 9, and the electropneumatic regulator 23 correspond to the air supply device described in the claims.
 以上のように構成されたステージ制御システム1Cにおいては、スライダ13の目標位置近傍までの移動を行う際には、コントローラ2から圧縮エアの空気圧を流体潤滑用圧力とする旨の可変指令が電空レギュレータ23に出力され、圧縮エア噴出孔22dに供給される圧縮エアの空気圧が、電空レギュレータ23で流体潤滑用圧力に可変される。これにより、流体潤滑用圧力の圧縮エアが圧縮エア噴出孔22dに供給され、各ガイド部材19の表面と前述のスライダ13の各被ガイド部材21の表面とが流体潤滑状態(非接触状態)となる。一方、目標位置近傍においてスライダ13の位置決めを行う際には、コントローラ2から圧縮エアの空気圧を混合潤滑用圧力とする旨の可変指令が電空レギュレータ23に出力され、圧縮エア噴出孔22dに供給される圧縮エアの空気圧が、電空レギュレータ23で混合潤滑用圧力に可変される。これにより、混合潤滑用圧力の圧縮エアが圧縮エア噴出孔22dに供給され、各ガイド部材19の表面と各被ガイド部材21の表面とが混合潤滑状態(微接触状態)となり、これら面同士の間に微小移動領域において線形バネ特性が生じる。 In the stage control system 1C configured as described above, when the slider 13 is moved to the vicinity of the target position, the controller 2 issues an electropneumatic variable command indicating that the air pressure of the compressed air is the fluid lubrication pressure. The air pressure of the compressed air that is output to the regulator 23 and supplied to the compressed air ejection hole 22d is changed to the fluid lubrication pressure by the electropneumatic regulator 23. As a result, compressed air having a pressure for fluid lubrication is supplied to the compressed air ejection hole 22d, and the surface of each guide member 19 and the surface of each guided member 21 of the slider 13 are in a fluid lubrication state (non-contact state). Become. On the other hand, when positioning the slider 13 in the vicinity of the target position, the controller 2 outputs a variable command indicating that the air pressure of the compressed air is the mixed lubrication pressure to the electropneumatic regulator 23 and supplies it to the compressed air ejection hole 22d. The compressed air pressure is changed to the mixed lubrication pressure by the electropneumatic regulator 23. As a result, compressed air having a pressure for mixed lubrication is supplied to the compressed air ejection holes 22d, and the surface of each guide member 19 and the surface of each guided member 21 are in a mixed lubrication state (fine contact state). In the meantime, a linear spring characteristic occurs in the minute movement region.
 以上説明した本変形例においては、コントローラ2からの可変指令に基づき、被ガイド部材21の圧縮エア噴出孔22dに供給する圧縮エアの空気圧を、流体潤滑用圧力と混合潤滑用圧力とに可変させる電空レギュレータ23を備えている。これにより、前述の実施形態と同様、高速移動且つ超高精度な位置決めが可能なステージ制御システム1Cを実現できる。また、前述の実施形態のように圧縮エアを電磁弁10で切り替える構成とした場合には、予め定められた複数の空気圧に段階的に調整することしかできないが、本変形例においては電空レギュレータ23によって圧縮エアの空気圧を所望の値に無段階に調整することができる。 In the present modification described above, based on the variable command from the controller 2, the air pressure of the compressed air supplied to the compressed air ejection hole 22d of the guided member 21 is varied between the fluid lubrication pressure and the mixed lubrication pressure. An electropneumatic regulator 23 is provided. Thereby, similarly to the above-described embodiment, it is possible to realize a stage control system 1C capable of high-speed movement and ultra-high accuracy positioning. Further, when the configuration is such that the compressed air is switched by the solenoid valve 10 as in the above-described embodiment, it can only be adjusted stepwise to a plurality of predetermined air pressures. 23, the air pressure of the compressed air can be continuously adjusted to a desired value.
 なお、前述の(1)の変形例や(2)の変形例のように、2つのガイドレール12の一方又は両方の側板部12sの内面12saにもガイド部材19が貼付され、スライダ13の2つの挿入部20の一方又は両方の側面20bにも被ガイド部材21が貼付される場合に対し、上記(3)の変形例のような、被ガイド部材21の圧縮エア噴出孔22に供給する圧縮エアを電空レギュレータで可変させる方式を適用してもよい。 The guide member 19 is also affixed to the inner surface 12sa of one or both of the side plate portions 12s of the two guide rails 12 as in the modified example (1) and the modified example (2) described above. In contrast to the case where the guided member 21 is also attached to one or both side surfaces 20b of the two insertion portions 20, the compression supplied to the compressed air ejection holes 22 of the guided member 21 as in the modified example of (3) above. A method of changing air with an electropneumatic regulator may be applied.
 (4)ガイドレール自体をCFRPで構成し、スライダ自体を瑪瑙で構成する場合
 前述の実施形態では、ガイドレール12にCFRPで構成されたガイド部材19を貼付し、スライダ13に瑪瑙で構成された被ガイド部材21を貼付していたが、これに限られず、ガイドレール自体をCFRPで構成し、スライダ自体を瑪瑙で構成してもよい。
(4) When the guide rail itself is made of CFRP and the slider itself is made of heel In the above-described embodiment, the guide member 19 made of CFRP is pasted on the guide rail 12 and the slider 13 is made of heel. Although the guided member 21 is pasted, the present invention is not limited to this, and the guide rail itself may be made of CFRP, and the slider itself may be made of scissors.
 図16に示すように、本変形例に係るステージ装置3Dは、定盤11上に前後方向に延びるように設置された断面視において略T字形状のガイドレール12Dと、ガイドレール12Dに移動方向を規制されたスライダ13Dと、スライダ13Dの推力を発生するリニアモータ16と、スライダ13Dの位置を検出するリニアスケール17とを備えている。 As shown in FIG. 16, the stage device 3D according to the present modification includes a guide rail 12D having a substantially T shape in a cross-sectional view installed on the surface plate 11 so as to extend in the front-rear direction, and a moving direction of the guide rail 12D. The slider 13D is regulated, the linear motor 16 generates the thrust of the slider 13D, and the linear scale 17 detects the position of the slider 13D.
 ガイドレール12Dは、前述の実施形態に係るガイド部材19と同様、表面のエポキシ樹脂192を剥離して炭素繊維191の層を露出させる表面加工(図3を参照)が行われたCFRPで構成されており、立設部12Dj及び上板部12Duを備えている。なお、上板部12Duの上面12Da、立設部12Djを挟んで左右両側の下面12Db,12Dc、及び左右両側面12Dd,12Deが、特許請求の範囲に記載のガイド面に相当する。以下適宜、上板部12Duの上面12Da、左右両側の下面12Db,12Dc、及び左右両側面12Dd,12Deを「ガイド面」と総称する。 Similar to the guide member 19 according to the above-described embodiment, the guide rail 12D is made of CFRP that has been subjected to surface processing (see FIG. 3) that peels the epoxy resin 192 on the surface and exposes the carbon fiber 191 layer. And has an upright portion 12Dj and an upper plate portion 12Du. The upper surface 12Da of the upper plate portion 12Du, the lower surfaces 12Db and 12Dc on the left and right sides, and the left and right side surfaces 12Dd and 12De across the upright portion 12Dj correspond to the guide surfaces described in the claims. Hereinafter, the upper surface 12Da, the left and right lower surfaces 12Db and 12Dc, and the left and right side surfaces 12Dd and 12De are collectively referred to as “guide surfaces” as appropriate.
 スライダ13Dは、前述の実施形態に係る被ガイド部材21と同様、瑪瑙で構成されており、上板部13Du、左側下板部13Da、右側下板部13Db、左側板部13Dc、及び右側板部13Ddを備えている。なお、上記ガイドレール12Dの上板部12Duの上面12Daに上下方向に相対する上板部13Duの下面13D1、上板部12Duの左側の下面12Dbに上下方向に相対する左側下板部13Daの上面13D2、上板部12Duの右側の下面12Dcに上下方向に相対する右側下板部13Dbの上面13D3、上板部12Duの左側面12Ddに相対する左側板部13Dcの右面13D4、及び、上板部12Duの右側面12Deに相対する右側板部13Ddの左面D5が、特許請求の範囲に記載の被ガイド面に相当する。以下適宜、上板部13Duの下面13D1、左側下板部13Daの上面13D2、右側下板部13Dbの上面13D3、左側板部13Dcの右面13D4、及び右側板部13Ddの左面D5を「被ガイド面」と総称する。 Like the guided member 21 according to the above-described embodiment, the slider 13D is configured by a ridge, and includes an upper plate portion 13Du, a left lower plate portion 13Da, a right lower plate portion 13Db, a left plate portion 13Dc, and a right plate portion. 13Dd. Note that the upper surface of the upper plate portion 12Da of the guide rail 12D is opposed to the lower surface 13D1 of the upper plate portion 13Du in the vertical direction, and the upper surface of the lower left plate portion 13Da of the upper surface portion 12Du is opposed to the lower surface 12Db on the left side of the upper plate portion 12Du. 13D2, the upper surface 13D3 of the right lower plate portion 13Db facing the lower surface 12Dc on the right side of the upper plate portion 12Du in the vertical direction, the right surface 13D4 of the left plate portion 13Dc facing the left side surface 12Dd of the upper plate portion 12Du, and the upper plate portion The left surface D5 of the right side plate portion 13Dd facing the right side surface 12De of 12Du corresponds to the guided surface described in the claims. Hereinafter, the lower surface 13D1 of the upper plate portion 13Du, the upper surface 13D2 of the left lower plate portion 13Da, the upper surface 13D3 of the right lower plate portion 13Db, the right surface 13D4 of the left plate portion 13Dc, and the left surface D5 of the right plate portion 13Dd are referred to as “guided surface”. ".
 また、スライダ13Dの上板部13Duの下面13D1には、上下方向に相対するガイドレール12Dの上板部12Duの上面12Daに向けて圧縮エアを噴出する圧縮エア噴出孔22Duが設けられ、左側下板部13Daの上面13D2には、上下方向に相対するガイドレール12Dの上板部12Duの左側の下面12Dbに向けて圧縮エアを噴出する圧縮エア噴出孔22Ddが設けられ、右側下板部13Dbの上面13D3には、上下方向に相対するガイドレール12Dの上板部12Duの右側の下面12Dcに向けて圧縮エアを噴出する圧縮エア噴出孔22Ddが設けられ、左側板部13Dcの右面13D4には、左右方向に相対するガイドレール12Dの上板部12Duの左側面12Ddに向けて圧縮エアを噴出する圧縮エア噴出孔22Daが設けられ、右側板部13Ddの左面D5には、左右方向に相対するガイドレール12Dの上板部12Duの右側面12Deに向けて圧縮エアを噴出する圧縮エア噴出孔22Dbが設けられている。 Further, the lower surface 13D1 of the upper plate portion 13Du of the slider 13D is provided with a compressed air ejection hole 22Du that ejects compressed air toward the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D that is opposed in the vertical direction. The upper surface 13D2 of the plate portion 13Da is provided with a compressed air ejection hole 22Dd for injecting compressed air toward the lower surface 12Db on the left side of the upper plate portion 12Du of the guide rail 12D facing in the vertical direction, and the right lower plate portion 13Db The upper surface 13D3 is provided with a compressed air ejection hole 22Dd for ejecting compressed air toward the lower surface 12Dc on the right side of the upper plate portion 12Du of the guide rail 12D facing in the vertical direction. The right surface 13D4 of the left plate portion 13Dc has Compressed air ejection for ejecting compressed air toward the left side surface 12Dd of the upper plate portion 12Du of the guide rail 12D facing in the left-right direction 22Da is provided, and a compressed air ejection hole 22Db for ejecting compressed air toward the right side surface 12De of the upper plate portion 12Du of the guide rail 12D facing in the left-right direction is provided on the left surface D5 of the right side plate portion 13Dd. .
