WO2013009207A1 - Procédé d'ionisation d'air et dispositif de sa mise en oeuvre - Google Patents

Procédé d'ionisation d'air et dispositif de sa mise en oeuvre Download PDF

Info

Publication number
WO2013009207A1
WO2013009207A1 PCT/RU2011/000502 RU2011000502W WO2013009207A1 WO 2013009207 A1 WO2013009207 A1 WO 2013009207A1 RU 2011000502 W RU2011000502 W RU 2011000502W WO 2013009207 A1 WO2013009207 A1 WO 2013009207A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooled
vortex tube
stream
outlet
Prior art date
Application number
PCT/RU2011/000502
Other languages
English (en)
Russian (ru)
Inventor
Николай Ефимович КУРНОСОВ
Дмитрий Сергеевич ИНОЗЕМЦЕВ
Original Assignee
Закрытое Акционерное Общество "Вкм Групп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Вкм Групп" filed Critical Закрытое Акционерное Общество "Вкм Групп"
Priority to PCT/RU2011/000502 priority Critical patent/WO2013009207A1/fr
Priority to RU2013158077/15A priority patent/RU2576513C2/ru
Publication of WO2013009207A1 publication Critical patent/WO2013009207A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/019Post-treatment of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/15Centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/455Collecting-electrodes specially adapted for heat exchange with the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/001Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with means for electrostatic separation

