WO2013008477A1 - 蒸気タービン用直接接触式復水器 - Google Patents

蒸気タービン用直接接触式復水器 Download PDF

Info

Publication number
WO2013008477A1
WO2013008477A1 PCT/JP2012/004545 JP2012004545W WO2013008477A1 WO 2013008477 A1 WO2013008477 A1 WO 2013008477A1 JP 2012004545 W JP2012004545 W JP 2012004545W WO 2013008477 A1 WO2013008477 A1 WO 2013008477A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
exhaust gas
turbine
steam
cooling
Prior art date
Application number
PCT/JP2012/004545
Other languages
English (en)
French (fr)
Inventor
高志 森山
良二 村本
美樹 岡
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to NZ606822A priority Critical patent/NZ606822B2/en
Priority to MX2013002498A priority patent/MX336969B/es
Priority to US13/818,806 priority patent/US9206708B2/en
Publication of WO2013008477A1 publication Critical patent/WO2013008477A1/ja
Priority to IS050045A priority patent/IS2963B/is

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B3/00Condensers in which the steam or vapour comes into direct contact with the cooling medium
    • F28B3/04Condensers in which the steam or vapour comes into direct contact with the cooling medium by injecting cooling liquid into the steam or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid

Definitions

  • the present invention relates to a direct contact condenser for a steam turbine in which cooling water is directly sprayed on a turbine exhaust gas containing water vapor and non-condensable gas discharged from a steam turbine to cool and condense.
  • a direct contact condenser for an axial exhaust turbine which is a kind of direct contact condenser for a steam turbine of this type, directly contacts the turbine exhaust gas discharged from the axial exhaust turbine with cooling water to generate steam. It is trying to condense. For this reason, how to increase the area where the cooling water contacts the water vapor is important in terms of performance, and the cooling water is discharged into the space through the spray nozzle and atomized.
  • an introduction portion that introduces a turbine exhaust gas containing water vapor and non-condensable gas into the steam cooling chamber in a substantially horizontal direction, and an introduction direction of the turbine exhaust gas that is disposed in the steam cooling chamber.
  • a condenser having a water storage unit that accumulates condensed condensed water is known (for example, see Patent Document 2).
  • turbine exhaust gas discharged in the horizontal direction from the axial exhaust turbine is guided in the vertical direction by the exhaust duct and supplied to the condenser from above.
  • a cooling water supply pipe is arranged in the condenser along the flow direction of the turbine exhaust gas from above to below, and a nozzle body is provided in the cooling water supply pipe so as to be orthogonal to the flow direction of the turbine exhaust gas. Cooling water is sprayed in the direction.
  • nozzles having flat fan-shaped scattering zones are arranged in the nozzles close to the axial exhaust turbine, and nozzles having conical scattering zones are arranged in the other directions.
  • a spray water preventing body is provided in the exhaust duct.
  • the nozzle close to the axial flow exhaust turbine has a flat fan-shaped splash zone, which suppresses the spray water from splashing to the axial flow exhaust turbine side and further has a spray water prevention body in the exhaust duct. It is possible to eliminate the risk of the collision with the turbine blades of the axial exhaust turbine. However, the configuration for avoiding the collision of the spray water axial flow exhaust turbine with the turbine blades is complicated, and the provision of the spray water prevention body in the exhaust duct inhibits the flow of the turbine exhaust gas. There are unresolved issues.
  • An object of the present invention is to provide a direct contact condenser for a steam turbine that can reliably prevent sprayed cooling water from reaching the turbine blades of an axial turbine.
  • a first aspect of a direct contact condenser for a steam turbine is an exhaust gas for horizontally introducing a turbine exhaust gas including steam and non-condensable gas of the steam turbine.
  • An introduction part a steam cooling chamber for spraying and cooling cooling water on the turbine exhaust gas introduced from the exhaust gas introduction part, and condensate water which is disposed in the lower part of the steam cooling chamber and is cooled from water vapor
  • a water storage unit for storing cooling water.
  • the steam cooling chamber includes a first cooling water spray mechanism that performs cooling water spraying by restricting a spray region from a side disposed on the exhaust gas introduction side to a downstream direction of the turbine exhaust gas.
  • a second cooling water spray mechanism for spraying cooling water in all directions to the turbine exhaust gas disposed on the downstream side of the first cooling water spray mechanism.
  • the first cooling water spray mechanism is communicated with a cooling water supply pipe and intersects the introduction direction of the turbine exhaust gas.
  • a plurality of cooling water spray pipes extending in the direction and having a plurality of spray nozzles formed in the extending direction are provided.
  • the first cooling water spray mechanism is configured such that adjacent cooling water spray pipes are connected to a flow path of the turbine exhaust gas.
  • a communication pipe communicating in parallel with the turbine exhaust gas is disposed, and a plurality of spray nozzles are formed on the lower side of the communication pipe.
  • the 4th aspect of the direct-contact-type condenser for steam turbines which concerns on this invention is such that the some spray nozzle formed in the said communicating pipe injects a cooling water to at least one of a downward and diagonally downstream side. It is configured.
  • the second cooling water spray mechanism communicates with a cooling water supply pipe and intersects the introduction direction of the turbine exhaust gas. A plurality of cooling water spray pipes extending in the direction and having a plurality of spray nozzles formed in the extending direction are provided.
  • a sixth aspect of the direct contact condenser for a steam turbine according to the present invention is such that the cooling water is sprayed on at least one of the downstream side and the side side of the second cooling water spray mechanism.
  • a plurality of third cooling water spray mechanisms for spraying cooling water onto the non-condensable gas remaining in the exhaust gas are provided.
  • the 7th aspect of the direct contact type condenser for steam turbines which concerns on this invention is a partition plate which opened the lower side between the said 2nd cooling water spray mechanism and the said 3rd cooling water spray mechanism. It is set as the structure which arranged.
  • the water storage section is provided with a connection port connected to the condensate pump at the bottom, and the condensate pump is in continuous operation. Controls the water level between the normal operating water level where the connection port is submerged and the highest operating water level higher than this, and the maximum operating water level is increased by the residual cooling water level when the condensate pump stops abnormally.
