WO2016167510A1 - Unpowered sunlight tracking device - Google Patents

Unpowered sunlight tracking device Download PDF

Info

Publication number
WO2016167510A1
WO2016167510A1 PCT/KR2016/003596 KR2016003596W WO2016167510A1 WO 2016167510 A1 WO2016167510 A1 WO 2016167510A1 KR 2016003596 W KR2016003596 W KR 2016003596W WO 2016167510 A1 WO2016167510 A1 WO 2016167510A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
bimetal
tracking device
solar tracking
powerless
Prior art date
Application number
PCT/KR2016/003596
Other languages
French (fr)
Korean (ko)
Inventor
김홍래
Original Assignee
김홍래
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160035893A external-priority patent/KR101766638B1/en
Application filed by 김홍래 filed Critical 김홍래
Publication of WO2016167510A1 publication Critical patent/WO2016167510A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a non-powered solar tracking device.
  • Such environmentally friendly energy include solar power generation, wind power generation, tidal or hydroelectric power generation.
  • solar energy has high thermal energy and thus has high utility value.
  • solar energy is energy used to collect sunlight using a lens or reflector.
  • the sun is constantly changing altitude and azimuth due to the rotation and rotation of the earth, it is necessary to continuously change the position of the collector that receives sunlight according to the position of the sun to obtain high efficiency.
  • research on a tracking device that can track sunlight has been recently conducted.
  • the tracking device is a device that can adjust the position of the reflector according to the movement of the sun in order to improve the power generation efficiency.
  • a device capable of adjusting the position of the reflector by electric energy using a predetermined transmission device has been used.
  • a tracking device using bimetal has been proposed.
  • Bimetal refers to a lamination of two kinds of thin metals having different coefficients of thermal expansion, that is, their degree of expansion and contraction change with temperature.
  • Patent document 1 Korean Patent No. 1412533 discloses a device capable of tracking sunlight using bimetal.
  • the device disclosed in Patent Literature 1 has a problem in that sunlight cannot be continuously tracked due to the nature of the bimetal returning to its original state when no energy is supplied.
  • the apparatus disclosed in Patent Literature 1 tracks sunlight and deforms and returns to the initial state, and then deforms again to return to the initial state.
  • Embodiments of the present invention have been proposed to solve the above problems, to provide a non-powered solar tracking device that can continuously track the sun using one axis.
  • a cylindrical housing through which light can pass; Fastening means provided in the housing; An axis passing through the housing along an extension direction of the housing and provided with an energy conversion means therein; A first guide rotatable about the axis; A reflector connected to the first guide and rotatable with the first guide about the axis and reflecting sunlight toward the axis; A bimetal deformably fixed to the fixing means and formed of two metal plates having different heat transfer rates; And a second guide that rotates the first guide according to the amount of deformation of the bimetal.
  • the bimetal is elongated in the axial extension direction, the central portion is fixed to both ends are bent in the horizontal direction, the second guide wraps the bimetal, the end portion of the bimetal and the ring portion formed to be slidably movable inside It may provide a non-powered solar tracking device including a head portion for applying an external force to the first guide in accordance with the movement of the ring portion.
  • the bimetal is fixed in the upper portion, the lower portion is bent in the horizontal direction, the second guide includes a rotating bar that is fitted between the pair of bimetal, and both sides of the rotating bar is bent downward to form a head portion To provide a non-powered solar tracking device.
  • the first guide may provide a non-powered solar tracking device including a wing that is connected to and fixed to the head of the second guide.
  • the wing portion may have a concave shape toward the reflecting portion, the back of the wing portion may provide a non-powered solar tracking device is formed as an auxiliary reflecting surface for reflecting back the light reflected from the reflecting portion.
  • the bimetal has a fixed upper portion, the lower portion is bent in a horizontal direction, spaced apart, a pair is provided, the second guide is connected to the bimetal, move in accordance with the movement of the bimetal, According to the movement, it is possible to provide a non-powered solar tracking device in which the first guide rotates.
  • the first guide may be a pulley having a predetermined groove
  • the second guide may provide a non-powered solar tracking device is formed of a ball chain having a ball of a size corresponding to the groove of the pulley.
  • the bimetal is provided with a pair, and the two metal plates constituting the bimetal, the inner metal plate of the bimetal close to the axis is provided with a thermal expansion coefficient greater than the outer metal plate of the bimetal far from the axis provides a non-powered solar tracking device. can do.
  • the bimetal may provide a non-powered solar tracking device in which the outer surface far from the shaft is a black body surface and the inner surface close to the shaft is a total reflection surface.
  • the second guide may provide a non-powered solar tracking device which is a cam that converts the linear movement of the bimetal into a rotational movement and transmits it to the first guide.
  • the reflector may provide a non-powered solar tracking device further comprising a main reflecting surface reflecting sunlight and a support portion to fix the curvature and shape of the main reflecting surface.
  • the housing may provide a non-powered solar tracking device that is a vacuum tube.
  • a non-powered solar tracking device including a bearing provided in a form surrounding the shaft.
  • a non-powered solar tracking device further comprises an insulating bushing for blocking the thermal interference of the shaft.
  • the energy conversion means may provide a non-powered solar tracking device that is a heat medium fluid flowing through the shaft.
  • the energy conversion means may provide a non-powered solar tracking device that is a thermoelectric element provided inside the shaft.
  • the non-powered solar tracking device does not include a separate power supply device, and there is an effect capable of operating without power.
  • FIG. 1 is a perspective view showing a non-powered solar tracking device according to an embodiment of the present invention.
  • FIG. 2 is a side view of FIG. 1.
  • FIG. 3 is an exploded perspective view of portion A of FIG. 1.
  • FIG. 4 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 1 operates in response to a change in solar azimuth angle.
  • FIG. 5 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention.
  • FIG. 6 is a side view of FIG. 5.
  • FIG. 7 is an exploded perspective view of a portion B of FIG. 5.
  • FIG. 8 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 5 operates in response to a solar azimuth change.
  • FIG. 9 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention.
  • FIG. 10 is a side cross-sectional view cut near the ball chain of FIG. 9.
  • FIG. 11 is a partially enlarged perspective view of the ball chain and pulley of FIG. 9.
  • FIG. 11 is a partially enlarged perspective view of the ball chain and pulley of FIG. 9.
  • FIG. 12 is a side view of FIG. 11.
  • FIG. 13 is a cross-sectional view showing the configuration of the pulley of FIG.
  • FIG. 14 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 9 operates in response to a change in solar azimuth angle.
  • 15 is a comparison graph of a solar collector to which a solar tracking device according to an embodiment of the present invention is applied and a conventional solar collector.
  • FIG. 1 is a perspective view showing a non-powered solar tracking device according to an embodiment of the present invention
  • Figure 2 is a side view of Figure 1
  • Figure 3 is an exploded perspective view of the portion A of FIG.
  • the non-powered solar tracking device 10 includes a cylindrical housing 100 through which light can pass, and an interior of the housing 100.
  • a shaft 120 which passes in the direction (x-axis direction in FIG. 1) passing through the fixing means 110 and the bottom surface of the housing 100 provided therein, and through which a nut fluid or a thermoelectric element may be disposed.
  • a first guide 130 rotatable about the shaft 120, a reflector 140 connected to the first guide 130 and rotatable about the shaft 120, and the fixing means 110.
  • the bimetal 150 is fixedly installed, and the second guide 160 rotates the first guide 130 according to the deformation amount of the bimetal 150.
  • the housing 100 is formed of a transparent material through which light can pass, and can provide a controlled environment.
  • the housing 100 may be a vacuum tube and may have a cylindrical shape having two bottom surfaces.
  • the inside of the housing 100 may not be affected by an external environment such as air temperature, air pressure, and humidity.
  • the fixing means 110 is a component provided in the housing 100 to position the bimetal 150 at a predetermined position inside the housing 100.
  • the fixing means 110 may include a frame 111 that may be fixed to an inner side surface of the housing 100, one or more extensions 112 extending from the frame 111 toward the shaft 120, and extending. It may include a fixing portion 113 provided at the end of the portion 112 to which the bimetal 150 may be fixed.
  • the fixing part 113 may further include a fastening hole 114 for connecting with the bimetal 150.
  • the fixing part 113 may have a shorter length than the frame 111.
