WO2013008838A1 - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
WO2013008838A1
WO2013008838A1 PCT/JP2012/067672 JP2012067672W WO2013008838A1 WO 2013008838 A1 WO2013008838 A1 WO 2013008838A1 JP 2012067672 W JP2012067672 W JP 2012067672W WO 2013008838 A1 WO2013008838 A1 WO 2013008838A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
coil
magnet
rotating plate
power generation
Prior art date
Application number
PCT/JP2012/067672
Other languages
English (en)
French (fr)
Inventor
清彦 松下
正和 野上
Original Assignee
信正商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信正商事株式会社 filed Critical 信正商事株式会社
Priority to EP12810833.9A priority Critical patent/EP2733832A4/en
Priority to US14/131,519 priority patent/US20140132100A1/en
Publication of WO2013008838A1 publication Critical patent/WO2013008838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator

Definitions

  • the present invention relates to a power generator having high conversion efficiency.
  • a conventional brushless power generation apparatus using a permanent magnet generally has a configuration in which the magnetic pole of the permanent magnet and the core of the coil are arranged to face each other as in the invention disclosed in [Patent Document 1] below. is there.
  • Patent Document 1 the conventional power generation device in which the magnetic pole of the permanent magnet and the coil core face each other has a strong rotational resistance during startup and power generation due to the strong magnetic force exerted on the coil. There is a problem that only efficiency can be obtained.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power generation device having high conversion efficiency with less rotational resistance with respect to the amount of power generation.
  • the present invention (1) A rotating unit 20 having a first rotating plate 20a and a second rotating plate 20b that are installed at a predetermined interval and rotate in the same direction, and the first rotating plate 20a and the second rotating plate 20b.
  • Two permanent magnets 22a and 22b are arranged such that the same polarity is opposed to the first rotating plate 20a and the second rotating plate 20b, and a plurality of the magnet pairs 22 Are arranged concentrically and are arranged so that adjacent magnetic poles are reversed, a rotating means 24 for rotating the rotating part 20, and a magnetic pole facing the magnet part 23.
  • a plurality of coils 26 installed such that the direction of the winding core faces the substantially rotating direction of the rotating unit 20, and In the power generation apparatus, wherein the coil 26 generates power when the rotating unit 20 rotates.
  • the power generation apparatus 50 is characterized in that the winding direction of the coil 26 is constant, and the magnetic cores 14 are individually installed on the winding core of the coil 26, thereby solving the above-mentioned problem. .
  • the number of magnet pairs 22 is larger than the number of coils 26, and the end surface of the magnetic core 14 opposite to the rotation direction of the rotating portion 20 protrudes from the winding end surface of the coil 26 by a predetermined amount. The problem is solved by providing the power generation device 50 described in (1) above.
  • FIG. 1 (a) is a side view of the electric power generating apparatus 50 which concerns on this invention.
  • FIG. 1B is a top view of the power generation device 50 according to the present invention.
  • maintenance part 12 is abbreviate
  • the first rotating plate 20a is transparent and is indicated by a broken line.
  • description of electrical wiring is abbreviate
  • the power generation device 50 includes a first rotating plate 20a and a second rotating plate 20b that are installed at a predetermined interval and rotate in the same manner, and the first rotating plate 20a and the second rotating plate 20b.
  • a rotating part 20 mainly composed of a magnet pair 22 composed of two permanent magnets 22a, 22b, and a magnet part 23 composed of a plurality of magnet pairs 22 arranged concentrically on the rotating part 20.
  • the rotating means 24 that rotates the rotating unit 20 is positioned so as to be sandwiched between the opposing magnetic poles of the magnet unit 23 by being held by the coil holding unit 12, and the direction of the winding core is substantially rotated by the rotating unit 20.
  • a plurality of coils 26 installed to face the direction.
  • the rotating unit 20 side having the magnet unit 23 is a rotor
  • the coil holding unit 12 side where the coil 26 is installed is a stator (electron generator).
  • the magnet part 23 which comprises the electric power generating apparatus 50 is comprised by the several magnet pair 22.
