WO2013005953A2 - Apparatus for tracking sunlight, sunlight tracking method, and unit for detecting solar heat - Google Patents

Apparatus for tracking sunlight, sunlight tracking method, and unit for detecting solar heat Download PDF

Info

Publication number
WO2013005953A2
WO2013005953A2 PCT/KR2012/005199 KR2012005199W WO2013005953A2 WO 2013005953 A2 WO2013005953 A2 WO 2013005953A2 KR 2012005199 W KR2012005199 W KR 2012005199W WO 2013005953 A2 WO2013005953 A2 WO 2013005953A2
Authority
WO
WIPO (PCT)
Prior art keywords
unit
solar
sensing
thermal
solenoid
Prior art date
Application number
PCT/KR2012/005199
Other languages
French (fr)
Korean (ko)
Other versions
WO2013005953A3 (en
Inventor
이종우
Original Assignee
Lee Jong Woo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Jong Woo filed Critical Lee Jong Woo
Publication of WO2013005953A2 publication Critical patent/WO2013005953A2/en
Publication of WO2013005953A3 publication Critical patent/WO2013005953A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar tracking device and method, and more particularly, to a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun using the temperature difference of the detection unit according to the sun and shade. will be.
  • the photovoltaic device can be classified into a fixed type in which a panel on which a solar cell module is mounted is fixed and a tracking type that tracks the orbit of the sun.
  • the tracking type tracks the position of the sun using power so that the direct sunlight of the sun can enter the solar cell module receiving the sunlight vertically.
  • One aspect of the present invention is to provide a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun.
  • Another aspect of the present invention is to provide a solar tracking device and method that can accurately detect the position of the sun to control the rotary drive unit for driving the tracking device.
  • Another aspect of the present invention is to provide a solar tracking device and method that can track the sun while simplifying the structure to be suitable for small-scale power generation facilities.
  • Another aspect of the present invention is to provide a solar heat detection unit that can increase the accuracy and reliability of solar tracking.
  • a solar tracking device includes a rotation driving unit for rotating and driving an object having a panel; and thermoelectric power generated by a temperature difference between sunny and shaded panels according to altitude and azimuth of the sun. And a solar sensing unit for selectively driving the rotation driving unit such that the panel normal of the object is parallel to the sunlight.
  • the object is characterized in that it comprises a solar panel.
  • the rotation driving unit includes a high tool drive unit for rotating the solar panel in the altitude direction, and a bearing drive unit for rotating the solar panel in the azimuth direction, the high tool drive unit for rotating the solar panel in the altitude direction
  • a first input line having a high rotational axis, a first end having a first input switching part fixed at the other end, and selectively contacting the first input switching part by a solar sensing unit to rotate the solar panel about the high rotational axis
  • a first transmission line having a first connection switching unit, wherein the azimuth driving unit has an azimuth rotation axis for rotating the solar panel in an azimuth direction, a second input line having one end fixed thereto and a second input switching unit at the other end thereof; Is selectively contacted with the second input switching part by the solar sensing unit to And a second transmission line having a second connection switching unit for rotating the battery panel.
  • the solar heat sensing unit is formed in the center of the solar panel, the cylindrical case having four sensing units which are selectively heated by the solar heat therein; and two inside the cylindrical case symmetrically formed on the plane orthogonal to the high-direction rotation axis A first thermal couple having both ends joined to the sensing unit; and a second thermal couple having both ends joined to two sensing units inside the cylindrical case symmetrically formed on a plane perpendicular to the azimuth rotation axis.
  • the first solenoid formed by one of the conductors, the second solenoid formed by one of the conductors of the second thermal couple, and the first solenoid are formed correspondingly, A first magnetic body and a second solenoid contacting the first input switching unit and the first connection switching unit when current flows in the first thermal couple with generated thermoelectric power; And a second magnetic body correspondingly formed to contact the second input switching unit and the second connection switching unit when current flows in the second thermal couple with the thermoelectric power generated by the temperature difference between the two sensing units of the second thermal couple. It is done.
  • the solar sensing unit has a first disc having four sensing units disposed at the center of the same surface as the solar cell panel, and is disposed in parallel with the first disc on the upper side of the first disc so that the four sensing units of the first disc are selectively heated.
  • a disc assembly including a second disc to make; a first thermocouple having both ends joined to two sensing portions of the first disc symmetrically formed on a plane perpendicular to the high-direction rotation axis; and orthogonal to the azimuth rotation axis.
  • a second thermal couple having both ends joined to two sensing portions of the first disc symmetrically formed on the surface; and a first solenoid formed by a conductor of any one of the first thermal couples; and any of the second thermal couples.
  • a second solenoid formed by one conductive wire; and a first connection connected to the first input switching unit when a current flows in the first thermal couple with thermoelectric power corresponding to the first solenoid and generated by a temperature difference between the two sensing units.
  • a first magnetic body contacting the switching unit; and a current formed in the second solenoid corresponding to the second solenoid to contact the second input switching unit and the second connection switching unit when current flows in the second thermal couple.
  • a second magnetic body characterized in that it comprises a.
  • the object includes a parasol
  • the parasol includes a light shielding film
  • a first rotary drive unit including a high tool drive unit for rotating the light shielding film in a high direction, and an azimuth driving unit for rotating the light shielding film in an azimuth direction
  • An upper circumference provided with a first solar heat sensing unit for selectively driving the first rotational driving unit such that the panel normal of the light shielding film is parallel to the sunlight by using thermoelectric power by the temperature difference according to the altitude and the orientation
  • a second rotational drive unit including an east-west drive unit for rotating the light-shielding film in the east-west direction when is close to 0 ° or 180 °; and correspondingly formed to the light-shielding film when the sun's altitude is close to 0 ° or 180 °.
  • Selecting a second rotational drive unit selectively by using the thermoelectric power by the temperature difference of the ground surface shadow surface so that the panel normal of the light shielding film is parallel with the sunlight It characterized in that
  • a solar tracking method includes the steps of sensing solar heat in a plurality of sensing units: sensing a temperature difference between the plurality of sensing units; Allowing current to flow in the thermal couple with thermoelectric power generated by the temperature difference; A solenoid formed by the conducting wire of one of the thermal couples exerts a strong magnet force with the current flowing through the thermal couple; Tracking sunlight by switching an input line and a transmission line of the rotary drive device with the attraction force between the solenoid and the magnetic body; Characterized in that it comprises a.
  • selecting an object having four sensing units selectively heated by solar heat selecting an object having four sensing units selectively heated by solar heat;
  • a first thermal couple having both ends joined to two sensing units disposed on a surface orthogonal to the first rotation axis of the object among four sensing units of the object is prepared, and is orthogonal to the second rotation axis of the object among the four sensing units of the object.
  • Solar sensing unit is a solar sensing member having a plurality of sensing unit that is selectively heated by the solar heat; and at least one thermal couple is bonded to both ends of the plurality of sensing unit of the solar sensing member; At least one solenoid formed by a conductor of any one of the thermal couples; and a rotary drive device when a current flowing in the thermal couple flows with a thermoelectric power formed corresponding to the solenoid and generated by a temperature difference between a plurality of sensing units of the thermal couple. It characterized in that it comprises a; a magnetic material to switch the input line and the transmission line of.
  • the solar tracking device and method according to an embodiment of the present invention has the effect of providing a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun.
  • the solar tracking device has the effect of eliminating the inconvenience of having to manually change the position of the parasol according to the movement of the sun by making a shade at a certain position.
  • the solar heat detection unit according to an embodiment of the present invention has an effect of increasing the accuracy and reliability of the solar tracking while simplifying the structure.
  • FIG. 1 is a perspective view conceptually showing a solar tracking device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view conceptually showing a state in which the solar tracking device shown in FIG. 1 tracks the position of the sun.
  • FIG. 3 is an enlarged perspective view of the solar heat detection unit of the solar tracking device according to an embodiment of the present invention.
  • FIG. 4 is a view conceptually showing the operation relationship between the rotational drive unit and the solar heat detection unit of the solar tracking device according to an embodiment of the present invention.
  • 5 to 7 are views for explaining a solar tracking method of the solar tracking device according to an embodiment of the present invention.
  • FIG. 8 is a view showing a part of the solar tracking device according to another embodiment of the present invention.
  • FIG. 9 is a view showing an example of the coupling relationship between the solar panel and the rotation drive unit.
  • FIG. 10 is a view showing a solar tracking parasol according to an embodiment of the present invention.
  • FIG. 1 is a perspective view conceptually showing a solar tracking device according to an embodiment of the present invention
  • Figure 2 is a perspective view conceptually showing a state in which the solar tracking device shown in Figure 1 tracks the position of the sun
  • 3 is a perspective view showing an enlarged solar heat detection unit of the solar tracking device according to an embodiment of the present invention
  • Figure 4 is an operation of the rotary drive unit and the solar heat detection unit of the solar tracking device according to an embodiment of the present invention
  • the solar tracking device 10 is a solar panel 100, a rotation driving unit for driving the rotation of the solar panel 100 ( 200) and the panel normal Zp of the solar cell panel 100 is rotated to be parallel to the sunlight L using the thermoelectric power generated by the temperature difference between the sun and the sun of the panel according to the altitude and orientation of the sun. It is configured to include a solar heat detection unit 300 for selectively driving the drive unit 200.
  • the solar cell panel 100 may include both panel-shaped panels for absorbing sunlight, such as a solar heat collecting panel that obtains thermal energy from sunlight or a solar power panel that obtains electrical energy from sunlight.
  • the rotary drive unit 200 drives the solar panel 100 in accordance with the altitude and orientation of the sun.
  • the rotary drive unit 200 is a high tool drive unit 210 for driving the solar panel 100 rotates about the rotational axis (H) in the altitude, and the solar cell panel 100 around the azimuth rotational axis (A) It comprises a bearing driving unit 220 for driving rotation.
  • the high tool moving part 210 includes a high rotational axis H for rotating the solar panel 100 in a high direction, a first input line 211 having a first input switching unit 211A, and a first input switching. And a first transfer line 212 having a first connection switching unit 212A for selectively contacting the unit 211A and driving the solar cell panel 100 about the high rotational axis H.
  • the high tool moving unit 210 is the first input switching unit 211A of the first input line 211 and the first connection switching unit 212A of the first transmission line 212 by the solar detection unit 300 to be described later.
  • the solar cell panel 100 can be driven to rotate about the rotational axis H in the high direction.
  • the azimuth driver 220 may include an azimuth rotation axis A for rotating the solar panel 100 in an azimuth direction, a second input line 221 having a second input switching unit 221A, and a second And a second transfer line 222 having a second connection switching unit 222A selectively contacting the input switching unit 221A to rotationally drive the solar panel 100 about the azimuth rotation axis A.
  • the azimuth driving unit 220 is the second input switching unit 221A of the second input line 221 and the second connection switching unit 222A of the second transfer line 222 by the solar heat detection unit 300.
  • the solar cell panel 100 can be driven to rotate about the azimuth rotation axis A.
  • the high tool driving unit 210 and the orientation driving unit 220 of the rotary drive unit 200 is controlled by the solar heat detection unit 300, such a solar heat detection unit 300 is to calculate the altitude and orientation of the sun
  • the direction of the sunlight L is sensed to control the driving of the rotation driving unit 200 such that the panel normal Zp of the solar cell panel 100 is substantially parallel to the sunlight L.
  • the solar thermal sensing unit 300 includes a solar thermal sensing member 310, a thermal couple 320, a solenoid 330, and a magnetic body 340.
  • the solar thermal sensing member 310 may include a cylindrical case 310 installed at a portion that is integrally rotated with the solar cell panel 100.
  • the solar sensing unit 300 is formed in the solar panel 100 and the central portion having a cylindrical case having four sensing units 311 to 314 partially or selectively heated by solar heat.
  • a first thermal couple 321 having both ends joined to two sensing units 311 and 313 disposed on a surface orthogonal to the high rotational axis H in the cylindrical case 310, and the cylindrical case 310.
  • the second thermal couple 322 having both ends joined to the two sensing units 312 and 314 disposed on a surface orthogonal to the azimuth rotation axis A, and to any one of the first thermal couple 321.
  • the first magnetic body 341 and the second solenoid 332 contacting the first input switching unit 211A and the first connection switching unit 212A are formed to correspond to the temperature difference between the two sensing units 312 and 314.
  • the cylindrical case 310 is installed at a portion in which the case normal is integrally rotated with the solar cell panel 100 in a state in which the case normal is aligned in parallel with the panel normal Zp.
  • the cylindrical case 310 In the cylindrical case 310, four sensing units 311 to 314 having the same sensing area are disposed radially symmetric about the case normal, and are arranged at the same angle with respect to the case normal.
  • the four sensing units 311 to 314 are first sensing unit 311, second sensing unit 312, and third sensing unit 313 in a clockwise direction from the left with respect to FIG. 4.
  • the second sensing unit 312 and the fourth sensing unit 314 in the cylindrical case 310 are disposed symmetrically with each other on a plane orthogonal to the azimuth rotation axis A.
  • the first sensing unit 311 and the third sensing unit 313 are formed by joining both ends of a pair of conductive wires made of different metal materials.
  • the thermal couple 320 is selectively connected.
  • the thermal couple 320 includes a first thermal couple 321, a second sensing unit 312, and a fourth sensing unit 314 that sense a temperature difference between the first sensing unit 311 and the third sensing unit 313. It comprises a second thermal couple 322 for detecting a temperature difference of the.
  • the first thermal coupler 321 has a first A lead having one end joined to the first sensing unit 311 inside the cylindrical case 310 and the other end joined to the third sensing unit 313 of the cylindrical case 310.
  • 321A and the first A wire 321A are distinguished, one end of which is joined to the first sensing part 311 of the cylindrical case 310, the center of which forms the first solenoid 331, and the other end of the cylindrical case 310.
  • a first B wire 321B joined to the third sensing unit 313 of FIG.
  • thermal power is generated in the first thermal couple 321 by the Seebeck effect.
  • the first thermal coupler 321 may have various types according to the type of metal.
  • the first A wire 321A and the first B wire 321B may be made of a constantan wire and a copper wire, respectively, and specifically, the constantan wire may be 50-60 wt% Cu and Ni 40-. It may be made of 50% by weight, and the copper conductor may be made of 100% by weight of Cu.
  • the first A wire 321A and the first B wire 321B may be made of chromel wire and aluminel wire, and specifically, the chromel wire is Ni 80-90 weight. % And Cr 10-20% by weight, the aluminel wire may be composed of 92-96% by weight of Ni, 1-3% by weight of Mn and 1-3% by weight of Al.
  • first A wire 321A and the first B wire 321B may be made of a chromel lead and a constantan lead, respectively, and specifically, the chromel lead is made of Ni-80-90 wt% and Cr 10-20. Consisting of the weight percent, Constantan wire may be made of 50-60% by weight of Cu and 40-50% by weight of Ni.
  • first A wire 321A and the first B wire 321B may be made of iron wire and constantan wire, and specifically, the iron wire is made of 100% by weight of Fe.
  • Tantalum lead may be composed of 50-60 wt% Cu and 40-50 wt% Ni.
  • the first A wires 321A and the first B wires 321B may be formed of a nicrosil wire and a nisil wire, respectively. It is composed of the wt% and Cr 9-17% by weight and Si 1-3% by weight, the nisyl wire may be composed of 92-97% by weight of Ni and 2.9-6% by weight of Si and 0.1-1% by weight of Mg.
  • the second thermal coupler 322 has a second A lead having one end joined to the second sensing unit 312 inside the cylindrical case 310 and the other end joined to the fourth sensing unit 314 of the cylindrical case 310. 322A) and the second A wire 322A, one end of which is joined to the second sensing part 312 of the cylindrical case 310, the center of which forms the second solenoid 332, and the other end of the cylindrical case 310. And a second B lead 322B bonded to the fourth sensing part 314 of the second sensor.
  • thermoelectric power is generated in the second thermal couple 322 by the Seebeck effect.
  • the second thermal couple 322 has a variety of types depending on the type of the metal, the description of the second A wire and the second B wire constituting the second thermal couple (322) of the first thermal couple 321 described above Replace with the description of the 1A wire and the 1B wire.
  • an amplifier (not shown) is connected to the first and second thermal couples 321 and 322, respectively, to amplify the thermoelectric power generated by the temperature difference between the junctions 311, 313, 312 and 314. That is, since the thermoelectric power generated in the first and second thermal couples 321 and 322 has a small value, the thermoelectric power is amplified by the amplifier. At this time, the thermoelectric power is amplified several times through the amplifier. The solenoids 331 and 332 can obtain the thermal power enough to exert the force of the magnet. Of course, the number of the amplifiers may be determined according to how much amplification of the thermal power generated in the first and second thermal couples 321 and 322.
  • FIGS. 5 to 7 is a view showing a state in which the first sensing portion and the fourth sensing portion of the cylindrical case are in contact with the heating according to the altitude of the sun.
  • thermoelectric force appearing between the two contacts 311 and 313 is determined according to the type of metal and the temperature difference between the junctions, and the larger the temperature difference between the two contacts is, the larger the thermoelectric force is.
  • the first solenoid 331 since the thermoelectric power is generated due to the temperature difference between the heating contact 311 and the cooling contact 313 of the first thermal couple 321 and current flows in the closed circuit, the first solenoid 331 exhibits a strong magnet force. do.
  • the first magnetic material 341 is magnetized by the force of the strong magnet of the first solenoid 331 and is attached to the terminal side of the first solenoid 331.
  • the high tool driving unit 210 is the solar cell panel 100.
  • the panel normal Zp of the solar cell panel 100 is operated to be substantially parallel to the sunlight L. As shown in FIG.
  • the high tool moving part 210 has a first sensing part disposed on a surface of the solar cell panel 100 that is substantially parallel to the solar beam L and perpendicular to the altitude rotation axis H.
  • the temperatures of the 311 and the third sensing unit 313 are the same, the rotational driving of the solar cell panel 100 based on the high-direction rotation axis H is stopped.
  • first sensing unit 311 and the fourth sensing unit 314 of the cylindrical case 310 is a heating contact according to the altitude of the sun, between the second sensing unit 312 and the fourth sensing unit 314.
  • a temperature difference is generated in the second thermal coupler 322 due to the Seebeck effect.
  • the second solenoid 332 since the thermoelectric power is generated due to the temperature difference between the heating contact 314 and the cooling contact 312 of the second thermal couple 322 and a current flows in the closed circuit, the second solenoid 332 exhibits a strong magnet force. do.
  • the second magnetic body 342 is magnetized by the force of the strong magnet of the second solenoid 332 and sticks to the terminal side of the second solenoid 332.
  • the second input line 221 is drawn by pulling the second input line 221 of the bearing driving unit toward the second transmission line 222 of the bearing driving unit by the attraction force of the second solenoid 332 and the second magnetic body 342. Since the second input switching unit (221A) and the second connection switching unit 222A of the second transfer line 222 is switched in contact with each other, the azimuth driving unit 320 is the panel normal (Zp) of the solar cell panel 100 The solar cell panel 100 is rotationally driven so as to be substantially parallel to the sunlight L.
  • the azimuth driver 220 includes a second sensing part disposed on a surface perpendicular to the azimuth rotation axis A because the panel normal line Zp of the solar cell panel 100 is substantially parallel to the sunlight L. As shown in FIG. When the temperatures of 312 and the fourth sensing unit 314 are the same, rotational driving of the solar cell panel 100 with respect to the azimuth rotation axis A is stopped. (See Fig. 4)
  • FIG. 6 is a view showing a state in which the fourth sensing unit of the cylindrical case is a heating contact according to the altitude of the sun.
  • thermoelectric power is generated due to the temperature difference between the heating contact 314 and the cooling contact 312 of the second thermal couple 322 and a current flows in the closed circuit, the second solenoid 332 exhibits a strong magnet force. do.
  • the second input switching unit 221A of the second input line 221 and the second connection switching unit of the second transfer line 222 by the attraction force between the second solenoid 332 and the second magnetic body 342. Since the 222A contacts and switches, the azimuth driver 320 rotates the solar cell panel 100 such that the panel normal Zp of the solar cell panel 100 is substantially parallel to the solar light L.
  • the azimuth driver 220 includes a second sensing part disposed on a surface perpendicular to the azimuth rotation axis A because the panel normal line Zp of the solar cell panel 100 is substantially parallel to the sunlight L. As shown in FIG. When the temperatures of 312 and the fourth sensing unit 314 are the same, rotational driving of the solar cell panel 100 with respect to the azimuth rotation axis A is stopped. (See Fig. 4)
  • FIG. 7 is a diagram illustrating a state in which a temperature difference of the first to fourth sensing units of the cylindrical case does not occur according to the altitude of the sun.
  • thermoelectric power is generated.
  • the solar cell panel 100 is not driven to rotate. (See Fig. 4)
  • FIG. 8 is a view showing a part of the solar tracking device according to another embodiment of the present invention.
  • the solar tracking device 10 includes a solar panel 100 and a rotation driving unit (not shown) for rotationally driving the solar panel 100. And, using the thermoelectric power generated by the temperature difference between the sun and the sun of the panel according to the altitude and orientation of the sun rotation drive unit 200 so that the panel normal of the solar panel 100 is parallel to the sunlight (L) It is configured to include a solar heat detection unit 500 to selectively drive.
  • the solar sensing unit 300 may include a first disc 511 formed and disposed at the center of the same surface as the solar cell panel 100 and the first disc 511.
  • Disc assembly 510 including a second disc 512 disposed on the first disc 511 in parallel with the first disc 511 to selectively heat four sensing units of the first disc 511.
  • a first thermocouple having both ends joined to two sensing parts 311 ′ and 313 ′ disposed on a surface orthogonal to the high rotational axis H in the first disc 511 of the disc assembly 510.
  • the first solenoid 331 formed by the conducting wire of any one of the first thermal couples 321, and the conducting wire of any one of the second thermal couple 322.
  • the second solenoid 332 is formed to correspond to the first solenoid 331 and the thermoelectric power is generated by the temperature difference between the two sensing units 311 ′ and 313 ′ so that a current is generated in the first thermal couple 321.
  • the first magnetic body 341 and the second solenoid 332 contacting the first input switching unit 211A and the first connection switching unit 212A are formed to correspond to the thermal power generated by the temperature difference between the two sensing units.
  • the second magnetic body 342 contacts the second input switching unit 221A and the second connection switching unit 222A.
  • the disc assembly 510 is installed at a portion in which the disc normal is integrally rotated with the solar cell panel 100 in a state in which the disc normal is aligned in parallel with the panel normal Zp.
  • the disc assembly 510 is arranged in parallel with the first disc 511 and the first disc 511 disposed on the same surface as the solar cell panel 100 and on the upper side of the first disc 511.
  • sensing units 311 ′ through 314 ′ having the same sensing area are arranged radially symmetric about the disc normal, but are arranged at the same angle with respect to the disc normal.
  • the second disc 512 selectively forms four shadows on the four detectors 311 ′ through 314 ′ of the first disc 511 according to the sun's altitude and azimuth and thus detects the four discs of the first disc 511.
  • the temperature difference between 311 'and 314' is generated.
  • the second disc 512 forms a shadow on the first detector 311 ′ of the first disc 511 to form a shadow. 311 ′) and a temperature difference between the third sensing unit 313 ′.
  • thermoelectric power is generated in the first thermal couple 321 and the second thermal couple 322 by the Seebeck effect.
  • thermoelectric power is generated due to the temperature difference between the heating contact 313 'and the cooling contact 311' of the first thermal couple 321 and the second thermal couple 322, and a current flows in the closed circuit, the wire is closed.
  • the first solenoid 331 and the second solenoid 332 is a strong magnetic force, the first magnetic body 341 and the second magnetic body 342 is magnetized so that the first solenoid 331 and the second solenoid ( 332) respectively stick to the terminal side.
  • the first input line 211 (or azimuth drive unit) of the old tool driving unit 210 by the attraction force between the first solenoid 331 and the first magnetic body 341 (or the second solenoid and the second magnetic body 342).
  • the first input line First input switching unit 211A (or second input switching unit 221A of second input line 221) of 211 and first connection switching unit 212A of first transmission line 212 (or Since the second connection switching unit 222A of the second transmission line 222 is selectively contacted and switched
  • the high tool driving unit 210 (or azimuth driving unit 220) has a solar panel normal of the solar panel 100. Solar drive panel 100 can be driven to rotate until substantially parallel to.
  • FIG. 9 is a view showing an example of the coupling relationship between the solar panel and the rotation drive unit.
  • the rotation driving unit 200 includes a first gear part 200A fixed to the rear surface of the solar cell panel 100 and a second gear part meshed with the first gear part 200A.
  • the first motor unit 200C may selectively include the first motor unit 200C for driving the first gear unit 200A.
  • the first motor part 200C is driven so that the second gear part 200B and the first gear part 200A are driven.
  • the solar panel 100 which is sequentially rotated and having the first gear part 200A fixed thereto may be driven according to the altitude or orientation of the sun. (See Fig. 4)
  • FIG. 10 is a view showing a solar tracking parasol according to an embodiment of the present invention.
  • the solar tracking parasol 10 ′′ includes a light shielding film 100 ′, a first rotation driving unit 200 ′, and a first solar heat sensing unit 300 ′.
  • the light shielding film 100 ′ may be various types of films that strike to cover the sun.
  • the first rotation driving unit 200 ′ is a high tool drive unit 210 ′ that drives the light blocking film 100 ′ to rotate about the high direction rotation axis H, and a light shielding film 100 ′ about the high direction rotation axis H. It comprises a bearing driving unit 220 'for driving the rotation.
  • the high tool moving part 210 ′ selectively rotates the high rotational axis H to rotate the light shielding film 100 ′ in the high direction, and the first input line and the first transmission line not shown to contact the high rotational axis H.
  • the first transmission member 600 for driving the light-shielding film 100 'to rotate around the.
  • the first transfer member 600 is a first connection member 610 connecting two points of the light shielding film 100 'which is symmetrically formed on a plane perpendicular to the high direction rotation axis H, and the high direction rotation axis H.
  • the first chain 620 is fixed to both ends of the first connection member 610 while winding).
  • the azimuth driver 220 ′ selectively contacts the azimuth rotation axis A for rotating the light blocking film 100 ′ in the azimuth direction, and the second input line and the second transmission line (not shown) to selectively rotate the azimuth rotation shaft ( And a second transfer member 700 which rotates the light blocking film 100 'about A).
  • the second transfer member 700 is a second connecting member 710 connecting two points of the light shielding film 100 'which is symmetrically formed on a plane perpendicular to the azimuth rotation axis A, and the high rotation axis H. ) And a second chain 720 fixed at both ends at two points of the second connection member 720 while winding.
  • the light blocking film 100 ′ and the first rotation driving unit 200 ′ are connected to the upper column U.
  • the upper column U may be disposed at the center of the light shielding film 100 ′ to guide the first solar sensing unit 300 ′ having a cylindrical case 310 for sensing solar heat and to adjust the angle of the cylindrical case 310.
  • the first solar thermal sensing unit 300 ′ having the cylindrical case 310 has the same structure as the solar thermal sensing unit illustrated in FIG. 4. That is, the first solar heat detection unit 300 'is disposed at the center of the light shielding film 100' and has a cylindrical case 310 having four sensing parts 311 to 314 selectively heated by solar heat, and a cylindrical case ( First thermocouple 321 having both ends joined to two sensing parts 311 and 313 disposed on a surface orthogonal to the rotational axis H in the direction 310, and an azimuth rotation axis A in the cylindrical case 310.
  • the second thermal coupler 322 having both ends joined to the two sensing units 312 and 314 disposed on a plane perpendicular to the cross-section), and the first solenoid 331 formed by any one of the first thermal coupler 321.
  • the first magnetic body 341 and the second solenoid 332 which contact the switching unit 212A are formed to correspond to the second solenoid 332 to generate thermal power due to the temperature difference between the two sensing units 312 and 314.
  • the second magnetic body 342 is configured to contact the second input switching unit 221A and the second connection switching unit 222A when current flows. (See Fig. 4)
  • the first solenoid 331 and the second solenoid ( 332 is a strong magnet, so that the first magnetic material 341 and the second magnetic material 342 stick to the terminals of the first solenoid 331 and the second solenoid 342, respectively.
  • the first input line 211 (or the first tool line 211) of the old tool moving part 210 by the attraction force between the first solenoid 331 and the first magnetic body 341 (or the second solenoid 332 and the second magnetic body 342).
  • the second input line 221 of the azimuth drive unit 220 By pulling the second input line 221 of the azimuth drive unit 220 toward the first transfer line 212 (or the second transfer line 222 of the azimuth drive unit 220) of the old tool drive unit 210.
  • the first input switching unit 211A of the first input line 211 (or the second input switching unit 221A of the second input line 221) and the first connection switching unit 212A of the first transmission line 212.
  • the high tool driving unit 210 (or the azimuth driving unit 220) has a normal line of the light shielding film 100 '.
  • the light blocking film 100 ' can be driven to rotate until it is substantially parallel to the light beam.
  • the second rotation driving unit 200 ′′ drives the lower column B around the east-west rotation axis 211 ′′ so that the normal line of the light shielding film 100 ′ is substantially parallel to the sun. (210 '').
  • the second solar thermal detection unit 200 ′′ includes a thermal couple 320 having both ends joined to two sensing units S1 and S2 disposed in the east-west direction on the shadow surface S formed by the light shielding film.
  • the solenoid 330 formed by any one of the thermal couplers 320 and the solenoid 330 are formed to correspond to the solenoid 330 to generate thermal power due to the temperature difference between the two sensing units S1 and S2.
  • a magnetic material 340 is formed to contact the input line and the transfer line, which are not shown. (See Fig. 3)
  • the cylindrical case 310 of the first solar heat detection unit 300 ' can detect the solar heat. Difficult to detect the solar heat, even if the normal of the light shielding film and the parallel to the sunlight, since the change in the shadow position is increased according to the altitude of the sun is lowered, the second solar drive unit 300 '' to detect the solar heat and the second rotary drive unit By adjusting the angle of the lower column (U) through (200 '') to maintain the position of the shadow generated by the light shielding film (100 ') constant.
  • the second solar heat detection unit 300 ′′ By sensing the position of the sun it is possible to drive the east-west drive unit 210 '' of the second rotary drive unit 200 ''.
  • the solar tracking device is driven to rotate so that the panel normal of the object is parallel to the sunlight by using thermoelectric power generated by the temperature difference of the object panel according to the altitude and orientation of the sun.
  • the basic technical idea is to increase the utilization efficiency of sunlight through the solar sensing unit that selectively drives the unit. Accordingly, of course, many other modifications are possible to those of ordinary skill in the art within the scope of the basic technical idea of the present invention.
  • the solar tracking device and method according to an embodiment of the present invention has the effect of providing a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun.
  • by accurately detecting the position of the sun to be able to control the rotary drive unit for driving the tracking device rotation. It also allows the sun to be tracked while simplifying the structure for small power plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