  • the frame 111 is formed to correspond to the cross-sectional shape of the housing 100 by being connected to the straight portion 111a extending in the extending direction of the housing 100, that is, the X-axis direction, and the straight portion 111. It may be composed of a ring portion (111b) in close contact with the inner surface of the 100.
  • the frame 111, the extension part 112, and the fixing part 114 may be integrally formed, and the shape of the fixing means 110 is not limited thereto.
  • the frame 111, the extension part 112, and the fixing part 114 may be provided separately and connected to each other, and the ring part 111b may be omitted or the fixing part 113 may be omitted and the extension part (
  • the bimetal 150 may be directly connected to 112, and may have a structure other than the structure illustrated in the present embodiment.
  • the shaft 120 may pass through the center of the bottom surface of the housing 100 in the X-axis direction, and may have a shape having a predetermined thickness. At this time, the shaft 120 may be provided with a hollow inside so that the heat-mediated fluid can flow, it may extend through the housing 110 to the outside.
  • Heat-mediated fluid flows into the shaft 120 and absorbs sunlight and may be heated.
  • a thermoelectric element may be disposed inside the shaft 120, and a predetermined pipe for cooling the thermoelectric element may be further configured, and thus the power generation may be performed by the thermoelectric element absorbing sunlight and being heated.
  • the heat-mediated fluid flows inside the shaft 120 as an example.
  • the heat medium fluid flowing inside the shaft 120 or the thermoelectric element provided inside the shaft 120 absorbs sunlight and accumulates or generates predetermined energy, and may be referred to as energy conversion means. That is, it can be said that the energy conversion means is provided inside the shaft 120.
  • the first guide 130 may be provided to be rotatable about the shaft 120, and transmits the movement of the bimetal 150 to the reflector 140 to rotate the reflector 140.
  • the bearing 170 may be formed in the lower portion of the first guide 130 to smoothly rotate the first guide 130.
  • the bearing 170 may be formed to be fitted to the shaft 120, and the insulating bushing 180 for blocking thermal interference of the shaft 120 is provided between the shaft 120 and the bearing 170. Can be.
  • the bearing 170 is connected to the first guide 130 as an example, but the bearing 170 is connected to the reflector 140, and the first guide 130 is the reflector 140. It may be provided in the form formed in. That is, the bearing 170 is provided so that the first guide 130 and the reflector 140 can be smoothly rotated about the shaft 120.
  • the first guide 130 is disposed between the shaft 120, the bimetal 150, and the second guide 160, and rotates about the shaft 120 by an external force applied from the second guide 160. Can be.
  • the first guide 130 and the reflector 140 may be directly or indirectly connected. When the first guide 130 is rotated, the reflector 140 may also rotate together.
  • the first guide 130 may have a shape in which the head portion 162 of the second guide 160 to be described later may be fitted, whereby the first guide 130 as the second guide 160 moves. Can be rotated.
  • the first guide 130 may include a pair of wings 131 extending in both directions from the shaft 120, and a valley 134 may be provided between the wings 131. have. That is, the first guide 130 may be formed in a shape similar to '3'.
  • the pair of wings 131 may have a curved shape concave toward the reflector 140.
  • the upper surface of the first guide 130 functions as a contact surface interlocking with the second guide 160, and the lower surface of the first guide 130 reflects light reflected from the reflector 140 again.
  • 132 may function. In this case, there is an advantage that the light collecting efficiency can be further increased through the concave auxiliary reflective surface 132.
  • the first guide 130 may be formed in a relatively small size compared to the reflector 140, thereby allowing the reflector 140 to be greatly rotated even when the bimetal 150 is deformed in small amounts.
  • the first guide 130 may be provided with a weight 133 for adding weight to the side of the first guide 130 around the shaft 120. Since the weight 133 is provided, even when only a weak force is applied from the second guide 160, a large moment may be generated on the side of the first guide 130, so that the reflector 140 may be easily rotated.
  • the reflector 140 may be connected to the first guide 130 and provided to be rotatable about the shaft 120.
  • the reflector 140 may include a main reflecting surface 141 reflecting sunlight toward the axis 120 and a support 142 supporting the main reflecting surface 141.
  • the main reflective surface 141 may be concave toward the axis 120, and the support 142 may have a sector shape having a flat center angle to fix the curvature and the shape of the reflector 140. .
  • the curvature of the main reflective surface 141 may be changed according to the angle of the support 142.
  • the bimetal 150 may be deformably fixed to the fixing means 110.
  • the bimetal 150 may be formed of two metal plates having different heat transfer rates, and may have a rectangular cross section.
  • the bimetal 150 may have a rectangular cross section extending longer in the X-axis direction.
  • a pair of bimetals 150 will be described as an example in which faces for absorbing sunlight are disposed to face outwards. In this case, there is an advantage that the bimetal can react even if sunlight is emitted from either side.
  • the pair of bimetals 150 may be fixed to the fixing means 110 by a fastening means 151 such as a bolt, or may be connected to each other, and the two bimetals 150 may be formed at regular intervals to allow the fastening means 151 to pass therethrough. More fastening holes 152 may be included. In the present exemplary embodiment, four fastening holes 152 are formed in the bimetal 150, but the present disclosure is not limited thereto.
  • the fastening holes 152 at both end sides of the bimetal 150 may be used for joining a pair of bimetals 150 to each other, and the fastening hole 152 at the center side may be fastening means 110. It is configured to correspond to the fastening hole 114 of the bimetal 150 may be used for the purpose of coupling to the fixing means (110).
  • the fastening means 151 may include a washer, a sleeve, a bolt, and a nut, but is not limited thereto.
  • the bimetal 150 may be disposed such that the metal plate having a higher thermal expansion coefficient faces the center side, that is, the fixing part 113 side. As a result, when the bimetal 150 absorbs and deforms thermal energy, the bimetal 150 may be bent toward the direction in which sunlight is provided.
  • the outer surface of the bimetal 150 may be treated with a low reflective black body by a technique such as titanium vacuum deposition to absorb sunlight well, and the rear surface may be a mirror that can be totally reflected. That is, when the bimetals 150 are provided in pairs, the opposite inner surfaces of the bimetals 150 may be total reflection surfaces. The total reflection surface can prevent mutual thermal interference due to radiation between the pair of bimetals 150.
  • the inner surface of the bimetal 150 is formed as a total reflection surface, but the spirit of the present invention is not limited thereto.
  • a highly elastic insulating material may be provided between the pair of bimetals 150 to block heat transfer.
  • the bimetal 150 is bent as it absorbs solar heat. Specifically, since the outer surface of the bimetal 150, that is, the black body treated surface, may absorb sunlight well, the deformation amount of the bimetal 150 may be increased. As the solar light is absorbed, the bimetal 150 is bent according to the difference in thermal expansion rates of the two metals forming the bimetal 150. At this time, the bimetal 150 is a metal plate having a greater thermal expansion coefficient is disposed toward the center side, that is, the fixing portion 113, it is concave concave toward the sunlight.
  • the bimetals 150 are provided in pairs, and when sunlight is irradiated toward either 150a of the pair of bimetals 150, the other bimetals 150b absorb energy well. It does not thermally expand or only thermally expand by a relatively small amount. In this case, since the other bimetal 150b is connected by any one of the bimetals 150a and the fastening means 151, the other bimetals 150b are deformed together according to the deformation of any one of the bimetals 150a.
  • the bimetal 150 is provided in a form in which the length of the same direction (X-axis direction) as the extension direction of the shaft 120 is longer than the length of the other direction (Z-axis direction).
  • the bimetal 150 since the center of the bimetal 150 is fixed to the fixing part 113, the bimetal 150 may be bent in the horizontal direction at both ends with respect to the center.
  • the second guide 160 may rotate the first guide 130 according to the deformation amount of the bimetal 150.
  • the bimetal 150 is fixed to the fixing means 110 and is bent, and the second guide 160 may be configured to rotate together according to the degree to which the bimetal 150 is bent. Specifically, the bimetal 150 is bent in the left and right directions based on FIG. 2, and the second guide 160 converts the linear motion of the bimetal 150 into a rotational motion to transmit the bimetal 150 to the first guide 130. It may be a cam.
  • the second guide 160 may be made of a Teflon material having a low thermal conductivity and high heat resistance, but is not limited thereto.
  • the second guide 160 is directly connected to the bimetal 130, so that the first guide 130 rotates according to the change of the bimetal 130, and the connection between the bimetal 130 and the first guide 130 is performed. Can be used as a structure. Therefore, the second guide 160 may be provided on the first guide 130 to have a structure interlocked with the bimetal 130.