  • the water storage capacity is set so as not to exceed the maximum water level at the time of abnormality lower than the bottom of the exhaust gas introduction part even if the value exceeds.
  • turbine exhaust gas containing water vapor and non-condensable gas discharged from the steam turbine in the horizontal direction is introduced into the steam cooling chamber in the horizontal direction by the exhaust gas introduction unit, and cooling is performed in the steam cooling chamber.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a direct contact condenser for a steam turbine according to the present invention.
  • FIG. 2 is a plan view with the top plate of the condenser of FIG. 1 removed. It is an enlarged plan view of the first cooling water spray mechanism. It is sectional drawing which shows 2nd Embodiment of the direct contact type condenser for steam turbines which concerns on this invention. It is the top view which removed the top
  • FIG. 1 is a cross-sectional view showing a first embodiment when a direct contact condenser for a steam turbine according to the present invention is applied to an axial exhaust steam turbine
  • FIG. 2 is a view of removing the top plate of the condenser.
  • FIG. 1 denotes an axial exhaust type steam turbine.
  • the axial exhaust type steam turbine 1 includes a plurality of rotor blades 3 fixed to a turbine shaft 2 that is rotatably held substantially horizontally.
  • a plurality of stationary blades 5 disposed in the casing 4 are provided so as to face the moving blade 3.
  • a rotating shaft 7 of a generator 6 is connected to an end portion of the turbine shaft 2 that protrudes outside the casing 4.
  • This steam turbine direct contact type condenser 10 includes an exhaust gas introduction section 11 for horizontally introducing turbine exhaust gas discharged from the casing 4 of the axial exhaust steam turbine 1 in the horizontal direction, and this exhaust gas introduction.
  • a water storage unit 13 for storing the condensed condensate and a gas cooling chamber 14 on the downstream side of the steam cooling chamber 12 are provided.
  • the exhaust gas introduction unit 11 is connected to the casing 4 of the axial exhaust type steam turbine 1 via a bellows 11a, and has a horizontal top plate 11b, a bottom plate 11c inclined downward to the right, and front plates 11d and 11e extending in a tapered shape. And a relatively short duct shape in the axial direction for introducing the turbine exhaust gas in the horizontal direction.
  • the steam cooling chamber 12 is connected to the first cooling water spray mechanism 21 disposed on the exhaust gas introduction unit 11 side and the downstream side of the first cooling water spray mechanism 21.
  • a second cooling water spray mechanism 30 is disposed.
  • the first cooling water spray mechanism 21 includes a water supply main pipe 22 that supplies cooling water disposed at the center in the front-rear direction on the bottom surface side of the steam cooling chamber 12, and the water supply main pipe 22 directly or via a branch pipe 23. And 6 spray pipes 24 in total in 3 rows and 2 columns (when viewed from the plane). Here, the spray pipe 24 extends in a direction perpendicular to the vertical direction with respect to the turbine exhaust gas introduced in the horizontal direction.
  • each spray pipe 24 five spray nozzles 25 are formed at a predetermined interval at an upper position in contact with the turbine exhaust gas. As shown in FIG. 3, these spray nozzles 25 are attached to the outer peripheral surface on the rear side with respect to the front-rear horizontal line L ⁇ b> 1 passing through the center point of the spray pipe 24 so that the cooling water spray direction is on the downstream side. . That is, the spray nozzle 25 is formed, for example, extending in the radial direction on a line of ⁇ 45 ° with a horizontal line L2 perpendicular to the front-rear horizontal line L1 at the center point of the spray pipe 24 interposed therebetween. These spray nozzles 25 spray cooling water in a conical spray zone having a wide angle of 100 °, for example.
  • the spraying direction of the cooling water is limited to a range from the side of the spray pipe 24 to the flow direction of the turbine exhaust gas, and the cooling water is not sprayed in the direction toward the moving blade 3 side of the steam turbine 1.
  • the attachment angle of the spray nozzle 25 and the spray angle of the cooling water are not limited to the above. If the coolant is not sprayed toward the turbine 1 side, the attachment angle and the spray angle of the coolant are arbitrary. Can be set.
  • the spray pipes 24 adjacent in the flow direction of the turbine exhaust gas are connected by a connecting pipe 26 in a region where the spray nozzle 25 is not formed.
  • the most downstream spray pipe 24 and the spray pipe 31 of the second cooling water spray mechanism 21 facing the spray pipe 24 are similarly connected by a connecting pipe 27.
  • the spray nozzle 28 which sprays a cooling water toward the downward or diagonally downstream side is formed in the lower surface side of each connection pipe 26 and 27.
  • the second cooling water spray mechanism 30 has four rows and three rows in the front-rear direction at predetermined intervals in the flow direction of the turbine exhaust gas as viewed from above.
  • a total of twelve spray pipes 31 are arranged extending in the vertical direction so as to intersect the flow direction of the turbine exhaust gas.
  • the spray pipes 31 of each row are connected to the water supply main pipe 22 described above directly or via a branch pipe 32 to supply cooling water.
  • spray nozzles 33 are formed in five stages at predetermined intervals on the upper side in contact with the turbine exhaust gas. As shown in FIG. 2, four spray nozzles 33 are formed at intervals of 90 ° in the circumferential direction of the spray pipe 31.
  • each spray nozzle 33 forms, for example, a conical spray zone having a wide angle of 100 ° and sprays the cooling water.
  • the cooling water can be sprayed in all directions around the spray pipe 31. Even in this case, the attachment angle and the spray angle of the spray nozzle 33 can be set arbitrarily.
  • gas cooling chamber 14 is partitioned from the steam cooling chamber 12 by a partition plate 40 having an opening on the lower side, and turbine exhaust gas (remaining non-condensable gas and associated steam) introduced through the partition plate 40 is used.
  • a third cooling water spray mechanism 41 that sprays cooling water from above is provided.
  • the third cooling water spray mechanism 41 is provided with a connecting pipe 42 that is connected to the water supply main pipe 22 and extends upward at the center, and a cooling water is provided at the upper end of the connecting pipe 42.
  • the reservoir 43 is in communication.
  • the cooling water reservoir 43 is formed with a spray nozzle 44 that sprays cooling water downward at a predetermined interval on the lower surface.
  • the cooling water storage unit 43 is formed with an opening 46 through which the turbine exhaust gas passes through the gas discharge unit 45 above the cooling water storage unit 43 at a position where the spray nozzle 44 does not exist.
  • the gas discharge part 45 is formed with an exhaust port 47 for discharging the turbine exhaust gas in the front-rear direction and the right direction.