  • the magnet pair 22 includes two permanent magnets 22a and 22b.
  • One of the permanent magnets 22a and 22b is installed on the first rotating plate 20a, and the other is installed on the second rotating plate 20b. Therefore, a gap is formed between the permanent magnet 22a and the permanent magnet 22b according to the distance between the first rotating plate 20a and the second rotating plate 20b.
  • the permanent magnet 22a and the permanent magnet 22b are installed in the direction in which the same poles face each other.
  • the coil 26 is installed between the opposing magnetic poles of the permanent magnets 22a and 22b.
  • the permanent magnets 22a are installed in a substantially concentric manner around the rotating shaft 10 of the rotating unit 20 (first rotating plate 20a).
  • the permanent magnet 22b is also installed substantially concentrically around the rotating shaft 10 of the rotating unit 20 (second rotating plate 20b).
  • the magnet pairs 22 are arranged substantially concentrically around the rotating shaft 10 of the rotating unit 20. Therefore, the magnet portion 23 has a substantially ring shape with the rotating shaft 10 as the center.
  • the adjacent magnet pair 22 is installed so that the direction of a magnetic pole may be reverse.
  • the magnetic poles inside the magnet pair 22 are (N: N)-(S: S)-(N: N)-(S: S)..., N-pole magnet pair 22 and S-pole magnet.
  • the pairs 22 are alternately positioned.
  • the first rotating plate 20a and the second rotating plate 20b are fixed and rotate the same around the rotating shaft 10. Therefore, these positional relationships are not changed by rotation.
  • a known permanent magnet having substantially the same magnetic force is used as the permanent magnet 22a and the permanent magnet 22b.
  • the permanent magnets used for the permanent magnets 22a and 22b are preferably those having a strong magnetic force. Therefore, it is preferable to use a known rare earth magnet or the like.
  • the coil 26 is installed between the magnet portions 23 formed in a substantially concentric shape. Therefore, the coils 26 are also arranged substantially concentrically.
  • the coil holding part 12 that holds the coil 26 is fixed to an external housing (not shown) or the like, and the coil 26 does not rotate even if the rotating part 20 rotates.
  • the installation direction of the coil 26 is set so that the direction of the winding core of the coil 26 faces a substantially rotating direction of the rotating unit 20, that is, a substantially tangential direction or a substantially circumferential direction of the rotating unit 20.
  • the coil 26 may have a circular cross-section, it is preferable to use a rectangular cross-section from the viewpoint of improving the winding density and improving the surface current due to the skin effect.
  • the magnetic core 14 is inserted into the coil 26 from the viewpoint of improving the magnetic permeability.
  • a known magnetic material such as a ferrite core or metal can be used. Among them, it is particularly preferable to use silicon steel having a high magnetic permeability. Further, a plurality of magnetic materials such as iron whose peripheral surface is covered with a nonmagnetic material such as synthetic resin may be bundled to form the magnetic core 14.
  • the magnetic core 14 protrudes a predetermined amount of the end surface on the opposite side to the rotation direction of the rotating unit 20 (the direction side toward which the magnet pair 22 faces) from the winding end surface of the coil 26. Is preferred. This protrusion amount is preferably set to a value of about 1/3 of the distance L from the value of the distance L between the adjacent magnet pairs 22.
  • Examples of the rotating means 24 for rotating the rotating unit 20 include well-known internal combustion engines such as waterwheels, windmills, and engines, turbines, motors, rotating parts such as wheels of bicycles and automobiles, and rotating mechanisms using human power such as pedals and handles. It is done.
  • the permanent magnet 22a and the permanent magnet 22b are installed so that the same magnetic poles face each other. Therefore, the magnetic lines of force from the N pole are curved by repulsive force as shown in FIG. 3A, proceed substantially in the horizontal direction between the first rotating plate 20a and the second rotating plate 20b, and are located next to each other. It reaches the south pole of the permanent magnets 22a and 22b. Since these magnet pairs 22 are arranged concentrically on the rotating portion 20, the magnetic lines of force between the magnet pairs 22 are generally concentrated between the magnet portions 23, and have a substantially ring shape like the magnet portions 23. And since the coil 26 is installed between the magnet parts 23, many magnetic lines of force of the magnet pair 22 will pass the magnetic core 14 of the coil 26.