  • the second guide 160 includes a ring portion 161 surrounding the bimetal 150, and a head portion 162 in contact with the first guide 130 to rotate the first guide 130. can do.
  • the head part 162 may have a shape corresponding to the top shape of the first guide 130 so that the second guide 160 is interlocked with the first guide 130.
  • the head 162 is connected to the first guide 130 and rotates together with the first guide 130.
  • the head portion 162 may be formed in a wedge shape that fits into the valley portion 134, and the head portion 162 and The wing 131 may be adhesively fixed.
  • the ring portion 161 is rotated as the bimetal 150 is bent, and the rotation center may be a contact portion between the head portion 162 and the first guide 130.
  • the ring portion 161 may be formed in an elliptic shape or a cam shape having a predetermined curvature and may be fitted in a shape surrounding the bimetal 150.
  • the edge portion of the bimetal 150 pushes the inner surface of the ring portion 161, whereby the ring portion 161 is in a tangential direction of the shaft 120 (left and right directions in FIG. 2).
  • External force is applied. Since the head portion 162 is connected to the first guide 130, the external force acts as a moment to rotate the entire first guide 130. Therefore, the bimetal 150 is slid along the inner surface of the ring portion 161 when bent, and the first guide 130 rotates around the contact portion of the head portion 162 and the first guide 130 as a whole. do.
  • a method in which the head portion 162 is bonded to the valley portion 134 of the first guide 130 is fixed as an example, but the coupling method of the second guide 160 and the first guide 130 is illustrated. Is not limited to this.
  • a lower portion of the second guide 160 may be fitted and fixed to a portion of the first guide 130.
  • FIG. 4 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 1 operates in response to a change in solar azimuth angle.
  • FIG. 4A is a side view of the solar tracking device
  • FIG. 4B is a plan view of the solar tracking device. Referring to FIG. 4, the shape of the bimetal 150 according to the change of the position of the sun and the states of the first guide 130, the reflector 140, and the second guide 160 may be confirmed.
  • the solar tracking device 10 is disposed such that the sun is located on one side of the solar tracking device 10 when the morning is based on the noon, and the sun is located on the other side of the solar tracking device 10 when the afternoon occurs. Can be.
  • the sun is positioned on the left side of the solar tracking device 10 in the morning, and the example is positioned on the right side in the afternoon.
  • the bimetal 150 may bend toward the direction in which the sun is located. Specifically, as described above, a pair of bimetals 150 may be provided, and each of the bimetals 150 may be installed such that a metal plate having a high thermal expansion rate is positioned inside. Since it is arrange
  • the other bimetals 150b do not absorb energy well, and thus are not thermally expanded or only by a relatively small amount. Thermal expansion.
  • the other bimetal 150b is connected by any one of the bimetals 150a and the fastening means 151, the other bimetals 150b are deformed together according to the deformation of any one of the bimetals 150a.
  • the bimetal 150 Since the bimetal 150 is not thermally expanded by sunlight before sunrise, the bimetal 150 is maintained at noon in FIG. 4.
  • any one of the bimetals 150a can absorb sunlight better, so that the entire bimetals 150 concave concave leftward toward the sun. .
  • the second guide 160 is connected to both end portions of the bimetal 150, and as described above, the bimetal 150 pushes and rotates the annular portion 162 of the second guide 160 so that the second guide 160 is rotated.
  • 160 moves together with the bimetal 150 in the direction in which the bimetal 150 is bent, so that the first guide 130 and the reflector 140 coupled to the second guide 160 may be the shaft 120. Rotate around. That is, when the bimetal 150 is bent to the left side, the first guide 130, the second guide 160, and the reflector 140 rotate in the counterclockwise direction. As a result, the main reflection surface 141 of the reflection unit 140 may be positioned to face the sun.
  • the altitude of the sun becomes higher and higher, and the angle of incidence of sunlight incident on any one of the bimetals 150a becomes smaller. That is, since the amount of heat transmitted to any one of the bimetals 150a is reduced, the amount of thermal expansion of any one of the bimetals 150a is gradually reduced. Accordingly, the rotation angle of the reflector 140 also becomes small.
  • the sun supplies the same energy to both bimetals 150a and 150b, so that the amount of thermal expansion of both bimetals 150a and 150b is the same, so that the bimetals 150 do not bend in any direction.
  • the unit 140 may face upward.
  • any one of the bimetals 150b can absorb sunlight better, so that the entire bimetals 150 concave in the right direction towards the sun. Bent.
  • the second guide 160 is connected to both end portions of the bimetal 150, and as described above, the bimetal 150 pushes and rotates the annular portion 162 of the second guide 160 so that the second guide 160 is rotated.
  • 160 moves together with the bimetal 150 in the direction in which the bimetal 150 is bent, so that the first guide 130 and the reflector 140 coupled to the second guide 160 may be the shaft 120. Rotate around. That is, when the bimetal 150 is bent to the right, the first guide 130, the second guide 160, and the reflector 140 are rotated in the clockwise direction. As a result, the main reflection surface 141 of the reflection unit 140 may be positioned to face the sun.
  • the above description is an ideal situation when the sensitivity of the bimetal 150 is very excellent, and in fact, since the bimetal 150 takes time to absorb and thermally expand energy transmitted from the sun, the reflector rather than the movement of the sun. This may be done in a somewhat late fashion.
  • the reflector 140 may be rotated in a clockwise direction at an angle about a virtual line connecting the center of the first guide 130 and the center of the axis 120.
  • the non-powered solar tracking device 10 does not include a separate power supply device, and the first guide 130 and the reflector 140 according to the direction in which the bimetal 150 is bent. And the second guide 160 to rotate, there is an effect that can be operated with no power.
  • first guide 130, the second guide 160 and the reflector 140 is connected to one axis 120 and rotates, there is an effect capable of continuously tracking the sun.
  • one shaft 120 is provided to simplify the installation, there is an effect that can be installed and manufactured at a low cost.
  • the bimetal 150 is provided inside the sealed housing 100 and is not affected by the external environment, there is an advantage of increasing the operation reliability.
  • FIGS. 5 to 8 a non-powered solar tracking device according to another embodiment of the present invention will be described with reference to FIGS. 5 to 8.
  • other embodiments have a difference in the form of connection between the bimetal and the second guide as compared to the embodiment, and thus the description will be mainly focused on the differences.
  • the housing of the non-powered solar tracking device 20 corresponding to the housing 100 of the non-powered solar tracking device 10 may be represented by reference numeral 200.
  • the non-powered solar tracking device 20 includes a housing 200, a fixing means 210, a shaft 220, a first guide 230, a reflector 240, a bimetal 250, and a second guide. 260, bearing 270, and thermal insulation bushing 280.
  • FIG. 5 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention
  • Figure 6 is a side view of Figure 5
  • Figure 7 is an exploded perspective view of the portion B of FIG.
  • the non-powered solar tracking device 20 is a cylindrical housing 200 through which light can pass, and fixing means provided in the housing 200. 210 and a shaft 220 passing in the direction (x-axis direction in FIG. 5) passing through the bottom surface of the housing 200 and passing through the fruiting fluid therein, and rotating about the shaft 220.
  • the bimetal 250 may be deformably fixed to the fixing means 210.
  • the bimetal 250 may be formed of two metal plates having different heat transfer rates, and may have a rectangular cross section.
  • the bimetal 250 may have a rectangular cross section extending longer in the Z-axis direction.
  • a pair of bimetals 250 will be described as an example in which faces for absorbing sunlight from each other are disposed to face outwards. In this case, there is an advantage that the bimetal can react even if sunlight is emitted from either side.
  • the pair of bimetals 250 may be fixed to the fixing means 210 by fastening means 251 such as bolts or may be connected to each other, and two or more bimetals 250 may be formed at regular intervals to allow the fastening means 251 to pass therethrough. It may include more fastening holes 252. In the present exemplary embodiment, four fastening holes 252 are formed in the bimetal 250, but the present disclosure is not limited thereto.
  • the fastening hole 252 on the upper side of the bimetal 250 is configured to correspond to the fastening hole 214 of the fixing means 210 to be used for coupling the bimetal 250 to the fixing means 210.
  • the fastening hole 252 at the lower side of the bimetal 250 may be used to join the pair of bimetals 250 to each other.