One aspect of the present invention relates to an apparatus for tracking sunlight so as to be capable of improving the efficiency of sunlight use by tracking the position of the sun. The apparatus for tracking sunlight according to one embodiment of the present invention is characterized in that it comprises: a rotation-driving unit for driving the rotation of an object having a panel; and a unit for detecting solar heat for using a thermoelectric current generated by a temperature difference between a sunny spot and a shady spot, which are formed according to the altitude and bearing of the sun, and then selectively driving the rotation-driving unit so that a panel normal line of the object becomes parallel to a line of sunlight.

Description

태양광 추적장치, 태양광 추적방법, 태양열 감지유닛Solar tracking device, solar tracking method, solar heat detection unit
본 발명은 태양광 추적장치 및 방법에 관한 것으로, 더욱 상세하게는 양지와 음지에 따른 감지부의 온도차를 이용하여 태양의 위치를 추적하여 태양광의 이용 효율을 높일 수 있는 태양광 추적장치 및 방법에 관한 것이다.The present invention relates to a solar tracking device and method, and more particularly, to a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun using the temperature difference of the detection unit according to the sun and shade. will be.
최근 화석연료를 대체하면서도 환경오염 문제를 발생시키지 않는 청정 에너지원인 태양광을 이용한 친환경 에너지 설비인 태양광 발전장치의 시공이 점진적으로 증가하는 추세이다. Recently, the construction of photovoltaic devices, which are environmentally friendly energy facilities using solar, which is a clean energy source that does not cause environmental pollution while replacing fossil fuels, is gradually increasing.
태양광 발전장치는 태양전지모듈이 장착된 패널이 고정된 고정식과 태양의 궤도를 추종하는 추적식으로 분류할 수 있다.The photovoltaic device can be classified into a fixed type in which a panel on which a solar cell module is mounted is fixed and a tracking type that tracks the orbit of the sun.
추적식은 태양의 직사광선이 태양광을 입사받는 태양전지모듈에 수직으로 입사할 수 있도록 동력을 이용하여 태양의 위치를 추적해 가는 방식으로 고정식에 비해 발전효율이 수십 퍼센트 이상 높은 장점이 있다. The tracking type tracks the position of the sun using power so that the direct sunlight of the sun can enter the solar cell module receiving the sunlight vertically.
즉, 태양은 일출에서 일몰까지의 시간 동안 궤도를 따라 이동하게 되므로 태양광을 이용한 장치가 고정되어 있을 경우 태양광을 최적 조건에서 받아들이지 못하게 되어 시스템의 효율을 저하시키게 된다. That is, since the sun moves along the orbit from sunrise to sunset, when the device using the solar light is fixed, the sun cannot be received under optimal conditions, thereby degrading the efficiency of the system.
따라서, 태양광을 받아들이는 태양전지모듈을 태양의 이동궤도를 따라 추적하게 될 경우에, 태양광을 최적의 조건에서 장시간 지속적으로 받아들일 수 있게 되어 시스템의 효율을 상승시킬 수 있다. Therefore, when the solar cell module receiving the sunlight is tracked along the trajectory of the sun, it is possible to continuously receive the sunlight under the optimal conditions for a long time, thereby increasing the efficiency of the system.
종래 태양 추적식 태양열 발전장치는 다수 개발되어 있으나, 이들 모두 구조 및 구성이 복잡하고, 시스템 효율을 증가시키기 위해서는 상대적으로 대형의 태양전지모듈의 설치가 요구되어 제작상 공간의 제약이나 제작비용이 증대되는 문제점이 있었다.Conventional solar tracking solar power generators have been developed, but all of them are complicated in structure and configuration, and in order to increase system efficiency, installation of a relatively large solar cell module is required, resulting in increased space constraints and manufacturing costs. There was a problem.
본 발명의 일 측면은 태양의 위치를 추적하여 태양광의 이용 효율을 높일 수 있는 태양광 추적장치 및 방법을 제공하는 것에 있다. One aspect of the present invention is to provide a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun.
본 발명의 다른 측면은 태양의 위치를 정확하게 감지하여 추적장치를 구동하는 회전구동유닛을 제어할 수 있도록 하는 태양광 추적장치 및 방법을 제공하는 것에 있다. Another aspect of the present invention is to provide a solar tracking device and method that can accurately detect the position of the sun to control the rotary drive unit for driving the tracking device.
본 발명의 또 다른 측면은 소규모 발전설비에도 적합하도록 구조를 단순화하면서도 태양을 추적할 수 있는 태양광 추적장치 및 방법을 제공하는 것에 있다. Another aspect of the present invention is to provide a solar tracking device and method that can track the sun while simplifying the structure to be suitable for small-scale power generation facilities.
본 발명의 또 다른 측면은 태양위치 추적의 정확성 및 신뢰성을 높일 수 있는 태양열 감지유닛을 제공하는 것에 있다.Another aspect of the present invention is to provide a solar heat detection unit that can increase the accuracy and reliability of solar tracking.
본 발명의 실시예에 따른 태양광 추적장치는 패널이 구비된 대상물을 회전 구동시키기 위한 회전구동유닛;과, 태양의 고도와 방위에 따른 패널의 양지와 음지의 온도차에 의하여 생성되는 열기전력을 이용하여 대상물의 패널 법선이 태양광선과 평행이 되도록 회전구동유닛을 선택적으로 구동시키는 태양열 감지유닛;을 포함하는 것을 특징으로 한다. According to an embodiment of the present invention, a solar tracking device includes a rotation driving unit for rotating and driving an object having a panel; and thermoelectric power generated by a temperature difference between sunny and shaded panels according to altitude and azimuth of the sun. And a solar sensing unit for selectively driving the rotation driving unit such that the panel normal of the object is parallel to the sunlight.
또한, 대상물은 태양전지패널을 포함하는 것을 특징으로 한다. In addition, the object is characterized in that it comprises a solar panel.
또한, 회전구동유닛은 태양전지패널을 고도 방향으로 회전 구동시키는 고도구동부와, 태양전지패널을 방위 방향으로 회전 구동시키는 방위구동부를 포함하며, 고도구동부는 태양전지패널을 고도 방향으로 회전 구동시키기 위한 고도방향 회전축과, 일단이 고정되고 타단에는 제1입력스위칭부를 가지는 제1입력라인과, 태양열 감지유닛에 의해 제1입력스위칭부와 선택적으로 접촉되어 고도방향 회전축을 중심으로 태양전지패널을 회전 구동시키는 제1연결스위칭부를 가지는 제1전달라인을 구비하며, 방위구동부는 태양전지패널을 방위 방향으로 회전시키기 위한 방위방향 회전축과, 일단이 고정되고 타단에는 제2입력스위칭부를 가지는 제2입력라인과, 태양열 감지유닛에 의해 제2입력스위칭부와 선택적으로 접촉되어 방위방향 회전축을 중심으로 태양전지패널을 회전 구동시키는 제2연결스위칭부를 가지는 제2전달라인을 구비하는 것을 특징으로 한다. In addition, the rotation driving unit includes a high tool drive unit for rotating the solar panel in the altitude direction, and a bearing drive unit for rotating the solar panel in the azimuth direction, the high tool drive unit for rotating the solar panel in the altitude direction A first input line having a high rotational axis, a first end having a first input switching part fixed at the other end, and selectively contacting the first input switching part by a solar sensing unit to rotate the solar panel about the high rotational axis; And a first transmission line having a first connection switching unit, wherein the azimuth driving unit has an azimuth rotation axis for rotating the solar panel in an azimuth direction, a second input line having one end fixed thereto and a second input switching unit at the other end thereof; Is selectively contacted with the second input switching part by the solar sensing unit to And a second transmission line having a second connection switching unit for rotating the battery panel.
또한, 태양열 감지유닛은 태양전지패널의 중앙부에 형성되되 내부에 태양열에 의해 선택적으로 가열되는 4개 감지부를 가지는 원통형 케이스;와, 고도방향 회전축과 직교하는 면상에서 대칭 형성되는 원통형 케이스 내부의 2개 감지부에 양단부가 접합되는 제1써머 커플;과, 방위방향 회전축과 직교하는 면상에서 대칭 형성되는 원통형 케이스 내부의 2개의 감지부에 양단부가 접합되는 제2써머 커플;과, 제1써머 커플 중 어느 하나의 도선에 의해 형성되는 제1솔레노이드와, 제2써머 커플 중 어느 하나의 도선에 의해 형성되는 제2솔레노이드와, 제1솔레노이드에 대응 형성되되 제1써머 커플의 2개 감지부 온도차에 의해 생성되는 열기전력으로 제1써머 커플에 전류가 흐르면 제1입력스위칭부와 제1연결스위칭부를 접촉시키는 제1자성체와, 제2솔레노이드에 대응 형성되어 제2써머 커플의 2개 감지부 온도차에 의해 생성되는 열기전력으로 제2써머 커플에 전류가 흐르면 제2입력스위칭부와 제2연결스위칭부를 접촉시키는 제2자성체;를 포함하는 것을 특징으로 한다. In addition, the solar heat sensing unit is formed in the center of the solar panel, the cylindrical case having four sensing units which are selectively heated by the solar heat therein; and two inside the cylindrical case symmetrically formed on the plane orthogonal to the high-direction rotation axis A first thermal couple having both ends joined to the sensing unit; and a second thermal couple having both ends joined to two sensing units inside the cylindrical case symmetrically formed on a plane perpendicular to the azimuth rotation axis. The first solenoid formed by one of the conductors, the second solenoid formed by one of the conductors of the second thermal couple, and the first solenoid are formed correspondingly, A first magnetic body and a second solenoid contacting the first input switching unit and the first connection switching unit when current flows in the first thermal couple with generated thermoelectric power; And a second magnetic body correspondingly formed to contact the second input switching unit and the second connection switching unit when current flows in the second thermal couple with the thermoelectric power generated by the temperature difference between the two sensing units of the second thermal couple. It is done.
또한, 태양열 감지유닛은 태양전지패널과 동일면 중앙부에 배치되는 4개 감지부를 가지는 제1원판과, 제1원판의 상측에서 제1원판과 평행하게 배치되어 제1원판의 4개 감지부가 선택적으로 가열되게 하는 제2원판을 포함하는 원판조립체;와, 고도방향 회전축과 직교하는 면상에서 대칭 형성되는 제1원판의 2개 감지부에 양단부가 접합되는 제1써머 커플;과, 방위방향 회전축과 직교하는 면상에 대칭 형성되는 제1원판의 2개 감지부에 양단부가 접합되는 제2써머 커플;과, 제1써머 커플 중 어느 하나의 도선에 의해 형성되는 제1솔레노이드;와, 제2써머 커플 중 어느 하나의 도선에 의해 형성되는 제2솔레노이드;와, 제1솔레노이드에 대응 형성되어 2개 감지부의 온도차에 의해 생성되는 열기전력으로 제1써머 커플에 전류가 흐르면 제1입력스위칭부와 제1연결스위칭부를 접촉시키는 제1자성체;과, 제2솔레노이드에 대응 형성되어 2개의 감지부의 온도차에 의해 생성되는 열기전력으로 제2써머 커플에 전류가 흐르면 제2입력스위칭부와 제2연결스위칭부를 접촉시키는 제2자성체;를 포함하는 것을 특징으로 한다. In addition, the solar sensing unit has a first disc having four sensing units disposed at the center of the same surface as the solar cell panel, and is disposed in parallel with the first disc on the upper side of the first disc so that the four sensing units of the first disc are selectively heated. A disc assembly including a second disc to make; a first thermocouple having both ends joined to two sensing portions of the first disc symmetrically formed on a plane perpendicular to the high-direction rotation axis; and orthogonal to the azimuth rotation axis. A second thermal couple having both ends joined to two sensing portions of the first disc symmetrically formed on the surface; and a first solenoid formed by a conductor of any one of the first thermal couples; and any of the second thermal couples. A second solenoid formed by one conductive wire; and a first connection connected to the first input switching unit when a current flows in the first thermal couple with thermoelectric power corresponding to the first solenoid and generated by a temperature difference between the two sensing units. A first magnetic body contacting the switching unit; and a current formed in the second solenoid corresponding to the second solenoid to contact the second input switching unit and the second connection switching unit when current flows in the second thermal couple. A second magnetic body; characterized in that it comprises a.
또한, 대상물은 파라솔을 포함하며, 파라솔은 차광막;과, 차광막을 고도 방향으로 회전 구동시키는 고도구동부와, 차광막을 방위 방향으로 회전 구동시키는 방위구동부를 포함하는 제1회전구동유닛;과, 태양의 고도와 방위에 따른 온도차에 의한 열기전력을 이용하여 차광막의 패널 법선이 태양광선과 평행이 되도록 제1회전구동유닛을 선택적으로 구동시키는 제1태양열 감지유닛이 구비된 상부지주와;, 태양의 고도가 0°또는 180°에 근접하는 경우 차광막을 동서방향으로 회전 구동시키는 동서방향 구동부를 포함하는 제2회전구동유닛;,과, 태양의 고도가 0°또는 180°에 근접하는 때 차광막에 대응 형성되는 지표면 그림자면의 온도차에 의한 열기전력을 이용하여 차광막의 패널 법선이 태양광선과 평행이 되도록 제2회전구동유닛을 선택적으로 제2태양열 감지유닛이 구비된 하부지주;를 포함하는 것을 특징으로 한다. In addition, the object includes a parasol, and the parasol includes a light shielding film; a first rotary drive unit including a high tool drive unit for rotating the light shielding film in a high direction, and an azimuth driving unit for rotating the light shielding film in an azimuth direction; An upper circumference provided with a first solar heat sensing unit for selectively driving the first rotational driving unit such that the panel normal of the light shielding film is parallel to the sunlight by using thermoelectric power by the temperature difference according to the altitude and the orientation; A second rotational drive unit including an east-west drive unit for rotating the light-shielding film in the east-west direction when is close to 0 ° or 180 °; and correspondingly formed to the light-shielding film when the sun's altitude is close to 0 ° or 180 °. Selecting a second rotational drive unit selectively by using the thermoelectric power by the temperature difference of the ground surface shadow surface so that the panel normal of the light shielding film is parallel with the sunlight It characterized in that it comprises a; thermal unit is provided with a lower holding.
본 발명의 실시예에 따른 태양광 추적방법은 복수의 감지부에서 태양열을 감지하는 단계: 복수의 감지부 사이에 온도차를 감지하는 단계; 온도차에 의해 생성되는 열기전력으로 써머 커플에 전류가 흐르도록 하는 단계; 써머 커플에 흐르는 전류로 써머 커플 중 하나의 도선에 의해 형성되는 솔레노이드가 강한 자석의 힘을 띄는 단계; 솔레노이드와 자성체 사이의 인력으로 회전구동장치의 입력라인과 전달라인을 스위칭시켜 태양광을 추적하는 단계; 를 포함하는 것을 특징으로 한다. A solar tracking method according to an embodiment of the present invention includes the steps of sensing solar heat in a plurality of sensing units: sensing a temperature difference between the plurality of sensing units; Allowing current to flow in the thermal couple with thermoelectric power generated by the temperature difference; A solenoid formed by the conducting wire of one of the thermal couples exerts a strong magnet force with the current flowing through the thermal couple; Tracking sunlight by switching an input line and a transmission line of the rotary drive device with the attraction force between the solenoid and the magnetic body; Characterized in that it comprises a.
본 발명의 실시예에 따른 태양광 추적방법을 다른 측면에서 본다면, 태양열에 의해 선택적으로 가열되는 4개의 감지부를 가지는 대상물을 선택하는 단계; 대상물의 4개의 감지부 중 대상물의 제1회전축과 직교하는 면상에 배치된 2개의 감지부에 양단부가 접합되는 제1써머 커플을 준비하고, 대상물의 4개의 감지부 중 대상물의 제2회전축과 직교하는 면상에 배치된 2개의 감지부에 양단부가 접합되는 제2써머 커플을 준비하는 단계; 제1써머 커플과 제2써머 커플 각각 양단부의 온도차에 의해 생성되는 열기전력을 이용하여 대상물의 패널 법선이 태양광선과 평행이 되도록 제1회전축과 제2회전축을 선택적으로 구동시켜 태양을 추적하는 단계;를 포함하는 것을 특징으로 한다. According to another aspect of the solar tracking method according to an embodiment of the present invention, selecting an object having four sensing units selectively heated by solar heat; A first thermal couple having both ends joined to two sensing units disposed on a surface orthogonal to the first rotation axis of the object among four sensing units of the object is prepared, and is orthogonal to the second rotation axis of the object among the four sensing units of the object. Preparing a second thermal couple having both ends joined to two sensing units disposed on a surface thereof; Tracking the sun by selectively driving the first and second rotating shafts so that the panel normal of the object is parallel with the sunlight by using the thermoelectric power generated by the temperature difference between the first thermal couple and the second thermal couple, respectively. It characterized by including.