  • the water storage unit 13 is formed by digging below the steam cooling chamber 12 and the gas cooling chamber 14, and a connection port 51 connected to the external condensate pump 50 is formed at the center of the bottom. Yes. During the continuous operation of the condensate pump 50, the water storage unit 13 controls the water level between a normal operating water level at which the connection port is submerged and a higher maximum operating water level.
  • the condensate pump 50 abnormally stops due to a power failure or failure, for example, the cooling water passing through the closing time until the cooling water supply valve (not shown) provided in the water supply main pipe 22 is switched to the closed state, Water supply main pipe 22, branch pipe 23, spray pipe 24, connecting pipes 26 and 27, spray pipe 31, connecting pipe 42, and cooling water reservoir 43 after the cooling water supply valve increase the water level due to residual cooling water, and the maximum operating water level.
  • the water storage capacity is set so as not to exceed the maximum water level at the time of abnormality lower than the bottom of the exhaust gas introduction part even if the value exceeds.
  • a first cooling water spray mechanism 21 is disposed on the exhaust gas introduction unit 11 side.
  • a spray nozzle 25 is formed on the rear side of a spray pipe 24 that extends in the vertical direction across the turbine exhaust gas. For this reason, the spray zone of the cooling water sprayed from each spray nozzle is limited to the spray region which is behind the horizontal line L1 connecting the central points of the front and rear spray pipes 24 and which is in the downstream direction of the turbine exhaust gas from the side. Yes.
  • the cooling water sprayed from the spray nozzle 25 does not go to the moving blade 3 side of the axial exhaust steam turbine 1, and there is no need to provide a separate mechanism for preventing the backflow of the spray cooling water. For this reason, the turbine exhaust gas exhausted from the axial exhaust steam turbine 1 can be smoothly introduced into the first cooling water spray mechanism 21 with a small pipe resistance.
  • the spray direction of the cooling water sprayed from the spray nozzle 25 does not need to be strictly limited to the downstream side from the direction orthogonal to the flow direction of the turbine exhaust gas, and is pushed back by the flow force of the turbine exhaust gas. You may make it spray toward some upstream.
  • the cooling water sprayed by the first cooling water spray mechanism 21 cools a part of the water vapor contained in the turbine exhaust gas and accumulates in the water storage unit 13 as condensed water.
  • the spray nozzles 28 are also arranged in the connecting pipes 26 and 27, thereby improving the cooling effect of the turbine exhaust gas by this amount. Can do.
  • the reverse flow of the cooling water to the axial exhaust steam turbine 1 can be reliably prevented by setting the spraying direction of the cooling water sprayed from the spray nozzle 28 to the oblique downstream direction.
  • the turbine exhaust gas that has passed through the first cooling water spray mechanism 21 enters the second cooling water spray mechanism 21, and is supplied from the five-stage spray nozzles 33 provided in the 12 spray pipes 31 to the spray pipe 31. Cooling water is sprayed in all surrounding directions. For this reason, the water vapor remaining in the turbine exhaust gas is cooled and most of the water is condensed and accumulated in the water storage unit 13.
  • the non-condensable gas is cooled by spraying the cooling water downward from the spray nozzle 44 formed on the lower surface of the cooling water storage portion 43 formed at the upper side. It is guided to the gas discharge part 45 through the opening part 46 formed in the part 43 and is discharged to the outside from each exhaust port 47.
  • the condensed water and the cooling water accumulated in the water storage unit 13 are higher than the normal operation water level where the connection port 51 with the condensate pump 50 is submerged by the continuous operation of the condensate pump 50. Controlled between the maximum operating water level.
  • a cooling water supply valve (not shown) provided in the water supply main pipe 22 is automatically closed.
  • the cooling water supplied during the closing time until the cooling water supply valve is fully closed the water supply main pipe 22, the branch pipe 23, the spray pipe 24, the connecting pipes 26 and 27 after the cooling water supply valve, The cooling water remaining in the spray pipe 31, the connecting pipe 42, and the cooling water storage unit 43 is accumulated in the water storage unit 13.
  • the water storage capacity of the water storage unit 13 absorbs the increased amount of cooling water when the condensate pump 50 is stopped, the water storage is performed so that the abnormal maximum water level does not reach the bottom of the exhaust gas introduction unit 11. Since the water storage capacity of the section 13 is set, the backflow of the cooling water to the axial exhaust steam turbine 1 can be reliably prevented.
  • the gas cooling chamber 14 is provided on the side surface of the steam cooling chamber 12 instead of being provided on the downstream side of the steam cooling chamber 12 in the flow direction of the turbine exhaust gas. That is, in the second embodiment, as shown in FIGS. 4 and 5, the end portion of the second cooling water spray mechanism 30 in the steam cooling chamber 12 in the flow direction of the turbine exhaust gas is closed, and this is replaced.
  • the gas cooling chamber 14 is communicated with the front and rear side surfaces facing the two rows of spray pipes 31 on the right end side of the second cooling water spray mechanism 30 via the partition plate 40 described above.
  • Other configurations are the same as those of the first embodiment described above.
  • the front and rear gas cooling chambers 14 are supplied with cooling water from the water supply main pipe 22 through the branch pipe 60.
  • the present invention is not limited to this. If the temperature of the turbine exhaust gas cooled by the second cooling water spray mechanism 30 is not low, the gas cooling chamber 14 can be omitted.
  • the cooling water sprayed from the spray nozzle reaches the turbine blades of the axial turbine while introducing and cooling the turbine exhaust gas discharged from the steam turbine in the horizontal direction. It is possible to provide a direct contact condenser for a steam turbine that can be prevented.
  • SYMBOLS 1 Axial exhaust type steam turbine, 2 ... Turbine shaft, 3 ... Moving blade, 4 ... Casing, 5 ... Static blade, 6 ... Generator, 10 ... Direct contact condenser for steam turbines, 11 ... Exhaust gas introduction , 12 ... Steam cooling chamber, 13 ... Water storage unit, 14 ... Gas cooling chamber, 21 ... First cooling water spray mechanism, 22 ... Main water supply pipe, 23 ... Branch pipe, 24 ... Spray pipe, 25 ... Spray nozzle , 26, 27 ... connecting pipe, 28 ... spray nozzle, 30 ... second cooling water spray mechanism, 31 ... spray pipe, 32 ... branch pipe, 33 ... spray nozzle, 41 ... third cooling water spray mechanism, 42 ... Connecting pipe, 43 ... Cooling water storage part, 44 ... Spray nozzle, 45 ... Gas discharge part, 50 ... Condensate pump, 51 ... Connection port