  • the rotating unit 20 rotates, and accordingly, the first rotating plate 20a and the second rotating plate 20b rotate the same.
  • the permanent magnets 22a and 22b move as shown in FIG.
  • the magnetic field in the coil 26 changes, and the coil 26 generates power by electromagnetic induction at this time.
  • the magnet pairs 22 move sequentially, and the magnetic field in the coil 26 continues to change, so that the coil 26 continues to generate AC power and generates power.
  • the magnetic poles of the opposing permanent magnets 22a 'and 22b' are reversed.
  • the magnetic lines of force of the magnet pair 22 ' are concentrated in the region between the opposing permanent magnets 22a' and 22b ', and the difference in density of the magnetic field lines from the other regions becomes large.
  • the coil 26 'passes through a region where the lines of magnetic force are dense the power generation amount is maximized, and at this time, the rotational resistance is also maximized.
  • the power generation device 50 of the present application forms magnetic field lines in the lateral direction between the first rotating plate 20a and the second rotating plate 20b, and moves this relative to the coil 26 facing in the lateral direction. Therefore, the difference in density of the magnetic lines of force can be reduced as compared with the conventional one. For this reason, although the amount of change in the magnetic field in the coil 26 due to the rotation is small, the rotational resistance is small, and the force required for the rotation can be reduced accordingly. And when both conversion efficiency was compared, it turned out that the conversion efficiency of the electric power generating apparatus 50 is more excellent.
  • the three adjacent coils 26 are positioned between the four to five adjacent magnet pairs 22 in the stationary state where the rotating unit 20 is not rotating.
  • position refers to a state in which both ends of the three adjacent coils 26 are engaged with the four to five magnet pairs 22 as much as possible. According to this configuration, the position of the magnet pair 22 is shifted for each coil 26, and as a result, a difference occurs in the power generation amount for each coil 26. Thereby, the electric power generation amount as the whole electric power generating apparatus 50 can be averaged, and the improvement of the further conversion efficiency can be aimed at.
  • each coil 26 is connected to the rectifying unit 16 and the output from the coil 26 is converted into a direct current.
  • the rectifying unit 16 a full-wave rectifying unit is preferably used from the viewpoint of conversion efficiency.
  • the three coils 26 are connected in series via the rectifying unit 16 as three units.
  • the outputs from each unit (5 units in the figure) are connected in parallel and connected to the input of the inverter 18.
  • the inverter 18 converts the output from the power generation device 50 into a required power output, for example, a three-phase alternating current, and outputs it to the load 5.
  • the inverter 18 converts the output from the power generation device 50 into the required power output and outputs it, for example, even if the configuration shown in FIG. It is possible to deal with electrical equipment that requires phase alternating current. In addition, you may perform directly the electric power supply to the load 5 which does not require the three-phase alternating currents, such as charge to a secondary battery, an LED lamp, and a light bulb, without passing through the inverter 18.
  • the power generation device 50 may increase output by using a multistage configuration of the rotating unit 20, the magnet unit 23, the coil 26, and the like.
  • the power generation device 50 of the present invention it is possible to generate power with excellent conversion efficiency. Further, since the rotational resistance is small, it is possible to generate power with a small force.
  • the power generation apparatus 50 according to the present invention can be applied to almost all power generation apparatuses from large-scale power generation facilities to small-scale power generators such as bicycles and hand-held flashlights. It should be noted that the configuration, shape, operation, number of coils and magnet pairs of each part of the power generation device 50 according to the present invention are not particularly limited to the above examples, and the present invention is within the scope not departing from the gist of the present invention. It is possible to change and implement.