본 발명의 실시예에 따른 태양열 감지유닛은 태양열에 의해 선택적으로 가열되는 복수의 감지부를 가지는 태양열 감지부재;와, 태양열 감지부재의 복수의 감지부에 양단부가 접합되는 적어도 하나의 써머 커플;과, 써머 커플 중 어느 하나의 도선에 의해 형성되는 적어도 하나의 솔레노이드;와, 솔레노이드에 대응 형성되되 써머 커플의 복수의 감지부 사이의 온도차에 의해 생성되는 열기전력으로 써머 커플에 흐르는 전류가 흐르면 회전구동장치의 입력라인과 전달라인이 스위칭되게 하는 자성체;를 포함하는 것을 특징으로 한다. Solar sensing unit according to an embodiment of the present invention is a solar sensing member having a plurality of sensing unit that is selectively heated by the solar heat; and at least one thermal couple is bonded to both ends of the plurality of sensing unit of the solar sensing member; At least one solenoid formed by a conductor of any one of the thermal couples; and a rotary drive device when a current flowing in the thermal couple flows with a thermoelectric power formed corresponding to the solenoid and generated by a temperature difference between a plurality of sensing units of the thermal couple. It characterized in that it comprises a; a magnetic material to switch the input line and the transmission line of.
또한, 써머 커플에 흐르는 전류를 증폭시키는 증폭기를 더 포함하는 것을 특징으로 한다. In addition, it characterized in that it further comprises an amplifier for amplifying the current flowing in the thermal couple.
따라서, 본 발명의 실시예에 따른 태양광 추적장치 및 방법은 태양의 위치를 추적하여 태양광의 이용 효율을 높일 수 있는 태양광 추적장치 및 방법을 제공하는 효과가 있다. 또한, 태양의 위치를 정확하게 감지하여 추적장치를 회전 구동시키는 회전구동유닛을 제어할 수 있도록 한다. 또한, 소규모 발전설비에도 적합하도록 구조를 단순화하면서도 태양을 추적할 수 있도록 한다. Therefore, the solar tracking device and method according to an embodiment of the present invention has the effect of providing a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun. In addition, by accurately detecting the position of the sun to control the rotary drive unit for driving the tracking device rotation. It also allows the sun to be tracked while simplifying the structure for small power plants.
또한, 본 발명의 실시예에 따른 태양광 추적장치는 일정한 위치에 그늘을 만들어 태양의 이동에 따라 파라솔의 위치를 수동으로 바꾸어야 하는 불편함을 해소하는 효과가 있다.In addition, the solar tracking device according to an embodiment of the present invention has the effect of eliminating the inconvenience of having to manually change the position of the parasol according to the movement of the sun by making a shade at a certain position.
또한, 본 발명의 실시예에 따른 태양열 감지유닛은 구조를 간단히 하면서도 태양위치 추적의 정확성 및 신뢰성을 높일 수 있도록 하는 효과가 있다. In addition, the solar heat detection unit according to an embodiment of the present invention has an effect of increasing the accuracy and reliability of the solar tracking while simplifying the structure.
도 1은 본 발명의 일 실시예에 따른 태양광 추적장치를 개념적으로 나타낸 사시도이다. 1 is a perspective view conceptually showing a solar tracking device according to an embodiment of the present invention.
도 2는 도 1에 도시된 태양광 추적장치가 태양의 위치를 추적하는 상태를 개념적으로 나타낸 사시도이다. 2 is a perspective view conceptually showing a state in which the solar tracking device shown in FIG. 1 tracks the position of the sun.
도 3은 본 발명의 일 실시예에 따른 태양광 추적장치의 태양열 감지유닛을 확대하여 나타낸 사시도이다. Figure 3 is an enlarged perspective view of the solar heat detection unit of the solar tracking device according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 태양광 추적장치의 회전구동유닛과 태양열 감지유닛의 동작관계를 개념적으로 나타낸 도면이다. 4 is a view conceptually showing the operation relationship between the rotational drive unit and the solar heat detection unit of the solar tracking device according to an embodiment of the present invention.
도 5 내지 도 7을 참조하여 본 발명의 일 실시예에 따른 태양광 추적장치의 태양광 추적방법을 설명하기 위한 도면이다. 5 to 7 are views for explaining a solar tracking method of the solar tracking device according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 태양광 추적장치의 일부를 나타낸 도면이다. 8 is a view showing a part of the solar tracking device according to another embodiment of the present invention.
도 9는 태양전지패널과 회전구동유닛의 결합관계를 일례로 나타낸 도면이다. 9 is a view showing an example of the coupling relationship between the solar panel and the rotation drive unit.
도 10은 본 발명의 일 실시예에 따른 태양광 추적 파라솔을 나타낸 도면이다. 10 is a view showing a solar tracking parasol according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 태양광 추적장치를 개념적으로 나타낸 사시도이며, 도 2는 도 1에 도시된 태양광 추적장치가 태양의 위치를 추적하는 상태를 개념적으로 나타낸 사시도이며, 도 3은 본 발명의 일 실시예에 따른 태양광 추적장치의 태양열 감지유닛을 확대하여 나타낸 사시도이며, 도 4는 본 발명의 일 실시예에 따른 태양광 추적장치의 회전구동유닛과 태양열 감지유닛의 동작관계를 개념적으로 나타낸 도면이다. 1 is a perspective view conceptually showing a solar tracking device according to an embodiment of the present invention, Figure 2 is a perspective view conceptually showing a state in which the solar tracking device shown in Figure 1 tracks the position of the sun, 3 is a perspective view showing an enlarged solar heat detection unit of the solar tracking device according to an embodiment of the present invention, Figure 4 is an operation of the rotary drive unit and the solar heat detection unit of the solar tracking device according to an embodiment of the present invention A diagram conceptually illustrating a relationship.
도 1 내지 도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 태양광 추적장치(10)는 태양전지패널(100)과, 태양전지패널(100)을 회전 구동시키기 위한 회전구동유닛(200)과, 태양의 고도와 방위에 따른 패널의 양지와 음지의 온도차에 의해 생성되는 열기전력을 이용하여 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 평행이 되도록 회전구동유닛(200)을 선택적으로 구동시키는 태양열 감지유닛(300)을 포함하여 구성된다. As shown in Figures 1 to 4, the solar tracking device 10 according to an embodiment of the present invention is a solar panel 100, a rotation driving unit for driving the rotation of the solar panel 100 ( 200) and the panel normal Zp of the solar cell panel 100 is rotated to be parallel to the sunlight L using the thermoelectric power generated by the temperature difference between the sun and the sun of the panel according to the altitude and orientation of the sun. It is configured to include a solar heat detection unit 300 for selectively driving the drive unit 200.
태양전지패널(100)은 태양광으로부터 열에너지를 얻는 태양광 집열 패널이나 태양광으로부터 전기에너지를 얻는 태양광 발전 패널 등과 같이 태양광을 흡수하기 위한 판 형상의 패널을 모두 포함할 수 있다. The solar cell panel 100 may include both panel-shaped panels for absorbing sunlight, such as a solar heat collecting panel that obtains thermal energy from sunlight or a solar power panel that obtains electrical energy from sunlight.
회전구동유닛(200)은 태양의 고도와 방위에 따라 태양전지패널(100)을 회전 구동시킨다. 이러한 회전구동유닛(200)은 고도방향 회전축(H)을 중심으로 태양전지패널(100)을 회전 구동시키는 고도구동부(210)와, 방위방향 회전축(A)을 중심으로 태양전지패널(100)을 회전 구동시키는 방위구동부(220)를 포함하여 구성된다. The rotary drive unit 200 drives the solar panel 100 in accordance with the altitude and orientation of the sun. The rotary drive unit 200 is a high tool drive unit 210 for driving the solar panel 100 rotates about the rotational axis (H) in the altitude, and the solar cell panel 100 around the azimuth rotational axis (A) It comprises a bearing driving unit 220 for driving rotation.
고도구동부(210)는 태양전지패널(100)을 고도 방향으로 회전시키기 위한 고도방향 회전축(H)과, 제1입력스위칭부(211A)를 가지는 제1입력라인(211)과, 제1입력스위칭부(211A)와 선택적으로 접촉되어 고도방향 회전축(H)을 중심으로 태양전지패널(100)을 회전 구동시키는 제1연결스위칭부(212A)를 가지는 제1전달라인(212)을 구비한다. The high tool moving part 210 includes a high rotational axis H for rotating the solar panel 100 in a high direction, a first input line 211 having a first input switching unit 211A, and a first input switching. And a first transfer line 212 having a first connection switching unit 212A for selectively contacting the unit 211A and driving the solar cell panel 100 about the high rotational axis H.
즉, 고도구동부(210)는 후술하는 태양열 감지유닛(300)에 의해 제1입력라인(211)의 제1입력스위칭부(211A)와 제1전달라인(212)의 제1연결스위칭부(212A)가 접촉되어 스위칭되는 경우 고도방향 회전축(H)을 중심으로 태양전지패널(100)을 회전 구동시킬 수 있게 된다. That is, the high tool moving unit 210 is the first input switching unit 211A of the first input line 211 and the first connection switching unit 212A of the first transmission line 212 by the solar detection unit 300 to be described later. In the case of contacting and switching), the solar cell panel 100 can be driven to rotate about the rotational axis H in the high direction.
그리고, 방위구동부(220)는 태양전지패널(100)을 방위 방향으로 회전시키기 위한 방위방향 회전축(A)과, 제2입력스위칭부(221A)를 가지는 제2입력라인(221)과, 제2입력스위칭부(221A)와 선택적으로 접촉되어 방위방향 회전축(A)을 중심으로 태양전지패널(100)을 회전 구동시키는 제2연결스위칭부(222A)를 가지는 제2전달라인(222)을 구비한다. The azimuth driver 220 may include an azimuth rotation axis A for rotating the solar panel 100 in an azimuth direction, a second input line 221 having a second input switching unit 221A, and a second And a second transfer line 222 having a second connection switching unit 222A selectively contacting the input switching unit 221A to rotationally drive the solar panel 100 about the azimuth rotation axis A. FIG. .
즉, 방위구동부(220)는 태양열 감지유닛(300)에 의해 제2입력라인(221)의 제2입력스위칭부(221A)와 제2전달라인(222)의 제2연결스위칭부(222A)가 접촉되어 스위칭되는 경우 방위방향 회전축(A)을 중심으로 태양전지패널(100)을 회전 구동시킬 수 있게 된다. That is, the azimuth driving unit 220 is the second input switching unit 221A of the second input line 221 and the second connection switching unit 222A of the second transfer line 222 by the solar heat detection unit 300. When contacted and switched, the solar cell panel 100 can be driven to rotate about the azimuth rotation axis A. FIG.
회전구동유닛(200)의 고도구동부(210)와 방위구동부(220)는 태양열 감지유닛(300)에 의해 그 구동이 제어되는데, 이러한 태양열 감지유닛(300)는 태양의 고도와 방위를 산출하기 위하여 태양광선(L)의 방향을 감지하여 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 실질적으로 평행이 되도록 회전구동유닛(200)의 구동을 제어한다. The high tool driving unit 210 and the orientation driving unit 220 of the rotary drive unit 200 is controlled by the solar heat detection unit 300, such a solar heat detection unit 300 is to calculate the altitude and orientation of the sun The direction of the sunlight L is sensed to control the driving of the rotation driving unit 200 such that the panel normal Zp of the solar cell panel 100 is substantially parallel to the sunlight L. FIG.
태양열 감지유닛(300)은 태양열 감지부재(310), 써머 커플(320), 솔레노이드(330), 자성체(340)를 포함하여 구성된다. 여기서, 본 발명의 일 실시예에 따른 태양열 감지부재(310)는 태양전지패널(100)과 일체로 회전되는 부분에 설치되는 원통형 케이스(310)를 포함할 수 있다. The solar thermal sensing unit 300 includes a solar thermal sensing member 310, a thermal couple 320, a solenoid 330, and a magnetic body 340. Here, the solar thermal sensing member 310 according to an embodiment of the present invention may include a cylindrical case 310 installed at a portion that is integrally rotated with the solar cell panel 100.
즉, 본 발명의 일 실시예에 따른 태양열 감지유닛(300)은 태양전지패널(100)과 중앙부에 형성되되 태양열에 의해 부분적 또는 선택적으로 가열되는 4개의 감지부(311~314)를 가지는 원통형 케이스(310)와, 원통형 케이스(310) 내부에서 고도방향 회전축(H)과 직교하는 면상에 배치되는 2개의 감지부(311,313)에 양단부가 접합되는 제1써머 커플(321)과, 원통형 케이스(310) 내부에서 방위방향 회전축(A)과 직교하는 면상에 배치되는 2개의 감지부(312,314)에 양단부가 접합되는 제2써머 커플(322)과, 제1써머 커플(321) 중 어느 하나의 도선에 의해 형성되는 제1솔레노이드(331)와, 제2써머 커플(322) 중 어느 하나의 도선에 의해 형성되는 제2솔레노이드(332)와, 제1솔레노이드(331)에 대응 형성되어 2개의 감지부(311,313)의 온도차에 의한 열기전력이 발생하여 제1써머 커플(321)에 전류가 흐르면 제1입력스위칭부(211A)와 제1연결스위칭부(212A)를 접촉시키는 제1자성체(341)와, 제2솔레노이드(332)에 대응 형성되어 2개의 감지부(312,314)의 온도차에 의한 열기전력이 발생하여 제2써머 커플(322)에 전류가 흐르면 제2입력스위칭부(221A)와 제2연결스위칭부(222A)를 접촉시키는 제2자성체(342)를 포함하여 구성된다. That is, the solar sensing unit 300 according to the embodiment of the present invention is formed in the solar panel 100 and the central portion having a cylindrical case having four sensing units 311 to 314 partially or selectively heated by solar heat. A first thermal couple 321 having both ends joined to two sensing units 311 and 313 disposed on a surface orthogonal to the high rotational axis H in the cylindrical case 310, and the cylindrical case 310. 2) the second thermal couple 322 having both ends joined to the two sensing units 312 and 314 disposed on a surface orthogonal to the azimuth rotation axis A, and to any one of the first thermal couple 321. The first solenoid 331, the second solenoid 332 formed by one of the conductors of the second thermal couple 322, and the first solenoid 331 formed corresponding to the two sensing unit ( Thermoelectric power is generated due to the temperature difference between 311 and 313, and a current is generated in the first thermal coupler 321. When flowing, the first magnetic body 341 and the second solenoid 332 contacting the first input switching unit 211A and the first connection switching unit 212A are formed to correspond to the temperature difference between the two sensing units 312 and 314. When a thermoelectric power is generated and a current flows in the second thermal coupler 322, the second magnetic body 342 contacts the second input switching unit 221A and the second connection switching unit 222A.
원통형 케이스(310)는 케이스 법선이 패널 법선(Zp)과 평행하게 정열된 상태에서 태양전지패널(100)과 일체로 회전되는 부분에 설치된다. The cylindrical case 310 is installed at a portion in which the case normal is integrally rotated with the solar cell panel 100 in a state in which the case normal is aligned in parallel with the panel normal Zp.
원통형 케이스(310) 내부에는 동일한 감지 면적을 갖는 4개의 감지부(311~314)이 케이스 법선을 중심으로 방사 대칭으로 배치되되 케이스 법선에 대하여 동일한 각으로 배치되어 구성된다. In the cylindrical case 310, four sensing units 311 to 314 having the same sensing area are disposed radially symmetric about the case normal, and are arranged at the same angle with respect to the case normal.
이러한 4개의 감지부(311~314)는 설명의 편의상, 도 4를 기준으로 좌측에서부터 시계방향으로 차례대로 제1감지부(311), 제2감지부(312), 제3감지부(313), 제4감지부(314)라 하며, 이때, 원통형 케이스(310) 내부의 제1감지부(311)와 제3감지부(313)는 고도방향 회전축(H)과 직교하는 면상에서 서로 대칭되게 배치되고, 원통형 케이스(310) 내부의 제2감지부(312)와 제4감지부(314)는 방위방향 회전축(A)과 직교하는 면상에서 서로 대칭되게 배치된다. For convenience of description, the four sensing units 311 to 314 are first sensing unit 311, second sensing unit 312, and third sensing unit 313 in a clockwise direction from the left with respect to FIG. 4. , The fourth sensing unit 314, wherein the first sensing unit 311 and the third sensing unit 313 inside the cylindrical case 310 are symmetrical with each other on a plane orthogonal to the rotation axis H in the high direction. The second sensing unit 312 and the fourth sensing unit 314 in the cylindrical case 310 are disposed symmetrically with each other on a plane orthogonal to the azimuth rotation axis A. FIG.