 上記のように構成されたステージ装置3Dにおいては、上下方向は、圧縮エア噴出孔22Duから噴出される圧縮エアのエア圧力及びガイドレール12Dによる前述のバネ弾性力と、圧縮エア噴出孔22Ddから噴出される圧縮エアのエア圧力とのバランスにより姿勢維持する。左右方向は、圧縮エア噴出孔22Daから噴出される圧縮エアのエア圧力と、圧縮エア噴出孔22Dbから噴出される圧縮エアのエア圧力とのバランスにより姿勢維持する。そして、リニアモータ16で発生した推力により、スライダ13Dがガイドレール12Dに沿って前後方向に移動する。 In the stage apparatus 3D configured as described above, the vertical direction is the air pressure of the compressed air ejected from the compressed air ejection hole 22Du, the aforementioned spring elastic force by the guide rail 12D, and the ejection from the compressed air ejection hole 22Dd. The posture is maintained by the balance with the air pressure of the compressed air. The posture in the left-right direction is maintained by a balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22Da and the air pressure of the compressed air ejected from the compressed air ejection hole 22Db. Then, due to the thrust generated by the linear motor 16, the slider 13D moves in the front-rear direction along the guide rail 12D.
 そして、目標位置近傍においてスライダ13Dの位置決めを行う際には、ガイドレール12Dのガイド面とスライダ13Dの被ガイド面との潤滑状態が、ガイドレール12Dの上板部12Duの上面12Daとスライダ13Dの上板部13Duの下面13D1との間で混合潤滑状態となり、それ以外の領域で流体潤滑状態となり、混合潤滑状態となったガイドレール12Dのガイド面とスライダ13Dの被ガイド面との間に微小移動領域において線形バネ特性が生じるように、圧縮エア噴出孔22Du,22Dd,22Da,22Dbに供給される圧縮エアの空気圧により制御される。したがって、目標位置近傍においてスライダ13Dの位置決めを行う際には、ガイドレール12Dの上板部12Duの上面12Daとスライダ13Dの上板部13Duの下面13D1とが微接触状態となり、それ以外のガイド面と被ガイド面とは非接触状態となる。 When the slider 13D is positioned near the target position, the lubrication state between the guide surface of the guide rail 12D and the guided surface of the slider 13D is such that the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D and the slider 13D A mixed lubrication state is established with the lower surface 13D1 of the upper plate portion 13Du, a fluid lubrication state is established in other regions, and there is a minute amount between the guide surface of the guide rail 12D and the guided surface of the slider 13D in the mixed lubrication state. It is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22Du, 22Dd, 22Da, and 22Db so that a linear spring characteristic is generated in the moving region. Therefore, when positioning the slider 13D in the vicinity of the target position, the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D and the lower surface 13D1 of the upper plate portion 13Du of the slider 13D are in a fine contact state, and the other guide surfaces And the guided surface are in a non-contact state.
 本変形例によれば、前述の実施形態と同様の効果を得ることができる。 According to this modification, it is possible to obtain the same effect as that of the above-described embodiment.
 なお、上記(4)の変形例においては、目標位置近傍においてスライダ13Dの位置決めを行う際に、ガイドレール12Dのガイド面とスライダ13Dの被ガイド面との潤滑状態が、ガイドレール12Dの上板部12Duの上面12Daとスライダ13Dの上板部13Duの下面13D1との間で混合潤滑状態となり、それ以外の領域で流体潤滑状態となるように制御していたが、これに限られない。すなわち、目標位置近傍においてスライダ13Dの位置決めを行う際に、ガイドレール12Dの上板部12Duの左側面12Ddとスライダ13Dの左側板部13Dcの右面13D4との間(又は、ガイドレール12Dの上板部12Duの右側面12Deとスライダ13Dの右側板部13Ddの左面D5との間)の潤滑状態についても、混合潤滑状態とするように制御してもよい。この場合、目標位置近傍においてスライダ13Dの位置決めを行う際には、ガイドレール12Dの上板部12Duの上面12Daとスライダ13Dの上板部13Duの下面13D1、及び、ガイドレール12Dの上板部12Duの左側面12Ddとスライダ13Dの左側板部13Dcの右面13D4(又は、ガイドレール12Dの上板部12Duの右側面12Deとスライダ13Dの右側板部13Ddの左面D5)が微接触状態となる。 In the modification (4), when the slider 13D is positioned near the target position, the lubrication state between the guide surface of the guide rail 12D and the guided surface of the slider 13D is determined by the upper plate of the guide rail 12D. Although the mixed lubrication state is controlled between the upper surface 12Da of the portion 12Du and the lower surface 13D1 of the upper plate portion 13Du of the slider 13D, the fluid lubrication state is controlled in other regions. However, the present invention is not limited to this. That is, when positioning the slider 13D in the vicinity of the target position, between the left side surface 12Dd of the upper plate portion 12Du of the guide rail 12D and the right surface 13D4 of the left side plate portion 13Dc of the slider 13D (or the upper plate of the guide rail 12D). The lubrication state between the right side surface 12De of the portion 12Du and the left surface D5 of the right side plate portion 13Dd of the slider 13D may also be controlled to be in a mixed lubrication state. In this case, when positioning the slider 13D in the vicinity of the target position, the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D, the lower surface 13D1 of the upper plate portion 13Du of the slider 13D, and the upper plate portion 12Du of the guide rail 12D. The left side surface 12Dd and the right side surface 13D4 of the left side plate portion 13Dc of the slider 13D (or the right side surface 12De of the upper plate portion 12Du of the guide rail 12D and the left side surface D5 of the right side plate portion 13Dd of the slider 13D) are in a fine contact state.
 あるいは、目標位置近傍においてスライダ13Dの位置決めを行う際に、ガイドレール12Dの上板部12Duの左側面12Ddとスライダ13Dの左側板部13Dcの右面13D4との間、及び、ガイドレール12Dの上板部12Duの右側面12Deとスライダ13Dの右側板部13Ddの左面D5との間の潤滑状態についても、混合潤滑状態とするように制御してもよい。この場合、目標位置近傍においてスライダ13Dの位置決めを行う際には、ガイドレール12Dの上板部12Duの上面12Daとスライダ13Dの上板部13Duの下面13D1、ガイドレール12Dの上板部12Duの左側面12Ddとスライダ13Dの左側板部13Dcの右面13D4、及び、ガイドレール12Dの上板部12Duの右側面12Deとスライダ13Dの右側板部13Ddの左面D5が微接触状態となる。 Alternatively, when positioning the slider 13D in the vicinity of the target position, between the left side surface 12Dd of the upper plate portion 12Du of the guide rail 12D and the right surface 13D4 of the left side plate portion 13Dc of the slider 13D, and the upper plate of the guide rail 12D The lubrication state between the right side surface 12De of the portion 12Du and the left side surface D5 of the right side plate portion 13Dd of the slider 13D may also be controlled to be in a mixed lubrication state. In this case, when positioning the slider 13D in the vicinity of the target position, the upper surface 12Da of the upper plate portion 12Du of the guide rail 12D, the lower surface 13D1 of the upper plate portion 13Du of the slider 13D, and the left side of the upper plate portion 12Du of the guide rail 12D. The surface 12Dd and the right surface 13D4 of the left plate 13Dc of the slider 13D, and the right surface 12De of the upper plate 12Du of the guide rail 12D and the left surface D5 of the right plate 13Dd of the slider 13D are in a fine contact state.
 あるいは、目標位置近傍においてスライダ13Dの位置決めを行う際に、ガイドレール12Dの上板部12Duの左側の下面12Dbとスライダ13Dの左側下板部13Daの上面13D2との間、及び、ガイドレール12Dの上板部12Duの右側の下面12Dcとスライダ13Dの右側下板部13Dbの上面13D3との間の潤滑状態についても、混合潤滑状態とするように制御してもよい。この場合、目標位置近傍においてスライダ13Dの位置決めを行う際には、ガイドレール12Dの上板部12Duの左側の下面12Dbとスライダ13Dの左側下板部13Daの上面13D2、及び、ガイドレール12Dの上板部12Duの右側の下面12Dcとスライダ13Dの右側下板部13Dbの上面13D3についても微接触状態となる。 Alternatively, when positioning the slider 13D in the vicinity of the target position, the lower surface 12Db on the left side of the upper plate portion 12Du of the guide rail 12D and the upper surface 13D2 of the lower left plate portion 13Da of the slider 13D and the guide rail 12D The lubrication state between the lower surface 12Dc on the right side of the upper plate portion 12Du and the upper surface 13D3 of the lower right plate portion 13Db of the slider 13D may also be controlled to be in a mixed lubrication state. In this case, when positioning the slider 13D in the vicinity of the target position, the lower surface 12Db on the left side of the upper plate portion 12Du of the guide rail 12D, the upper surface 13D2 of the lower plate portion 13Da on the left side of the slider 13D, and the upper surface of the guide rail 12D The right lower surface 12Dc of the plate portion 12Du and the upper surface 13D3 of the right lower plate portion 13Db of the slider 13D are also in a fine contact state.
 これらの場合も同様の効果を得ることができる。 In these cases, the same effect can be obtained.
 (5)駆動装置として磁気吸引式のリニアモータを設ける場合(その1)
 図17に示すように、本変形例に係るステージ装置3Eは、上面に2つのガイド部材19Euが貼付された定盤11上に前後方向に延びるように平行に設置された2つのガイドレール12Eと、ガイドレール12Eに移動方向を規制された断面視において略逆U字形状のスライダ13Eと、スライダ13Eの推力を発生する磁気吸引式のリニアモータ16E(駆動装置)と、スライダ13Eの位置を検出するリニアスケール17とを備えている。
(5) When a magnetic attraction type linear motor is provided as a driving device (part 1)
As shown in FIG. 17, the stage apparatus 3E according to the present modification includes two guide rails 12E installed in parallel so as to extend in the front-rear direction on a surface plate 11 having two guide members 19Eu attached to the upper surface. The slider 13E having a substantially inverted U shape in a cross-sectional view whose movement direction is regulated by the guide rail 12E, a magnetic attraction type linear motor 16E (driving device) that generates thrust of the slider 13E, and the position of the slider 13E are detected. The linear scale 17 is provided.
 各ガイドレール12Eの内面12Eaには、ガイド部材19Esが貼付されている。以下適宜、定盤11の上面11aに貼付されたガイド部材19Euと、ガイドレール12の内面12Eaに貼付されたガイド部材19Esとを「ガイド部材19E」と総称する。ガイド部材19Eは、前述の実施形態に係るガイド部材19と同様、表面のエポキシ樹脂192を剥離して炭素繊維191の層を露出させる表面加工(図3を参照)が行われたCFRPで構成されている。 A guide member 19Es is affixed to the inner surface 12Ea of each guide rail 12E. Hereinafter, the guide member 19Eu attached to the upper surface 11a of the surface plate 11 and the guide member 19Es attached to the inner surface 12Ea of the guide rail 12 will be collectively referred to as “guide member 19E” as appropriate. The guide member 19E is made of CFRP that has been subjected to surface processing (see FIG. 3) that peels the epoxy resin 192 on the surface and exposes the carbon fiber 191 layer, like the guide member 19 according to the above-described embodiment. ing.