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 蒸気タービンから水平方向に排気されるタービン排気ガスを水平方向に導入して冷却しながらスプレーノズルから噴霧される冷却水が軸流タービンのタービン翼に到達することを防止可能な蒸気タービン用直接接触式復水器を提供する。蒸気タービンの水蒸気と不凝縮ガスとを含むタービン排気ガスを水平方向に導入する排気ガス導入部(11)と、導入された前記タービン排気ガスに対して冷却水を噴霧して冷却する蒸気冷却室(12)と、該蒸気冷却室の下部に配置されて水蒸気から冷却された凝縮水と冷却水とを蓄積する蓄水部(13)とを備え、前記蒸気冷却室は、前記排気ガス導入部側に配設された側方から前記タービン排気ガスの下流方向までの噴霧領域に冷却水噴霧を行う第1の冷却水噴霧機構(21)と、該第1の冷却水噴霧機構の下流側に配設された前記タービン排気ガスに対して全方向に冷却水を噴霧する第2の冷却水噴霧機構(30)とを備えている。

Description

蒸気タービン用直接接触式復水器
 本発明は、蒸気タービンから排出される水蒸気と不凝縮ガスとを含むタービン排気ガスに冷却水を直接噴霧して冷却し復水させる蒸気タービン用直接接触式復水器に関する。
 この種の蒸気タービン用直接接触式復水器の一種である軸流排気タービン用直接接触式復水器は、軸流排気タービンから排出されるタービン排気ガスと冷却水を直接接触させて水蒸気を凝縮するようにしている。このため、冷却水が水蒸気に接触する面積を如何に増大するかが性能上重要であり、スプレーノズルを介して冷却水を空間に放出するとともに微粒化する。
 また、水蒸気の流路を妨げる構造物の配置を最適なものとして、水蒸気流の圧力損失を最小にすることが重要である。
 従来の軸流排気タービン用復水器としては、例えば、蒸気タービンの開口端と復水器との間を接続する排気ダクトを備え、この排気ダクトで蒸気タービンから略水平方向に排出された排気を、その通流方向を下向きに変更して復水器に上方から流入させる。そして、復水器内に排気の通流方向に沿う撒水部を設けるとともに、排気ダクト内にスプレー水防止体を設けるようにした構成が知られている(例えば、特許文献1参照)。
 また、他の構成としては、蒸気冷却室内に、水蒸気と不凝縮ガスとを含むタービン排気ガスをほぼ水平方向に導入する導入部と、前記蒸気冷却室内に配置され、前記タービン排気ガスの導入方向に沿う複数のスプレー管に接続されて、前記タービン排気ガスに冷却水を噴霧する複数の第1のスプレーノズルと、前記蒸気冷却室内の下部に配置され、前記冷却水の噴霧によって、前記水蒸気から凝縮された凝縮水を蓄積する蓄水部とを備えた復水器が知られている(例えば、特許文献2参照)。
特開2007-23962号公報 特開2010-270925号公報
 ところで、上記特許文献1に記載された従来例にあっては、軸流排気タービンから水平方向に排出されるタービン排気ガスを排気ダクトで垂直方向に案内して復水器に上方から供給し、復水器内にタービン排気ガスの上方から下方への通流方向に沿って冷却水供給管を配置し、この冷却水供給管にノズル体を設けてタービン排気ガスの通流方向とは直交する方向に冷却水を噴霧するようにしている。そして、最上部のノズル体については、軸流排気タービンに近いノズルは扁平扇状の飛散ゾーンを有するノズルが配置され、その他の方向には円錐形状の飛散ゾーンを有するノズルが配置されている。さらに、排気ダクトにスプレー水防止体が設けられている。このため、軸流排気タービンに近いノズルでは扁平扇状の飛散ゾーンとなり、軸流排気タービン側へのスプレー水の飛散を抑制し、さらに排気ダクトにスプレー水防止体が設けられているので、スプレー水が軸流排気タービンのタービン翼に衝突して損傷するおそれを解消することができる。しかしながら、スプレー水の軸流排気タービンのタービン翼への衝突を回避するための構成が複雑となるとともに、排気ダクトにスプレー水防止体を設けることにより、タービン排気ガスの通流が阻害されるという未解決の課題がある。
 一方、特許文献2に記載された従来例にあっては、軸流排気タービンから水平方向に排出されるタービン排気ガスを水平方向に配置した復水器に導入して、タービン排気ガス流の導入方向に沿う複数のスプレー管に複数の第1のスプレーノズルを接続することにより、タービン排気ガス流の導入方向と直交する方向に冷却水を噴霧するようにしているが、スプレー水の逆流に対する処置を行っていないので、スプレーノズルから円錐形状に噴霧された冷却水の一部が軸流排気タービンに達して、タービン翼を損傷するおそれがあるという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、蒸気タービンから水平方向に排出されるタービン排気ガスを水平方向に導入して冷却しながら、スプレーノズルから噴霧される冷却水が軸流タービンのタービン翼に到達することを確実に防止することができる蒸気タービン用直接接触式復水器を提供することを目的としている。
 上記目的を達成するために、本発明に係る蒸気タービン用直接接触式復水器の第1の態様は、蒸気タービンの水蒸気と不凝縮ガスとを含むタービン排気ガスを水平方向に導入する排気ガス導入部と、該排気ガス導入部から導入された前記タービン排気ガスに対して冷却水を噴霧して冷却する蒸気冷却室と、該蒸気冷却室の下部に配置されて水蒸気から冷却された凝縮水と冷却水とを蓄積する蓄水部とを備えている。そして、前記蒸気冷却室は、前記排気ガス導入部側に配設された側方から前記タービン排気ガスの下流方向までの噴霧領域に制限して冷却水噴霧を行う第1の冷却水噴霧機構と、該第1の冷却水噴霧機構の下流側に配設された前記タービン排気ガスに対して全方向に冷却水を噴霧する第2の冷却水噴霧機構とを備えている。
 また、本発明に係る蒸気タービン用直接接触式復水器の第2の態様は、前記第1の冷却水噴霧機構が、冷却水給水管に連通されて前記タービン排気ガスの導入方向と交差する方向に延長し、延長方向に複数のスプレーノズルを形成した複数の冷却水スプレー管を備えている。
 また、本発明に係る蒸気タービン用直接接触式復水器の第3の態様は、前記第1の冷却水噴霧機構が、前記タービン排気ガスの通流経路に、隣接する冷却水スプレー管同士を前記タービン排気ガスと平行に連通する連通管を配置し、該連通管の下側に複数のスプレーノズルを形成した構成とされている。
 また、本発明に係る蒸気タービン用直接接触式復水器の第4の態様は、前記連通管に形成した複数のスプレーノズルが、冷却水を下方及び斜め下流側の少なくとも一方に噴射するように構成されている。
 また、本発明に係る蒸気タービン用直接接触式復水器の第5の態様は、前記第2の冷却水噴霧機構が、冷却水給水管に連通されて前記タービン排気ガスの導入方向と交差する方向に延長し、延長方向に複数のスプレーノズルを形成した複数の冷却水スプレー管を備えている。
 また、本発明に係る蒸気タービン用直接接触式復水器の第6の態様は、前記第2の冷却水噴霧機構の下流側及び側方側の少なくとも一方に、前記冷却水が噴霧された前記タービン排気ガスに残留する不凝縮ガスを流入させるガス冷却室を備え、該ガス冷却室は、前記第2の冷却水噴霧機構の下流側及び側方側の一方に連通して形成され、前記タービン排気ガスに残留する不凝縮ガスに冷却水を噴霧する複数の第3の冷却水噴霧機構を備えている。
 また、本発明に係る蒸気タービン用直接接触式復水器の第7の態様は、前記第2の冷却水噴霧機構と前記第3の冷却水噴霧機構との間に下側を開口した仕切板を配置した構成とされている。