  • the fastening means 251 may include a washer, a sleeve, a bolt, and a nut, but is not limited thereto.
  • the bimetal 250 may be disposed such that the metal plate having a higher thermal expansion coefficient faces the fixing part 213. As a result, when the bimetal 250 absorbs and deforms thermal energy, the lower portion of the bimetal 250 may be bent toward the direction in which sunlight is provided.
  • the bimetal 250 is bent as it absorbs solar heat. Specifically, since the outer surface of the bimetal 250, that is, the black body treated surface may absorb sunlight well, the deformation amount of the bimetal 250 may be increased. As the solar light is absorbed, the bimetal 250 is bent according to the difference in thermal expansion rates of the two metals forming the bimetal 250. In this case, since the metal plate having a larger thermal expansion rate is disposed toward the fixing part 213, the bimetal 250 may be concavely curved toward the sunlight.
  • the lower part of the bimetal 250 may be bent in the horizontal direction with respect to the upper part.
  • the second guide 260 may include a rotation bar 261 rotatably fitted between the pair of bimetals 250 and a head portion 262 provided at an end of the rotation bar 261. At this time, both ends of the pivoting bar 261 may be bent to extend downward, and the head portion 262 may be provided with a pair of the bent ends.
  • the head part 262 may have a shape corresponding to the shape of the top surface of the first guide 230 so that the second guide 260 is interlocked with the first guide 230.
  • the head 262 is connected to the first guide 130 and rotates together with the first guide 230.
  • the head portion 262 may be formed in a wedge shape that fits into the valley portion 234, and the head portion 262 and The wing 231 may be adhesively fixed.
  • the rotation bar 261 is rotated as the bimetal 250 is bent, and the rotation center may be a contact portion of the head 262 and the first guide 230.
  • the pivoting bar 261 may be provided in a space between the bottoms of the pair of bimetals 250.
  • the bimetal 250 When the bimetal 250 is bent, the bimetal 250 pushes the outer surface of the pivoting bar 261 fitted to the lower part, whereby the pivoting bar 261 is tangential to the shaft 220 (left and right directions in FIG. 6). External force is applied. Since the head portion 262 is connected to the first guide 230, this external force acts as a moment to rotate the entire first guide 230. Therefore, when the bimetal 250 is bent, the pivoting bar 261 is attracted to the bimetal 250, and the first guide 230 generally centers the contact portion between the head part 262 and the first guide 230. Is rotated.
  • a method in which the head portion 262 is bonded to the valley portion 234 of the first guide 230 is fixed as an example, but the coupling method of the second guide 260 and the first guide 230 is illustrated. Is not limited to this.
  • a lower portion of the second guide 260 may be fitted and fixed to a portion of the first guide 230.
  • FIG. 8 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 5 operates in response to a solar azimuth change.
  • FIG. 8A is a side view of the solar tracking device
  • FIG. 8B is a plan view of the solar tracking device. Referring to FIG. 8, the shape of the bimetal 250 according to the change of the position of the sun and the states of the first guide 230, the reflector 240, and the second guide 260 may be confirmed.
  • the sun is positioned on the left side of the solar tracking device 20 in the morning, and the example is positioned on the right side in the afternoon.
  • the bimetal 250 Since the bimetal 250 is not thermally expanded by sunlight before sunrise, the bimetal 250 is maintained at noon in FIG. 8.
  • any one of the bimetals 250a can absorb sunlight better, so that the entire bimetal 250 concave concave leftward toward the sun. .
  • the second guide 260 is connected to the lower part of the bimetal 250, and as described above, since the rotating bar 261 is provided between the lower parts of the bimetal 250, the rotating bar 261 includes the bimetal 250.
  • the bimetal 250 moves together in the bending direction, and thus, the first guide 230 and the reflector 240 coupled to the second guide 260 rotate about the axis 220. That is, when the bimetal 250 is bent to the left side, the first guide 230, the second guide 260, and the reflector 240 rotate in the counterclockwise direction. As a result, the main reflective surface 241 of the reflector 240 may be positioned to face the sun.
  • the altitude of the sun becomes higher and higher, and at noon, the sun supplies the same energy to both bimetals 250a and 250b, with the same amount of thermal expansion of both bimetals 250a and 250b.
  • the bimetal 250 may not be bent in any direction, and the reflector 240 may face upward.
  • any one of the bimetals 250b can absorb sunlight better, so that the entire bimetal 250 is concave in the right direction towards the sun. Bent. Accordingly, the rotation bar 261 moves together with the bimetal 250 in the direction in which the bimetal 250 is bent, and thus the first guide 230 and the reflector 240 coupled to the second guide 260. Since the axis 220 rotates in a clockwise direction, the main reflective surface 241 of the reflector 240 may be positioned to face the sun.
  • FIGS. 9 to 14 a non-powered solar tracking device according to another embodiment of the present invention will be described with reference to FIGS. 9 to 14.
  • another embodiment has a difference in that a ball chain and a belt pulley are included in the second guide as compared to the embodiment, and thus, the difference will be mainly described.
  • the housing of the non-powered solar tracking device 30 corresponding to the housing 100 of the non-powered solar tracking device 10 may be represented by the reference numeral 300.
  • the non-powered solar tracking device 30 includes the housing 300, the fixing means 310, the shaft 230, the first guide 330, the reflector 340, the bimetal 350, and the second guide. 360, bearing 370, and thermal insulation bushing 380.
  • FIG. 9 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention
  • Figure 10 is a side cross-sectional view cut near the ball chain of Figure 9
  • Figure 11 is a part of the ball chain and pulley of Figure 9 12 is an enlarged perspective view
  • FIG. 12 is a side view of FIG. 11
  • FIG. 13 is a cross-sectional view showing the configuration of the pulley of FIG. 9.
  • the non-powered solar tracking device 30 has a cylindrical housing 300 through which light can pass, and a fixing provided inside the housing 300. It passes about the means 310 and the direction through which the bottom surface of the housing 300 passes (the x-axis direction in FIG. 9), and the axis 320 through which a nut fluid flows through, and the axis 320 about.
  • the rotatable first guide 330, the reflecting portion 340 is connected to both sides of the first guide 330 rotatable about the shaft 320, and the bimetal 350 is fixed to the fixing means 310 And a second guide 360 for rotating the first guide 330 according to the deformation amount of the bimetal 350.
  • the fixing means 310 may have two or more straight portions 311a extending in the X axis in the housing 300. At this time, since the fixing portion 312 having a rectangular cross section for directly fixing the bimetal 350 may be provided in the straight portion 311a, two or more fixing portions 312 may be provided together with the straight portion 311a. Can be.
  • the first guide 330 may be provided to be rotatable about the axis 320, and transmits the movement of the bimetal 350 to the reflector 340 to rotate the reflector 340.
  • the first guide 330 may be a pulley having a plurality of grooves having the same size, and may have a structure in which the plurality of grooves are constantly arranged.
  • first guide 330 may be provided to be fitted to the central portion of the shaft (320). Therefore, the reflector 340 and the auxiliary reflector 390 may be provided at both sides of the first guide 330.
  • the pair of bimetals 350 may be spaced apart from each other by a predetermined distance about the shaft 320 and may be fixedly fixed to the fixing means 310.
  • the bimetal 350 may be formed of two metal plates having different heat transfer rates, and may have a rectangular cross section.
  • the bimetal 350 may have a rectangular cross section extending longer in the Z-axis direction.
  • the pair of bimetals 350 may be fixed to the fixing means 310 by fastening means 351 such as bolts, or may be connected to each other, and at least one formed at regular intervals to allow the fastening means 351 to pass therethrough.
  • the fastening hole 352 may be included.
  • the bimetal 350 has two fastening holes 352 formed as an example, but is not limited thereto.
  • the fastening hole 352 on the upper side of the bimetal 350 is configured to correspond to the fastening hole 314 of the fixing means 310 to be used for coupling the bimetal 350 to the fixing means 310.
  • the fastening means 351 may include a washer, a sleeve, a bolt, and a nut, but is not limited thereto.
  • the bimetal 350 may be disposed such that the metal plate having a higher thermal expansion coefficient faces the inside of the housing 300. As a result, when the bimetal 350 absorbs and deforms thermal energy, the lower portion of the bimetal 350 may be bent toward the direction in which sunlight is provided.
  • the bimetal 350 bends as it absorbs solar heat.
  • the outer surface of the bimetal 350 that is, the black body treated surface may absorb sunlight well, the deformation amount of the bimetal 350 may be increased.