Abstract

【課題】発電量に対して回転抵抗が少ない変換効率の高い発電装置を提供する。 【解決手段】本願の発電装置50は、磁力線を第1の回転板20aと第2の回転板20bとの間に横方向に形成し、これを横方向を向いたコイル26に対して移動させるため、磁力線の疎密の差を従来のものより少なくすることができる。このため、回転によるコイル26内の磁界の変化量は少ないものの回転抵抗は小さく、その分だけ回転に要する力を少なくすることができる。これにより、変換効率を上げることができる。

Description

発電装置
 本発明は、高い変換効率を有する発電装置に関するものである。
 永久磁石を用いた従来のブラシレス発電装置は、例えば下記[特許文献1]に開示された発明のように、永久磁石の磁極とコイルの巻芯とが対向して配置される構成が一般的である。
特開2009-195051号公報
 しかしながら、[特許文献1]のように永久磁石の磁極とコイルの巻芯とが対向する従来の発電装置は、コイルに及ぼす磁力が強いため起動時や発電時の回転抵抗が大きく、ある程度の変換効率しか得られないという問題点がある。
 本発明は上記事情に鑑みてなされたものであり、発電量に対して回転抵抗が少ない変換効率の高い発電装置を提供することを目的とする。
 本発明は、
(1)所定の間隔を取って設置され同一回転する第1の回転板20aと第2の回転板20bと、前記第1の回転板20aと第2の回転板20bとを有する回転部20と、2つの永久磁石22a、22bが前記第1の回転板20aと第2の回転板20bとに同極同士が対向するように設置されて構成される磁石対22と、複数の前記磁石対22が同心円状で且つ隣り合う磁極が逆となるように設置されることで構成される磁石部23と、前記回転部20を回転させる回転手段24と、前記磁石部23の対向する磁極の間に巻芯の方向が前記回転部20の略回転方向を向くように設置された複数のコイル26と、を備え、
前記回転部20が回転することにより前記コイル26が発電することを特徴とする発電装置において、
前記コイル26の巻線方向が一定であり、且つ前記コイル26の巻芯に磁芯14がそれぞれ個別に設置されていることを特徴とする発電装置50を提供することにより、上記課題を解決する。
(2)磁石対22の個数がコイル26の個数よりも多く、さらに磁芯14は回転部20の回転方向と逆側の端面がコイル26の巻線端面から所定量突出していることを特徴とする上記(1)記載の発電装置50を提供することにより、上記課題を解決する。
 本発明によれば、発電量に対して回転抵抗の少ない変換効率の高い発電装置を実現することができる。
本発明に係る発電装置の概略図である。 本発明に係る発電装置に好適な磁芯の例を説明する図である。 本発明に係る発電装置の動作を説明する図である。 本発明に係る発電装置に好適な磁石対とコイルの配置例を説明する図である。 本発明に係る発電装置の好適な配線例を説明する図である。 本発明に係る発電装置を多段構成した例を説明する図である。
 本発明に係る発電装置について図面に基づいて説明する。図1(a)は本発明に係る発電装置50の側面図である。また、図1(b)は本発明に係る発電装置50の上面図である。尚、図1(a)及び後述の図6においては、コイル保持部12の記載を省略する。また、図1(b)においては、第1の回転板20aを透明とし、破線で示す。さらに、図5以外の図では、電気配線の記載を省略する。
 本発明に係る発電装置50は、所定の間隔を取って設置され同一回転する第1の回転板20aと第2の回転板20bと、この第1の回転板20aと第2の回転板20bとで主に構成される回転部20と、2つの永久磁石22a、22bで構成される磁石対22と、回転部20に同心円状に設置された複数の磁石対22で構成される磁石部23と、回転部20を回転させる回転手段24と、コイル保持部12で保持されることにより磁石部23の対向する磁極の間に挟まれるように位置し、巻芯の方向が回転部20の略回転方向を向くように設置された複数のコイル26と、を有している。尚、本発明に係る発電装置50は磁石部23を有する回転部20側が回転子となり、コイル26が設置されたコイル保持部12の側が固定子(発電子)となる。
 発電装置50を構成する磁石部23は複数の磁石対22で構成されている。また、この磁石対22は2つの永久磁石22a、22bで構成されている。永久磁石22a、22bは、一方が第1の回転板20aに設置され、他方が第2の回転板20bに設置される。よって、永久磁石22aと永久磁石22bとの間には、第1の回転板20aと第2の回転板20bとの間隔に準じた間隙が形成される。また、永久磁石22aと永久磁石22bとは同極同士が対向する方向で設置される。そして、コイル26はこの永久磁石22a、22bの対向する磁極間に設置される。
 さらに、永久磁石22aは回転部20(第1の回転板20a)の回転軸10を中心に略同心円状に設置される。同じく永久磁石22bも回転部20(第2の回転板20b)の回転軸10を中心に略同心円状に設置される。これにより、磁石対22は回転部20の回転軸10を中心に略同心円状に配列することになる。よって、磁石部23は回転軸10を中心とした略リング状を呈する。また、磁石対22を設置する際には、隣り合う磁石対22を磁極の方向が逆となるように設置する。よって、磁石対22の内側の磁極は、(N:N)-(S:S)-(N:N)-(S:S)・・・と、N極の磁石対22とS極の磁石対22とが交互に位置することとなる。尚、第1の回転板20aと第2の回転板20bとは固定され、回転軸10を中心に同一回転する。従って、回転によりこれらの位置関係が変化することはない。
 永久磁石22aと永久磁石22bとは略同等の磁力を有する周知の永久磁石を用いる。永久磁石22a、22bに使用する永久磁石は磁力の強いものが好ましく、よって、周知の希土類磁石等を用いることが好ましい。