 また、本発明に係る蒸気タービン用直接接触式復水器の第8の態様は、前記蓄水部は、底部に復水ポンプへ接続する接続口が設けられ、前記復水ポンプの連続運転中は、水位を前記接続口が水没状態となる通常運転水位とこれよりは高い最高運転水位との間に制御し、当該復水ポンプの異常停止時における残留冷却水による水位上昇で前記最高運転水位を超えても前記排気ガス導入部の底部より低い異常時最高水位を超えないように蓄水容量が設定されている。
 本発明によれば、蒸気タービンから水平方向に排出される水蒸気と不凝縮ガスとを含むタービン排気ガスを排気ガス導入部によって蒸気冷却室に、水平方向に導入し、この蒸気冷却室で、冷却水の噴霧方向が側方からタービン排気ガスの下流側までの噴霧範囲に制限した第1の冷却水噴霧機構と、この第1の冷却水噴霧機構の下流側にタービン排気ガスに対して全方向に冷却水を噴霧する第2の冷却水噴霧機構とを設けたので、タービン排気ガスをその排出方向のまま冷却しながら蒸気タービンへ噴霧冷却水が到達することを確実に防止することができるという効果が得られる。
本発明に係る蒸気タービン用直接接触式復水器の第1の実施形態を示す断面図である。 図1の復水器の天面板を取り外した平面図である。 第1の冷却水噴霧機構の拡大平面図である。 本発明に係る蒸気タービン用直接接触式復水器の第2の実施形態を示す断面図である。 図4の復水器の天面板を取り外した平面図である。 本発明に係る蒸気タービン用直接接触式復水器を側面排気型蒸気タービンに適用した場合を示す平面図である。 本発明に係る蒸気タービン用直接接触式復水器を両側面排気型蒸気タービンに適用した場合を示す平面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明に係る蒸気タービン用直接接触式復水器を軸流排気型蒸気タービンに適用した場合の第1の実施形態を示す断面図、図2は復水器の天面板を取り外した平面図である。
 図中、1は軸流排気型蒸気タービンであって、この軸流排気型蒸気タービン1には、略水平に回転自在に保持されたタービン軸2に固定された複数の動翼3と、この動翼3と対峙し合うようにケーシング4に配設された複数の静翼5とが備えられている。タービン軸2のケーシング4外に突出する端部には発電機6の回転軸7が連結されている。
 そして、軸流排気型蒸気タービン1のケーシング4の大径端部から水平方向に排出される水蒸気及び不凝縮ガスを含むタービン排気ガスが蒸気タービン用直接接触式復水器10に導入される。
 この蒸気タービン用直接接触式復水器10は、軸流排気型蒸気タービン1のケーシング4から水平方向に排出されるタービン排気ガスを水平方向に導入する排気ガス導入部11と、この排気ガス導入部11の下流側に配置された水平方向に導入されるタービン排気ガスに対して冷却水を噴霧して冷却する蒸気冷却室12と、この蒸気冷却室12の下部に配置されて水蒸気から冷却された凝縮粋を蓄積する蓄水部13と、蒸気冷却室12の下流側にガス冷却室14とが備えられている。
 排気ガス導入部11は、軸流排気型蒸気タービン1のケーシング4にベローズ11aを介して連結され、水平な天面板11bと右下がりに傾斜する底面板11cとテーパー状に広がる前面板11d及び11eとでタービン排気ガスを水平方向に導入する軸方向に比較的短いダクト形状に構成されている。
 蒸気冷却室12は、図1及び図2に示すように、排気ガス導入部11側に配置された第1の冷却水噴霧機構21と、この第1の冷却水噴霧機構21の下流側に連接する第2の冷却水噴霧機構30とが配置されている。
 第1の冷却水噴霧機構21は、蒸気冷却室12の底面側における前後方向の中央部に配置した冷却水を供給する給水本管22と、この給水本管22に直接又は分岐管23を介して連結された3行2列(平面から見た場合)で計6本のスプレー配管24とを備えている。ここで、スプレー配管24は、水平方向に導入されるタービン排気ガスに対して上下方向に直交する方向に延長されている。
 各スプレー配管24には、タービン排気ガスと接触する上方側位置に所定間隔を保って5個のスプレーノズル25が形成されている。これらスプレーノズル25は、図3に示すように、スプレー配管24の中心点を通る前後方向水平線L1に対して後方側となる外周面に冷却水噴霧方向が下流側となるように取付けられている。すなわち、スプレーノズル25は、例えば前後方向水平線L1にスプレー配管24の中心点で直交する水平線L2を挟んで±45°の線上に半径方向に延長して形成されている。これらスプレーノズル25は、例えば広角100°の円錐形状の噴霧ゾーンで冷却水を噴霧する。このため、冷却水の噴霧方向は、スプレー配管24の側方からタービン排気ガスの通流方向までの範囲に制限され、蒸気タービン1の動翼3側に向かう方向には冷却水が噴霧されない。なお、スプレーノズル25の取付角度及び冷却水の噴霧角度は上記に限定されるものではなく、上記タービン1側に向かって冷却水が噴霧されなければ、取付角度及び冷却水の噴霧角度は任意に設定することができる。
 そして、図1に示すように、タービン排気ガスの通流方向で隣接するスプレー配管24同士が、スプレーノズル25が形成されていない領域で連結管26によって連結されている。また、最下流のスプレー配管24とこれに対向する第2の冷却水噴霧機構21のスプレー配管31とが同様に連結管27によって連結されている。そして、各連結管26及び27の下面側に下方又は斜め下流側に向けて冷却水を噴霧するスプレーノズル28が形成されている。
 また、第2の冷却水噴霧機構30は、図2に示すように、平面から見てタービン排気ガスの通流方向に所定間隔を保って4列で、かつ前後方向に3行のマトリックスの交点上に計12本のスプレー配管31がタービン排気ガスの通流方向と交差して上下方向に延長して配設されている。各列のスプレー配管31は、前述した給水本管22に直接又は分岐管32を介して連結されて冷却水が供給される。これらスプレー配管31には、タービン排気ガスと接触する上部側に所定間隔を保って5段にスプレーノズル33が形成されている。各スプレーノズル33は、図2に示すように、スプレー配管31の円周方向に90°の間隔で4個形成されている。そして、各スプレーノズル33から例えば広角100°の円錐形状の噴霧ゾーンを形成して冷却水が噴霧される。これによって、スプレー配管31の周囲の全方向に冷却水を噴霧することができる。この場合でも、スプレーノズル33の取付角度及び噴霧角度は任意に設定することができる。
 さらに、ガス冷却室14は、蒸気冷却室12との間が下方側を開口した仕切板40によって仕切られ、この仕切板40を通じて導入されるタービン排気ガス(残りの不凝縮ガスと随伴蒸気)に上方から冷却水を噴霧する第3の冷却水噴霧機構41が設けられている。
 この第3の冷却水噴霧機構41は、図1に示すように、中央部に給水本管22に連結されて上方に延長する連結管42が配設され、この連結管42の上端に冷却水貯留部43が連通されている。この冷却水貯留部43には、下面に所定間隔を保って下方に冷却水を噴霧するスプレーノズル44が形成されている。また、冷却水貯留部43には、スプレーノズル44が存在しない位置に、タービン排気ガスを冷却水貯留部43の上方側のガス排出部45に通過させる開口部46が形成されている。ガス排出部45には、前後方向及び右方向にタービン排気ガスを排出する排気口47が形成されている。
 さらにまた、蓄水部13は、蒸気冷却室12及びガス冷却室14の下方に、掘り込んで形成され、その底部中央部に外部の復水ポンプ50に接続される接続口51が形成されている。この蓄水部13は、復水ポンプ50の連続運転中は、水位を前記接続口が水没状態となる通常運転水位とこれよりは高い最高運転水位との間に制御する。