 スライダ13Eは、左右の側壁部13Esを備えており、それら左右の側壁部13Esの下面13E1には被ガイド部材21Edが貼付され、それら左右の側壁部13Esの外側側面13E2には被ガイド部材21Esが貼付されている。以下適宜、これら被ガイド部材21Ed及び被ガイド部材21Esを「被ガイド部材21E」と総称する。被ガイド部材21Eは、前述の実施形態に係る被ガイド部材21と同様、瑪瑙で構成されている。各被ガイド部材21Edの表面21E1は、上記定盤11の上面11aに貼付された各ガイド部材19Euの表面19E1と上下方向に相対し、各被ガイド部材21Esの表面21E2は、上記各ガイドレール12Eの内面12Eaに貼付されたガイド部材19Esの表面と左右方向に相対する。 The slider 13E includes left and right side wall portions 13Es. A guided member 21Ed is attached to the lower surface 13E1 of the left and right side wall portions 13Es, and a guided member 21Es is disposed on the outer side surface 13E2 of the left and right side wall portions 13Es. It is affixed. Hereinafter, the guided member 21Ed and the guided member 21Es will be collectively referred to as “guided member 21E” as appropriate. Like the guided member 21 according to the above-described embodiment, the guided member 21 </ b> E is configured with a heel. The surface 21E1 of each guided member 21Ed is vertically opposed to the surface 19E1 of each guide member 19Eu affixed to the upper surface 11a of the surface plate 11, and the surface 21E2 of each guided member 21Es is each guide rail 12E. This is opposed to the surface of the guide member 19Es affixed to the inner surface 12Ea.
 本変形例では、定盤11の上面11aに貼付された各ガイド部材19Euの表面19E1及び各ガイドレール12Eの内面12Eaに貼付されたガイド部材19Esの表面が、特許請求の範囲に記載のガイド面に相当し、スライダ13Eの各側壁部13Esの下面13E1に貼付された被ガイド部材21Edの表面21E1及びスライダ13Eの各側壁部13Esの外側側面13E2に貼付された被ガイド部材21Esの表面21E2が、特許請求の範囲に記載の被ガイド面に相当する。以下適宜、各ガイド部材19Euの表面19E1及び各ガイド部材19Esの表面を「ガイド面」と総称し、各被ガイド部材21Edの表面21E1及び各被ガイド部材21Esの表面21E2を「被ガイド面」と総称する。 In this modification, the surface 19E1 of each guide member 19Eu affixed to the upper surface 11a of the surface plate 11 and the surface of the guide member 19Es affixed to the inner surface 12Ea of each guide rail 12E are the guide surfaces described in the claims. The surface 21E1 of the guided member 21Ed affixed to the lower surface 13E1 of each side wall 13Es of the slider 13E and the surface 21E2 of the guided member 21Es affixed to the outer side surface 13E2 of each side wall 13Es of the slider 13E, This corresponds to the guided surface described in the claims. Hereinafter, the surface 19E1 of each guide member 19Eu and the surface of each guide member 19Es are collectively referred to as “guide surfaces”, and the surface 21E1 of each guided member 21Ed and the surface 21E2 of each guided member 21Es are referred to as “guided surfaces”. Collectively.
 また、スライダ13Eの各被ガイド部材21Edの表面21E1には、上下方向に相対するガイド部材19Euの表面19E1に向けて圧縮エアを噴出する圧縮エア噴出孔22Edが設けられ、スライダ13Eの左側の側壁部13Esの外側側面13E2に貼付された被ガイド部材21Es(以下適宜、「左側の被ガイド部材21Es」と称する)の表面21E2には、左右方向に相対する左側のガイドレール12Eの内面12Eaに貼付されたガイド部材19Esの表面19E2に向けて圧縮エアを噴出する圧縮エア噴出孔22Es(以下適宜、「左側の圧縮エア噴出孔22Es」と称する)が設けられ、右側の側壁部13Esの外側側面13E2に貼付された被ガイド部材21Es(以下適宜、「右側の被ガイド部材21Es」と称する)の表面21E2には、左右方向に相対する右側のガイドレール12Eの内面12Eaに貼付されたガイド部材19Esの表面19E2に向けて圧縮エアを噴出する圧縮エア噴出孔22Es(以下適宜、「右側の圧縮エア噴出孔22Es」と称する)が設けられている。 In addition, the surface 21E1 of each guided member 21Ed of the slider 13E is provided with a compressed air ejection hole 22Ed that ejects compressed air toward the surface 19E1 of the guide member 19Eu facing in the vertical direction, and the left side wall of the slider 13E. The guide member 21Es affixed to the outer side surface 13E2 of the portion 13Es (hereinafter referred to as “left guided member 21Es” as appropriate) is attached to the inner surface 12Ea of the left guide rail 12E facing in the left-right direction. Compressed air ejection holes 22Es (hereinafter, referred to as “left compressed air ejection holes 22Es” as appropriate) for ejecting compressed air toward the surface 19E2 of the guide member 19Es are provided, and the outer side surface 13E2 of the right side wall portion 13Es. Guided member 21Es (hereinafter referred to as “right guided member 21Es” as appropriate) ) On the surface 21E2 of the right guide rail 12E facing in the left-right direction, compressed air ejection holes 22Es for ejecting compressed air toward the surface 19E2 of the guide member 19Es affixed to the inner surface 12Ea (hereinafter referred to as "right side" A compressed air ejection hole 22 Es ”).
 ステージ装置3Eにおいては、上下方向は、スライダ13Eの荷重と、圧縮エア噴出孔22Edから噴出される圧縮エアのエア圧力及びガイド部材19Euによる前述のバネ弾性力と、リニアモータ16Eによる磁気吸引力とのバランスにより姿勢維持する。左右方向は、左側の圧縮エア噴出孔22Esから噴出される圧縮エアのエア圧力及び左側のガイド部材19Esによるバネ弾性力と、右側の圧縮エア噴出孔22Esから噴出される圧縮エアのエア圧力及び右側のガイド部材19Esによるバネ弾性力とのバランスにより姿勢維持する。そして、リニアモータ16Eで発生した推力により、スライダ13Eがガイドレール12Eに沿って前後方向に移動する。 In the stage device 3E, in the vertical direction, the load of the slider 13E, the air pressure of the compressed air ejected from the compressed air ejection hole 22Ed, the aforementioned spring elastic force by the guide member 19Eu, and the magnetic attraction force by the linear motor 16E Maintain posture by balance. The left and right directions are the air pressure of the compressed air ejected from the left compressed air ejection hole 22Es and the spring elastic force by the left guide member 19Es, the air pressure of the compressed air ejected from the right compressed air ejection hole 22Es and the right side. The posture is maintained by a balance with the spring elastic force of the guide member 19Es. Then, the slider 13E moves in the front-rear direction along the guide rail 12E by the thrust generated by the linear motor 16E.
 そして、目標位置近傍においてスライダ13Eの位置決めを行う際には、定盤11及び各ガイドレール12Eのガイド面とスライダ13Eの被ガイド面との潤滑状態が、全ての領域で混合潤滑状態となるように、圧縮エア噴出孔22Ed,22Esに供給される圧縮エアの空気圧、及び、リニアモータ16Eによる電磁吸引力により制御される。具体的には、各ガイド部材19Euの表面19E1と各被ガイド部材21Edの表面21E1との間、及び、各ガイド部材19Esの表面と各被ガイド部材21Esの表面21E2との間で混合潤滑状態となり、混合潤滑状態となった各ガイドレール12Eのガイド面とスライダ13Eの被ガイド面との間に微小移動領域において線形バネ特性が生じるように、制御される。したがって、目標位置近傍においてスライダ13Eの位置決めを行う際には、各ガイド部材19Euの表面19E1と各被ガイド部材21Edの表面21E1、及び、各ガイド部材19Esの表面と各被ガイド部材21Esの表面21E2が微接触状態となる。 When positioning the slider 13E in the vicinity of the target position, the lubrication state of the guide surface of the surface plate 11 and each guide rail 12E and the guided surface of the slider 13E is in a mixed lubrication state in all regions. Further, the pressure is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22Ed and 22Es and the electromagnetic attraction force by the linear motor 16E. Specifically, a mixed lubrication state is established between the surface 19E1 of each guide member 19Eu and the surface 21E1 of each guided member 21Ed, and between the surface of each guide member 19Es and the surface 21E2 of each guided member 21Es. Control is performed so that a linear spring characteristic is generated in the minute movement region between the guide surface of each guide rail 12E in the mixed lubrication state and the guided surface of the slider 13E. Therefore, when positioning the slider 13E in the vicinity of the target position, the surface 19E1 of each guide member 19Eu, the surface 21E1 of each guided member 21Ed, and the surface of each guide member 19Es and the surface 21E2 of each guided member 21Es. Becomes a fine contact state.
 本変形例によれば、前述の実施形態と同様の効果を得ることができる。 According to this modification, it is possible to obtain the same effect as that of the above-described embodiment.
 (6)駆動装置として磁気吸引式のリニアモータを設ける場合(その2)
 図18に示すように、本変形例に係るステージ装置3Fは、定盤11上に前後方向に延びるように設置されたガイドレール12Fと、ガイドレール12Fに移動方向を規制されたスライダ13Fと、スライダ13Fの推力を発生する磁気吸引式のリニアモータ16F(駆動装置)と、スライダ13Fの位置を検出する図示しないリニアスケール(位置検出装置)とを備えている。
(6) When a magnetic attraction type linear motor is provided as a driving device (part 2)
As shown in FIG. 18, the stage device 3F according to this modification includes a guide rail 12F installed on the surface plate 11 so as to extend in the front-rear direction, a slider 13F whose movement direction is restricted by the guide rail 12F, A magnetic attraction type linear motor 16F (driving device) that generates thrust of the slider 13F and a linear scale (position detecting device) (not shown) for detecting the position of the slider 13F are provided.
 ガイドレール12Fの上面12Faの左右両端部にはガイド部材19Fuが貼付され、ガイドレール12Fの左右両側面12Fbにはガイド部材19Fsが貼付されている。以下適宜、これらガイド部材19Fu及びガイド部材19Fsを「ガイド部材19F」と総称する。ガイド部材19Fは、前述の実施形態に係るガイド部材19と同様、表面のエポキシ樹脂192を剥離して炭素繊維191の層を露出させる表面加工(図3を参照)が行われたCFRPで構成されている。 Guide members 19Fu are attached to the left and right ends of the upper surface 12Fa of the guide rail 12F, and guide members 19Fs are attached to the left and right side surfaces 12Fb of the guide rail 12F. Hereinafter, the guide member 19Fu and the guide member 19Fs are collectively referred to as “guide member 19F” as appropriate. The guide member 19F is made of CFRP that has been subjected to surface processing (see FIG. 3) that peels the epoxy resin 192 on the surface and exposes the carbon fiber 191 layer, like the guide member 19 according to the above-described embodiment. ing.
 スライダ13Fは、上板部13Fu及び左右の側板部13Fsを備えている。上板部13Fuの下面には、凹部26が設けられている。上板部13Fuにおける凹部26を挟んで左右両側には被ガイド部材21Fdが貼付され、左右の側板部13Fsの内側側面13Faには被ガイド部材21Fsが貼付されている。以下適宜、これら被ガイド部材21Fd及び被ガイド部材21Fsを「被ガイド部材21F」と総称する。被ガイド部材21Fは、前述の実施形態に係る被ガイド部材21と同様、瑪瑙で構成されている。各被ガイド部材21Fdの表面21Faは、上記ガイドレール12Fの上面12Faに貼付された各ガイド部材19Fuの表面19Faと上下方向に相対し、各被ガイド部材21Fsの表面21Fbは、上記ガイドレール12Fの側面12Fbに貼付された各ガイド部材19Fsに左右方向に相対する。 The slider 13F includes an upper plate portion 13Fu and left and right side plate portions 13Fs. A concave portion 26 is provided on the lower surface of the upper plate portion 13Fu. Guided members 21Fd are affixed to both the left and right sides of the recess 26 in the upper plate portion 13Fu, and the guided members 21Fs are affixed to the inner side surfaces 13Fa of the left and right side plate portions 13Fs. Hereinafter, the guided member 21Fd and the guided member 21Fs are collectively referred to as “guided member 21F” as appropriate. Like the guided member 21 according to the above-described embodiment, the guided member 21 </ b> F is configured by a scissors. The surface 21Fa of each guided member 21Fd is vertically opposed to the surface 19Fa of each guide member 19Fu attached to the upper surface 12Fa of the guide rail 12F, and the surface 21Fb of each guided member 21Fs is the surface of the guide rail 12F. It is opposed to each guide member 19Fs affixed to the side surface 12Fb in the left-right direction.