  • the bimetal 350 is bent according to the difference in thermal expansion rates of the two metals forming the bimetal 350.
  • the bimetal 350 has a larger thermal expansion coefficient is disposed toward the inside of the housing 300, it is bent concave toward the sunlight.
  • the lower part of the bimetal 350 may be bent in the horizontal direction with respect to the upper part.
  • the second guide 360 may be directly connected to the bimetal 350 to operate the first guide 330 to be rotated according to the deformation amount of the bimetal 350.
  • the second guide 360 may surround the first guide 330, and both sides of the second guide 360 may be connected to the bimetal 350.
  • the second guide 360 may be a ball chain having a structure in which a plurality of balls are extended.
  • the ball may be formed in a size corresponding to the groove of the first guide 330, the ball of the second guide 360 may be coupled to the groove of the first guide 330. Therefore, when the bimetal 350 is bent, the second guide 360 moves along the direction in which the bimetal 350 is bent, whereby the first guide 330 overlapped with the ball due to the ball of the second guide 360. As the groove is rotated, the first guide 330 may rotate.
  • the first guide 330 is described as an example of the pulley
  • the second guide 360 is described as an example of the ball chain, but the first guide 330 and the second guide 360 are described. It is not limited to this.
  • it may be provided as a sprocket having a tooth structure and a corresponding chain.
  • FIG. 14 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 9 operates in response to a change in solar azimuth angle.
  • FIG. 14A is a side view of the solar tracking device
  • FIG. 14B is a plan view of the solar tracking device. Referring to FIG. 14, the shape of the bimetal 350 according to the change of the position of the sun and the states of the first guide 330, the reflector 340, and the second guide 360 may be confirmed.
  • the sun is positioned on the left side of the solar tracking device 30 in the morning, and the example is positioned on the right side in the afternoon.
  • the bimetal 350 Since the bimetal 350 is not thermally expanded by sunlight before sunrise, the bimetal 350 is maintained at noon in FIG. 14.
  • the second guide 360 Since the second guide 360 is connected to the lower portion of the bimetal 350, the second guide 360 moves together with the bimetal 350 in a direction in which the bimetal 350 is bent, thereby causing the second guide 360 to move.
  • the first guide 330 and the reflector 340 coupled to each other are rotated about the shaft 320. That is, when the bimetal 350 is bent to the left side, the first guide 330, the second guide 360, and the reflector 340 rotate in the counterclockwise direction. As a result, the main reflective surface 341 of the reflector 340 may be positioned to face the sun.
  • the altitude of the sun becomes higher and higher, and at noon, the sun supplies the same energy to both bimetals 350a and 350b, and the amount of thermal expansion of both bimetals 350a and 350b is the same.
  • the bimetal 350 may not be bent in any direction, and the reflector 340 may face upward.
  • the entire bimetal 350 concave concave in the right direction toward the sun. Accordingly, the second guide 360 is moved together with the bimetal 350 in the direction in which the bimetal 350 is bent, and thus, the first guide 330 and the reflecting part are engaged with and coupled to the second guide 360. Since the 340 rotates in a clockwise direction about the axis 320, the main reflective surface 341 of the reflector 340 may be positioned to face the sun.
  • 15 is a comparison graph of a solar collector to which a solar tracking device according to an embodiment of the present invention is applied and a conventional solar collector.
  • the power-supply solar tracking device 10, 20, 30 according to the present invention may vary in efficiency with time.
  • the radiation energy black body emission of the bimetals 150, 250 and 350 at 08 o'clock is smaller than the direct solar radiation, and at 10 o'clock, the bimetals 150, 250 and 350 can exhibit the same efficiency. Since the radiant energy of the black body is the same as the direct solar radiation of the sun, the same efficiency as b can be obtained, and at 12 o'clock, the radiant energy of the black metal (150, 250, 350) is a direct solar radiation of the sun. Since it becomes smaller than the energy, it can show the efficiency as c.
  • the efficiency can be the same as d, and the bimetals 150, 250 and 350 are about 15 o'clock. Since the radiant energy of the blackbody is smaller than the direct radiant energy of the sun, it can exhibit the same efficiency as e.
  • the non-powered photovoltaic tracking device 10, 20, 30 in the present invention may exhibit a unique curved shape according to the reaction time delay of the bimetals 150, 250, 350.
  • the solar tracking device has been described as a specific embodiment, this is only an example, and the present invention is not limited thereto and is interpreted as having the broadest range in accordance with the basic idea disclosed herein. Should be.
  • One skilled in the art can combine and substitute the disclosed embodiments to implement a pattern of a shape that is not indicated, but this is also within the scope of the present invention.
  • those skilled in the art can easily change or modify the disclosed embodiments based on the present specification, it is apparent that such changes or modifications belong to the scope of the present invention.
  • the non-powered solar tracking device according to the embodiments of the present invention may be used in the industrial solar tracking device industry.

Abstract

An unpowered sunlight tracking device may be provided, the unpowered sunlight tracking device comprising: a barrel-shaped housing, through which light can pass; a fixing means provided inside the housing; a shaft, which penetrates the housing along the direction of extension of the housing, and in which a heat medium fluid can flow; a first guide capable of rotating about the shaft; a reflection unit connected to the first guide to be able to rotate about the shaft together with the first guide, thereby reflecting sunlight towards the shaft; a bimetal, which is fixedly installed on the fixing means to be able to deform, and which is made of two metal plates that have different heat transfer rates; and a second guide for rotating the first guide according to the amount of deformation of the bimetal.

Description

[규칙 제26조에 의한 보정 14.04.2016] 무전원 태양광 추적 장치[Revision 14.04.2016 by Rule 26] No-power solar tracking device
본 발명은 무전원 태양광 추적 장치에 관한 것이다.The present invention relates to a non-powered solar tracking device.
화석연료가 고갈되어 가고, 화석연료로 인한 환경오염문제가 날로 심각해짐에 따라 친환경적이고 반영구적인 신재생 에너지에 대한 관심이 날로 증대되어 가고 있다. 이러한 친환경 에너지의 대표적인 예로, 태양열을 이용한 발전, 풍력을 이용한 발전, 조력이나 수력을 이용한 발전 등이 있는데, 특히 태양열 에너지는 높은 열에너지를 가지고 있기 때문에 활용가치가 매우 높다.As fossil fuels are depleted and environmental pollution due to fossil fuels becomes more serious, interest in eco-friendly and semi-permanent renewable energy is increasing day by day. Representative examples of such environmentally friendly energy include solar power generation, wind power generation, tidal or hydroelectric power generation. In particular, solar energy has high thermal energy and thus has high utility value.
일반적으로 태양 에너지는 렌즈나 반사경 등을 이용해 태양광을 모아서 사용하는 에너지이다. 그러나, 태양은 지구의 자전과 공전에 의하여 고도각과 방위각이 계속 바뀌므로, 태양광을 받아들이는 집광기의 위치를 태양의 위치에 따라 계속 바꿔주어야 높은 효율을 얻을 수 있다. 이를 위해 최근 태양광을 추적할 수 있는 추적(tracking) 장치에 대한 연구가 진행되고 있다.In general, solar energy is energy used to collect sunlight using a lens or reflector. However, since the sun is constantly changing altitude and azimuth due to the rotation and rotation of the earth, it is necessary to continuously change the position of the collector that receives sunlight according to the position of the sun to obtain high efficiency. To this end, research on a tracking device that can track sunlight has been recently conducted.
추적 장치는 발전 효율을 향상시키기 위해 태양의 이동에 따라 반사판의 위치를 조절할 수 있는 장치로서, 종래에는 소정의 전동장치를 이용하여 전기에너지로 반사판의 위치를 조절할 수 있는 장치가 사용되었으나, 최근에는 바이메탈을 이용한 추적 장치가 제안된 바 있다. The tracking device is a device that can adjust the position of the reflector according to the movement of the sun in order to improve the power generation efficiency. In the past, a device capable of adjusting the position of the reflector by electric energy using a predetermined transmission device has been used. A tracking device using bimetal has been proposed.
바이메탈이란 열팽창계수, 즉 온도의 변화에 따라 팽창, 수축하는 정도가 다른 두 종류의 얇은 금속을 포개어 붙인 것을 말한다. Bimetal refers to a lamination of two kinds of thin metals having different coefficients of thermal expansion, that is, their degree of expansion and contraction change with temperature.