 そして、停電や故障等により復水ポンプ50が異常停止したときには、例えば給水本管22に設けた冷却水供給弁(図示せず)を閉状態に切換えるまでの閉鎖時間に通過する冷却水と、冷却水供給弁以降の給水本管22、分岐管23、スプレー配管24、連結管26および27、スプレー配管31、連結管42及び冷却水貯留部43における残留冷却水による水位上昇で前記最高運転水位を超えても前記排気ガス導入部の底部より低い異常時最高水位を超えないように蓄水容量が設定されている。
 次に、上記第1の実施形態の動作を説明する。
 軸流排気型蒸気タービン1及び蒸気タービン用直接接触式復水器10がともに稼動状態にある状態では、軸流排気型蒸気タービン1のケーシング4から水平方向に排出される水蒸気と不凝縮ガスとを含むタービン排気ガスが蒸気タービン用直接接触式復水器10に導入される。この蒸気タービン用直接接触式復水器10では、排気ガス導入部11でタービン排気ガスが水平方向の通流方向を保ったまま導入され、このタービン排気ガスを下流側の蒸気冷却室12に供給する。
 この蒸気冷却室12では、排気ガス導入部11側に第1の冷却水噴霧機構21が配置されている。この第1の冷却水噴霧機構21では、タービン排気ガスを横切って上下方向に延長するスプレー配管24の後方側にスプレーノズル25が形成されている。このため、各スプレーノズルから噴霧される冷却水の噴霧ゾーンが前後のスプレー配管24の中心点を結ぶ水平線L1より後方側で、側方からタービン排気ガスの下流方向となる噴霧領域に限定されている。
 したがって、スプレーノズル25から噴霧される冷却水が軸流排気型蒸気タービン1の動翼3側に向かうことはなく、別途噴霧冷却水の逆流を防止する機構を設ける必要がない。このため、軸流排気型蒸気タービン1から排気されるタービン排気ガスを少ない管路抵抗で円滑に第1の冷却水噴霧機構21に導入することができる。
 このとき、スプレーノズル25から噴霧される冷却水の噴霧方向は厳密にタービン排気ガスの通流方向と直交する方向から下流側に制限する必要はなく、タービン排気ガスの流力で押し戻されるので、多少上流側に向けて噴霧するようにしてもよい。
 この第1の冷却水噴霧機構21で噴霧される冷却水により、タービン排気ガスに含まれる水蒸気の一部が冷却されて凝縮水となって蓄水部13に蓄積される。この第1の冷却水噴霧機構21では、上下方向に配置したスプレー配管24の他に、連結管26及び27にもスプレーノズル28を配置したので、この分タービン排気ガスの冷却効果を向上させることができる。しかも、スプレーノズル28から噴霧する冷却水の噴霧方向を斜め下流方向とすることにより、軸流排気型蒸気タービン1への冷却水の逆流を確実に防止することができる。
 そして、第1の冷却水噴霧機構21を通過したタービン排気ガスは、第2の冷却水噴霧機構21に入り、12本のスプレー配管31に設けられた5段のスプレーノズル33からスプレー配管31の周囲の全方位に冷却水が噴霧される。このため、タービン排気ガスに残留している水蒸気が冷却されてほとんどが凝縮水となって蓄水部13に蓄積される。
 この第2の冷却水噴霧機構30で水蒸気のほとんどが凝縮水として除去されることにより、タービン排気ガスの残りの不凝縮ガスと随伴蒸気が、仕切板40下方の開口部からガス冷却室14に導入される。このガス冷却室14でも上方に形成された冷却水貯留部43の下面に形成されたスプレーノズル44から冷却水が下方に向けて噴霧されることにより、不凝縮ガスが冷却されて、冷却水貯留部43に形成された開口部46を通じてガス排出部45に導かれ、各排気口47から外部に排出される。
 一方、蓄水部13に蓄積された凝縮水及び冷却水は、復水ポンプ50が連続運転されることにより、水位が復水ポンプ50との接続口51が水没する通常運転水位とこれより高い最高運転水位との間に制御される。
 この状態で、停電や故障等によって復水ポンプ50が異常停止したときには、給水本管22に設けられた冷却水供給弁(図示せず)が自動的に閉じられる。しかしながら、この冷却水供給弁が全閉状態となるまでの閉鎖時間に供給される冷却水と、冷却水供給弁以降の給水本管22、分岐管23、スプレー配管24、連結管26および27、スプレー配管31、連結管42及び冷却水貯留部43に残留する冷却水とが蓄水部13に蓄積されることになる。
 このとき、蓄水部13の蓄水容量が復水ポンプ50の停止時の冷却水の増加分を吸収しても、異常時最高水位が排気ガス導入部11の底部に達しないように蓄水部13の蓄水容量が設定されているので、軸流排気型蒸気タービン1への冷却水の逆流を確実に防止することができる。
 次に、本発明の第2の実施形態を図4及び図5について説明する。
 この第2の実施形態では、ガス冷却室14を蒸気冷却室12のタービン排気ガスの通流方向の下流側に設ける場合に代えて蒸気冷却室12の側面に設けるようにしたものである。
 すなわち、第2の実施形態では、図4及び図5に示すように、蒸気冷却室12における第2の冷却水噴霧機構30のタービン排気ガスの通流方向の端部が閉塞され、これに代えて、第2の冷却水噴霧機構30の右端側の2列のスプレー配管31に対向する前後両側面に前述した仕切板40を介して、ガス冷却室14が連通されている。これ以外の構成は前述した第1の実施形態と同様の構成を有する。ここで、前後のガス冷却室14には、給水本管22から分岐管60によって冷却水が供給されている。
 この第2の実施形態によっても、蒸気冷却室12の第2の冷却水噴霧機構30でスプレーノズル33によって全方位に噴霧された冷却水によってタービン排気ガスに含まれる水蒸気のほとんどが冷却されて凝縮水となって蓄水部13に蓄積される。この第2の冷却水噴霧機構30で水蒸気が除去されて、残りの不凝縮ガスと随伴蒸気は前後両側のガス冷却室14で冷却されガス排出部45から外部に排出される。このため、上記第2の実施形態でも、上述した第1の実施形態と同様の作用効果を得ることができる。
 なお、上記第1及び第2の実施形態においては、蒸気冷却室12から排出される水蒸気が除去されたタービン排気ガスをガス冷却室14に導いて冷却する場合について説明したが、これに限定されるものではなく、第2の冷却水噴霧機構30で冷却されたタービン排気ガスの温度が低い場合には、ガス冷却室14を省略することができる。
 また、上記第1及び第2の実施形態においては、本発明による蒸気タービン用直接接触式復水器10を軸流排気型蒸気タービン1に適用した場合について説明したが、これに限定されるものではない。すなわち、図6に示すように、側面排気型の蒸気タービン70に本発明による蒸気タービン用直接接触式復水器10を接続することもできるし、図7に示すように、両側面排気型の蒸気タービン71の両側面にそれぞれ本発明による蒸気タービン用直接接触式復水器10を接続することもできる。
 本発明によれば、蒸気タービンから水平方向に排出されるタービン排気ガスを水平方向に導入して冷却しながら、スプレーノズルから噴霧される冷却水が軸流タービンのタービン翼に到達することを確実に防止することができる蒸気タービン用直接接触式復水器を提供できる。
 1…軸流排気型蒸気タービン、2…タービン軸、3…動翼、4…ケーシグ、5…静翼、6…発電機、10…蒸気タービン用直接接触式復水器、11…排気ガス導入部、12…蒸気冷却室、13…蓄水部、14…ガス冷却室、21…第1の冷却水噴霧機構、22…給水本管、23…分岐管、24…スプレー配管、25…スプレーノズル、26,27…連結管、28…スプレーノズル、30…第2の冷却水噴霧機構、31…スプレー配管、32…分岐管、33…スプレーノズル、41…第3の冷却水噴霧機構、42…連結管、43…冷却水貯留部、44…スプレーノズル、45…ガス排出部、50…復水ポンプ、51…接続口