 本変形例では、ガイドレール12Fの上面12Faの左右両端部に貼付されたガイド部材19Fuの表面19Fa及びガイドレール12Fの左右両側面12Fbに貼付されたガイド部材19Fsの表面19Fbが、特許請求の範囲に記載のガイド面に相当し、スライダ13Fの上板部13Fuにおける凹部26を挟んで左右両側に貼付された被ガイド部材21Fdの表面21Fa及びスライダ13Fの各側板部13Fsの内側側面13Faに貼付された被ガイド部材21Fsの表面21Fbが、特許請求の範囲に記載の被ガイド面に相当する。以下適宜、各ガイド部材19Fuの表面19Fa及び各ガイド部材19Fsの表面19Fbを「ガイド面」と総称し、各被ガイド部材21Fdの表面21Fa及び各被ガイド部材21Fsの表面21Fbを「被ガイド面」と総称する。 In the present modification, the surface 19Fa of the guide member 19Fu affixed to the left and right ends of the upper surface 12Fa of the guide rail 12F and the surface 19Fb of the guide member 19Fs affixed to the left and right side surfaces 12Fb of the guide rail 12F Is attached to the surface 21Fa of the guided member 21Fd that is affixed on both the left and right sides of the recess 26 in the upper plate portion 13Fu of the slider 13F and the inner side surface 13Fa of each side plate portion 13Fs of the slider 13F. The surface 21Fb of the guided member 21Fs corresponds to the guided surface described in the claims. Hereinafter, the surface 19Fa of each guide member 19Fu and the surface 19Fb of each guide member 19Fs are collectively referred to as “guide surfaces”, and the surface 21Fa of each guided member 21Fd and the surface 21Fb of each guided member 21Fs are “guided surfaces” as appropriate. Collectively.
 また、スライダ13Fの各被ガイド部材21Fdの表面21Faには、上下方向に相対するガイド部材19Fuの表面19Faに向けて圧縮エアを噴出する圧縮エア噴出孔22Fdが設けられ、左側の側板部13Fsの内側側面13Faに貼付された被ガイド部材21Fs(以下適宜、「左側の被ガイド部材21Fs」と称する)の表面には、左右方向に相対するガイドレール12Fの左側面に貼付されたガイド部材19Fsの表面19Fbに向けて圧縮エアを噴出する圧縮エア噴出孔22Fs(以下適宜、「左側の圧縮エア噴出孔22Fs」と称する)が設けられ、右側の側板部13Fsの内側側面13Faに貼付された被ガイド部材21Fs(以下適宜、「右側の被ガイド部材21Fs」と称する)の表面には、左右方向に相対するガイドレール12Fの右側面12Fbに貼付されたガイド部材19Fsの表面19Fbに向けて圧縮エアを噴出する圧縮エア噴出孔22Fs(以下適宜、「右側の圧縮エア噴出孔22Fs」と称する)が設けられている。 In addition, the surface 21Fa of each guided member 21Fd of the slider 13F is provided with a compressed air ejection hole 22Fd that ejects compressed air toward the surface 19Fa of the guide member 19Fu facing in the vertical direction, and the left side plate portion 13Fs. The guide member 19Fs affixed to the left side surface of the guide rail 12F facing in the left-right direction is provided on the surface of the guided member 21Fs affixed to the inner side surface 13Fa (hereinafter referred to as “left guided member 21Fs” as appropriate). A compressed air ejection hole 22Fs for ejecting compressed air toward the surface 19Fb (hereinafter, referred to as “left compressed air ejection hole 22Fs” as appropriate) is provided, and is guided on the inner side surface 13Fa of the right side plate portion 13Fs. On the surface of the member 21Fs (hereinafter referred to as “right guided member 21Fs” as appropriate), A compressed air ejection hole 22Fs for ejecting compressed air toward the surface 19Fb of the guide member 19Fs affixed to the right side surface 12Fb of the drag 12F (hereinafter, referred to as “right compressed air ejection hole 22Fs” as appropriate) is provided. .
 ステージ装置3Fにおいては、上下方向は、スライダ13Fの荷重と、圧縮エア噴出孔22Fdから噴出される圧縮エアのエア圧力及びガイド部材19Fuによる前述のバネ弾性力と、リニアモータ16Fによる磁気吸引力とのバランスにより姿勢維持する。左右方向は、左側の圧縮エア噴出孔22Fsから噴出される圧縮エアのエア圧力及び左側のガイド部材19Fsによるバネ弾性力と、右側の圧縮エア噴出孔22Fsから噴出される圧縮エアのエア圧力及び右側のガイド部材19Fsによるバネ弾性力とのバランスにより姿勢維持する。そして、リニアモータ16Fで発生した推力により、スライダ13Fがガイドレール12Fに沿って前後方向に移動する。 In the stage device 3F, the vertical direction includes the load of the slider 13F, the air pressure of the compressed air ejected from the compressed air ejection hole 22Fd, the aforementioned spring elastic force by the guide member 19Fu, and the magnetic attraction force by the linear motor 16F. Maintain posture by balance. The left and right directions are the air pressure of the compressed air ejected from the left compressed air ejection hole 22Fs and the spring elastic force by the left guide member 19Fs, the air pressure of the compressed air ejected from the right compressed air ejection hole 22Fs and the right side. The posture is maintained by the balance with the spring elastic force by the guide member 19Fs. Then, the slider 13F moves in the front-rear direction along the guide rail 12F by the thrust generated by the linear motor 16F.
 そして、目標位置近傍においてスライダ13Fの位置決めを行う際には、ガイドレール12Fのガイド面とスライダ13Fの被ガイド面との潤滑状態が、全ての領域で混合潤滑状態となるように、圧縮エア噴出孔22Fd,22Fsに供給される圧縮エアの空気圧、及び、リニアモータ16Fによる電磁吸引力により制御される。具体的には、各ガイド部材19Fuの表面19Faと各被ガイド部材21Fdの表面21Faとの間、及び、各ガイド部材19Fsの表面19Fbと各被ガイド部材21Fsの表面21Fbとの間で混合潤滑状態となり、混合潤滑状態となったガイドレール12Fのガイド面とスライダ13Fの被ガイド面との間に微小移動領域において線形バネ特性が生じるように、制御される。したがって、目標位置近傍においてスライダ13Fの位置決めを行う際には、各ガイド部材19Fuの表面19Faと各被ガイド部材21Fdの表面21Fa、及び、各ガイド部材19Fsの表面19Fbと各被ガイド部材21Fsの表面21Fbが微接触状態となる。 When positioning the slider 13F in the vicinity of the target position, the compressed air jets so that the lubrication state between the guide surface of the guide rail 12F and the guided surface of the slider 13F becomes a mixed lubrication state in all regions. It is controlled by the air pressure of the compressed air supplied to the holes 22Fd and 22Fs and the electromagnetic attraction force by the linear motor 16F. Specifically, the mixed lubrication is performed between the surface 19Fa of each guide member 19Fu and the surface 21Fa of each guided member 21Fd, and between the surface 19Fb of each guide member 19Fs and the surface 21Fb of each guided member 21Fs. Thus, control is performed so that a linear spring characteristic is generated in the minute movement region between the guide surface of the guide rail 12F in the mixed lubrication state and the guided surface of the slider 13F. Therefore, when positioning the slider 13F in the vicinity of the target position, the surface 19Fa of each guide member 19Fu and the surface 21Fa of each guided member 21Fd, and the surface 19Fb of each guide member 19Fs and the surface of each guided member 21Fs 21Fb is in a fine contact state.
 本変形例によれば、前述の実施形態と同様の効果を得ることができる。 According to this modification, it is possible to obtain the same effect as that of the above-described embodiment.
 なお、上記(6)の変形例においては、ガイド部材19Fsをガイドレール12Fの左右両側面12Fbに貼付し、被ガイド部材21Fsをスライダ13Fの左右の側板部13Fsの内側側面13Faに貼付していたが、これに限られない。すなわち、ガイド部材19Fsをガイドレール12Fの片方の側面12Fbだけに貼付し、被ガイド部材21Fsをスライダ13Fの片方の側板部13Fsの内側側面13Faだけに貼付してもよい。例えば、ガイド部材19Fsをガイドレール12Fの右側面12Fbだけに貼付し、被ガイド部材21Fsをスライダ13Fの右側の側板部13Fsの内側側面13Faだけに貼付する場合、左側の圧縮エア噴出孔22Fsは、相対する面同士の潤滑状態が流体潤滑状態となる空気圧で圧縮エアを噴出する。また、右側の圧縮エア噴出孔22Fs及び圧縮エア噴出孔22Fdは、目標位置近傍までの移動を行う際には、相対する面同士の潤滑状態が流体潤滑状態となる空気圧で圧縮エアを噴出し、目標位置近傍においてスライダ13Fの位置決めを行う際には、相対する面同士の潤滑状態が混合潤滑状態となる空気圧で圧縮エアを噴出する。 In the modification (6), the guide member 19Fs is attached to the left and right side surfaces 12Fb of the guide rail 12F, and the guided member 21Fs is attached to the inner side surface 13Fa of the left and right side plate portions 13Fs of the slider 13F. However, it is not limited to this. That is, the guide member 19Fs may be attached only to one side surface 12Fb of the guide rail 12F, and the guided member 21Fs may be attached only to the inner side surface 13Fa of one side plate portion 13Fs of the slider 13F. For example, when the guide member 19Fs is attached only to the right side surface 12Fb of the guide rail 12F, and the guided member 21Fs is attached only to the inner side surface 13Fa of the right side plate portion 13Fs of the slider 13F, the left compressed air ejection hole 22Fs is Compressed air is ejected at an air pressure at which the lubrication state between the opposing surfaces becomes a fluid lubrication state. Further, when the compressed air ejection hole 22Fs and the compressed air ejection hole 22Fd on the right side move to the vicinity of the target position, the compressed air is ejected at an air pressure at which the lubrication state between the opposing surfaces becomes a fluid lubrication state, When positioning the slider 13F in the vicinity of the target position, the compressed air is ejected at an air pressure at which the lubrication state between the opposing surfaces becomes a mixed lubrication state.
 (7)ステージ装置を天井に取り付ける場合
 本変形例は、ステージ装置を天井に取り付ける場合に最適な変形例である。図19に示すように、本変形例に係るステージ装置3Gの構成は、前述の実施形態に係るステージ装置3とほぼ同様である。但し、ステージ装置3Gは、図1に示すステージ装置3が180度回転した上下逆さまの状態で、定盤11のガイドレール12の設置面とは反対側の面が天井27に固定されている。したがって、図1中の下方は図19中の上方に対応し、図1中の上方は図19中の下方に対応し、図1中の右方は図19中の左方に対応し、図1中の左方は図19中の右方に対応している。そして、ステージ装置3Gでは、各ガイドレール12の上板部12uの内面12uaに、前述のガイド部材19が貼付されている。また、スライダ13の各挿入部20の下面20c(図19中の下側の面)に、前述の被ガイド部材21が貼付されている。各挿入部20が各ガイドレール12の凹条部18に挿入されたとき、各ガイドレール12の上板部12uの内面12uaに貼付されたガイド部材19の表面と各挿入部20の下面20cに貼付された被ガイド部材21の表面21aとが上下方向(図19中の上-下方向)に相対し、各ガイドレール12の下板部12dの内面12daと各挿入部20の上面20a(図19中の上側の面)とが上下方向に相対し、各ガイドレール12の側板部12sの内面12saと各挿入部20の側面20bとが左右方向(図19中の左-右方向)に相対する。
(7) When attaching a stage apparatus to a ceiling This modification is an optimal modification when attaching a stage apparatus to a ceiling. As shown in FIG. 19, the configuration of the stage apparatus 3G according to the present modification is substantially the same as the stage apparatus 3 according to the above-described embodiment. However, in the stage apparatus 3G, the surface opposite to the installation surface of the guide rail 12 of the surface plate 11 is fixed to the ceiling 27 in the upside down state in which the stage apparatus 3 shown in FIG. Therefore, the lower part in FIG. 1 corresponds to the upper part in FIG. 19, the upper part in FIG. 1 corresponds to the lower part in FIG. 19, the right side in FIG. 1 corresponds to the left side in FIG. The left side in 1 corresponds to the right side in FIG. And in the stage apparatus 3G, the above-mentioned guide member 19 is affixed on the inner surface 12ua of the upper plate part 12u of each guide rail 12. FIG. Further, the aforementioned guided member 21 is attached to the lower surface 20c (the lower surface in FIG. 19) of each insertion portion 20 of the slider 13. When each insertion portion 20 is inserted into the concave portion 18 of each guide rail 12, the surface of the guide member 19 affixed to the inner surface 12 ua of the upper plate portion 12 u of each guide rail 12 and the lower surface 20 c of each insertion portion 20. The surface 21a of the affixed guided member 21 is opposed to the vertical direction (upper-lower direction in FIG. 19), and the inner surface 12da of the lower plate portion 12d of each guide rail 12 and the upper surface 20a of each insertion portion 20 (see FIG. 19 in the vertical direction, and the inner surface 12sa of the side plate portion 12s of each guide rail 12 and the side surface 20b of each insertion portion 20 are in the left-right direction (left-right direction in FIG. 19). To do.