특허문헌 1(한국등록특허 제1412533호)은 바이메탈을 이용해 태양광을 추적할 수 있는 장치에 대해 개시하고 있다. 그러나, 특허문헌 1에 개시된 장치는 에너지가 공급되지 않으면 원상태로 복귀하는 바이메탈의 성질 상 연속적으로 태양광을 추적할 수 없다는 문제가 있다. 구체적으로, 특허문헌 1에 개시된 장치는 태양광을 추적해 변형되었다가 다시 초기 상태로 복귀하고, 다시 변형되었다가 초기 상태로의 복귀를 반복하게 된다.Patent document 1 (Korean Patent No. 1412533) discloses a device capable of tracking sunlight using bimetal. However, the device disclosed in Patent Literature 1 has a problem in that sunlight cannot be continuously tracked due to the nature of the bimetal returning to its original state when no energy is supplied. Specifically, the apparatus disclosed in Patent Literature 1 tracks sunlight and deforms and returns to the initial state, and then deforms again to return to the initial state.
본 발명의 실시예들은 상기와 같은 문제를 해결하기 위해 제안된 것으로서, 하나의 축을 이용하여 연속적으로 태양의 추적이 가능한 무전원 태양광 추적 장치를 제공하고자 한다.Embodiments of the present invention have been proposed to solve the above problems, to provide a non-powered solar tracking device that can continuously track the sun using one axis.
또한, 저비용으로 설치 및 제조할 수 있는 무전원 태양광 추적 장치를 제공하고자 한다.In addition, it is to provide a non-powered solar tracking device that can be installed and manufactured at low cost.
또한, 작동 신뢰성을 높일 수 있는 무전원 태양광 추적 장치를 제공하고자 한다.In addition, to provide a non-powered solar tracking device that can increase the operation reliability.
또한, 광범위하게 사용될 수 있는 무전원 태양광 추적 장치를 제공하고자 한다.It is also an object of the present invention to provide a non-powered solar tracking device that can be widely used.
[과제의 해결 수단][Measures to solve the problem]
본 발명의 일 실시예에 빛이 통과할 수 있는 통 형상의 하우징; 상기 하우징의 내부에 제공된 고정수단; 상기 하우징의 연장 방향을 따라 상기 하우징을 통과하고, 내부에 에너지 전환 수단이 제공되는 축; 상기 축을 중심으로 회전 가능한 제1 가이드; 상기 제1 가이드에 연결되어 상기 축을 중심으로 상기 제1 가이드와 함께 회전 가능하고, 상기 축을 향해 태양광을 반사하는 반사부; 상기 고정수단에 변형 가능하게 고정 설치되고, 서로 다른 열전달률을 갖는 두 개의 금속판으로 형성되는 바이메탈; 및 상기 바이메탈의 변형량에 따라 상기 제1 가이드를 회전시키는 제2 가이드를 포함하는 무전원 태양광 추적 장치를 제공할 수 있다.In one embodiment of the present invention, a cylindrical housing through which light can pass; Fastening means provided in the housing; An axis passing through the housing along an extension direction of the housing and provided with an energy conversion means therein; A first guide rotatable about the axis; A reflector connected to the first guide and rotatable with the first guide about the axis and reflecting sunlight toward the axis; A bimetal deformably fixed to the fixing means and formed of two metal plates having different heat transfer rates; And a second guide that rotates the first guide according to the amount of deformation of the bimetal.
또한, 상기 바이메탈이 축 연장 방향으로 길게 연장되고, 중심부가 고정되어 양 단부가 수평 방향으로 휘어지며, 상기 제2 가이드는 상기 바이메탈을 감싸고, 바이메탈의 단부가 내부에서 슬라이딩 이동 가능하게 형성된 고리부와, 상기 고리부의 이동에 따라 상기 제1 가이드에 외력을 가하는 헤드부를 포함하는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the bimetal is elongated in the axial extension direction, the central portion is fixed to both ends are bent in the horizontal direction, the second guide wraps the bimetal, the end portion of the bimetal and the ring portion formed to be slidably movable inside It may provide a non-powered solar tracking device including a head portion for applying an external force to the first guide in accordance with the movement of the ring portion.
또한, 상기 바이메탈이 상부가 고정되고, 하부가 수평 방향으로 휘어지며, 상기 제2 가이드는 상기 한 쌍의 바이메탈 사이에 끼워지는 회동 바와, 상기 회동 바의 양측이 절곡되어 하방에 형성되는 헤드부를 포함하는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the bimetal is fixed in the upper portion, the lower portion is bent in the horizontal direction, the second guide includes a rotating bar that is fitted between the pair of bimetal, and both sides of the rotating bar is bent downward to form a head portion To provide a non-powered solar tracking device.
또한, 상기 제1 가이드는 상기 제2 가이드의 헤드부가 연결되어 고정되는 날개부를 포함하는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the first guide may provide a non-powered solar tracking device including a wing that is connected to and fixed to the head of the second guide.
또한, 상기 날개부는 상기 반사부를 향해 오목한 형상을 갖고, 상기 날개부의 배면은 상기 반사부에서 반사된 빛을 재반사하는 보조 반사면으로 형성되는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the wing portion may have a concave shape toward the reflecting portion, the back of the wing portion may provide a non-powered solar tracking device is formed as an auxiliary reflecting surface for reflecting back the light reflected from the reflecting portion.
또한, 상기 바이메탈은 상부가 고정되고, 하부가 수평 방향으로 휘어지며, 이격되어 한 쌍이 제공되고, 상기 제2 가이드는 상기 바이메탈에 연결되어, 상기 바이메탈의 움직임에 따라 이동하고, 상기 제2 가이드의 이동에 따라 제1 가이드가 회전하는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the bimetal has a fixed upper portion, the lower portion is bent in a horizontal direction, spaced apart, a pair is provided, the second guide is connected to the bimetal, move in accordance with the movement of the bimetal, According to the movement, it is possible to provide a non-powered solar tracking device in which the first guide rotates.
또한, 상기 제1 가이드는 일정한 홈을 갖는 풀리이고, 상기 제2 가이드는 상기 풀리의 홈에 대응되는 크기의 볼을 갖는 볼 체인으로 형성되는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the first guide may be a pulley having a predetermined groove, the second guide may provide a non-powered solar tracking device is formed of a ball chain having a ball of a size corresponding to the groove of the pulley.
또한, 상기 바이메탈은 한 쌍이 제공되고, 상기 바이메탈을 구성하는 두 금속판 중 상기 축에서 가까운 상기 바이메탈의 내측 금속판이 상기 축에서 먼 상기 바이메탈의 외측 금속판보다 열팽창률이 더 큰 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the bimetal is provided with a pair, and the two metal plates constituting the bimetal, the inner metal plate of the bimetal close to the axis is provided with a thermal expansion coefficient greater than the outer metal plate of the bimetal far from the axis provides a non-powered solar tracking device. can do.
또한, 상기 바이메탈은 상기 축에서 먼 외부면이 흑체면이고, 상기 축에서 가까운 내부면이 전반사면인 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the bimetal may provide a non-powered solar tracking device in which the outer surface far from the shaft is a black body surface and the inner surface close to the shaft is a total reflection surface.
또한, 상기 제2 가이드는 상기 바이메탈의 직선 방향 운동을 회전 운동으로 전환시켜 상기 제1 가이드에 전달하는 캠인 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the second guide may provide a non-powered solar tracking device which is a cam that converts the linear movement of the bimetal into a rotational movement and transmits it to the first guide.
또한, 상기 반사부는 태양광을 반사하는 주 반사면과, 상기 주 반사면의 곡률과 형상을 고정하도록 지지부를 더 포함하는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the reflector may provide a non-powered solar tracking device further comprising a main reflecting surface reflecting sunlight and a support portion to fix the curvature and shape of the main reflecting surface.
또한, 상기 하우징은 진공관인 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the housing may provide a non-powered solar tracking device that is a vacuum tube.
또한, 상기 축을 감싸는 형태로 제공되는 베어링을 포함하는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, it is possible to provide a non-powered solar tracking device including a bearing provided in a form surrounding the shaft.
또한, 상기 축과 상기 베어링 사이에는 상기 축의 열 간섭을 차단하기 위한 단열부싱을 더 포함하는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, between the shaft and the bearing may provide a non-powered solar tracking device further comprises an insulating bushing for blocking the thermal interference of the shaft.