Definitions

  • the invention relates to the field of ionization, ozonation and conditioning of atmospheric air in order to improve its consumer properties and is intended for use in industrial and domestic premises for processing ambient air.
  • the invention can also be used for aeroionotherapy of various diseases and the treatment of any gaseous media.
  • Ionization of gases or liquids is the formation in the medium of positive and negative ions and free electrons from electrically neutral atoms and molecules by means of energy exposure to them.
  • electric, thermal, shock, photon, laser, electrolytic and other types are distinguished.
  • the disadvantages of the ionization method due to the balloelectric effect are the insufficiently high degree of ionization of the liquid, the low intensity of saturation of air with ions when mixing the ionized liquid with air, the inability to control the process and achieve the required unipolarity.
  • the disadvantages of this method are the low degree of dispersion of the liquid, due to the mechanical dispersion method using the impeller, and the inefficiency of the passive system for mixing liquid with air by sucking air from the atmosphere.
  • a low degree of dispersion of the liquid results in a coarsely dispersed liquid, including the presence of a large number of non-ionized medium and large particles that are not trapped by air and do not increase the ionization potential of air.
  • the inefficiency of the system of mixing air and liquid leads to an uneven distribution of liquid ions in the air and a decrease in the general unipolarity of the air.
  • the humidity of the mixture increases, which in some cases is an undesirable phenomenon.
  • the disadvantages of this method are the design complexity, inefficiency of the system of mixing air and ionized liquid, increased air humidity, reduced degree of air ionization due to the neutralization of part of the charges on the walls of the vessel.
  • the mixture of air with liquid particles is heterogeneous, which reduces the overall degree of ionization of the air.
  • the closest in technical essence to the present invention is a device for treating moist air according to the copyright certificate SU 1483205. When this device is in operation, ionization is achieved by treating moist air using a vortex energy separator (vortex tube) and a high-voltage electric discharge ionizer.
  • the high-voltage electric-discharge ionizer is made in the form of a casing placed around a cold flow outlet pipe and connected to a positive electrode and a needle negative electrode located along the axis of the cold stream pipe.
  • a vortex tube air is divided into cooled and heated streams. Cooled air with the fog formed in it enters the region of a unipolar corona discharge, where the particles of fog and air molecules acquire a negative charge and under the action of electrostatic forces move to the positive ring electrode, dragging the cooled air along with them.
  • ozone molecules are formed from excited oxygen molecules. Ionized and ozonized air is sent to cool the cutter in the metalworking zone.
  • the noted drawbacks in the aggregate do not provide a high degree of ionization of the air and reduce its effectiveness.
  • the invention is aimed at increasing the degree of ionization of air, providing control over the ionization process, increasing the intensity of air saturation with ions of a dispersed liquid and increasing the efficiency of the ionization process with the simplicity of the method and the device used.
  • the problem is solved in the method of ionization of air, including the separation of air into cooled and heated flows in a vortex tube with the condensation of moisture contained in the cooled air stream, and the output of the vortex tube ionized due to the balloelectric effect of the flows of cooled and heated air.
  • the cooled ionized stream is divided into several separate jets uniformly distributed along the vortex tube perimeter and directed diametrically opposite jets towards each other to ensure their shock-dynamic interaction, and the magnetic ion pre-acting on the stream of cooled ionized air at the exit of the vortex tube with the force magnetic lines along the air flow in opposite or passing directions.
  • the method according to the invention can significantly increase the degree of ionization of air compared with known methods due to the presence of two stages of ionization: dispersion of the liquid in the vortex tube and additional dispersion of liquid droplets in the separator at counter shock dynamic interaction of air jets.
  • An increase in the degree of ionization is promoted by a high degree of dispersion of the liquid and mixing of the components of the mixture.
  • the intensity of air saturation by ions of a dispersed liquid increases due to intensive mixing of components due to counter shock dynamic interaction of air jets in the mixer with the formation of a finely dispersed ionized mixture with a uniform distribution of ions throughout the mixture.
  • the problem is also solved in a device for ionizing air, containing a vortex tube, a pipe for tangential air supply, a swirl, outlet pipes for cooled and heated air flows and a throttle located in the outlet pipe for heated air.
  • the vortex tube at the outlet of the cooled air is additionally equipped with a separator with channels evenly distributed along its perimeter, extending into a cylindrical mixer made in the form of a cavity on the outside of the separator, while the channel outlet openings are diametrically opposed in pairs.
  • the channels are substantially L-shaped, with the ratio of the total area of the channels of the separator to the living area of the outlet pipe of the cooled air stream being 1 / 2.5-1 / 3.0.
  • outlet pipe for the cooled air can be equipped with two annular permanent magnets covering the pipe, mounted on the end planes of the swirl with the possibility of their rearrangement to change the direction of the magnetic field relative to the flow of cooled air.
  • FIG. 1 schematically shows a device for ionizing air according to the present invention, a view in longitudinal section;
  • FIG. 2 is a section along AA in FIG. 1.
  • a device for implementing the air ionization method in accordance with the present invention is a vortex tube consisting of a housing 1, a swirl 2, a throttle 3, a pipe 4 for tangential air supply to the swirl 2, a cooled air outlet 5 and a heated air outlet 6.