Claims (8)

  1.  蒸気タービンの水蒸気と不凝縮ガスとを含むタービン排気ガスを水平方向に導入する排気ガス導入部と、該排気ガス導入部から導入された前記タービン排気ガスに対して冷却水を噴霧して冷却する蒸気冷却室と、該蒸気冷却室の下部に配置されて水蒸気から冷却された凝縮水と冷却水とを蓄積する蓄水部とを備え、
     前記蒸気冷却室は、前記排気ガス導入部側に配設された側方から前記タービン排気ガスの下流方向までの噴霧範囲に制限して冷却水噴霧を行う第1の冷却水噴霧機構と、
     該第1の冷却水噴霧機構の下流側に配設された前記タービン排気ガスに対して全方向に冷却水を噴霧する第2の冷却水噴霧機構とを備えた
     ことを特徴とする蒸気タービン用直接接触式復水器。
  2.  前記第1の冷却水噴霧機構は、冷却水給水管に連通されて前記タービン排気ガスの導入方向と交差する方向に延長し、延長方向に複数のスプレーノズルを形成した複数の冷却水スプレー管を備えていることを特徴とする請求項1に記載の蒸気タービン用直接接触式復水器。
  3.  前記第1の冷却水噴霧機構は、前記タービン排気ガスの通流経路に、隣接する冷却水スプレー管同士を前記タービン排気ガスと平行に連通する連通管を配置し、該連通管の下側に複数のスプレーノズルを形成したことを特徴とする請求項2に記載の蒸気タービン用直接接触式復水器。
  4.  前記連通管に形成した複数のスプレーノズルは、冷却水を下方及び斜め下流側の少なくとも一方に噴射するように構成されていることを特徴とする請求項3に記載の蒸気タービン用直接接触式復水器。
  5.  前記第2の冷却水噴霧機構は、冷却水給水管に連通されて前記タービン排気ガスの導入方向と交差する方向に延長し、延長方向に複数のスプレーノズルを形成した複数の冷却水スプレー管を備えていることを特徴とする請求項1乃至4の何れか1項に記載の蒸気タービン用直接接触式復水器。
  6.  前記第2の冷却水噴霧機構の下流側及び側方側の少なくとも一方に、前記冷却水が噴霧された前記タービン排気ガスに残留する不凝縮ガスを流入させるガス冷却室を備え、
     該ガス冷却室は、前記第2の冷却水噴霧機構の下流側及び側方側の一方に連通して形成され、前記タービン排気ガスに残留する不凝縮ガスに冷却水を噴霧する複数の第3の冷却水噴霧機構を備えている
     ことを特徴とする請求項1乃至5の何れか1項に記載の蒸気タービン用直接接触式復水器。
  7.  前記第2の冷却水噴霧機構と前記第3の冷却水噴霧機構との間に下側を開口した仕切板が配置されていることを特徴とする請求項2に記載の蒸気タービン用直接接触式復水器。
  8.  前記蓄水部は、底部に復水ポンプへ接続する接続口が設けられ、前記復水ポンプの連続運転中は、水位を前記接続口が水没状態となる通常運転水位とこれよりは高い最高運転水位との間に制御し、当該復水ポンプの異常停止時における残留冷却水による水位上昇で前記最高運転水位を超えても前記排気ガス導入部の底部より低い異常時最高水位を超えないように蓄水容量が設定されていることを特徴とする請求項1乃至7の何れか1項に記載の蒸気タービン用直接接触式復水器。
PCT/JP2012/004545 2011-07-13 2012-07-13 蒸気タービン用直接接触式復水器 WO2013008477A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NZ606822A NZ606822B2 (en) 2011-07-13 2012-07-13 Direct contact condenser for steam turbine
MX2013002498A MX336969B (es) 2011-07-13 2012-07-13 Condensador de contacto directo para turbina de vapor.
US13/818,806 US9206708B2 (en) 2011-07-13 2012-07-13 Direct contact condenser for a steam turbine and having a first cooling water spraying mechanism spraying cooling water downstream and a second cooling water spraying mechanism spraying cooling water in multiple directions
IS050045A IS2963B (is) 2011-07-13 2013-02-20 Þéttir af gerð með beina snertingu fyrir gufuhverfil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-154524 2011-07-13
JP2011154524A JP5794005B2 (ja) 2011-07-13 2011-07-13 蒸気タービン用直接接触式復水器