 コイル26は略同心円状に形成された磁石部23の間に設置される。よって、コイル26も略同心円状に配列される。尚、コイル26を保持するコイル保持部12は図示しない外部筐体等に固定され、回転部20が回転してもコイル26が回転することはない。コイル26の設置方向は、コイル26の巻芯の方向が回転部20の略回転方向、即ち回転部20の略接線方向もしくは略周方向を向くように設置される。コイル26の線材は断面円形のものを使用しても良いが、巻密度の向上及び表皮効果による表層電流向上の観点から断面矩形のものを用いることが好ましい。
 また、コイル26には、透磁率向上の観点から磁芯14を挿入する。磁芯14としてはフェライトコアや金属等の周知の磁性体材料を用いることができる。中でも透磁率の高い珪素鋼を用いることが特に好ましい。また、合成樹脂等の非磁性体で周面が覆われた鉄等の磁性体材料を複数束ねて磁芯14としても良い。さらに、磁芯14は、図2に示すように、回転部20の回転方向と逆側(磁石対22が向って来る方向側)の端面を、コイル26の巻線端面から所定量突出させることが好ましい。この突出量は隣り合う磁石対22間の距離Lの値から距離Lの1/3の値程度とすることが好ましい。
 回転部20を回転させる回転手段24としては、周知の水車、風車、エンジン等の内燃機関、タービン、モータ、自転車や自動車の車輪等の回転部分、ペダルやハンドル等の人力による回転機構等が挙げられる。
 次に、本発明に係る発電装置50の発電動作を説明する。先ず、永久磁石22aと永久磁石22bとは同じ磁極同士が対向するように設置されている。よって、N極からの磁力線は、図3(a)に示すように斥力によって湾曲し、第1の回転板20aと第2の回転板20bとの間を略横方向に進み、隣に位置する永久磁石22a、22bのS極に至る。これらの磁石対22は回転部20に同心円状に配置しているため、磁石対22間の磁力線は磁石部23の間に概ね集中し、磁石部23と同様に略リング状を呈する。そして、コイル26は磁石部23の間に設置されているから、磁石対22の多くの磁力線はコイル26の磁芯14を通ることとなる。
 次に、回転手段24が回転すると回転部20が回転し、これに伴い第1の回転板20a及び第2の回転板20bが同一回転する。第1の回転板20a及び第2の回転板20bが回転すると、図3(b)に示すように、永久磁石22a、22bが移動する。これにより、コイル26内の磁界が変化し、この際の電磁誘導によりコイル26が発電する。そして、回転部20が回転し続けることで磁石対22が順次移動し、コイル26内の磁界が変化し続けることでコイル26は交流電力を継続して発電する。
 ここで、永久磁石の磁極とコイルの巻芯とが対向する図3(c)に示す従来の構成の場合、対向する永久磁石22a’、22b’の磁極は逆となる。この場合、磁石対22’の磁力線は対向する永久磁石22a’、22b’間の領域に集中し、その他の領域との磁力線の疎密の差が大きくなる。そして、磁力線が密の領域をコイル26’が通過するときに発電量は最大となり、このとき回転抵抗も最大となる。反対に磁力線が疎の領域をコイル26’が通過するときにはほとんど発電はされず、回転抵抗も小さい。これに対して、本願の発電装置50は磁力線を第1の回転板20aと第2の回転板20bとの間に横方向に形成し、これを横方向を向いたコイル26に対して移動させるため、磁力線の疎密の差を従来のものより少なくすることができる。このため、回転によるコイル26内の磁界の変化量は少ないものの回転抵抗は小さく、その分だけ回転に要する力を少なくすることができる。そして、両者の変換効率を比較したところ、発電装置50の変換効率の方が優れていることが判明した。
 また、発電装置50は図4に示すように、回転部20が回転していない静止状態において、隣り合う4乃至5つの磁石対22の間に隣り合う3つのコイル26が位置していることが好ましい。ここでの“位置する”とは隣り合う3つのコイル26の両端が4乃至5つの磁石対22に少しでも掛かっている状態を指すものとする。この構成によれば、磁石対22の位置がコイル26毎にずれることとなり、その結果、コイル26ごとの発電量に差が生じる。これにより、発電装置50の全体としての発電量を平均化することができ、更なる変換効率の向上を図ることができる。
 次に、発電装置50の電気配線の例を図5に示す。尚、この配線例は発電装置50の好適な一例であるから、これに限定されるものではない。先ず、各コイル26をそれぞれ整流部16に接続し、コイル26からの出力を直流化する。整流部16としては変換効率の観点から全波整流のものを使用することが好ましい。そして、コイル26は整流部16を介して3個を1ユニットとして直列に接続される。各ユニット(図中では5ユニット)からの出力はそれぞれ並列に接続されインバータ18の入力に接続される。インバータ18は発電装置50からの出力を要求される電力出力、例えば3相交流に変換し負荷5に出力する。この構成によれば、インバータ18が発電装置50からの出力を要求される電力出力に変換して出力するため、例えば3相交流を出力することのできない図4に示す構成であっても、3相交流を要求する電気機器に対応することができる。尚、2次電池への充電やLED灯、電球等の3相交流が必要ない負荷5への電力供給はインバータ18を介さずに直接行っても良い。
 また、本発明に係る発電装置50は、図6に示すように、回転部20、磁石部23、コイル26等を多段構成として大出力化を図っても良い。
 以上のように、本発明に係る発電装置50によれば、優れた変換効率で発電を行うことができる。また、回転抵抗が小さいため少ない力でも発電を行うことができる。そして本発明に係る発電装置50は、大規模な発電設備から自転車や手回し懐中電灯等の小規模な発電機までほぼ全ての発電装置に適用が可能である。尚、本発明に係る発電装置50の各部の構成、形状、動作、コイルや磁石対の個数等は特に上記の例に限定されるものではなく、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。
      20  回転部
      20a 第1の回転板
      20b 第2の回転板
      22a、22b 永久磁石
      22  磁石対
      23  磁石部
      24  回転手段
      26  コイル
      50  発電装置