이러한 제1감지부(311)와 제3감지부(313)(및 제2감지부(312)와 제4감지부(314))에는 서로 다른 금속재질로 이루어진 한 쌍의 도선 양단부가 접합되어 이루어진 써머 커플(320)이 선택적으로 연결되어 있다. The first sensing unit 311 and the third sensing unit 313 (and the second sensing unit 312 and the fourth sensing unit 314) are formed by joining both ends of a pair of conductive wires made of different metal materials. The thermal couple 320 is selectively connected.
써머 커플(320)은 제1감지부(311)과 제3감지부(313)의 온도차를 감지하는 제1써머 커플(321)과, 제2감지부(312)과 제4감지부(314)의 온도차를 감지하는 제2써머 커플(322)을 포함하여 구성된다. The thermal couple 320 includes a first thermal couple 321, a second sensing unit 312, and a fourth sensing unit 314 that sense a temperature difference between the first sensing unit 311 and the third sensing unit 313. It comprises a second thermal couple 322 for detecting a temperature difference of the.
제1써머 커플(321)은 일단부가 원통형 케이스(310) 내부의 제1감지부(311)에 접합되고 타단부가 원통형 케이스(310)의 제3감지부(313)에 접합되는 제1A도선(321A)과, 제1A도선(321A)는 구별되되 일단부는 원통형 케이스(310)의 제1감지부(311)에 접합되고 중앙부는 제1솔레노이드(331)를 형성하며 타단부는 원통형 케이스(310)의 제3감지부(313)에 접합되는 제1B도선(321B)을 포함한다. The first thermal coupler 321 has a first A lead having one end joined to the first sensing unit 311 inside the cylindrical case 310 and the other end joined to the third sensing unit 313 of the cylindrical case 310. 321A and the first A wire 321A are distinguished, one end of which is joined to the first sensing part 311 of the cylindrical case 310, the center of which forms the first solenoid 331, and the other end of the cylindrical case 310. And a first B wire 321B joined to the third sensing unit 313 of FIG.
이에 따라, 태양의 고도에 따라 제1감지부(311)과 제3감지부(313) 사이에 온도차가 발생되면 제백효과(seebeck effect)에 의해 제1써머 커플(321)에는 열기전력이 발생되는데, 구체적인 설명은 후술하도록 한다. Accordingly, when a temperature difference occurs between the first sensing unit 311 and the third sensing unit 313 according to the altitude of the sun, thermal power is generated in the first thermal couple 321 by the Seebeck effect. , The detailed description will be described later.
한편, 제1써머 커플(321)은 금속의 종류에 따라 다양한 종류가 있다. 일례를 들어, 제1A도선(321A)과 제1B도선(321B)은 각각 콘스탄탄 도선(constantan wire)과 구리 도선으로 이루어질 수 있으며, 구체적으로 콘스탄탄 도선은 Cu 50-60 중량%와 Ni 40-50 중량%로 이루어지고, 구리 도선은 Cu 100 중량%로 이루어질 수 있다. Meanwhile, the first thermal coupler 321 may have various types according to the type of metal. For example, the first A wire 321A and the first B wire 321B may be made of a constantan wire and a copper wire, respectively, and specifically, the constantan wire may be 50-60 wt% Cu and Ni 40-. It may be made of 50% by weight, and the copper conductor may be made of 100% by weight of Cu.
다른 예를 들면, 제1A도선(321A)과 제1B도선(321B)은 각각 크로멜 도선(chromel wire)과 알루멜 도선(alumel wire)으로 이루어질 수 있으며, 구체적으로 크로멜 도선은 Ni 80-90 중량%와 Cr 10-20 중량%로 이루어지며, 알류멜 도선은 Ni 92-96 중량%와 Mn 1-3 중량% 및 Al 1-3 중량%로 이루어질 수 있다. For another example, the first A wire 321A and the first B wire 321B may be made of chromel wire and aluminel wire, and specifically, the chromel wire is Ni 80-90 weight. % And Cr 10-20% by weight, the aluminel wire may be composed of 92-96% by weight of Ni, 1-3% by weight of Mn and 1-3% by weight of Al.
또 다른 예를 들면, 제1A도선(321A)과 제1B도선(321B)은 각각 크로멜 도선과 콘스탄탄 도선으로 이루어질 수 있으며, 구체적으로 크로멜 도선은 Ni 80-90 중량%와 Cr 10-20 중량%로 이루어지고, 콘스탄탄 도선은 Cu 50-60 중량%와 Ni 40-50 중량%로 이루어질 수 있다. As another example, the first A wire 321A and the first B wire 321B may be made of a chromel lead and a constantan lead, respectively, and specifically, the chromel lead is made of Ni-80-90 wt% and Cr 10-20. Consisting of the weight percent, Constantan wire may be made of 50-60% by weight of Cu and 40-50% by weight of Ni.
또 다른 예를 들면, 제1A도선(321A)과 제1B도선(321B)은 각각 철 도선(iron wire)과 콘스탄탄 도선으로 이루어질 수 있으며, 구체적으로 철 도선은 Fe 100 중량%로 이루어지고, 콘스탄탄 도선은 Cu 50-60 중량%와 Ni 40-50 중량%로 이루어질 수 있다. As another example, the first A wire 321A and the first B wire 321B may be made of iron wire and constantan wire, and specifically, the iron wire is made of 100% by weight of Fe. Tantalum lead may be composed of 50-60 wt% Cu and 40-50 wt% Ni.
또 다른 예를 들면, 제1A도선(321A)과 제1B도선(321B)은 각각 니크로실 도선(nicrosil wire)과 니실 도선(nisil wire)으로 이루어질 수 있으며, 구체적으로 니크로실 도선은 Ni 80-90 중량%와 Cr 9-17 중량% 및 Si 1-3 중량%로 이루어지고, 니실 도선은 Ni 92-97 중량%와 Si 2.9-6 중량% 및 Mg 0.1-1 중량%로 이루어질 수 있다. As another example, the first A wires 321A and the first B wires 321B may be formed of a nicrosil wire and a nisil wire, respectively. It is composed of the wt% and Cr 9-17% by weight and Si 1-3% by weight, the nisyl wire may be composed of 92-97% by weight of Ni and 2.9-6% by weight of Si and 0.1-1% by weight of Mg.
제2써머 커플(322)은 일단부가 원통형 케이스(310) 내부의 제2감지부(312)에 접합되고 타단부가 원통형 케이스(310)의 제4감지부(314)에 접합되는 제2A도선(322A)과, 제2A도선(322A)과 구별되되 일단부는 원통형 케이스(310)의 제2감지부(312)에 접합되고 중앙부는 제2솔레노이드(332)를 형성하며 타단부는 원통형 케이스(310)의 제4감지부(314)에 접합되는 제2B도선(322B)을 포함한다. The second thermal coupler 322 has a second A lead having one end joined to the second sensing unit 312 inside the cylindrical case 310 and the other end joined to the fourth sensing unit 314 of the cylindrical case 310. 322A) and the second A wire 322A, one end of which is joined to the second sensing part 312 of the cylindrical case 310, the center of which forms the second solenoid 332, and the other end of the cylindrical case 310. And a second B lead 322B bonded to the fourth sensing part 314 of the second sensor.
이에 따라, 태양의 방위에 따라 제2감지부(312)와 제4감지부(314) 사이에 온도차가 발생되면 제백효과에 의해 제2써머 커플(322)에는 열기전력이 발생된다. Accordingly, when a temperature difference is generated between the second sensing unit 312 and the fourth sensing unit 314 according to the orientation of the sun, the thermoelectric power is generated in the second thermal couple 322 by the Seebeck effect.
한편, 제2써머 커플(322)은 금속의 종류에 따라 다양한 종류가 있으며, 제2써머 커플(322)을 이루는 제2A도선과 제2B도선에 대한 설명은 앞서 설명한 제1써머 커플(321)의 제1A도선과 제1B도선에 대한 설명으로 대체하도록 한다. On the other hand, the second thermal couple 322 has a variety of types depending on the type of the metal, the description of the second A wire and the second B wire constituting the second thermal couple (322) of the first thermal couple 321 described above Replace with the description of the 1A wire and the 1B wire.
여기서, 제1 및 제2써머 커플(321,322)에는 각각 증폭기(미도시)(amplifier)가 연결되어 양측 접합부간(311,313)(312,314)의 온도차에 의해 발생되는 열기전력을 증폭시킬 수 있다. 즉, 제1 및 제2써머 커플(321,322)에서 발생된 열기전력은 작은 값을 갖기 때문에 증폭기에 의해 열기전력을 증폭시키며, 이때 증폭기를 통해 열기전력을 다수 번에 걸쳐 증폭시킴으로써 제1 및 제2솔레노이드(331,332)가 자석의 힘을 띄게 될 만큼의 열기전력을 얻을 수 있다. 이러한 증폭기는 제1 및 제2써머 커플(321,322)에서 발생된 열기전력을 얼마만큼 증폭하는가에 따라 설치되는 개수가 결정될 수 있음은 물론이다. Here, an amplifier (not shown) is connected to the first and second thermal couples 321 and 322, respectively, to amplify the thermoelectric power generated by the temperature difference between the junctions 311, 313, 312 and 314. That is, since the thermoelectric power generated in the first and second thermal couples 321 and 322 has a small value, the thermoelectric power is amplified by the amplifier. At this time, the thermoelectric power is amplified several times through the amplifier. The solenoids 331 and 332 can obtain the thermal power enough to exert the force of the magnet. Of course, the number of the amplifiers may be determined according to how much amplification of the thermal power generated in the first and second thermal couples 321 and 322.
다음, 도 5 내지 도 7을 참조하여 본 발명의 일 실시예에 따른 태양광 추적장치의 태양광 추적방법을 설명한다. 도 5는 태양의 고도에 따라 원통형 케이스의 제1감지부와 제4감지부가 가열점접이 되는 상태를 나타낸 도면이다. Next, a solar tracking method of a solar tracking device according to an embodiment of the present invention will be described with reference to FIGS. 5 to 7. 5 is a view showing a state in which the first sensing portion and the fourth sensing portion of the cylindrical case are in contact with the heating according to the altitude of the sun.
도 5에 도시된 바와 같이, 태양의 고도에 따라 원통형 케이스(310)의 제1감지부(311)와 제4감지부(314)가 가열접점이 되면, 제1감지부(311)와 제3감지부(313) 사이에 온도차가 발생되어 제백효과에 의해 제1써머 커플(321)에는 열기전력이 발생된다. As illustrated in FIG. 5, when the first sensing unit 311 and the fourth sensing unit 314 of the cylindrical case 310 are heated contacts according to the altitude of the sun, the first sensing unit 311 and the third sensing unit 311 are heated. A temperature difference is generated between the sensing units 313 and the thermoelectric power is generated in the first thermal couple 321 by the Seebeck effect.
구체적으로는, 제1써머 커플(321)의 제1감지부(311)에 접합된 제1A 및 제1B도선(321A,321B)의 일단부와 제3감지부(313)에 접합된 제1A 및 제1B도선(321A,321B)의 타단부 사이에 온도차가 발생되면, 전자들이 가열접점(311)에서 냉각접점(313)으로 이동함에 따라 냉각접점(313)은 '-'로 대전되고 가열접점(311)은 '+'로 대전되고 양 접점 간에 전위차가 발생되는 제백효과가 생긴다. 이러한 제백효과에 있어 양 접점(311,313) 사이에 나타나는 열기전력(thermoelectromotive force)은 금속의 종류와 접합부의 온도차에 따라 정해지며, 열기전력은 두 접점의 온도차가 크면 클수록 커진다. Specifically, 1A and 1A bonded to the first sensing unit 311 of the first thermal couple 321 and one end of the first sensing wires 321A and 321B and the third sensing unit 313, respectively. When a temperature difference occurs between the other ends of the first B wires 321A and 321B, as the electrons move from the heating contact 311 to the cooling contact 313, the cooling contact 313 is charged to '-' and the heating contact ( 311) is charged with '+' and has a Seebeck effect in which a potential difference is generated between both contacts. In this Seebeck effect, the thermoelectromotive force appearing between the two contacts 311 and 313 is determined according to the type of metal and the temperature difference between the junctions, and the larger the temperature difference between the two contacts is, the larger the thermoelectric force is.
따라서, 제1써머 커플(321)의 가열접점(311)과 냉각접점(313)에 의한 온도차에 의하여 열기전력이 발생하여 폐회로에서 전류가 흐르므로 제1솔레노이드(331)는 강한 자석의 힘을 띄게 된다. 그리고, 제1솔레노이드(331)의 강한 자석의 힘에 의해 제1자성체(341)는 자화되어 제1솔레노이드(331)의 단자 측에 달라붙게 된다. Therefore, since the thermoelectric power is generated due to the temperature difference between the heating contact 311 and the cooling contact 313 of the first thermal couple 321 and current flows in the closed circuit, the first solenoid 331 exhibits a strong magnet force. do. In addition, the first magnetic material 341 is magnetized by the force of the strong magnet of the first solenoid 331 and is attached to the terminal side of the first solenoid 331.
이러한 제1솔레노이드(331)와 제1자성체(341)의 인력에 의해 고도구동부(210)의 제1입력라인(211)을 고도구동부(210)의 제1전달라인(212) 쪽으로 끌어당김으로써, 제1입력라인(211)의 제1입력스위칭부(211A)와 제1전달라인(212)의 제1연결스위칭부(212A)가 접촉되어 스위칭되므로 고도구동부(210)는 태양전지패널(100)이 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 실질적으로 평행이 되도록 작동된다. By pulling the first input line 211 of the old tool moving part 210 toward the first transmission line 212 of the old tool moving part 210 by the attraction force of the first solenoid 331 and the first magnetic body 341, Since the first input switching unit 211A of the first input line 211 and the first connection switching unit 212A of the first transmission line 212 are contacted and switched, the high tool driving unit 210 is the solar cell panel 100. The panel normal Zp of the solar cell panel 100 is operated to be substantially parallel to the sunlight L. As shown in FIG.
결국, 이러한 고도구동부(210)는 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 실질적으로 평행이 되어 고도방향 회전축(H)과 직교하는 면상에 배치된 제1감지부(311)과 제3감지부(313)의 온도가 동일하게 되면 고도방향 회전축(H)을 기준으로의 태양전지패널(100)의 회전 구동을 정지시킨다. As a result, the high tool moving part 210 has a first sensing part disposed on a surface of the solar cell panel 100 that is substantially parallel to the solar beam L and perpendicular to the altitude rotation axis H. When the temperatures of the 311 and the third sensing unit 313 are the same, the rotational driving of the solar cell panel 100 based on the high-direction rotation axis H is stopped.
또한, 태양의 고도에 따라 원통형 케이스(310)의 제1감지부(311)와 제4감지부(314)가 가열접점이 되면, 제2감지부(312)와 제4감지부(314) 사이에 온도차가 발생되어 제백효과에 의해 제2써머 커플(322)에는 열기전력이 발생된다. In addition, when the first sensing unit 311 and the fourth sensing unit 314 of the cylindrical case 310 is a heating contact according to the altitude of the sun, between the second sensing unit 312 and the fourth sensing unit 314. A temperature difference is generated in the second thermal coupler 322 due to the Seebeck effect.
즉, 제2써머 커플(322)의 제2감지부(312)에 접합된 제2A 및 제2B도선(322A,322B)의 일단부와 제4감지부(314)에 접합된 제2A 및 제2B도선(322A,322B)의 타단부 사이에 온도차가 발생되면, 전자들이 가열점점(314)에서 냉각접점(312)로 이동함에 따라 냉각접점(312)은 '-'로 대전되고 가열접점(314)은 '+'로 대전되어 양 접점 간에 전위차가 발생된다. That is, one end of the second and second B wires 322A and 322B joined to the second sensing unit 312 of the second thermal couple 322 and the second A and 2B bonded to the fourth sensing unit 314. When a temperature difference occurs between the other ends of the conductive wires 322A and 322B, as the electrons move from the heating point 314 to the cooling contact 312, the cooling contact 312 is charged with '-' and the heating contact 314 Is charged with '+' to generate a potential difference between both contacts.
따라서, 제2써머 커플(322)의 가열접점(314)과 냉각접점(312)에 의한 온도차에 의하여 열기전력이 발생하여 폐회로에서 전류가 흐르므로 제2솔레노이드(332)는 강한 자석의 힘을 띄게 된다. 그리고, 제2솔레노이드(332)의 강한 자석의 힘에 의해 제2자성체(342)는 자화되어 제2솔레노이드(332)의 단자 측에 달라붙게 된다. Therefore, since the thermoelectric power is generated due to the temperature difference between the heating contact 314 and the cooling contact 312 of the second thermal couple 322 and a current flows in the closed circuit, the second solenoid 332 exhibits a strong magnet force. do. The second magnetic body 342 is magnetized by the force of the strong magnet of the second solenoid 332 and sticks to the terminal side of the second solenoid 332.