또한, 상기 제1 가이드에 무게추가 장착되는 무전원 태양광 추적 장치를 제공할 수 있다.In addition, it is possible to provide a non-powered photovoltaic tracking device with weight added to the first guide.
또한, 상기 에너지 전환 수단은 상기 축 내부를 흐르는 열 매개 유체인 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the energy conversion means may provide a non-powered solar tracking device that is a heat medium fluid flowing through the shaft.
또한, 상기 에너지 전환 수단은 상기 축 내부에 제공된 열전소자인 무전원 태양광 추적 장치를 제공할 수 있다.In addition, the energy conversion means may provide a non-powered solar tracking device that is a thermoelectric element provided inside the shaft.
본 발명의 실시예들에 따른 무전원 태양광 추적 장치는 별도의 전원 장치를 포함하지 않고, 무동력으로 작동이 가능한 효과가 있다.The non-powered solar tracking device according to the embodiments of the present invention does not include a separate power supply device, and there is an effect capable of operating without power.
또한, 하나의 축이 제공되므로, 연속적으로 태양의 추적이 가능한 효과가 있다.In addition, since one axis is provided, there is an effect capable of continuously tracking the sun.
또한, 설치가 간단해지므로, 저비용으로 설치 및 제조할 수 있는 효과가 있다.In addition, since the installation is simplified, there is an effect that can be installed and manufactured at a low cost.
또한, 밀폐된 하우징 내부에 바이메탈이 제공되어 외부 환경의 영향을 받지 않으므로, 작동 신뢰성을 높일 수 있는 장점이 있다.In addition, since the bimetal is provided inside the sealed housing and is not affected by the external environment, there is an advantage of increasing the operation reliability.
또한, 집광 비율을 변화시켜, 여러 분야에서 광범위하게 사용할 수 있는 효과가 있다.In addition, there is an effect that can be widely used in various fields by changing the condensing ratio.
도 1은 본 발명의 일 실시예일 실시예에 따른 무전원 태양광 추적 장치를 보여주는 사시도이다.1 is a perspective view showing a non-powered solar tracking device according to an embodiment of the present invention.
도 2는 도 1의 측면도이다.2 is a side view of FIG. 1.
도 3은 도 1의 A부분의 분해 사시도이다.3 is an exploded perspective view of portion A of FIG. 1.
도 4는 도 1의 무전원 태양광 추적 장치가 태양 방위각 변화에 대응하여 작동하는 모습을 보여주는 도면이다.4 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 1 operates in response to a change in solar azimuth angle.
도 5는 본 발명의 다른 실시예에 따른 무전원 태양광 추적 장치를 보여주는 사시도이다.5 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention.
도 6은 도 5의 측면도이다.6 is a side view of FIG. 5.
도 7은 도 5의 B부분의 분해 사시도이다.7 is an exploded perspective view of a portion B of FIG. 5.
도 8은 도 5의 무전원 태양광 추적 장치가 태양 방위각 변화에 대응하여 작동하는 모습을 보여주는 도면이다.FIG. 8 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 5 operates in response to a solar azimuth change.
도 9는 본 발명의 또 다른 실시예에 따른 무전원 태양광 추적 장치를 보여주는 사시도이다.9 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention.
도 10은 도 9의 볼 체인 부근에서 절단된 측단면도이다.10 is a side cross-sectional view cut near the ball chain of FIG. 9.
도 11은 도 9의 볼 체인 및 풀리의 부분 확대 사시도이다.FIG. 11 is a partially enlarged perspective view of the ball chain and pulley of FIG. 9. FIG.
도 12는 도 11의 측면도이다.12 is a side view of FIG. 11.
도 13은 도 9의 풀리의 구성을 보여주는 횡단면도이다.13 is a cross-sectional view showing the configuration of the pulley of FIG.
도 14는 도 9의 무전원 태양광 추적 장치가 태양 방위각 변화에 대응하여 작동하는 모습을 보여주는 도면이다.FIG. 14 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 9 operates in response to a change in solar azimuth angle.
도 15는 본 발명의 일 실시예에 따른 태양광 추적 장치가 적용된 태양열 집열기와 종래의 태양열 집열기의 비교 그래프이다.15 is a comparison graph of a solar collector to which a solar tracking device according to an embodiment of the present invention is applied and a conventional solar collector.
이하에서는 본 발명의 구체적인 실시예들에 대하여 도면을 참조하여 상세히 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
아울러 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.In addition, in describing the present invention, when it is determined that the detailed description of the related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 무전원 태양광 추적 장치를 보여주는 사시도이고, 도 2는 도 1의 측면도이며, 도 3은 도 1의 A부분의 분해 사시도이다.1 is a perspective view showing a non-powered solar tracking device according to an embodiment of the present invention, Figure 2 is a side view of Figure 1, Figure 3 is an exploded perspective view of the portion A of FIG.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예일 실시예에 따른 무전원 태양광 추적 장치(10)는 빛이 통과할 수 있는 통 형상의 하우징(100)과, 하우징(100)의 내부에 제공된 고정수단(110)과, 하우징(100)의 밑면을 통과하는 방향(도 1에서의 x축 방향)으로 통과하며, 내부에 열매개 유체가 통과하거나 열전소자가 배치될 수 있는 축(120)과, 축(120)을 중심으로 회전 가능한 제1 가이드(130)와, 제1 가이드(130)에 연결되어 축(120)을 중심으로 회전 가능한 반사부(140)와, 고정수단(110)에 고정 설치되는 바이메탈(150)과, 바이메탈(150)의 변형량에 따라 제1 가이드(130)를 회전 시키는 제2 가이드(160)를 포함한다.1 to 3, the non-powered solar tracking device 10 according to an embodiment of the present invention includes a cylindrical housing 100 through which light can pass, and an interior of the housing 100. A shaft 120 which passes in the direction (x-axis direction in FIG. 1) passing through the fixing means 110 and the bottom surface of the housing 100 provided therein, and through which a nut fluid or a thermoelectric element may be disposed. And a first guide 130 rotatable about the shaft 120, a reflector 140 connected to the first guide 130 and rotatable about the shaft 120, and the fixing means 110. The bimetal 150 is fixedly installed, and the second guide 160 rotates the first guide 130 according to the deformation amount of the bimetal 150.
하우징(100)은 빛이 통과할 수 있는 투명한 소재로 형성되며, 통제된 환경을 제공할 수 있다. 예를 들어, 하우징(100)은 진공관일 수 있으며, 2개의 밑면을 갖는 원통형상일 수 있다. 하우징(100)이 진공관으로 제공되는 경우, 하우징(100) 내부가 기온, 기압, 습도 등의 외부환경의 영향을 받지 않을 수 있다.The housing 100 is formed of a transparent material through which light can pass, and can provide a controlled environment. For example, the housing 100 may be a vacuum tube and may have a cylindrical shape having two bottom surfaces. When the housing 100 is provided as a vacuum tube, the inside of the housing 100 may not be affected by an external environment such as air temperature, air pressure, and humidity.
고정수단(110)은 하우징(100) 내부에 제공되어 바이메탈(150)을 하우징(100) 내부의 소정의 위치에 위치시키는 구성요소이다. 일 예로, 고정수단(110)은 하우징(100)의 내측면에 고정될 수 있는 프레임(111)과, 프레임(111)으로부터 축(120)을 향해 연장된 하나 이상의 연장부(112)와, 연장부(112)의 끝단에 제공되어 바이메탈(150)이 고정될 수 있는 고정부(113)를 포함할 수 있다. 이 때, 고정부(113)에는 바이메탈(150)과의 연결을 위한 체결 구멍(114)이 더 포함될 수 있다. 또한, 고정부(113)는 프레임(111) 보다 짧은 길이일 수 있다.The fixing means 110 is a component provided in the housing 100 to position the bimetal 150 at a predetermined position inside the housing 100. For example, the fixing means 110 may include a frame 111 that may be fixed to an inner side surface of the housing 100, one or more extensions 112 extending from the frame 111 toward the shaft 120, and extending. It may include a fixing portion 113 provided at the end of the portion 112 to which the bimetal 150 may be fixed. In this case, the fixing part 113 may further include a fastening hole 114 for connecting with the bimetal 150. In addition, the fixing part 113 may have a shorter length than the frame 111.