Publications (1)

Publication Number Publication Date
WO2013008477A1 true WO2013008477A1 (ja) 2013-01-17

Family

ID=47505780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004545 WO2013008477A1 (ja) 2011-07-13 2012-07-13 蒸気タービン用直接接触式復水器

Country Status (6)

Country Link
US (1) US9206708B2 (ja)
JP (1) JP5794005B2 (ja)
CL (1) CL2013000548A1 (ja)
IS (1) IS2963B (ja)
MX (1) MX336969B (ja)
WO (1) WO2013008477A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289817B2 (ja) * 2013-05-09 2018-03-07 株式会社東芝 直接接触式復水器
JP2015068612A (ja) * 2013-09-30 2015-04-13 株式会社東芝 直接接触式復水器
WO2016037212A1 (en) * 2014-09-09 2016-03-17 Btola Pty Ltd An assembly to use gas turbine heat to pretreat solid fuels
US10570781B2 (en) 2018-03-15 2020-02-25 General Electric Technology Gmbh Connection system for condenser and steam turbine and methods of assembling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108802U (ja) * 1978-01-18 1979-07-31
JPS61144371U (ja) * 1985-02-28 1986-09-05
JPH09264675A (ja) * 1996-03-26 1997-10-07 Fuji Electric Co Ltd 直接接触式復水器
JP2001193417A (ja) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd 軸流排気タービン用直触式復水装置
JP2007023962A (ja) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd 軸流排気式蒸気タービン装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564223A (en) * 1915-02-08 1925-12-08 Westinghouse Electric & Mfg Co Condenser
DE1820853U (de) * 1960-04-27 1960-11-03 Licentia Gmbh Dampfkraftanlage mit mischkondensation.
JPS4943735B1 (ja) * 1971-04-05 1974-11-22
US3834133A (en) * 1972-12-22 1974-09-10 Foster Wheeler Corp Direct contact condenser having an air removal system
JPH0719762A (ja) * 1993-06-29 1995-01-20 Fuji Electric Co Ltd 直接接触式復水器
JPH08121979A (ja) * 1994-10-27 1996-05-17 Fuji Electric Co Ltd 直接接触式復水器
US5925291A (en) * 1997-03-25 1999-07-20 Midwest Research Institute Method and apparatus for high-efficiency direct contact condensation
JP5404175B2 (ja) 2009-05-19 2014-01-29 株式会社東芝 直接接触式復水器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108802U (ja) * 1978-01-18 1979-07-31
JPS61144371U (ja) * 1985-02-28 1986-09-05
JPH09264675A (ja) * 1996-03-26 1997-10-07 Fuji Electric Co Ltd 直接接触式復水器
JP2001193417A (ja) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd 軸流排気タービン用直触式復水装置
JP2007023962A (ja) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd 軸流排気式蒸気タービン装置

Also Published As

Publication number Publication date
NZ606822A (en) 2015-04-24
US20130152589A1 (en) 2013-06-20
JP2013019368A (ja) 2013-01-31
MX336969B (es) 2016-02-08
IS2963B (is) 2017-02-15
MX2013002498A (es) 2013-07-22
JP5794005B2 (ja) 2015-10-14
US9206708B2 (en) 2015-12-08
CL2013000548A1 (es) 2013-06-07

Similar Documents

Publication Publication Date Title
JP5794005B2 (ja) 蒸気タービン用直接接触式復水器
US7916481B2 (en) Electronic board and cold plate for said board
US20080216659A1 (en) Water-flowing mechanism of wet type electrostatic precipitator
KR101714946B1 (ko) 복수기, 및 이를 구비하는 증기터빈 플랜트
JP4923460B2 (ja) 軸流排気式蒸気タービン装置
EP2340372A1 (en) Apparatus and method for controlling the flow of fluid in a vortex amplifier
JP4796146B2 (ja) 湿分分離器
JP6797750B2 (ja) 水平排気型復水器および蒸気タービンプラント
JP6289817B2 (ja) 直接接触式復水器
KR102180187B1 (ko) 증기 방출 노즐 및 이를 포함하는 증기 방출 시스템
JP2012193883A (ja) 直接接触式復水器
JP2011169516A (ja) 復水器
KR20200027436A (ko) 기판 건조장치
KR101398101B1 (ko) 다단계 스팀 덤프 감압 장치 및 감압 방법
US10316697B2 (en) Steam turbine exhaust chamber cooling device and steam turbine
KR20150139240A (ko) 낙수를 이용하는 발전유닛을 갖춘 냉각탑
NZ606822B2 (en) Direct contact condenser for steam turbine
JP7102359B2 (ja) 復水器
JP3590661B2 (ja) 復水器
JPS5930993B2 (ja) 復水器
JP4555700B2 (ja) 水スプレーユニット
JP3262431B2 (ja) 復水器
KR200436863Y1 (ko) 밀폐형 냉각탑
WO2017099725A1 (en) Cooling tower with multiple-layer cooling unit
KR200298785Y1 (ko) 면 탕숙기의 보충수 급수장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12013500352

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13818806

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013000548

Country of ref document: CL

ENP Entry into the national phase

Ref document number: 0177413

Country of ref document: KE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/002498

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811721

Country of ref document: EP

Kind code of ref document: A1