이러한 제2솔레노이드(332)와 제2자성체(342)의 인력에 의해 방위구동부의 제2입력라인(221)을 방위구동부의 제2전달라인(222) 쪽으로 끌어당김으로써, 제2입력라인(221)의 제2입력스위칭부(221A)와 제2전달라인(222)의 제2연결스위칭부(222A)가 접촉되어 스위칭되므로 방위구동부(320)는 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 실질적으로 평행이 되도록 태양전지패널(100)을 회전 구동시킨다. The second input line 221 is drawn by pulling the second input line 221 of the bearing driving unit toward the second transmission line 222 of the bearing driving unit by the attraction force of the second solenoid 332 and the second magnetic body 342. Since the second input switching unit (221A) and the second connection switching unit 222A of the second transfer line 222 is switched in contact with each other, the azimuth driving unit 320 is the panel normal (Zp) of the solar cell panel 100 The solar cell panel 100 is rotationally driven so as to be substantially parallel to the sunlight L. FIG.
결국, 이러한 방위구동부(220)는 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 실질적으로 평행이 되어 방위방향 회전축(A)과 직교하는 면상에 배치된 제2감지부(312)와 제4감지부(314)의 온도가 동일하게 되면 방위방향 회전축(A)을 기준으로의 태양전지패널(100)의 회전 구동을 정지시킨다. (도 4참조)As a result, the azimuth driver 220 includes a second sensing part disposed on a surface perpendicular to the azimuth rotation axis A because the panel normal line Zp of the solar cell panel 100 is substantially parallel to the sunlight L. As shown in FIG. When the temperatures of 312 and the fourth sensing unit 314 are the same, rotational driving of the solar cell panel 100 with respect to the azimuth rotation axis A is stopped. (See Fig. 4)
도 6은 태양의 고도에 따라 원통형 케이스의 제4감지부가 가열접점이 된 상태를 나타낸 도면이다. 6 is a view showing a state in which the fourth sensing unit of the cylindrical case is a heating contact according to the altitude of the sun.
도 6에 도시된 바와 같이, 태양의 고도에 따라 원통형 케이스(310)의 제4감지부(314)가 가열접점이 되면, 제2감지부(312)와 제4감지부(314) 사이에 온도차가 발생되어 제백효과에 의해 제2써머 커플(322)에는 열기전력이 발생된다. As shown in FIG. 6, when the fourth sensing unit 314 of the cylindrical case 310 becomes a heating contact according to the altitude of the sun, the temperature difference between the second sensing unit 312 and the fourth sensing unit 314. Is generated and the thermoelectric power is generated in the second thermal couple 322 by the Seebeck effect.
따라서, 제2써머 커플(322)의 가열접점(314)과 냉각접점(312)에 의한 온도차에 의하여 열기전력이 발생하여 폐회로에서 전류가 흐르므로 제2솔레노이드(332)는 강한 자석의 힘을 띄게 된다. Therefore, since the thermoelectric power is generated due to the temperature difference between the heating contact 314 and the cooling contact 312 of the second thermal couple 322 and a current flows in the closed circuit, the second solenoid 332 exhibits a strong magnet force. do.
그러므로, 제2솔레노이드(332)와 제2자성체(342) 사이의 인력에 의해 제2입력라인(221)의 제2입력스위칭부(221A)와 제2전달라인(222)의 제2연결스위칭부(222A)가 접촉되어 스위칭되므로 방위구동부(320)는 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 실질적으로 평행이 되도록 태양전지패널(100)을 회전 구동시킨다. Therefore, the second input switching unit 221A of the second input line 221 and the second connection switching unit of the second transfer line 222 by the attraction force between the second solenoid 332 and the second magnetic body 342. Since the 222A contacts and switches, the azimuth driver 320 rotates the solar cell panel 100 such that the panel normal Zp of the solar cell panel 100 is substantially parallel to the solar light L.
결국, 이러한 방위구동부(220)는 태양전지패널(100)의 패널 법선(Zp)이 태양광선(L)과 실질적으로 평행이 되어 방위방향 회전축(A)과 직교하는 면상에 배치된 제2감지부(312)와 제4감지부(314)의 온도가 동일하게 되면 방위방향 회전축(A)을 기준으로의 태양전지패널(100)의 회전 구동을 정지시킨다. (도 4참조)As a result, the azimuth driver 220 includes a second sensing part disposed on a surface perpendicular to the azimuth rotation axis A because the panel normal line Zp of the solar cell panel 100 is substantially parallel to the sunlight L. As shown in FIG. When the temperatures of 312 and the fourth sensing unit 314 are the same, rotational driving of the solar cell panel 100 with respect to the azimuth rotation axis A is stopped. (See Fig. 4)
도 7은 태양의 고도에 따라 원통형 케이스의 제1 내지 제4감지부의 온도차가 생기는 않는 상태를 도시한 도면이다. 7 is a diagram illustrating a state in which a temperature difference of the first to fourth sensing units of the cylindrical case does not occur according to the altitude of the sun.
도 7에 도시된 바와 같이, 태양의 고도에 따라 원통형 케이스(310)의 제1 내지 제4감지부(311~314)의 온도차가 생기지 않으면 열기전력이 발생되지 않는다. As shown in FIG. 7, unless the temperature difference between the first to fourth sensing units 311 to 314 of the cylindrical case 310 does not occur according to the altitude of the sun, no thermoelectric power is generated.
따라서, 제1 및 제2써머 커플(321,322)에 의해 구성되는 폐회로에서 전류가 흐르지 않으므로 제1 및 제2솔레노이드(331,332)는 자석의 힘을 띄지 않게 된다. Therefore, since no current flows in the closed circuit formed by the first and second thermal couples 321 and 322, the first and second solenoids 331 and 332 do not exert the force of the magnet.
결국, 고도구동부(310)와 방위구동부(320)의 입력라인(211,221)과 전달라인(212,222)은 스위칭되지 않으므로 태양전지패널(100)은 회전 구동되지 않게 된다. (도 4참조)As a result, since the input lines 211 and 221 and the transmission lines 212 and 222 of the high tool driving unit 310 and the azimuth driving unit 320 are not switched, the solar cell panel 100 is not driven to rotate. (See Fig. 4)
본 발명의 다른 실시예를 도 8을 참조하여 설명한다. 전술한 일 실시예와 동일한 구성 요소를 나타내는 경우에는 동일한 부호를 부여하고, 그 설명은 생략한다. 도 8은 본 발명의 다른 실시예에 따른 태양광 추적장치의 일부를 나타낸 도면이다. Another embodiment of the present invention will be described with reference to FIG. In the case of showing the same components as in the above-described embodiment, the same reference numerals are given, and description thereof is omitted. 8 is a view showing a part of the solar tracking device according to another embodiment of the present invention.
도 8에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 태양광 추적장치(10)는 태양전지패널(100)과, 태양전지패널(100)을 회전 구동시키기 위한 회전구동유닛(미도시)과, 태양의 고도와 방위에 따른 패널의 양지와 음지의 온도차에 의해 생성되는 열기전력을 이용하여 태양전지패널(100)의 패널 법선이 태양광선(L)과 평행이 되도록 회전구동유닛(200)을 선택적으로 구동시키는 태양열 감지유닛(500)을 포함하여 구성된다. As shown in FIG. 8, the solar tracking device 10 according to another embodiment of the present invention includes a solar panel 100 and a rotation driving unit (not shown) for rotationally driving the solar panel 100. And, using the thermoelectric power generated by the temperature difference between the sun and the sun of the panel according to the altitude and orientation of the sun rotation drive unit 200 so that the panel normal of the solar panel 100 is parallel to the sunlight (L) It is configured to include a solar heat detection unit 500 to selectively drive.
이러한 본 발명의 다른 실시예에 따른 태양열 감지유닛(300)는 도 4 및 도 8에 도시된 바와 같이, 태양전지패널(100)과 동일면 중앙부에 형성되되 배치되는 제1원판(511)과, 제1원판(511)의 상측에서 제1원판(511)과 평행하게 정렬되게 배치되어 제1원판(511)의 4개의 감지부를 선택적으로 가열되게 하는 제2원판(512)을 포함하는 원판조립체(510)와, 원판조립체(510)의 제1원판(511)에서 고도방향 회전축(H)과 직교하는 면상에 배치되는 2개의 감지부(311',313')에 양단부가 접합되는 제1써머 커플(321)과, 원판조립체(510)의 제2원판(512)에서 방위방향 회전축(A)과 직교하는 면상에 배치되는 2개의 감지부(312',314')에 양단부가 접합되는 제2써머 커플(322)과, 제1써머 커플(321) 중 어느 하나의 도선에 의해 형성되는 제1솔레노이드(331)와, 제2써머 커플(322) 중 어느 하나의 도선에 의해 형성되는 제2솔레노이드(332)와, 제1솔레노이드(331)에 대응 형성되어 2개의 감지부(311',313')의 온도차에 의한 열기전력이 발생하여 제1써머 커플(321)에 전류가 흐르면 제1입력스위칭부(211A)와 제1연결스위칭부(212A)를 접촉시키는 제1자성체(341)와, 제2솔레노이드(332)에 대응 형성되어 2개의 감지부의 온도차에 의한 열기전력이 발생하여 제2써머 커플(322)에 전류가 흐르면 제2입력스위칭부(221A)와 제2연결스위칭부(222A)를 접촉시키는 제2자성체(342)를 포함하여 구성된다. As illustrated in FIGS. 4 and 8, the solar sensing unit 300 according to another exemplary embodiment of the present invention may include a first disc 511 formed and disposed at the center of the same surface as the solar cell panel 100 and the first disc 511. Disc assembly 510 including a second disc 512 disposed on the first disc 511 in parallel with the first disc 511 to selectively heat four sensing units of the first disc 511. ) And a first thermocouple having both ends joined to two sensing parts 311 ′ and 313 ′ disposed on a surface orthogonal to the high rotational axis H in the first disc 511 of the disc assembly 510. 321 and a second thermal couple where both ends are joined to two sensing portions 312 ', 314' disposed on a surface orthogonal to the azimuth rotation axis A in the second disc 512 of the disc assembly 510. 322, the first solenoid 331 formed by the conducting wire of any one of the first thermal couples 321, and the conducting wire of any one of the second thermal couple 322. The second solenoid 332 is formed to correspond to the first solenoid 331 and the thermoelectric power is generated by the temperature difference between the two sensing units 311 ′ and 313 ′ so that a current is generated in the first thermal couple 321. When flowing, the first magnetic body 341 and the second solenoid 332 contacting the first input switching unit 211A and the first connection switching unit 212A are formed to correspond to the thermal power generated by the temperature difference between the two sensing units. As such, when the current flows in the second thermal coupler 322, the second magnetic body 342 contacts the second input switching unit 221A and the second connection switching unit 222A.
원판조립체(510)는 원판 법선이 패널 법선(Zp)과 평행하게 정열된 상태에서 태양전지패널(100)과 일체로 회전되는 부분에 설치된다. The disc assembly 510 is installed at a portion in which the disc normal is integrally rotated with the solar cell panel 100 in a state in which the disc normal is aligned in parallel with the panel normal Zp.
이러한 원판조립체(510)는 태양전지패널(100)과 대략 동일한 면에 배치되는 제1원판(511)과, 제1원판(511)의 상측에서 제1원판(511)과 평행하게 정렬되게 배치되는 제2원판(512)과, 제1원판(511)과 제2원판(512)의 중심을 수직으로 연결하는 연결구(513)를 포함한다. The disc assembly 510 is arranged in parallel with the first disc 511 and the first disc 511 disposed on the same surface as the solar cell panel 100 and on the upper side of the first disc 511. The second disc 512, and the connector 513 for vertically connecting the center of the first disc 511 and the second disc 512.
제1원판(511)에는 동일한 감지 면적을 갖는 4개의 감지부부(311'~314')가 원판 법선을 중심으로 방사 대칭으로 배치되되 원판 법선에 대하여 동일한 각으로 배치되어 구성된다. Four sensing units 311 ′ through 314 ′ having the same sensing area are arranged radially symmetric about the disc normal, but are arranged at the same angle with respect to the disc normal.
제2원판(512)은 태양의 고도와 방위에 따라서 제1원판(511)의 4개의 감지부(311'~314')에 선택적으로 그림자를 형성하여 제1원판(511)의 4개의 감지부(311'~314')의 온도차가 발생되도록 한다. The second disc 512 selectively forms four shadows on the four detectors 311 ′ through 314 ′ of the first disc 511 according to the sun's altitude and azimuth and thus detects the four discs of the first disc 511. The temperature difference between 311 'and 314' is generated.
예를 들어, 태양의 고도 또는 방위에 따라서 제2원판(512)은 제1원판(511)의 제1감지부(311')에 그림자를 형성하여 제1원판(511)의 제1감지부(311')과 제3감지부(313')에 온도차가 발생되도록 한다. 이렇게 온도차가 발생되면 제백효과에 의해 제1써머 커플(321)과 제2써머 커플(322)에는 열기전력이 발생된다. For example, according to the altitude or the direction of the sun, the second disc 512 forms a shadow on the first detector 311 ′ of the first disc 511 to form a shadow. 311 ′) and a temperature difference between the third sensing unit 313 ′. When the temperature difference is generated, thermoelectric power is generated in the first thermal couple 321 and the second thermal couple 322 by the Seebeck effect.
따라서, 제1써머 커플(321)과 제2써머 커플(322)의 가열접점(313')과 냉각접점(311')에 의한 온도차에 의하여 열기전력이 발생하여 폐회로에서 전류가 흐르므로 도선이 감고 있는 제1솔레노이드(331)와 제2솔레노이드(332)는 강한 자석의 힘을 띄게 되고, 제1자성체(341)와 제2자성체(342)는 자화되어 제1솔레노이드(331)와 제2솔레노이드(332) 단자 측에 각각 달라붙게 된다. Therefore, since the thermoelectric power is generated due to the temperature difference between the heating contact 313 'and the cooling contact 311' of the first thermal couple 321 and the second thermal couple 322, and a current flows in the closed circuit, the wire is closed. The first solenoid 331 and the second solenoid 332 is a strong magnetic force, the first magnetic body 341 and the second magnetic body 342 is magnetized so that the first solenoid 331 and the second solenoid ( 332) respectively stick to the terminal side.
이러한 제1솔레노이드(331)와 제1자성체(341)(또는 제2솔레노이드와 제2자성체(342))사이의 인력에 의해 고도구동부(210)의 제1입력라인(211)(또는 방위구동부(220)의 제2입력라인(221))을 고도구동부(210)의 제1전달라인(212)(또는 방위구동부(220)의 제2전달라인(222)) 쪽으로 끌어당김으로써, 제1입력라인(211)의 제1입력스위칭부(211A)(또는 제2입력라인(221)의 제2입력스위칭부(221A))와 제1전달라인(212)의 제1연결스위칭부(212A)(또는 제2전달라인(222)의 제2연결스위칭부(222A))가 선택적으로 접촉되어 스위칭되므로 고도구동부(210)(또는 방위구동부(220))는 태양전지패널(100)의 패널 법선이 태양광선과 실질적으로 평행이 될 때까지 태양전지패널(100)을 회전 구동시킬 수 있게 된다. The first input line 211 (or azimuth drive unit) of the old tool driving unit 210 by the attraction force between the first solenoid 331 and the first magnetic body 341 (or the second solenoid and the second magnetic body 342). By pulling the second input line 221 of the 220 to the first transmission line 212 (or the second transmission line 222 of the azimuth drive unit 220) of the old tool drive 210, the first input line First input switching unit 211A (or second input switching unit 221A of second input line 221) of 211 and first connection switching unit 212A of first transmission line 212 (or Since the second connection switching unit 222A of the second transmission line 222 is selectively contacted and switched, the high tool driving unit 210 (or azimuth driving unit 220) has a solar panel normal of the solar panel 100. Solar drive panel 100 can be driven to rotate until substantially parallel to.
도 9는 태양전지패널과 회전구동유닛의 결합관계를 일례로 나타낸 도면이다. 9 is a view showing an example of the coupling relationship between the solar panel and the rotation drive unit.
도 9에 도시된 바와 같이, 회전구동유닛(200)은 태양전지패널(100)의 배면에 고정 설치되는 제1기어부(200A)와, 제1기어부(200A)에 치합되는 제2기어부(200B)를 가지고 제1기어부(200A)를 선택적으로 구동시키는 제1모터부(200C)로 이루어질 수 있다. As shown in FIG. 9, the rotation driving unit 200 includes a first gear part 200A fixed to the rear surface of the solar cell panel 100 and a second gear part meshed with the first gear part 200A. The first motor unit 200C may selectively include the first motor unit 200C for driving the first gear unit 200A.