 本変形例では、各ガイドレール12の上板部12uの内面12uaに貼付されたガイド部材19の表面19aと、各ガイドレール12の下板部12dの内面12da及び側板部12sの内面12saとが、特許請求の範囲に記載のガイド面に相当する。以下適宜、ガイドレール12の上板部12uの内面12uaに貼付されたガイド部材19の表面19aと、ガイドレール12の下板部12dの内面12da及び側板部12sの内面12saとを「ガイド面」と総称する。また、スライダ13の各挿入部20の下面20cに貼付された被ガイド部材21の表面21aと、各挿入部20の上面20a及び側面20bとが、特許請求の範囲に記載の被ガイド面に相当する。以下適宜、スライダ13の各挿入部20の下面20cに貼付された被ガイド部材21の表面21aと、各挿入部20の上面20a及び側面20bとを「被ガイド面」と総称する。 In this modification, the surface 19a of the guide member 19 affixed to the inner surface 12ua of the upper plate portion 12u of each guide rail 12, the inner surface 12da of the lower plate portion 12d of each guide rail 12, and the inner surface 12sa of the side plate portion 12s. This corresponds to the guide surface described in the claims. Hereinafter, the surface 19a of the guide member 19 affixed to the inner surface 12ua of the upper plate portion 12u of the guide rail 12 and the inner surface 12da of the lower plate portion 12d of the guide rail 12 and the inner surface 12sa of the side plate portion 12s are appropriately referred to as “guide surfaces”. Collectively. Moreover, the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion part 20 of the slider 13, and the upper surface 20a and the side surface 20b of each insertion part 20 are equivalent to the guided surface as described in a claim. To do. Hereinafter, the surface 21a of the guided member 21 affixed to the lower surface 20c of each insertion portion 20 of the slider 13 and the upper surface 20a and the side surface 20b of each insertion portion 20 are collectively referred to as “guided surfaces” as appropriate.
 また、本変形例では、スライダ13の各被ガイド部材21の表面21aには、上下方向に相対するガイド部材19の表面19aに向けて圧縮エアを噴出する圧縮エア噴出孔22Guを、各挿入部20の上面20aが設けられ、上下方向に相対するガイドレール12の下板部12dの内面12daに向けて圧縮エアを噴出する圧縮エア噴出孔22Gdが設けられ、各挿入部20の側面20bに、左右方向に相対するガイドレール12の側板部12sの内面12saに向けて圧縮エアを噴出する圧縮エア噴出孔22Gsが設けられている。 Further, in this modified example, on each surface 21 a of each guided member 21 of the slider 13, a compressed air ejection hole 22 Gu that ejects compressed air toward the surface 19 a of the guide member 19 facing in the vertical direction is provided for each insertion portion. 20 has an upper surface 20a, a compressed air ejection hole 22Gd for ejecting compressed air toward the inner surface 12da of the lower plate portion 12d of the guide rail 12 facing in the vertical direction, and a side surface 20b of each insertion portion 20 A compressed air ejection hole 22Gs that ejects compressed air toward the inner surface 12sa of the side plate portion 12s of the guide rail 12 facing in the left-right direction is provided.
 ステージ装置3Gにおいては、上下方向は、スライダ13等の荷重と、圧縮エア噴出孔22Guから噴出される圧縮エアのエア圧力及びガイド部材19による前述のバネ弾性力と、圧縮エア噴出孔22Gdから噴出される圧縮エアのエア圧力とのバランスにより姿勢維持する。左右方向は、図示左側の圧縮エア噴出孔22Gsから噴出される圧縮エアのエア圧力と、図示右側の圧縮エア噴出孔22Gsから噴出される圧縮エアのエア圧力とのバランスにより姿勢維持する。そして、リニアモータ16で発生した推力により、スライダ13がガイドレール12に沿って前後方向に移動する。 In the stage device 3G, in the vertical direction, the load on the slider 13 and the like, the air pressure of the compressed air ejected from the compressed air ejection hole 22Gu, the aforementioned spring elastic force by the guide member 19, and the ejection from the compressed air ejection hole 22Gd The posture is maintained by the balance with the air pressure of the compressed air. In the left-right direction, the posture is maintained by a balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22Gs on the left side of the figure and the air pressure of the compressed air ejected from the compressed air ejection hole 22Gs on the right side of the figure. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
 そして、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12のガイド面とスライダ13の被ガイド面の潤滑状態が、各ガイド部材19の表面19aと各被ガイド部材21の表面21aとの間で混合潤滑状態となり、それ以外の領域で流体潤滑状態となり、混合潤滑状態となった各ガイドレール12のガイド面とスライダ13の被ガイド面との間に微小移動領域において線形バネ特性が生じるように、圧縮エア噴出孔22Gu,22Gd,22Gsに供給される圧縮エアの空気圧により制御される。したがって、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイド部材19の表面19aと各被ガイド部材21の表面21aとが微接触状態となり、それ以外のガイド面と被ガイド面とは非接触状態となる。 When the slider 13 is positioned in the vicinity of the target position, the lubrication state of the guide surface of each guide rail 12 and the guided surface of the slider 13 depends on the surface 19 a of each guide member 19 and the surface of each guided member 21. 21a is in a mixed lubrication state, in a fluid lubrication state in other regions, and in a minute movement region between a guide surface of each guide rail 12 and a guided surface of the slider 13 in a mixed lubrication state. It is controlled by the air pressure of the compressed air supplied to the compressed air ejection holes 22Gu, 22Gd, 22Gs so that the characteristics are generated. Therefore, when positioning the slider 13 in the vicinity of the target position, the surface 19a of each guide member 19 and the surface 21a of each guided member 21 are in a fine contact state, and the other guide surfaces and guided surfaces are not in contact with each other. It becomes a non-contact state.
 本変形例によれば、前述の実施形態と同様の効果を得ることができる。 According to this modification, it is possible to obtain the same effect as that of the above-described embodiment.
 (8)ステージ装置を壁に取り付ける場合
 本変形例は、ステージ装置を壁に取り付ける場合に最適な変形例である。図20に示すように、本変形例に係るステージ装置3Hの構成は、前述の実施形態に係るステージ装置3とほぼ同様である。但し、ステージ装置3Hは、図1に示すステージ装置3が時計回りに90度回転した状態で、定盤11のガイドレール12の設置面とは反対側の面が壁28に固定されている。したがって、図1中の下方は図20中の左方に対応し、図1中の上方は図20中の右方に対応し、図1中の右方は図20中の下方に対応し、図1中の左方は図20中の上方に対応している。そして、ステージ装置3Hでは、図示下側のガイドレール12の側板部12sの内面12saに、前述のガイド部材19が貼付されている。また、スライダ13の図示下側の挿入部20の下面20b(図20中の下側の面)に、前述の被ガイド部材21が貼付されている。各挿入部20が各ガイドレール12の凹条部18に挿入されたとき、各ガイドレール12の上板部12uの内面12uaと各挿入部20の右面20a(図20中の右側の面)とが左右方向(図20中の左-右方向)に相対し、各ガイドレール12の下板部12dの内面12daと各挿入部20の左面20c(図20中の左側の面)とが左右方向に相対し、図示上側のガイドレール12の側板部12sの内面12saと図示上側の挿入部20の上面20b(図20中の上側の面)とが上下方向(図19中の上-下方向)に相対し、図示下側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19aと図示下側の挿入部20の下面20bに貼付された被ガイド部材21の表面21aとが上下方向に相対する。
(8) When attaching a stage apparatus to a wall This modification is an optimal modification when attaching a stage apparatus to a wall. As shown in FIG. 20, the configuration of the stage apparatus 3H according to this modification is substantially the same as the stage apparatus 3 according to the above-described embodiment. However, in the stage device 3H, the surface opposite to the installation surface of the guide rail 12 of the surface plate 11 is fixed to the wall 28 in a state where the stage device 3 shown in FIG. Accordingly, the lower side in FIG. 1 corresponds to the left side in FIG. 20, the upper side in FIG. 1 corresponds to the right side in FIG. 20, the right side in FIG. 1 corresponds to the lower side in FIG. The left side in FIG. 1 corresponds to the upper side in FIG. And in the stage apparatus 3H, the above-mentioned guide member 19 is affixed on the inner surface 12sa of the side plate part 12s of the lower guide rail 12 in the figure. The aforementioned guided member 21 is attached to the lower surface 20b (the lower surface in FIG. 20) of the insertion portion 20 on the lower side of the slider 13 in the figure. When each insertion portion 20 is inserted into the recess 18 of each guide rail 12, the inner surface 12ua of the upper plate portion 12u of each guide rail 12 and the right surface 20a (the right surface in FIG. 20) of each insertion portion 20 Is in the left-right direction (left-right direction in FIG. 20), and the inner surface 12da of the lower plate portion 12d of each guide rail 12 and the left surface 20c (left-side surface in FIG. 20) of each insertion portion 20 are in the left-right direction. The upper surface 20b (upper surface in FIG. 20) of the side plate portion 12s of the side plate portion 12s of the upper guide rail 12 and the upper surface 20b (upper surface in FIG. 20) of FIG. The surface 21a of the guided member 21 affixed to the lower surface 20b of the guide member 19 and the lower surface 20b of the lower insertion part 20 shown in the figure. Are opposite to each other in the vertical direction.
 本変形例では、各ガイドレール12の上板部12uの内面12ua及び下板部12dの内面12daと、図示上側のガイドレール12の側板部12sの内面12saと、図示下側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19aとが、特許請求の範囲に記載のガイド面に相当する。以下適宜、ガイドレール12の上板部12uの内面12ua及び下板部12dの内面12daと、図示上側のガイドレール12の側板部12sの内面12saと、図示下側のガイドレール12の側板部12sの内面12saに貼付されたガイド部材19の表面19aとを「ガイド面」と総称する。また、スライダ13の各挿入部20の右面20a及び左面20cと、図示上側の挿入部20の上面20bと、図示下側の挿入部20の下面20bに貼付された被ガイド部材21の表面21aとが、特許請求の範囲に記載の被ガイド面に相当する。以下適宜、スライダ13の各挿入部20の右面20a及び左面20cと、図示上側の挿入部20の上面20bと、図示下側の挿入部20の下面20bに貼付された被ガイド部材21の表面21aとを「被ガイド面」と総称する。 In this modification, the inner surface 12ua of the upper plate portion 12u and the inner surface 12da of the lower plate portion 12d of each guide rail 12, the inner surface 12sa of the side plate portion 12s of the upper guide rail 12, and the lower guide rail 12 shown in the drawing. The surface 19a of the guide member 19 affixed to the inner surface 12sa of the side plate portion 12s corresponds to the guide surface described in the claims. The inner surface 12ua of the upper plate portion 12u and the inner surface 12da of the lower plate portion 12d of the guide rail 12, the inner surface 12sa of the side plate portion 12s of the upper guide rail 12 and the side plate portion 12s of the lower guide rail 12 are appropriately shown below. The surface 19a of the guide member 19 affixed to the inner surface 12sa is collectively referred to as a “guide surface”. Further, the right surface 20a and the left surface 20c of each insertion portion 20 of the slider 13, the upper surface 20b of the upper insertion portion 20 in the drawing, and the surface 21a of the guided member 21 attached to the lower surface 20b of the lower insertion portion 20 in the drawing. Corresponds to the guided surface described in the claims. Hereinafter, the surface 21a of the guided member 21 affixed to the right and left surfaces 20a and 20c of each insertion portion 20 of the slider 13, the upper surface 20b of the upper insertion portion 20 and the lower surface 20b of the lower insertion portion 20 as appropriate. Are collectively referred to as “guided surfaces”.