  • the inner surface of the casing of the vortex tube 1 is made of non-porous material that does not conduct electric current, for example, fluoroplastic, polystyrene, polyvinyl, organic glass, etc. with a roughness of not more than Ra 0.8.
  • the inner surfaces of other parts of the device are made of the same material. All other surfaces and other parts of the device can be made of any material.
  • the housing has a cylindrical or conical shape.
  • the swirl 2 is a cochlear supercharger that swirls the air flow and feeds it along a helical line into the vortex tube body.
  • the throttle 3 is intended, firstly, for the selection of heated air and, secondly, for regulating its flow rate, and, accordingly, the flow rate of chilled air.
  • the vortex tube provides energy separation of air into cooled and heated flows. Separation is due to the Rank-Hills effect.
  • the heated stream moves along the periphery of the vortex tube, and the cooled stream moves along the pipe axis in the opposite direction.
  • At the end of the pipe there is a reflector 7, which ensures the rotation of the flow and the outlet of heated air through the peripheral holes 8 into the pipe 6.
  • the chilled air outlet pipe 5 is provided with two permanent ring magnets 9 and 10, covering said pipe.
  • the magnets are mounted on the end planes of the swirl 2 on its outer sides.
  • the magnets 9 and 10 are mounted with the possibility of their rearrangement, so that the direction of the magnetic field is either oncoming or passing relative to the flow of cooled air.
  • Coercive magnetic field strength and dimensions magnets are determined by the parameters of the air flow (flow, pressure, speed), the size of the vortex tube and are selected experimentally.
  • the device at the outlet of the cooled air is equipped with a separator 11, dividing the air flow into separate jets.
  • channels 12 are made in the separator, for example, of an L-shaped shape uniformly distributed around the perimeter of the separator 1 1.
  • the channels 12 exit into a cylindrical mixer 13, which is a cavity on the outside of the separator.
  • the outlet openings of the channels 12 are arranged in pairs diametrically opposite (Fig. 2)
  • F K is the total area of the channels
  • F 0B is the living section area of the cooled outlet pipe air flow.
  • the method is as follows.
  • the pipe 4 and the swirl 2 in the casing 1 of the vortex tube serves moist air (humidity more than 30%) depending on the required output parameters of humidity and ionization potential.
  • the air flow in the vortex tube is intensively swirled at high peripheral speed, turbulized and divided into two flows: heated (peripheral) and cooled (axial). Both flows move towards each other, which increases turbulization.
  • the stream of chilled air at the exit of the vortex tube is treated with a magnetic field with the location of the magnetic lines of force along the air stream in the opposite or passing directions.
  • One or another direction of the magnetic field is provided by the installation of magnets 9 and 10.
  • FIG. 1 shows one of the options for installing magnets with an indication of their poles. With this arrangement of the poles of the magnets, the magnetic field will coincide in direction with the air flow. When the poles are reversed, the magnetic field will be directed towards the air flow.
  • the cooled air After magnetic treatment, the cooled air enters the L-shaped channels 12 of the separator 1 1. Since the total area of the channels 12 is 2.5-3 times less than the living area of the chilled air outlet 5, the air velocity in the channels and at the outlet of them increases . High-speed jets of air enter the mixer 13, made in the form of a cavity on the outside of the separator.
  • the remaining liquid droplets are additionally dispersed due to the kinetic shock-dynamic interaction of air jets.
  • the number of ions increases (due to secondary impact ionization) and their density in the air stream, as a result of which the degree of air ionization increases.
  • air and charged particles are actively mixed with the achievement of a high uniformity of the distribution of ionized particles in the air.
  • a high degree of dispersion of liquid droplets and air ionization is provided due to the above optimal ratio of the total area of the channels in the separator and the living area of the chilled air pipe.
  • the above ratio allows for a high speed of air jets without a significant increase in the resistance of the channels and the total pressure in the device. So, with a ratio of less than 2.5, the speed of the air jets decreases, the process of dispersing liquid droplets becomes ineffective due to a decrease in the kinetic energy of the air jets, and with a ratio of more than 3.0, the resistance of the channels and the pressure in the device increase, increasing the energy consumption for air ionization.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Le procédé d'ionisation d'air comprend la séparation de l'air en des flux d'air refroidi et chauffé dans le tube tourbillonnaire assurant la condensation de l'humidité contenue dans le flux d'air refroidi et l'évacuation hors le tube tourbillonnaire des flux d'air ionisés par l'effet balloélectrique. Le flux ionisé refroidi à la sortie provenant du tube tourbillonnaire est soumis à l'effet d'un champ magnétique puis séparé en plusieurs flux isolé, puis les flux opposés diamétralement sont dirigés les uns contre les autres en assurant leur impact de choc dynamique. Le dispositif pour mettre en oeuvre ce procédé comprend un tube tourbillonnaire, une tubulure d'amenée tangentielle d'air, un dispositif de formation de tourbillons, une tubulure de sortie des flux d'air refroidi et chauffé et le papillon disposé dans la tubulure de sortie d'air chauffé. A la sortie d'air refroidi le tube tourbillonnaire est doté d'un séparateur avec des canaux répartis régulièrement à sa périphérie et donnent sur un mélangeur cylindrique qui se présente comme des cavités à la surface externe du séparateur, les orifices de sortie des canaux étant disposés deux par deux et opposés diamétralement.
PCT/RU2011/000502 2011-07-08 2011-07-08 Procédé d'ionisation d'air et dispositif de sa mise en oeuvre WO2013009207A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/RU2011/000502 WO2013009207A1 (fr) 2011-07-08 2011-07-08 Procédé d'ionisation d'air et dispositif de sa mise en oeuvre
RU2013158077/15A RU2576513C2 (ru) 2011-07-08 2011-07-08 Способ ионизации воздуха и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2011/000502 WO2013009207A1 (fr) 2011-07-08 2011-07-08 Procédé d'ionisation d'air et dispositif de sa mise en oeuvre