따라서, 회전구동유닛(200)의 입력라인(211,221)과 전달라인(212,222)이 스위칭되면 제1모터부(200C)가 구동되어 의해 제2기어부(200B)와 제1기어부(200A)가 순차적으로 회전되어 제1기어부(200A)가 고정 설치된 태양전지패널(100)은 태양의 고도 또는 방위에 따라 구동될 수 있다. (도 4참조)Therefore, when the input lines 211 and 221 and the transmission lines 212 and 222 of the rotation driving unit 200 are switched, the first motor part 200C is driven so that the second gear part 200B and the first gear part 200A are driven. The solar panel 100 which is sequentially rotated and having the first gear part 200A fixed thereto may be driven according to the altitude or orientation of the sun. (See Fig. 4)
다음, 도 10을 참조하여 본 발명의 실시예에 따른 태양광 추적 파라솔에 대하여 설명한다. 도 10은 본 발명의 일 실시예에 따른 태양광 추적 파라솔을 나타낸 도면이다. Next, a solar tracking parasol according to an embodiment of the present invention will be described with reference to FIG. 10. 10 is a view showing a solar tracking parasol according to an embodiment of the present invention.
도 10에 도시된 바와 같이, 본 발명의 일 실시예에 따른 태양광 추적 파라솔(10'')은 차광막(100'), 제1회전구동유닛(200'), 제1태양열 감지유닛(300')이 구비된 상부지주(U), 제2회전구동유닛(200''), 제2태양열 감지유닛(300'')이 구비된 하부지주(B)를 포함하여 구성된다. As shown in FIG. 10, the solar tracking parasol 10 ″ according to the exemplary embodiment of the present invention includes a light shielding film 100 ′, a first rotation driving unit 200 ′, and a first solar heat sensing unit 300 ′. ) Is configured to include an upper support U, a second rotation driving unit 200 ″, and a lower support B provided with a second solar thermal sensing unit 300 ″.
차광막(100')은 태양을 막아 가리려고 치는 여러가지 형태의 막일 수 있다. The light shielding film 100 ′ may be various types of films that strike to cover the sun.
제1회전구동유닛(200')은 고도방향 회전축(H)을 중심으로 차광막(100')을 회전 구동시키는 고도구동부(210')와, 고도방향 회전축(H)을 중심으로 차광막(100')을 회전 구동시키는 방위구동부(220')를 포함하여 구성된다. The first rotation driving unit 200 ′ is a high tool drive unit 210 ′ that drives the light blocking film 100 ′ to rotate about the high direction rotation axis H, and a light shielding film 100 ′ about the high direction rotation axis H. It comprises a bearing driving unit 220 'for driving the rotation.
고도구동부(210')는 차광막(100')을 고도방향으로 회전시키기 위한 고도방향 회전축(H)과, 미도시된 제1입력라인과 제1전달라인을 선택적으로 접촉시켜 고도방향 회전축(H)을 중심으로 차광막(100')을 회전 구동시키는 제1전달부재(600)를 구비한다. The high tool moving part 210 ′ selectively rotates the high rotational axis H to rotate the light shielding film 100 ′ in the high direction, and the first input line and the first transmission line not shown to contact the high rotational axis H. The first transmission member 600 for driving the light-shielding film 100 'to rotate around the.
여기서, 제1전달부재(600)는 고도방향 회전축(H)과 직교하는 면상에서 대칭 형성되는 차광막(100')의 2개 지점을 연결하는 제1연결부재(610)와, 고도방향 회전축(H)을 감으면서 제1연결부재(610)의 2개 지점에 양단이 고정 설치되는 제1체인(620)을 포함한다. Here, the first transfer member 600 is a first connection member 610 connecting two points of the light shielding film 100 'which is symmetrically formed on a plane perpendicular to the high direction rotation axis H, and the high direction rotation axis H. The first chain 620 is fixed to both ends of the first connection member 610 while winding).
그리고, 방위구동부(220')는 차광막(100')을 방위방향으로 회전시키기 위한 방위방향 회전축(A)과, 미도시된 제2입력라인과 제2전달라인을 선택적으로 접촉시켜 방위방향 회전축(A)을 중심으로 차광막(100')을 회전 구동시키는 제2전달부재(700)를 구비한다. In addition, the azimuth driver 220 ′ selectively contacts the azimuth rotation axis A for rotating the light blocking film 100 ′ in the azimuth direction, and the second input line and the second transmission line (not shown) to selectively rotate the azimuth rotation shaft ( And a second transfer member 700 which rotates the light blocking film 100 'about A).
여기서, 제2전달부재(700)는 방위방향 회전축(A)과 직교하는 면상에서 대칭 형성되는 차광막(100')의 2개 지점을 연결하는 제2연결부재(710)와, 고도방향 회전축(H)을 감으면서 제2연결부재(720)의 2개 지점에 양단이 고정 설치되는 제2체인(720)을 포함한다. Here, the second transfer member 700 is a second connecting member 710 connecting two points of the light shielding film 100 'which is symmetrically formed on a plane perpendicular to the azimuth rotation axis A, and the high rotation axis H. ) And a second chain 720 fixed at both ends at two points of the second connection member 720 while winding.
차광막(100')과 제1회전구동유닛(200')은 상부지주(U)와 연결되어 있다. 상부지주(U)는 차광막(100')의 중앙부에 배치되어 태양열을 감지하는 원통형 케이스(310)를 가지는 제1태양감지유닛(300')과, 원통형 케이스(310)의 각도 조절을 안내할 수 있는 반구 하우징(800)을 포함한다. The light blocking film 100 ′ and the first rotation driving unit 200 ′ are connected to the upper column U. The upper column U may be disposed at the center of the light shielding film 100 ′ to guide the first solar sensing unit 300 ′ having a cylindrical case 310 for sensing solar heat and to adjust the angle of the cylindrical case 310. A hemisphere housing 800.
원통형 케이스(310)를 가지는 제1태양열 감지유닛(300')은 도 4에 도시된 태양열 감지유닛과 동일한 구조를 가지고 있다. 즉, 제1태양열 감지유닛(300')은 차광막(100')의 중앙부에 배치되되 태양열에 의해 선택적으로 가열되는 4개의 감지부(311~314)를 가지는 원통형 케이스(310)와, 원통형 케이스(310) 내부에서 고도방향 회전축(H)과 직교하는 면상에 배치되는 2개의 감지부(311,313)에 양단부가 접합되는 제1써머 커플(321)과, 원통형 케이스(310) 내부에서 방위방향 회전축(A)과 직교하는 면상에 배치되는 2개의 감지부(312,314)에 양단부가 접합되는 제2써머 커플(322)과, 제1써머 커플(321) 중 어느 하나의 도선에 의해 형성되는 제1솔레노이드(331)와, 제2써머 커플(322) 중 어느 하나의 도선에 의해 형성되는 제2솔레노이드(332)와, 제1솔레노이드(331)에 대응 형성되어 2개의 감지부(311,313)의 온도차에 의한 열기전력이 발생하여 제1써머 커플(321)에 전류가 흐르면 제1입력스위칭부(211A)와 제1연결스위칭부(212A)를 접촉시키는 제1자성체(341)와, 제2솔레노이드(332)에 대응 형성되어 2개의 감지부(312,314)의 온도차에 의한 열기전력이 발생하여 제2써머 커플(322)에 전류가 흐르면 제2입력스위칭부(221A)와 제2연결스위칭부(222A)를 접촉시키는 제2자성체(342)를 포함하여 구성된다. (도 4참조)The first solar thermal sensing unit 300 ′ having the cylindrical case 310 has the same structure as the solar thermal sensing unit illustrated in FIG. 4. That is, the first solar heat detection unit 300 'is disposed at the center of the light shielding film 100' and has a cylindrical case 310 having four sensing parts 311 to 314 selectively heated by solar heat, and a cylindrical case ( First thermocouple 321 having both ends joined to two sensing parts 311 and 313 disposed on a surface orthogonal to the rotational axis H in the direction 310, and an azimuth rotation axis A in the cylindrical case 310. The second thermal coupler 322 having both ends joined to the two sensing units 312 and 314 disposed on a plane perpendicular to the cross-section), and the first solenoid 331 formed by any one of the first thermal coupler 321. ), The second solenoid 332 formed by the conducting wire of any one of the second thermal couple 322 and the first solenoid 331 corresponding to the thermoelectric power due to the temperature difference between the two sensing units (311,313) Is generated and current flows in the first thermal coupler 321, the first input switching unit 211A and the first connection switch. The first magnetic body 341 and the second solenoid 332 which contact the switching unit 212A are formed to correspond to the second solenoid 332 to generate thermal power due to the temperature difference between the two sensing units 312 and 314. The second magnetic body 342 is configured to contact the second input switching unit 221A and the second connection switching unit 222A when current flows. (See Fig. 4)
따라서, 제1써머 커플(321)과 제2써머 커플(322)의 가열접점과 냉각접점에 의한 온도차에 의하여 열기전력이 발생하여 폐회로에서 전류가 흐르므로 제1솔레노이드(331)와 제2솔레노이드(332)는 강한 자석의 힘을 띄게 되어, 제1자성체(341)와 제2자성체(342)는 각각 제1솔레노이드(331)와 제2솔레노이드(342)의 단자 측에 달라붙게 된다. Therefore, since the thermoelectric power is generated due to the temperature difference between the heating contact point and the cooling contact point of the first thermal couple 321 and the second thermal couple 322, and a current flows in the closed circuit, the first solenoid 331 and the second solenoid ( 332 is a strong magnet, so that the first magnetic material 341 and the second magnetic material 342 stick to the terminals of the first solenoid 331 and the second solenoid 342, respectively.
이러한 제1솔레노이드(331)와 제1자성체(341)(또는 제2솔레노이드(332)와 제2자성체(342)) 사이의 인력에 의해 고도구동부(210)의 제1입력라인(211)(또는 방위구동부(220)의 제2입력라인(221))을 고도구동부(210)의 제1전달라인(212)(또는 방위구동부(220)의 제2전달라인(222)) 쪽으로 끌어당김으로써, 제1입력라인(211)의 제1입력스위칭부(211A)(또는 제2입력라인(221)의 제2입력스위칭부(221A))와 제1전달라인(212)의 제1연결스위칭부(212A)(또는 제2전달라인(222)의 제2연결스위칭부(222A))가 선택적으로 접촉되어 스위칭되므로 고도구동부(210)(또는 방위구동부(220))는 차광막(100')의 법선이 태양광선과 실질적으로 평행이 될 때까지 차광막(100')을 회전 구동시킬 수 있게 된다. The first input line 211 (or the first tool line 211) of the old tool moving part 210 by the attraction force between the first solenoid 331 and the first magnetic body 341 (or the second solenoid 332 and the second magnetic body 342). By pulling the second input line 221 of the azimuth drive unit 220 toward the first transfer line 212 (or the second transfer line 222 of the azimuth drive unit 220) of the old tool drive unit 210. The first input switching unit 211A of the first input line 211 (or the second input switching unit 221A of the second input line 221) and the first connection switching unit 212A of the first transmission line 212. (Or the second connection switching unit 222A of the second transmission line 222) is selectively contacted and switched, so that the high tool driving unit 210 (or the azimuth driving unit 220) has a normal line of the light shielding film 100 '. The light blocking film 100 'can be driven to rotate until it is substantially parallel to the light beam.
제2회전구동유닛(200'')은 동서방향 회전축(211'')을 중심으로 하부지주(B)를 회전 구동시켜 차광막(100')의 법선이 태양과 실질적으로 평행이 되도록 하는 동서방향 구동부(210'')를 포함하여 구성된다. The second rotation driving unit 200 ″ drives the lower column B around the east-west rotation axis 211 ″ so that the normal line of the light shielding film 100 ′ is substantially parallel to the sun. (210 '').
그리고, 반구 하우징(800)의 하부에 결합되는 하부지주(B)에 연결되는데, 이러한 하부지주(U)에는 제2태양열 감지유닛(300'')이 구비되어 있다. 이러한 제2태양열 감지유닛(200'')은 차광막에 의해 형성되는 지표면의 그림자면(S)에서 동서방향에 배치되는 2개의 감지부(S1,S2)에 양단부가 접합되는 써머 커플(320)과, 써머 커플(320) 중 어느 하나의 도선에 의해 형성되는 솔레노이드(330)와, 솔레노이드(330)에 대응 형성되어 2개의 감지부(S1,S2)의 온도차에 의한 열기전력이 발생하여 써머 커플(320)에 전류가 흐르면 미도시된 입력라인과 전달라인을 접촉시키는 자성체(340)를 포함하여 구성된다. (도 3참조) And, it is connected to the lower column (B) coupled to the lower portion of the hemisphere housing 800, the lower column (U) is provided with a second solar heat detection unit (300 ″). The second solar thermal detection unit 200 ″ includes a thermal couple 320 having both ends joined to two sensing units S1 and S2 disposed in the east-west direction on the shadow surface S formed by the light shielding film. , The solenoid 330 formed by any one of the thermal couplers 320 and the solenoid 330 are formed to correspond to the solenoid 330 to generate thermal power due to the temperature difference between the two sensing units S1 and S2. When the current flows through the 320, a magnetic material 340 is formed to contact the input line and the transfer line, which are not shown. (See Fig. 3)
따라서, 일출(또는 일몰) 시와 같이 태양의 고도가 0°에 근접하는 경우(또는 180°에 근접하는 경우)에는 제1태양열 감지유닛(300')의 원통형 케이스(310)가 태양열을 감지하기 어렵고, 태양열을 감지하여 차광막의 법선과 태양광이 평행하게 되더라도 태양의 고도가 낮아짐에 따른 그림자 위치의 변화가 크게 되므로 제2태양열 감지유닛(300'')에서 태양열을 감지하여 제2회전구동유닛(200'')을 통하여 하부지주(U)의 각도를 조절함으로써 차광막(100')에 의해 생기는 그림자의 위치를 일정하게 유지하도록 한다.Therefore, when the sun's altitude is close to 0 ° (or close to 180 °), such as at sunrise (or sunset), the cylindrical case 310 of the first solar heat detection unit 300 'can detect the solar heat. Difficult to detect the solar heat, even if the normal of the light shielding film and the parallel to the sunlight, since the change in the shadow position is increased according to the altitude of the sun is lowered, the second solar drive unit 300 '' to detect the solar heat and the second rotary drive unit By adjusting the angle of the lower column (U) through (200 '') to maintain the position of the shadow generated by the light shielding film (100 ') constant.
즉, 제1태양열 감지유닛(300')이 태양의 위치를 감지하기 어려워 제1회전구동유닛(200')이 회전 구동되기 어려운 일출(또는 일몰) 시 제2태양열 감지유닛(300'')이 태양의 위치를 감지하여 제2회전구동유닛(200'')의 동서방향 구동부(210'')를 회전 구동시킬 수 있게 된다. That is, when the first solar drive unit 300 ′ is difficult to detect the position of the sun and the first rotation drive unit 200 ′ is difficult to rotate, the second solar heat detection unit 300 ″ By sensing the position of the sun it is possible to drive the east-west drive unit 210 '' of the second rotary drive unit 200 ''.
상술한 바와 같이, 본 발명의 실시예에 따른 태양광 추적장치는 태양의 고도와 방위에 따른 대상물 패널의 온도차에 의하여 생성되는 열기전력을 이용하여 대상물의 패널 법선이 태양광선과 평행이 되도록 회전구동유닛을 선택적으로 구동시키는 태양열 감지유닛을 통하여 태양광의 이용 효율을 높일 수 있도록 하는 것을 기본적인 기술적 사상으로 하고 있음을 알 수 있다. 따라서, 본 발명의 기본적인 기술적 사상의 범주 내에서 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능함은 물론이다.As described above, the solar tracking device according to the embodiment of the present invention is driven to rotate so that the panel normal of the object is parallel to the sunlight by using thermoelectric power generated by the temperature difference of the object panel according to the altitude and orientation of the sun. It can be seen that the basic technical idea is to increase the utilization efficiency of sunlight through the solar sensing unit that selectively drives the unit. Accordingly, of course, many other modifications are possible to those of ordinary skill in the art within the scope of the basic technical idea of the present invention.
본 발명의 실시예에 따른 태양광 추적장치 및 방법은 태양의 위치를 추적하여 태양광의 이용 효율을 높일 수 있는 태양광 추적장치 및 방법을 제공하는 효과가 있다. 또한, 태양의 위치를 정확하게 감지하여 추적장치를 회전 구동시키는 회전구동유닛을 제어할 수 있도록 한다. 또한, 소규모 발전설비에도 적합하도록 구조를 단순화하면서도 태양을 추적할 수 있도록 한다. The solar tracking device and method according to an embodiment of the present invention has the effect of providing a solar tracking device and method that can increase the utilization efficiency of sunlight by tracking the position of the sun. In addition, by accurately detecting the position of the sun to be able to control the rotary drive unit for driving the tracking device rotation. It also allows the sun to be tracked while simplifying the structure for small power plants.