 また、本変形例では、スライダ13の各挿入部20の右面20aには、左右方向に相対するガイドレール12の上板部12uの内面12uaに向けて圧縮エアを噴出する圧縮エア噴出孔22Huが設けられ、各挿入部20の左面20cには、左右方向に相対するガイドレール12の下板部12dの内面12daに向けて圧縮エアを噴出する圧縮エア噴出孔22Hdが設けられ、図示上側の挿入部20の上面20bには、上下方向に相対する図示上側のガイドレール12の側板部12sの内面12saに向けて圧縮エアを噴出する圧縮エア噴出孔22Hsが設けられ、被ガイド部材21の表面21aには、上下方向に相対するガイド部材19の表面19aに向けて圧縮エアを噴出する圧縮エア噴出孔22Hsが設けられている。 Further, in the present modification, the right surface 20a of each insertion portion 20 of the slider 13 has a compressed air ejection hole 22Hu that ejects compressed air toward the inner surface 12ua of the upper plate portion 12u of the guide rail 12 facing in the left-right direction. The left surface 20c of each insertion portion 20 is provided with a compressed air ejection hole 22Hd for ejecting compressed air toward the inner surface 12da of the lower plate portion 12d of the guide rail 12 facing in the left-right direction. The upper surface 20b of the portion 20 is provided with a compressed air ejection hole 22Hs for ejecting compressed air toward the inner surface 12sa of the side plate portion 12s of the upper guide rail 12 in the up-down direction, and the surface 21a of the guided member 21 Is provided with a compressed air ejection hole 22Hs for ejecting compressed air toward the surface 19a of the guide member 19 facing in the vertical direction.
 ステージ装置3Hにおいては、上下方向は、スライダ13等の荷重と、図示上側の圧縮エア噴出孔22Hsから噴出される圧縮エアのエア圧力と、図示下側の圧縮エア噴出孔22Hsから噴出される圧縮エアのエア圧力及びガイド部材19による前述のバネ弾性力とのバランスにより姿勢維持する。左右方向は、圧縮エア噴出孔22Huから噴出される圧縮エアのエア圧力と、圧縮エア噴出孔22Hdから噴出される圧縮エアのエア圧力とのバランスにより姿勢維持する。そして、リニアモータ16で発生した推力により、スライダ13がガイドレール12に沿って前後方向に移動する。 In the stage device 3H, in the vertical direction, the load on the slider 13 and the like, the air pressure of the compressed air ejected from the compressed air ejection hole 22Hs on the upper side in the figure, and the compression ejected from the compressed air ejection hole 22Hs on the lower side in the figure. The posture is maintained by a balance between the air pressure of the air and the aforementioned spring elastic force by the guide member 19. The horizontal direction is maintained by the balance between the air pressure of the compressed air ejected from the compressed air ejection hole 22Hu and the air pressure of the compressed air ejected from the compressed air ejection hole 22Hd. Then, due to the thrust generated by the linear motor 16, the slider 13 moves in the front-rear direction along the guide rail 12.
 そして、目標位置近傍においてスライダ13の位置決めを行う際には、各ガイドレール12のガイド面とスライダ13の被ガイド面の潤滑状態が、ガイド部材19の表面19aと被ガイド部材21の表面21aとの間で混合潤滑状態となり、それ以外の領域で流体潤滑状態となり、混合潤滑状態となった各ガイドレール12のガイド面とスライダ13の被ガイド面との間に微小移動領域において線形バネ特性が生じるように、圧縮エア噴出孔22Hu,22Hd,22Hsに供給される圧縮エアの空気圧により制御される。したがって、目標位置近傍においてスライダ13の位置決めを行う際には、ガイド部材19の表面19aと被ガイド部材21の表面21aとが微接触状態となり、それ以外のガイド面と被ガイド面とは非接触状態となる。 When the slider 13 is positioned in the vicinity of the target position, the lubrication state of the guide surface of each guide rail 12 and the guided surface of the slider 13 depends on the surface 19a of the guide member 19 and the surface 21a of the guided member 21. Between the guide surface of each guide rail 12 and the guided surface of the slider 13 in the mixed lubrication state, a linear spring characteristic is obtained in a minute movement region. The air pressure of the compressed air supplied to the compressed air ejection holes 22Hu, 22Hd, and 22Hs is controlled so as to occur. Therefore, when positioning the slider 13 in the vicinity of the target position, the surface 19a of the guide member 19 and the surface 21a of the guided member 21 are in a fine contact state, and the other guide surfaces and the guided surface are not in contact with each other. It becomes a state.
 本変形例によれば、前述の実施形態と同様の効果を得ることができる。 According to this modification, it is possible to obtain the same effect as that of the above-described embodiment.
 (9)その他
 以上では、ガイドレール12のガイド部材19等(又は、ガイドレール12D自体)をFRPの一種であるCFRPで構成し、スライダ13の被ガイド部材21等(又は、スライダ13D自体)を玉髄の一種である瑪瑙で構成していたが、これに限られない。上記とは反対に、ガイドレールのガイド部材(又は、ガイドレール自体)を瑪瑙等で構成し、スライダの被ガイド部材(又は、スライダ自体)をCFRP等で構成してもよい。
(9) Others In the above, the guide member 19 or the like of the guide rail 12 (or the guide rail 12D itself) is made of CFRP, which is a kind of FRP, and the guided member 21 or the like of the slider 13 (or the slider 13D itself). It was made up of cocoons, a kind of chalcedony, but is not limited to this. Contrary to the above, the guide member of the guide rail (or the guide rail itself) may be constituted by a hook or the like, and the guided member of the slider (or the slider itself) may be constituted by CFRP or the like.
 また以上では、ガイドレール12のガイド部材19等(又は、ガイドレール12D自体)を、FRPの一種であるCFRPで構成していたが、これに限られない。すなわち、ガイドレールのガイド部材(又は、ガイドレール自体)、若しくは、スライダの被ガイド部材(又は、スライダ自体)をガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)等の他の種類のFRPで構成してもよい。あるいは、FRP以外の材料、例えばカーボンナノチューブを樹脂で固めた材料で構成してもよい。 In the above description, the guide member 19 and the like of the guide rail 12 (or the guide rail 12D itself) are made of CFRP, which is a kind of FRP, but are not limited thereto. That is, the guide member of the guide rail (or the guide rail itself) or the guided member of the slider (or the slider itself) is composed of other types of FRP such as glass fiber reinforced plastic (GFRP). May be. Or you may comprise with materials other than FRP, for example, the material which hardened the carbon nanotube with resin.
 さらに以上では、スライダ13の被ガイド部材21等(又は、スライダ13D自体)を、玉髄の一種である瑪瑙で構成していたが、これに限られない。すなわち、スライダの被ガイド部材(又は、スライダ自体)、若しくは、ガイドレールのガイド部材(又は、ガイドレール自体)を紅玉髄、緑玉髄、碧玉、血石等の他の種類の玉髄で構成してもよい。あるいは、玉髄以外の材料、例えば石英、セラミックス、ルビー、ダイヤモンドライクカーボン(DLC:Diamond‐Like Carbon)等で構成してもよい。 In the above description, the guided member 21 of the slider 13 (or the slider 13D itself) is configured with a heel that is a kind of chalcedony, but is not limited thereto. In other words, the guided member of the slider (or the slider itself) or the guide member of the guide rail (or the guide rail itself) is composed of other types of chalcedony such as red crest, green crest, jasper, blood stone, etc. Also good. Or you may comprise with materials other than a chalcedony, for example, quartz, ceramics, ruby, diamond-like carbon (DLC: Diamond-Like Carbon), etc.
 さらに以上では、駆動装置としてリニアモータ16等を用いたが、これに限られず、他の駆動装置を用いてもよい。 In the above, the linear motor 16 or the like is used as the drive device, but the present invention is not limited to this, and another drive device may be used.
 さらに以上では、位置検出装置としてリニアスケール17を用いたが、これに限られず、他の位置検出装置を用いてもよい。 In the above description, the linear scale 17 is used as the position detection device. However, the position detection device is not limited to this, and other position detection devices may be used.
 また、以上既に述べた以外にも、前述の実施形態や各変形例による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above-described embodiments and modifications may be used in appropriate combination.
 その他、一々例示はしないが、前述の実施形態や各変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the above-described embodiment and each modified example are implemented with various modifications within a range not departing from the gist thereof.
 1              ステージ制御システム
 1A,C           ステージ制御システム
 2              コントローラ
 3              ステージ装置
 3A,B,D,E,F,G,H ステージ装置
 4              サーボアンプ
 5              エア源
 6              レギュレータ
 7              レギュレータ
 8              レギュレータ
 9              レギュレータ
 9A             レギュレータ
 10             電磁弁
 11             定盤
 12             ガイドレール
 12d            下板部
 12s            側板部
 12u            上板部
 12D            ガイドレール
 12Dj           立設部
 12Du           上板部
 12E,F          ガイドレール
 13             スライダ
 13D            スライダ
 13Da           左側下板部
 13Db           右側下板部
 13Dc           左側板部
 13Dd           右側板部
 13Du           上板部
 13E            スライダ
 13Es           側板部
 13F            スライダ
 13Fs           側板部
 13Fu           上板部
 14             支持部材
 15             トップベース
 16             リニアモータ(駆動装置)
 16E,F          リニアモータ(駆動装置)
 17             リニアスケール(位置検出装置)
 18             凹条部
 19             ガイド部材
 19Es,Eu        ガイド部材
 19Fs,Fu        ガイド部材
 20             挿入部
 21             被ガイド部材
 21Ed,Es        被ガイド部材
 21Fd,Fs        被ガイド部材
 22d,s,u        圧縮エア噴出孔
 22Da,Db,Dd,Du  圧縮エア噴出孔
 22Ed,Es        圧縮エア噴出孔
 22Fd,Fs        圧縮エア噴出孔
 22Gd,Gs,Gu     圧縮エア噴出孔
 22Hd,Hs,Hu     圧縮エア噴出孔
 23             電空レギュレータ
 24a,b          レギュレータ
 25             電磁弁
 26             凹部
 27             天井
 28             壁
 191            炭素繊維
 192            エポキシ樹脂
 F              凝着部分
 P              研磨機
 S              バネ要素
DESCRIPTION OF SYMBOLS 1 Stage control system 1A, C Stage control system 2 Controller 3 Stage device 3A, B, D, E, F, G, H Stage device 4 Servo amplifier 5 Air source 6 Regulator 7 Regulator 8 Regulator 9 Regulator 9A Regulator 10 Solenoid valve 11 Surface plate 12 Guide rail 12d Lower plate portion 12s Side plate portion 12u Upper plate portion 12D Guide rail 12Dj Standing portion 12Du Upper plate portion 12E, F Guide rail 13 Slider 13D Slider 13Da Left lower plate portion 13Db Right lower plate portion 13Dc Left plate portion 1 3Dd Right side plate portion 13Du Upper plate portion 13E Slider 13Es Side plate portion 13F Slider 13Fs Side plate portion 13Fu Upper plate portion 14 Support member 15 Top base 16 Linear motor (drive device)
16E, F Linear motor (drive device)
17 Linear scale (position detection device)
18 Concave portion 19 Guide member 19 Es, Eu Guide member 19 Fs, Fu Guide member 20 Insertion portion 21 Guided member 21 Ed, Es Guided member 21 Fd, Fs Guided member 22 d, s, u Compressed air ejection holes 22 Da, Db, Dd , Du Compressed air ejection hole 22Ed, Es Compressed air ejection hole 22Fd, Fs Compressed air ejection hole 22Gd, Gs, Gu Compressed air ejection hole 22Hd, Hs, Hu Compressed air ejection hole 23 Electropneumatic regulator 24a, b Regulator 25 Solenoid valve 26 Concave portion 27 Ceiling 28 Wall 191 Carbon fiber 192 Epoxy resin F Adhering portion P Polishing machine S Spring element