Claims (2)

  1. 所定の間隔を取って設置され同一回転する第1の回転板と第2の回転板と、
    前記第1の回転板と第2の回転板とを有する回転部と、
    2つの永久磁石が前記第1の回転板と第2の回転板とに同極同士が対向するように設置されて構成される磁石対と、
    複数の前記磁石対が同心円状で且つ隣り合う磁極が逆となるように設置されることで構成される磁石部と、
    前記回転部を回転させる回転手段と、
    前記磁石部の対向する磁極の間に、巻芯の方向が前記回転部の略回転方向を向くように設置された複数のコイルと、を備え、
    前記回転部が回転することにより前記コイルが発電する発電装置において、
    前記コイルの巻線方向が一定であり、且つ前記コイルの巻芯に磁芯がそれぞれ個別に設置されていることを特徴とする発電装置。
  2. 磁石対の個数がコイルの個数よりも多く、さらに磁芯は回転部の回転方向と逆側の端面がコイルの巻線端面から所定量突出していることを特徴とする請求項1記載の発電装置。
PCT/JP2012/067672 2011-07-14 2012-07-11 発電装置 WO2013008838A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12810833.9A EP2733832A4 (en) 2011-07-14 2012-07-11 ENERGY GENERATING DEVICE
US14/131,519 US20140132100A1 (en) 2011-07-14 2012-07-11 Power generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-155404 2011-07-14
JP2011155404A JP4873671B1 (ja) 2011-07-14 2011-07-14 発電装置

Publications (1)

Publication Number Publication Date
WO2013008838A1 true WO2013008838A1 (ja) 2013-01-17

Family

ID=45781938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067672 WO2013008838A1 (ja) 2011-07-14 2012-07-11 発電装置

Country Status (4)