Claims (9)

  1. 패널이 구비된 대상물을 회전 구동시키기 위한 회전구동유닛;과, A rotation driving unit for rotating the object having the panel;
    태양의 고도와 방위에 따른 상기 패널의 양지와 음지의 온도차에 의하여 생성되는 열기전력을 이용하여 상기 대상물의 패널 법선이 태양광선과 평행이 되도록 회전구동유닛을 선택적으로 구동시키는 태양열 감지유닛;을 A solar heat sensing unit for selectively driving the rotational driving unit such that the panel normal of the object is parallel to the sunlight by using thermoelectric power generated by the temperature difference between the sun and the sun of the panel according to the altitude and orientation of the sun;
    포함하되,Including,
    상기 회전구동유닛은 상기 대상물을 고도 방향으로 회전 구동시키는 고도구동부와, 상기 대상물을 방위 방향으로 회전 구동시키는 방위구동부를 포함하며, The rotary drive unit includes a high tool drive for rotating the object in the altitude direction, and an azimuth drive for rotating the object in the azimuth direction,
    상기 고도구동부는 상기 대상물을 고도 방향으로 회전 구동시키기 위한 고도방향 회전축과, 일단이 고정되고 타단에는 제1입력스위칭부를 가지는 제1입력라인과, 상기 태양열 감지유닛에 의해 상기 제1입력스위칭부와 선택적으로 접촉되어 고도방향 회전축을 중심으로 대상물을 회전 구동시키는 제1연결스위칭부를 가지는 제1전달라인을 구비하며, The high tool moving part comprises a first input line having an altitude rotation axis for driving the object in the altitude direction, one end of which is fixed and a first input switching part at the other end, and the first input switching part by the solar sensing unit. A first transmission line having a first connection switching unit selectively contacting and rotating the object about an axis of rotation in the high direction,
    상기 방위구동부는 상기 대상물을 방위 방향으로 회전시키기 위한 방위방향 회전축과, 일단이 고정되고 타단에는 제2입력스위칭부를 가지는 제2입력라인과, 상기 태양열 감지유닛에 의해 상기 제2입력스위칭부와 선택적으로 접촉되어 방위방향 회전축을 중심으로 대상물을 회전 구동시키는 제2연결스위칭부를 가지는 제2전달라인을 구비하는 것을 특징으로 하는 태양광 추적장치.The azimuth driver includes an azimuth rotation axis for rotating the object in an azimuth direction, a second input line having one end fixed thereto and a second input switching part at the other end thereof, and the second input switching part selectively selected by the solar thermal sensing unit. And a second transmission line having a second connection switching unit which is brought into contact with and rotates the object about the azimuth rotation axis.
  2. 제1항에 있어서,The method of claim 1,
    상기 대상물은 태양전지패널을 포함하는 것을 특징으로 하는 태양광 추적장치. The object is a solar tracking device comprising a solar panel.
  3. 제2항에 있어서,  The method of claim 2,
    상기 태양열 감지유닛은 상기 태양전지패널의 중앙부에 형성되되 내부에 태양열에 의해 선택적으로 가열되는 4개 감지부를 가지는 원통형 케이스;와, 상기 고도방향 회전축과 직교하는 면상에서 대칭 형성되는 상기 원통형 케이스 내부의 2개 감지부에 양단부가 접합되는 제1써머 커플;과, 상기 방위방향 회전축과 직교하는 면상에서 대칭 형성되는 상기 원통형 케이스 내부의 2개의 감지부에 양단부가 접합되는 제2써머 커플;과, 상기 제1써머 커플 중 어느 하나의 도선에 의해 형성되는 제1솔레노이드와, 상기 제2써머 커플 중 어느 하나의 도선에 의해 형성되는 제2솔레노이드와, 상기 제1솔레노이드에 대응 형성되되 상기 제1써머 커플의 2개 감지부 온도차에 의해 생성되는 열기전력으로 상기 제1써머 커플에 전류가 흐르면 상기 제1입력스위칭부와 제1연결스위칭부를 접촉시키는 제1자성체와, 상기 제2솔레노이드에 대응 형성되어 상기 제2써머 커플의 2개 감지부 온도차에 의해 생성되는 열기전력으로 상기 제2써머 커플에 전류가 흐르면 제2입력스위칭부와 제2연결스위칭부를 접촉시키는 제2자성체;를 포함하는 것을 특징으로 하는 태양광 추적장치.The solar cell detection unit is formed in the central portion of the solar panel, the cylindrical case having four sensing units that are selectively heated by the solar heat therein; and the inside of the cylindrical case symmetrically formed on the plane orthogonal to the high-direction rotation axis A first thermal couple having both ends joined to two sensing units; and a second thermal couple joined to two sensing units inside the cylindrical case symmetrically formed on a plane perpendicular to the azimuth rotation axis; and A first solenoid formed by one of the first thermal couples, a second solenoid formed by one of the second thermal couples, and a first solenoid formed corresponding to the first solenoid. When the current flows in the first thermal couple by the thermoelectric power generated by the temperature difference between the two sensing units of the first input switching unit and the first A second input switching unit when a current flows in the second thermal couple with a first magnetic body contacting the binding switching unit and a thermoelectric power generated by a temperature difference between the two sensing units of the second thermal couple, corresponding to the second solenoid; And a second magnetic body for contacting the second connection switching unit.
  4. 제2항에 있어서, The method of claim 2,
    상기 태양열 감지유닛은 상기 태양전지패널과 동일면 중앙부에 배치되는 4개 감지부를 가지는 제1원판과, 상기 제1원판의 상측에서 상기 제1원판과 평행하게 배치되어 상기 제1원판의 4개 감지부가 선택적으로 가열되게 하는 제2원판을 포함하는 원판조립체;와, 상기 고도방향 회전축과 직교하는 면상에서 대칭 형성되는 상기 제1원판의 2개 감지부에 양단부가 접합되는 제1써머 커플;과, 상기 방위방향 회전축과 직교하는 면상에 대칭 형성되는 상기 제1원판의 2개 감지부에 양단부가 접합되는 제2써머 커플;과, 상기 제1써머 커플 중 어느 하나의 도선에 의해 형성되는 제1솔레노이드;와, 상기 제2써머 커플 중 어느 하나의 도선에 의해 형성되는 제2솔레노이드;와, 상기 제1솔레노이드에 대응 형성되어 2개 감지부의 온도차에 의해 생성되는 열기전력으로 상기 제1써머 커플에 전류가 흐르면 제1입력스위칭부와 제1연결스위칭부를 접촉시키는 제1자성체;과, 제2솔레노이드에 대응 형성되어 2개의 감지부의 온도차에 의해 생성되는 열기전력으로 상기 제2써머 커플에 전류가 흐르면 제2입력스위칭부와 제2연결스위칭부를 접촉시키는 제2자성체;를 포함하는 것을 특징으로 하는 태양광 추적장치.The solar sensing unit includes a first disc having four sensing units disposed at the center of the same surface as the solar panel, and four sensing units of the first disc being disposed in parallel with the first disc on an upper side of the first disc. A disc assembly including a second disc to be selectively heated; and a first thermocouple having both ends joined to two sensing portions of the first disc, which are symmetrically formed on a plane orthogonal to the high-direction rotation axis; and A second thermal couple having both ends joined to two sensing portions of the first disc symmetrically formed on a plane orthogonal to an azimuth rotation axis; and a first solenoid formed by any one of the first thermal couple conductors; And a second solenoid formed by one of the conductors of the second thermal couple; and a thermoelectric power formed corresponding to the first solenoid and generated by a temperature difference between the two sensing units. A first magnetic body contacting the first input switching unit and the first connection switching unit when current flows in the first thermal couple; and the second thermoelectric power formed by a temperature difference between the two sensing units formed in correspondence with the second solenoid. And a second magnetic body contacting the second input switching unit and the second connection switching unit when a current flows through the thermal couple.
  5. 제1항에 있어서,  The method of claim 1,
    상기 대상물은 파라솔을 포함하며, The object comprises a parasol,
    상기 파라솔은 차광막;과, The parasol is a light shielding film; And,
    상기 차광막을 고도 방향으로 회전 구동시키는 고도구동부와, 상기 차광막을 방위 방향으로 회전 구동시키는 방위구동부를 포함하는 제1회전구동유닛;과, A first rotary drive unit including a high tool drive unit for rotating the light shielding film in a high altitude direction and an azimuth driving unit for rotating the light shielding film in an azimuth direction;
    상기 태양의 고도와 방위에 따른 온도차에 의한 열기전력을 이용하여 상기 차광막의 패널 법선이 태양광선과 평행이 되도록 제1회전구동유닛을 선택적으로 구동시키는 제1태양열 감지유닛이 구비된 상부지주와;, An upper column provided with a first solar heat sensing unit for selectively driving the first rotational driving unit such that the panel normal of the light shielding film is parallel to the solar light by using thermoelectric power due to the temperature difference according to the altitude and orientation of the sun; ,
    상기 태양의 고도가 0°또는 180°에 근접하는 경우 상기 차광막을 동서방향으로 회전 구동시키는 동서방향 구동부를 포함하는 제2회전구동유닛;,과, A second rotation driving unit including an east-west direction driving unit for rotating the light blocking film in the east-west direction when the altitude of the sun approaches 0 ° or 180 °;
    상기 태양의 고도가 0°또는 180°에 근접하는 때 상기 차광막에 대응 형성되는 지표면 그림자면의 온도차에 의한 열기전력을 이용하여 상기 차광막의 패널 법선이 태양광선과 평행이 되도록 제2회전구동유닛을 선택적으로 제2태양열 감지유닛이 구비된 하부지주;를 When the altitude of the sun approaches 0 ° or 180 °, the second rotational drive unit is arranged such that the panel normal of the light shielding film is parallel to the solar ray by using the thermoelectric power by the temperature difference of the surface shadow surface corresponding to the light shielding film. A lower column optionally provided with a second solar thermal sensing unit;
    포함하는 것을 특징으로 하는 태양광 추적장치. Photovoltaic tracking device comprising a.
  6. 복수의 감지부에서 태양열을 감지하는 단계: Detecting solar heat in the plurality of detectors:
    상기 복수의 감지부 사이에 온도차를 감지하는 단계; Sensing a temperature difference between the plurality of sensing units;
    상기 온도차에 의해 생성되는 열기전력으로 써머 커플에 전류가 흐르도록 하는 단계; Allowing a current to flow in the thermal couple by the thermoelectric power generated by the temperature difference;
    상기 써머 커플에 흐르는 전류로 상기 써머 커플 중 하나의 도선에 의해 형성되는 솔레노이드가 강한 자석의 힘을 띄는 단계; A solenoid formed by a conductor of one of the thermal couples exerts a strong magnet force with a current flowing through the thermal couple;
    상기 솔레노이드와 자성체 사이의 인력으로 회전구동장치의 입력라인과 전달라인을 스위칭시켜 태양광을 추적하는 단계; Tracking sunlight by switching an input line and a transmission line of a rotational driving device with an attraction force between the solenoid and the magnetic body;
    를 포함하는 것을 특징으로 하는 태양광 추적방법.Photovoltaic tracking method comprising a.
  7. 태양열에 의해 선택적으로 가열되는 4개의 감지부를 가지는 대상물을 선택하는 단계; Selecting an object having four sensing units selectively heated by solar heat;
    상기 대상물의 4개의 감지부 중 상기 대상물의 제1회전축과 직교하는 면상에 배치된 2개의 감지부에 양단부가 접합되는 제1써머 커플을 준비하고, 상기 대상물의 4개의 감지부 중 상기 대상물의 제2회전축과 직교하는 면상에 배치된 2개의 감지부에 양단부가 접합되는 제2써머 커플을 준비하는 단계; A first thermal couple having both ends joined to two sensing units disposed on a surface orthogonal to a first rotational axis of the object among the four sensing units of the object, and the first of the four sensing units of the object Preparing a second thermal couple having both ends joined to two sensing units disposed on a surface orthogonal to the second rotating shaft;
    상기 제1써머 커플과 제2써머 커플 각각 양단부의 온도차에 의해 생성되는 열기전력을 이용하여 상기 대상물의 패널 법선이 태양광선과 평행이 되도록 제1회전축과 제2회전축을 선택적으로 구동시켜 태양광을 추적하는 단계; By using thermoelectric power generated by the temperature difference between each of the first thermal couple and the second thermal couple, the first rotation axis and the second rotation axis are selectively driven so that the panel normal of the object is parallel with the sunlight. Tracking;
    를 포함하는 것을 특징으로 하는 태양광 추적방법.Photovoltaic tracking method comprising a.
  8. 태양열에 의해 선택적으로 가열되는 복수의 감지부를 가지는 태양열 감지부재;와,  A solar heat sensing member having a plurality of sensing parts selectively heated by solar heat;
    상기 태양열 감지부재의 복수의 감지부에 양단부가 접합되는 적어도 하나의 써머 커플;과, At least one thermal couple having both ends joined to a plurality of sensing units of the solar sensing member;
    상기 써머 커플 중 어느 하나의 도선에 의해 형성되는 적어도 하나의 솔레노이드;와, At least one solenoid formed by one of the thermal couples;
    상기 솔레노이드에 대응 형성되되 상기 써머 커플의 복수의 감지부 사이의 온도차에 의해 생성되는 열기전력으로 상기 써머 커플에 흐르는 전류가 흐르면 회전구동장치의 입력라인과 전달라인이 스위칭되게 하는 자성체;를 A magnetic body formed corresponding to the solenoid and causing the input line and the transmission line of the rotary drive device to be switched when a current flowing in the thermal couple flows with the thermoelectric power generated by the temperature difference between the plurality of sensing units of the thermal couple;
    포함하는 것을 특징으로 하는 태양열 감지유닛.Solar sensing unit comprising a.
  9. 제8항에 있어서, The method of claim 8,
    상기 써머 커플에 흐르는 전류를 증폭시키는 증폭기를 더 포함하는 것을 특징으로 하는 태양열 감지유닛. Solar sensing unit further comprises an amplifier for amplifying the current flowing in the thermal couple.
PCT/KR2012/005199 2011-07-01 2012-06-29 Apparatus for tracking sunlight, sunlight tracking method, and unit for detecting solar heat WO2013005953A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0065309 2011-07-01
KR1020110065309A KR101096606B1 (en) 2011-07-01 2011-07-01 Solar tracking apparatus, solar tracking method, solar heat sensing unit