Claims (13)

  1.  移動対象物を目標位置に移動させるステージ装置であって、
     ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)を有するガイドレール(12;12D;12E;12F)と、
     前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と相対する被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)を有し、前記ガイドレール(12;12D;12E;12F)に移動方向を規制されるスライダ(13,13D,13E,13F)と、
     前記スライダ(13,13D,13E,13F)の推力を発生する駆動装置(16;16E;16F)と、
     前記スライダ(13,13D,13E,13F)の位置を検出する位置検出装置(17)と、を備え、
     前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)との潤滑状態が、少なくとも一部の領域で境界潤滑と流体潤滑の両者を含む混合潤滑状態となり、その他の領域で流体潤滑状態となるように、制御される
    ことを特徴とするステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    A stage device that moves a moving object to a target position,
    Guide surface (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a ) Having guide rails (12; 12D; 12E; 12F);
    12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surface (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21Eb; 21Fa, 21Fb; 21a, 20a 20b; 20a, 20c, 20b, 21a), sliders (13, 13D, 13E, 13F) whose movement direction is restricted by the guide rails (12; 12D; 12E; 12F);
    A driving device (16; 16E; 16F) for generating a thrust of the slider (13, 13D, 13E, 13F);
    A position detection device (17) for detecting the position of the slider (13, 13D, 13E, 13F),
    12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21Eb; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, and 21a) are controlled so that the lubrication state is a mixed lubrication state including both boundary lubrication and fluid lubrication in at least some regions and the fluid lubrication state in other regions. Stage device (3; 3A; 3B) 3D; 3E; 3F; 3G; 3H).
  2.  前記スライダ(13,13D,13E,13F)は、
     前記ガイドレール(12;12D;12E;12F)の前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)に向けて圧縮エアを噴出する複数の圧縮エア噴出孔(22d,22s,22u;22Da,22Db,22Dd,22Du;22Ed,22Es;22Fd,22Fs;22Gd,22Gs,22Gu;22Hd,22Hs,22Hu)を前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)に有しており、
     前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)との潤滑状態は、前記圧縮エアの空気圧により制御される
    ことを特徴とする請求項1に記載のステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    The sliders (13, 13D, 13E, 13F)
    The guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb) of the guide rail (12; 12D; 12E; 12F) 19a, 12da, 12sa; a plurality of compressed air ejection holes (22d, 22s, 22u; 22Da, 22Db, 22Dd, 22Du; 22Ed, 22Es; 22Fd, 22a, 12da, 12sa, 19a) 22Fs; 22Gd, 22Gs, 22Gu; 22Hd, 22Hs, 22Hu) to the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E ; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, has a 21a),
    12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21Eb; 21Fa, 21Fb; 21a, 20a, The stage apparatus (3; 3A; 3B; 3D; 3E; 3F) according to claim 1, wherein the lubrication state with 20b; 20a, 20c, 20b, 21a) is controlled by the air pressure of the compressed air. 3G; 3H).
  3.  混合潤滑状態である前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)との間に線形バネ特性が生じるように、前記圧縮エアの空気圧が制御される
    ことを特徴とする請求項2に記載のステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    12a, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19Eb; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua , 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb The stage device according to claim 2, wherein the air pressure of the compressed air is controlled so that a linear spring characteristic is generated between 21 a, 20 a, 20 b and 20 a, 20 c, 20 b, 21 a). 3; 3A; 3B; 3D; 3E; 3F; 3G; 3H).
  4.  潤滑状態が混合潤滑状態に制御される前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)及び前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)の一方は、
     繊維強化プラスチックで構成されている
    ことを特徴とする請求項1乃至3のいずれか1項に記載のステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    The guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, whose lubrication state is controlled to the mixed lubrication state 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a)
    The stage apparatus (3; 3A; 3B; 3D; 3E; 3F; 3G; 3H) according to any one of claims 1 to 3, wherein the stage apparatus is made of fiber-reinforced plastic.
  5.  潤滑状態が混合潤滑状態に制御される前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)及び前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)の一方は、
     炭素繊維をエポキシ樹脂で固めた前記繊維強化プラスチックで構成されている
    ことを特徴とする請求項4に記載のステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    The guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, whose lubrication state is controlled to the mixed lubrication state 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a)
    The stage apparatus (3; 3A; 3B; 3D; 3E; 3F; 3G; 3H) according to claim 4, wherein the stage apparatus is composed of the fiber-reinforced plastic obtained by hardening carbon fibers with an epoxy resin.
  6.  潤滑状態が混合潤滑状態に制御される前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)及び前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)の一方は、
     表面の前記エポキシ樹脂を剥離して前記炭素繊維の層を露出させる表面加工が行われている
    ことを特徴とする請求項5に記載のステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    The guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, whose lubrication state is controlled to the mixed lubrication state 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a)
    6. A stage apparatus (3; 3A; 3B; 3D; 3E; 3F; according to claim 5, wherein surface processing is performed to exfoliate the epoxy resin on the surface to expose the carbon fiber layer. 3G; 3H).
  7.  潤滑状態が混合潤滑状態に制御される前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)及び前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)の他方は、
     玉髄で構成されている
    ことを特徴とする請求項4乃至6のいずれか1項に記載のステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    The guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, whose lubrication state is controlled to the mixed lubrication state 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a)
    The stage apparatus (3; 3A; 3B; 3D; 3E; 3F; 3G; 3H) according to any one of claims 4 to 6, wherein the stage apparatus is composed of a chalcedony.
  8.  潤滑状態が混合潤滑状態に制御される前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)及び前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)の他方は、
     瑪瑙で構成されている
    ことを特徴とする請求項7に記載のステージ装置(3;3A;3B;3D;3E;3F;3G;3H)。
    The guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, whose lubrication state is controlled to the mixed lubrication state 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a)
    The stage apparatus (3; 3A; 3B; 3D; 3E; 3F; 3G; 3H) according to claim 7, wherein the stage apparatus is configured by a bag.
  9.  コントローラ(2)と、移動対象物を目標位置に移動させるステージ装置(3;3A;3B;3D;3E;3F;3G;3H)と、前記コントローラ(2)からの移動指令に基づき、前記ステージ装置の位置を制御するサーボアンプ(4)と、を備えたステージ制御システムであって、
     前記ステージ装置(3;3A;3B;3D;3E;3F;3G;3H)は、
     ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)を有するガイドレール(12;12D;12E;12F)と、
     前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と相対する被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)を有し、前記ガイドレール(12;12D;12E;12F)に移動方向を規制されるスライダ(13,13D,13E,13F)と、
     前記スライダ(13,13D,13E,13F)の推力を発生する駆動装置(16;16E;16F)と、
     前記スライダ(13,13D,13E,13F)の位置を検出する位置検出装置(17)と、を有し、
     前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)との潤滑状態が、少なくとも一部の領域で境界潤滑と流体潤滑の両者を含む混合潤滑状態となり、その他の領域で流体潤滑状態となるように、制御される
    ことを特徴とするステージ制御システム(1;1A;1C)。
    Based on the controller (2), the stage device (3; 3A; 3B; 3D; 3E; 3F; 3G; 3H) for moving the moving object to the target position, and the movement command from the controller (2), the stage A servo amplifier (4) for controlling the position of the apparatus, and a stage control system comprising:
    The stage device (3; 3A; 3B; 3D; 3E; 3F; 3G; 3H)
    Guide surface (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a ) Having guide rails (12; 12D; 12E; 12F);
    12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surface (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21Eb; 21Fa, 21Fb; 21a, 20a 20b; 20a, 20c, 20b, 21a), sliders (13, 13D, 13E, 13F) whose movement direction is restricted by the guide rails (12; 12D; 12E; 12F);
    A driving device (16; 16E; 16F) for generating a thrust of the slider (13, 13D, 13E, 13F);
    A position detection device (17) for detecting the position of the slider (13, 13D, 13E, 13F),
    12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21Eb; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, and 21a) are controlled so that the lubrication state is a mixed lubrication state including both boundary lubrication and fluid lubrication in at least some regions and the fluid lubrication state in other regions. Stage control system (1; 1) ; 1C).
  10.  前記スライダ(13,13D,13E,13F)は、
     前記ガイドレール(12;12D;12E;12F)の前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)に向けて圧縮エアを噴出する複数の圧縮エア噴出孔(22d,22s,22u;22Da,22Db,22Dd,22Du;22Ed,22Es;22Fd,22Fs;22Gd,22Gs,22Gu;22Hd,22Hs,22Hu)を前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)に有しており、
     前記スライダ(13,13D,13E,13F)の前記圧縮エア噴出孔(22d,22s,22u;22Da,22Db,22Dd,22Du;22Ed,22Es;22Fd,22Fs;22Gd,22Gs,22Gu;22Hd,22Hs,22Hu)に圧縮エアを供給し、前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)との潤滑状態を、前記圧縮エアの空気圧により制御するエア供給装置(5,6,7,8,9;5,6,7,8,9A,24a,24b;5,6,9,23)をさらに備えた
    ことを特徴とする請求項9に記載のステージ制御システム(1;1A;1C)。
    The sliders (13, 13D, 13E, 13F)
    The guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb) of the guide rail (12; 12D; 12E; 12F) 19a, 12da, 12sa; a plurality of compressed air ejection holes (22d, 22s, 22u; 22Da, 22Db, 22Dd, 22Du; 22Ed, 22Es; 22Fd, 22a, 12da, 12sa, 19a) 22Fs; 22Gd, 22Gs, 22Gu; 22Hd, 22Hs, 22Hu) to the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E ; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, has a 21a),
    The compressed air ejection holes (22d, 22s, 22u; 22Da, 22Db, 22Dd, 22Du; 22Ed, 22Es; 22Fd, 22Fs; 22Gd, 22Gs, 22Gu; 22Hd, 22Hs, the slider (13, 13D, 13E, 13F) 22 Hu) is supplied with compressed air, and the guide surfaces (12 ua, 12 sa, 19 a; 12 ua, 19 a, 12 sa, 19 b; 12 ua, 19 a, 19 b; 12 Da, 12 Db, 12 Dc; 19 E1, 19 E2; 19 Fa, 19 Fb; 19 a, 12 da , 12sa; 12ua, 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2 ; 21 Fa 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a) The air supply device (5, 6, 7, 8, 9; 5, 6, 7, The stage control system (1; 1A; 1C) according to claim 9, further comprising: 8, 9A, 24a, 24b; 5, 6, 9, 23).
  11.  前記エア供給装置(5,6,7,8,9;5,6,7,8,9A,24a,24b;5,6,9,23)は、
     エア源(5)と、
     前記エア源(5)から供給される圧縮エアの空気圧を調整するレギュレータ(6,7,8,9;6,7,8,9A,24a,24b;6,9,23)と、を有し、
     混合潤滑状態である前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)との間に線形バネ特性が生じるように調整された空気圧で前記圧縮エアを供給する
    ことを特徴とする請求項10に記載のステージ制御システム(1;1A;1C)。
    The air supply device (5, 6, 7, 8, 9; 5, 6, 7, 8, 9A, 24a, 24b; 5, 6, 9, 23)
    An air source (5);
    Regulators (6, 7, 8, 9; 6, 7, 8, 9A, 24a, 24b; 6, 9, 23) for adjusting the air pressure of the compressed air supplied from the air source (5) ,
    12a, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19Eb; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua , 12da, 12sa, 19a) and the guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb 11. The stage control according to claim 10, wherein the compressed air is supplied at an air pressure adjusted so as to produce a linear spring characteristic between 21a, 20a, 20b and 20a, 20c, 20b, 21a). System (1; 1A; 1C).
  12.  前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)の前記圧縮エア噴出孔(22d,22s,22u;22Da,22Db,22Dd,22Du;22Ed,22Es;22Fd,22Fs;22Gd,22Gs,22Gu;22Hd,22Hs,22Hu)に供給する前記圧縮エアを、前記コントローラ(2)又は前記サーボアンプ(4)からの指令に基づき、前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)とを流体潤滑状態にするための第1圧力の前記圧縮エアと、前記ガイド面(12ua,12sa,19a;12ua,19a,12sa,19b;12ua,19a,19b;12Da,12Db,12Dc;19E1,19E2;19Fa,19Fb;19a,12da,12sa;12ua,12da,12sa,19a)と前記被ガイド面(20a,20b,21a;20a,21a,20b,21b;20a,21a,21b;13D1,13D2,13D3,13D4,13D5;21E1,21E2;21Fa,21Fb;21a,20a,20b;20a,20c,20b,21a)とを混合潤滑状態にするための第2圧力の前記圧縮エアとに切り替える、電磁弁(10;10,25)をさらに備え、
     前記電磁弁(10;10,25)は、
     前記圧縮エア噴出孔(22d,22s,22u;22Da,22Db,22Dd,22Du;22Ed,22Es;22Fd,22Fs;22Gd,22Gs,22Gu;22Hd,22Hs,22Hu)に供給する前記圧縮エアを、前記スライダ(13,13D,13E,13F)の目標位置近傍までの移動を行う際には前記第1圧力の圧縮エアに切り替え、目標位置近傍において前記スライダ(13,13D,13E,13F)の位置決めを行う際には前記第2圧力の圧縮エアに切り替える
    ことを特徴とする請求項9乃至11のいずれか1項に記載のステージ制御システム(1;1A)。
    Guided surfaces (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21Eb; 21Fa, 21Fb; 21a, 20a, 20b; 20a , 20c, 20b, 21a) supplied to the compressed air ejection holes (22d, 22s, 22u; 22Da, 22Db, 22Dd, 22Du; 22Ed, 22Es; 22Fd, 22Fs; 22Gd, 22Gs, 22Gu; 22Hd, 22Hs, 22Hu) Based on a command from the controller (2) or the servo amplifier (4), the compressed air to be transmitted is guided to the guide surfaces (12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 9E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a) and the guided surface (20a, 20b, 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a), the compressed air at the first pressure, and the guide surface ( 12ua, 12sa, 19a; 12ua, 19a, 12sa, 19b; 12ua, 19a, 19b; 12Da, 12Db, 12Dc; 19E1, 19E2; 19Fa, 19Fb; 19a, 12da, 12sa; 12ua, 12da, 12sa, 19a) and the above Guided surface (20a, 20b 21a; 20a, 21a, 20b, 21b; 20a, 21a, 21b; 13D1, 13D2, 13D3, 13D4, 13D5; 21E1, 21E2; 21Fa, 21Fb; 21a, 20a, 20b; 20a, 20c, 20b, 21a) A solenoid valve (10; 10, 25) for switching to the compressed air at a second pressure for mixing lubrication;
    The solenoid valve (10; 10, 25)
    The compressed air supplied to the compressed air ejection holes (22d, 22s, 22u; 22Da, 22Db, 22Dd, 22Du; 22Ed, 22Es; 22Fd, 22Fs; 22Gd, 22Gs, 22Gu; 22Hd, 22Hs, 22Hu) When moving to the vicinity of the target position (13, 13D, 13E, 13F), switching to the compressed air of the first pressure is performed, and the slider (13, 13D, 13E, 13F) is positioned in the vicinity of the target position. 12. The stage control system (1; 1A) according to any one of claims 9 to 11, wherein the stage control system switches to compressed air at the second pressure.
  13.  前記被ガイド面(20a,20b,21a)の前記圧縮エア噴出孔(22d,22s,22u)に供給する前記圧縮エアの空気圧を、前記コントローラ(2)又は前記サーボアンプ(4)からの指令に基づき、前記ガイド面(12ua,12sa,19a)と前記被ガイド面(20a,20b,21a)とを流体潤滑状態にするための第1圧力と、前記ガイド面(12ua,12sa,19a)と前記被ガイド面(20a,20b,21a)とを混合潤滑状態にするための第2圧力とに可変させる、電空レギュレータ(23)をさらに備え、
     前記電空レギュレータ(23)は、
     前記圧縮エア噴出孔(22d,22s,22u)に供給する前記圧縮エアの空気圧を、前記スライダ(13)の目標位置近傍までの移動を行う際には前記第1圧力に可変させ、目標位置近傍において前記スライダ(13)の位置決めを行う際には前記第2圧力に可変させる
    ことを特徴とする請求項9乃至11のいずれか1項に記載のステージ制御システム(1C)。
     