Country Link
US (1) US20140132100A1 (ja)
EP (1) EP2733832A4 (ja)
JP (1) JP4873671B1 (ja)
WO (1) WO2013008838A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104795A1 (ja) * 2014-01-08 2015-07-16 株式会社日立製作所 回転電機
JP5649203B1 (ja) 2014-06-19 2015-01-07 野上 忍 ステッピングモータ
FR3032060B1 (fr) * 2015-01-28 2018-09-07 Ixblue Actionneur et positionneur comportant un tel actionneur
CN104734443A (zh) * 2015-02-15 2015-06-24 郑州匠芯电子科技有限公司 一种磁引力驱动无摩擦发电装置
KR101772271B1 (ko) * 2015-06-03 2017-08-29 박태혁 역기전력 저감 발전장치
AU2015397814A1 (en) * 2015-06-11 2017-12-21 Yuzen Sustainable Energy Co., Ltd. Electromagnetic device
JP6377853B2 (ja) * 2015-07-08 2018-08-22 本田技研工業株式会社 発電機
JP6113884B1 (ja) * 2016-03-21 2017-04-12 佳行 中田 連設式発電装置
JP6359747B1 (ja) * 2017-08-03 2018-07-18 株式会社空 回転電機
AT522827B1 (de) * 2019-08-09 2022-12-15 Univ Wien Tech Verkoppeltes Maschinensystem
WO2023208330A1 (de) * 2022-04-26 2023-11-02 Bomatec Management Ag Elektrischer antrieb mit toroidalem spulenträger
JP7214178B1 (ja) * 2022-09-26 2023-01-30 株式会社Tokuda-Ard 電気自動車

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238623A (ja) * 2005-02-25 2006-09-07 Fujitsu General Ltd 直流モータ
JP2006271161A (ja) * 2005-03-25 2006-10-05 Daikin Ind Ltd コア、電機子及びモータ並びに圧縮機
WO2009044485A1 (ja) * 2007-10-05 2009-04-09 Okamoto, Norimasa 発電機
JP2010172048A (ja) * 2009-01-20 2010-08-05 Tetsuo Okamoto 電動機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008234418B2 (en) * 2007-04-03 2012-02-02 Launchpoint Electric Propulsion Solutions, Inc. Winding arrangement for an electrical machine
NL1035278C2 (nl) * 2008-04-10 2009-10-13 Friend Investements Sorl Inrichting voor het genereren van vermogen.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238623A (ja) * 2005-02-25 2006-09-07 Fujitsu General Ltd 直流モータ
JP2006271161A (ja) * 2005-03-25 2006-10-05 Daikin Ind Ltd コア、電機子及びモータ並びに圧縮機
WO2009044485A1 (ja) * 2007-10-05 2009-04-09 Okamoto, Norimasa 発電機
JP2010172048A (ja) * 2009-01-20 2010-08-05 Tetsuo Okamoto 電動機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733832A4 *

Also Published As

Publication number Publication date
JP4873671B1 (ja) 2012-02-08
EP2733832A4 (en) 2016-03-09
JP2013021888A (ja) 2013-01-31
EP2733832A1 (en) 2014-05-21
US20140132100A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP4873671B1 (ja) 発電装置
CN105245073B (zh) 定子永磁型双凸极盘式电机
US8237321B2 (en) Electrical machine, in particular a generator
KR101173107B1 (ko) 발전기
US11101725B2 (en) Rotary electric machine and non-contact power generator
RU2450411C1 (ru) Аксиальная двухвходовая бесконтактная электрическая машина-генератор
WO2013100803A1 (ru) Магнитоэлектрический генератор
CN113178962B (zh) 一种模块化转子混合励磁磁通反向电机
CN103618392B (zh) 一种定转子双永磁体激励谐波电机
EP2212986A2 (en) Alternator with angularly staggered stator stages
WO2014074009A1 (ru) Магнитоэлектрический генератор
JP2016213948A (ja) 回転電機
KR101872262B1 (ko) 마그넷 발전기
CN111224477A (zh) 基于谐波绕组励磁的并列结构无刷混合励磁同步发电机
CN102570656A (zh) 一种电励磁无刷起动、发电机
RU115978U1 (ru) Магнитоэлектрический генератор
CN109256879A (zh) 一种内外层永磁体错位的双定子电机
WO2012121685A2 (ru) Тихоходный многополюсный синхронный генератор
Wang et al. A novel hybrid-excited flux bidirectional modulated machine for electric vehicle propulsion
RU115130U1 (ru) Электрическая машина
WO2009100600A1 (zh) 低速消谐同步发电机
RU2541427C1 (ru) Торцевая электрическая машина (варианты)
RU127265U1 (ru) Магнитоэлектрический генератор
RU195702U1 (ru) Улучшенный генератор на постоянных магнитах
KR102613569B1 (ko) 발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012810833

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14131519

Country of ref document: US