Publications (2)

Publication Number Publication Date
WO2013005953A2 true WO2013005953A2 (en) 2013-01-10
WO2013005953A3 WO2013005953A3 (en) 2013-04-11

Family

ID=45506671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005199 WO2013005953A2 (en) 2011-07-01 2012-06-29 Apparatus for tracking sunlight, sunlight tracking method, and unit for detecting solar heat

Country Status (2)

Country Link
KR (1) KR101096606B1 (en)
WO (1) WO2013005953A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709771B2 (en) 2012-10-30 2017-07-18 3M Innovative Properties Company Light concentrator alignment system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576906A (en) * 1980-06-16 1982-01-13 Nec Home Electronics Ltd Solar following device
JPS6051810A (en) * 1983-08-31 1985-03-23 Tatsuta Electric Wire & Cable Co Ltd Sun tracking device
KR100448511B1 (en) * 2003-10-29 2004-09-16 박종근 Control circuit of an apparatus for keeping track of sun
KR200436293Y1 (en) * 2006-12-20 2007-07-20 손성일 Apartment wall adhension two axle auto solar tracking thermoelectric generation equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576906A (en) * 1980-06-16 1982-01-13 Nec Home Electronics Ltd Solar following device
JPS6051810A (en) * 1983-08-31 1985-03-23 Tatsuta Electric Wire & Cable Co Ltd Sun tracking device
KR100448511B1 (en) * 2003-10-29 2004-09-16 박종근 Control circuit of an apparatus for keeping track of sun
KR200436293Y1 (en) * 2006-12-20 2007-07-20 손성일 Apartment wall adhension two axle auto solar tracking thermoelectric generation equipment

Also Published As

Publication number Publication date
KR101096606B1 (en) 2011-12-23
WO2013005953A3 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
CN202957252U (en) Solar cell module
CN101133500B (en) Preventing harmful polarization of solar cells
WO2012165697A1 (en) Solar cell module support assembly
US4332238A (en) Solar tracking system
WO2013032099A1 (en) Solar power generating apparatus
WO2011071227A1 (en) Solar cell module
WO2012070741A1 (en) Robot-type solar tracking apparatus
US20110290295A1 (en) Thermoelectric/solar cell hybrid coupled via vacuum insulated glazing unit, and method of making the same
WO2011053077A2 (en) Solar cell and manufacturing method thereof
CZ283818B6 (en) Apparatus for orientation of solar energy collectors
WO2012008659A1 (en) Solar tracking device and solar tracking method using same
WO2013005953A2 (en) Apparatus for tracking sunlight, sunlight tracking method, and unit for detecting solar heat
Bhuvaneswari et al. Analysis of solar energy based street light with auto tracking system
WO2022092665A1 (en) Solar energy storage system
WO2016125938A1 (en) Solar light detection device and solar light tracker having same
US4714797A (en) Composite electromotive apparatus utilizing solar energy and the like
WO2012015150A1 (en) Device for generating photovoltaic power and method for manufacturing same
WO2012020889A1 (en) Solar cell panel
WO2014003334A1 (en) Photovoltaic module cooling device applied to solar energy conversion apparatus
KR100948251B1 (en) Sunlight-electric cell plate equipment for sun follow moving with structure roof institution
WO2016098941A1 (en) Electric wire bundles and manufacturing method therefor
WO2013051849A2 (en) Solar apparatus and method of fabricating the same
JP2569428B2 (en) Solar thermal power plant
WO2016167510A1 (en) Unpowered sunlight tracking device
JPH04280482A (en) Cooling device utilizing solar light

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A, DATED 10-06-2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12806912

Country of ref document: EP

Kind code of ref document: A2