    The air pressure of the compressed air supplied to the compressed air ejection holes (22d, 22s, 22u) of the guided surfaces (20a, 20b, 21a) is commanded from the controller (2) or the servo amplifier (4). Based on the first pressure for bringing the guide surface (12ua, 12sa, 19a) and the guided surface (20a, 20b, 21a) into a fluid lubrication state, the guide surface (12ua, 12sa, 19a) and the An electropneumatic regulator (23) for changing the guided surfaces (20a, 20b, 21a) to a second pressure for making a mixed lubrication state;
    The electropneumatic regulator (23)
    The air pressure of the compressed air supplied to the compressed air ejection holes (22d, 22s, 22u) is changed to the first pressure when moving the slider (13) to the vicinity of the target position, and the vicinity of the target position. The stage control system (1C) according to any one of claims 9 to 11, wherein the second pressure is varied when positioning the slider (13).
PCT/JP2012/054883 2011-07-15 2012-02-28 Stage device and stage control system WO2013011711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280034884.1A CN103648714B (en) 2011-07-15 2012-02-28 Table device and workstation control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-156917 2011-07-15
JP2011156917 2011-07-15

Publications (1)

Publication Number Publication Date
WO2013011711A1 true WO2013011711A1 (en) 2013-01-24

Family

ID=47557907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054883 WO2013011711A1 (en) 2011-07-15 2012-02-28 Stage device and stage control system

Country Status (4)

Country Link
JP (1) JP5618263B2 (en)
CN (1) CN103648714B (en)
TW (1) TWI522543B (en)
WO (1) WO2013011711A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054074A1 (en) * 2017-09-15 2019-03-21 ウシオ電機株式会社 Carbon fiber reinforced plastic structure and processing device
EP4235300A1 (en) * 2022-02-25 2023-08-30 Sumitomo Heavy Industries, LTD. Actuator, stage device, exposure device, inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108638359A (en) * 2018-05-09 2018-10-12 中国工程物理研究院激光聚变研究中心 The process that cutting-in is fed in fly cutting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216656A (en) * 1987-03-06 1988-09-08 Toyoda Mach Works Ltd Kinematic error compensation control sliding guide apparatus
JP2000337375A (en) * 1999-05-24 2000-12-05 Ntn Corp Static pressure gas bearing
JP2004036680A (en) * 2002-07-01 2004-02-05 Sigma Technos Kk Stage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280130A (en) * 1999-03-30 2000-10-10 Nippei Toyama Corp Static pressure sliding device
JP5353710B2 (en) * 2007-11-30 2013-11-27 株式会社安川電機 Slide stage and XY direction movable slide stage
JP2010278038A (en) * 2009-05-26 2010-12-09 Alps Electric Co Ltd Fitting structure and fitting method for slider

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216656A (en) * 1987-03-06 1988-09-08 Toyoda Mach Works Ltd Kinematic error compensation control sliding guide apparatus
JP2000337375A (en) * 1999-05-24 2000-12-05 Ntn Corp Static pressure gas bearing
JP2004036680A (en) * 2002-07-01 2004-02-05 Sigma Technos Kk Stage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054074A1 (en) * 2017-09-15 2019-03-21 ウシオ電機株式会社 Carbon fiber reinforced plastic structure and processing device
JP2019051653A (en) * 2017-09-15 2019-04-04 ウシオ電機株式会社 Carbon fiber-reinforced plastic structure and processing device
EP4235300A1 (en) * 2022-02-25 2023-08-30 Sumitomo Heavy Industries, LTD. Actuator, stage device, exposure device, inspection device

Also Published As

Publication number Publication date
CN103648714A (en) 2014-03-19
CN103648714B (en) 2016-01-27
TWI522543B (en) 2016-02-21
TW201305457A (en) 2013-02-01
JP5618263B2 (en) 2014-11-05
JPWO2013011711A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
CN103557412B (en) Bipolar two-dimensional Grazing condition high-precision servo platform
US10661399B2 (en) Single-drive rigid-flexible coupling precision motion platform and realization method and application thereof
Xu Design and development of a flexure-based dual-stage nanopositioning system with minimum interference behavior
JP5618263B2 (en) Stage device and stage control system
US6193199B1 (en) Sample stage including a slider assembly
US20070170140A1 (en) Gantry positioning system
US10491140B2 (en) Piezo ceramic planar motor and driving method thereof
TW201139116A (en) Imprint apparatus and method for producing article
Tambe et al. A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities
US20040056564A1 (en) Piezoelectric motor and electronic equipment with piezoelectric motor
Zengi et al. Stiffness and damping evaluation of air bearing sliders and new designs with high damping
JP5084580B2 (en) Mobile device
CN101567223A (en) Pneumatic semi-suspension two-freedom co-baseplane motion workbench with high speed and large stroke
Engel et al. Sliding bearing with adjustable friction properties
WO2010106079A1 (en) Electronic component placement machine with air bearing axis for its pick and/or place system
KR20110094120A (en) Method for improving motion times of a stage
Juang et al. Design and dynamics of flying height control slider with piezoelectric nanoactuator in hard disk drives
CN210306729U (en) Magnetic preloading gas suspension linear platform device
CN106292190A (en) It is applied to the torque compensation device and method of sports platform
Oiwa Friction control using ultrasonic oscillation for rolling-element linear-motion guide
JP6343566B2 (en) Grinding machine with sliding guide
CN109465652B (en) Contact type rigidity switching device, rigid-flexible coupling motion platform using same and rigid-flexible coupling motion method
CN109465651B (en) Friction type rigidity switching device, rigid-flexible coupling motion platform using same and method
Mate et al. Measuring and modeling flash temperatures at magnetic recording head–disk interfaces for well-defined asperity contacts
JP2013096516A (en) Movable table device, exposure device and air pad

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815390

Country of ref document: EP

Kind code of ref document: A1