Publications (1)

Publication Number Publication Date
WO2013009207A1 true WO2013009207A1 (fr) 2013-01-17

Family

ID=47506287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000502 WO2013009207A1 (fr) 2011-07-08 2011-07-08 Procédé d'ionisation d'air et dispositif de sa mise en oeuvre

Country Status (2)

Country Link
RU (1) RU2576513C2 (fr)
WO (1) WO2013009207A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737627A (zh) * 2018-12-27 2019-05-10 西北工业大学 无热端阀门防堵塞高效涡流管
US11577192B2 (en) * 2018-09-14 2023-02-14 Washington State University Vortex tube lined with magnets and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU517191A1 (ru) * 1974-09-12 1976-06-05 Казанский ордена Трудового Красного Знамени авиационный институт им. А.Н.Туполева Гидроаэроионизатор
SU1084558A1 (ru) * 1981-05-29 1984-04-07 Gajdukov Aleksej A Система кондиционировани воздуха
SU1483205A1 (ru) * 1987-06-27 1989-05-30 Институт общей и неорганической химии им.Н.С.Курнакова Устройство дл обработки влажного воздуха
JP2000325727A (ja) * 1999-05-18 2000-11-28 Nikko Sohonsha:Kk 負イオン発生方法および負イオン発生装置、並びに負イオン発生装置における給水タンクおよび自動給水装置
JP2001321625A (ja) * 2000-05-19 2001-11-20 Matsushita Seiko Co Ltd 負イオン発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU517191A1 (ru) * 1974-09-12 1976-06-05 Казанский ордена Трудового Красного Знамени авиационный институт им. А.Н.Туполева Гидроаэроионизатор
SU1084558A1 (ru) * 1981-05-29 1984-04-07 Gajdukov Aleksej A Система кондиционировани воздуха
SU1483205A1 (ru) * 1987-06-27 1989-05-30 Институт общей и неорганической химии им.Н.С.Курнакова Устройство дл обработки влажного воздуха
JP2000325727A (ja) * 1999-05-18 2000-11-28 Nikko Sohonsha:Kk 負イオン発生方法および負イオン発生装置、並びに負イオン発生装置における給水タンクおよび自動給水装置
JP2001321625A (ja) * 2000-05-19 2001-11-20 Matsushita Seiko Co Ltd 負イオン発生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577192B2 (en) * 2018-09-14 2023-02-14 Washington State University Vortex tube lined with magnets and uses thereof
CN109737627A (zh) * 2018-12-27 2019-05-10 西北工业大学 无热端阀门防堵塞高效涡流管

Also Published As

Publication number Publication date
RU2013158077A (ru) 2015-08-20
RU2576513C2 (ru) 2016-03-10

Similar Documents

Publication Publication Date Title
CN1212864C (zh) 空气输送调节机及输送调节空气的方法
US5591334A (en) Apparatus for generating negative ions
KR102418203B1 (ko) 과산화수소의 생성을 위한 디바이스 및 방법
CN103612207B (zh) 磁增强电场下纳米粒子射流可控输运微量润滑磨削装备
CN101300080B (zh) 静电雾化设备
KR101953743B1 (ko) 고하전 안개분무를 이용한 미세먼지 응집 제거장치
JP2003532991A (ja) インライン気体イオン化装置及び方法
US5417920A (en) Odor control method
RU2576513C2 (ru) Способ ионизации воздуха и устройство для его осуществления
JP2023524311A (ja) 静電気集塵機能を有する空気処理装置
JP3115326B2 (ja) ガス搬送粒子を処理する方法及び装置、並びに、その装置の使用
US20160288138A1 (en) Electrostatic precipitator structure
KR102231982B1 (ko) 썬더볼트방전과 마이크로버블수를 이용한 악취제거시스템
WO2024051629A1 (fr) Appareil de purification de gaz résiduaire de fumée d'huile basée sur corona et une atomisation et procédé de purification
JP4748114B2 (ja) 空気清浄装置
WO2015081461A1 (fr) Dispositif de meulage à lubrification en quantité minimale capable de transporter de façon commandée un flux de jet de nanoparticules sous un champ électrique magnétiquement amélioré
JP2008147149A (ja) 水による空気負イオン発生方法及び装置
CN203579423U (zh) 磁增强电场下纳米粒子射流可控输运微量润滑磨削装备
CN216857028U (zh) 一种电场装置及空气除尘系统
WO2020085231A1 (fr) Dispositif d'élimination de poussière
RU2803470C1 (ru) Способ обеззараживания предметов
RU2215943C2 (ru) Устройство для обеззараживания воздушной среды
JP2011023238A (ja) イオン散布装置および空気調節装置
US8500873B2 (en) Physical structure of exhaust-gas cleaning installations
RU2366513C1 (ru) Установка для очистки газов от примесей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013158077

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11869455

Country of ref document: EP

Kind code of ref document: A1