프레임(111)은 하우징(100)의 연장 방향, 즉 X축 방향으로 길게 연장되는 직선부(111a)와, 직선부(111)에 연결되며 하우징(100)의 단면 형상에 대응되게 형성되어 하우징(100)의 내측면에 밀착되는 링부(111b)로 구성될 수 있다.The frame 111 is formed to correspond to the cross-sectional shape of the housing 100 by being connected to the straight portion 111a extending in the extending direction of the housing 100, that is, the X-axis direction, and the straight portion 111. It may be composed of a ring portion (111b) in close contact with the inner surface of the 100.
프레임(111)과 연장부(112) 및 고정부(114)는 일체형으로 형성될 수 있으며, 고정수단(110)의 형상은 이에 한정되지 않는다. 예를 들어, 프레임(111)와 연장부(112) 및 고정부(114)는 각각 따로 제공되어 연결되는 구조일 수도 있으며, 링부(111b)가 생략되거나 고정부(113)가 생략되고 연장부(112)에 바로 바이메탈(150)이 연결되는 등 본 실시예에서 예시한 구조 이외에 다른 구조를 가질 수도 있다.The frame 111, the extension part 112, and the fixing part 114 may be integrally formed, and the shape of the fixing means 110 is not limited thereto. For example, the frame 111, the extension part 112, and the fixing part 114 may be provided separately and connected to each other, and the ring part 111b may be omitted or the fixing part 113 may be omitted and the extension part ( The bimetal 150 may be directly connected to 112, and may have a structure other than the structure illustrated in the present embodiment.
축(120)은 하우징(100)의 밑면의 중심을 X축 방향으로 통과할 수 있고, 일정한 두께를 갖는 형상일 수 있다. 이 때, 축(120)은 열 매개 유체가 흐를 수 있도록 내부에 중공을 구비할 수 있으며, 하우징(110)을 통과하여 외부로 연장될 수 있다. The shaft 120 may pass through the center of the bottom surface of the housing 100 in the X-axis direction, and may have a shape having a predetermined thickness. At this time, the shaft 120 may be provided with a hollow inside so that the heat-mediated fluid can flow, it may extend through the housing 110 to the outside.
축(120)의 내부로는 열 매개 유체가 흐르며 태양광을 흡수하여 가열될 수 있다. 또는, 축(120)의 내부에는 열전소자가 배치되고, 열전소자를 냉각하기 위한 소정의 배관이 추가 구성되어, 열전소자가 태양광을 흡수하여 가열됨으로써 발전이 이뤄질 수도 있다. 본 실시예에서는 축(120)의 내부에 열 매개 유체가 흐르는 것을 예로 들어 설명하겠다.Heat-mediated fluid flows into the shaft 120 and absorbs sunlight and may be heated. Alternatively, a thermoelectric element may be disposed inside the shaft 120, and a predetermined pipe for cooling the thermoelectric element may be further configured, and thus the power generation may be performed by the thermoelectric element absorbing sunlight and being heated. In this embodiment, the heat-mediated fluid flows inside the shaft 120 as an example.
여기서, 축(120)의 내부에 흐르는 열 매개 유체나 축(120)의 내부에 제공된 열전소자는 태양광을 흡수해 소정의 에너지를 축적하거나 발생시키는 것으로, 에너지 전환 수단이라고 할 수 있다. 즉, 축(120)의 내부에는 에너지 전환 수단이 제공된다고 할 수 있다.Here, the heat medium fluid flowing inside the shaft 120 or the thermoelectric element provided inside the shaft 120 absorbs sunlight and accumulates or generates predetermined energy, and may be referred to as energy conversion means. That is, it can be said that the energy conversion means is provided inside the shaft 120.
제1 가이드(130)는 축(120)을 중심으로 회전 가능하게 제공될 수 있고, 바이메탈(150)의 움직임을 반사부(140)로 전달하여 반사부(140)를 회전시키는 기능을 한다. 여기서, 제1 가이드(130)의 원활한 회전을 위해 제1 가이드(130)의 하부에는 베어링(170)이 형성될 수 있다. 베어링(170)은 축(120)에 끼워지는 형태로 형성될 수 있으며, 축(120)과 베어링(170)의 사이에는 축(120)의 열 간섭을 차단하기 위한 단열부싱(180)이 제공될 수 있다. 본 실시예에서는 베어링(170)이 제1 가이드(130)에 연결되는 것을 예로 들어 설명하나, 베어링(170)이 반사부(140)에 연결되고, 제1 가이드(130)는 반사부(140)에 형성되는 형태로 제공될 수도 있다. 즉, 베어링(170)은 제1 가이드(130)와 반사부(140)가 원활하게 축(120)을 중심으로 회전될 수 있게 제공된다.The first guide 130 may be provided to be rotatable about the shaft 120, and transmits the movement of the bimetal 150 to the reflector 140 to rotate the reflector 140. Here, the bearing 170 may be formed in the lower portion of the first guide 130 to smoothly rotate the first guide 130. The bearing 170 may be formed to be fitted to the shaft 120, and the insulating bushing 180 for blocking thermal interference of the shaft 120 is provided between the shaft 120 and the bearing 170. Can be. In the present embodiment, the bearing 170 is connected to the first guide 130 as an example, but the bearing 170 is connected to the reflector 140, and the first guide 130 is the reflector 140. It may be provided in the form formed in. That is, the bearing 170 is provided so that the first guide 130 and the reflector 140 can be smoothly rotated about the shaft 120.
제1 가이드(130)는 축(120)과, 바이메탈(150) 및 제2 가이드(160)의 사이에 배치되어, 제2 가이드(160)로부터 가해지는 외력에 의해 축(120)을 중심으로 회전될 수 있다. 제1 가이드(130)와 반사부(140)는 직접 또는 간접적으로 연결되어, 제1 가이드(130)가 회전되면 반사부(140)도 함께 회전될 수 있다.The first guide 130 is disposed between the shaft 120, the bimetal 150, and the second guide 160, and rotates about the shaft 120 by an external force applied from the second guide 160. Can be. The first guide 130 and the reflector 140 may be directly or indirectly connected. When the first guide 130 is rotated, the reflector 140 may also rotate together.
제1 가이드(130)는 후술할 제2 가이드(160)의 헤드부(162)가 끼워질 수 있는 형상을 가질 수 있으며, 이에 의해 제2 가이드(160)가 이동함에 따라 제1 가이드(130)가 회전될 수 있다. 일 예로, 제1 가이드(130)는 축(120)으로부터 양 방향으로 연장되는 한 쌍의 날개부(131)를 포함할 수 있으며, 날개부(131) 사이에는 계곡부(134)가 제공될 수 있다. 즉, 제1 가이드(130)는 '3'자와 유사한 형태로 형성될 수 있다. The first guide 130 may have a shape in which the head portion 162 of the second guide 160 to be described later may be fitted, whereby the first guide 130 as the second guide 160 moves. Can be rotated. For example, the first guide 130 may include a pair of wings 131 extending in both directions from the shaft 120, and a valley 134 may be provided between the wings 131. have. That is, the first guide 130 may be formed in a shape similar to '3'.
한 쌍의 날개부(131)는 반사부(140)를 향해 오목한 곡면 형상을 가질 수 있다. 여기서, 제1 가이드(130)의 상면은 제2 가이드(160)와 연동하는 접촉면으로서 기능하고, 제1 가이드(130)의 하면은 반사부(140)로부터 반사된 빛을 다시 반사하는 보조 반사면(132)으로 기능할 수 있다. 이 경우, 오목한 보조 반사면(132)을 통해 집광 효율을 더 높일 수 있다는 장점이 있다.The pair of wings 131 may have a curved shape concave toward the reflector 140. Here, the upper surface of the first guide 130 functions as a contact surface interlocking with the second guide 160, and the lower surface of the first guide 130 reflects light reflected from the reflector 140 again. 132 may function. In this case, there is an advantage that the light collecting efficiency can be further increased through the concave auxiliary reflective surface 132.
여기서, 제1 가이드(130)는 반사부(140)에 비해 상대적으로 작은 크기로 형성될 수 있으며, 이에 의해 바이메탈(150)이 소량 변형되더라도 반사부(140)를 크게 회전시킬 수 있다. Here, the first guide 130 may be formed in a relatively small size compared to the reflector 140, thereby allowing the reflector 140 to be greatly rotated even when the bimetal 150 is deformed in small amounts.
제1 가이드(130)에는 축(120)을 중심으로 제1 가이드(130) 측에 무게를 더하기 위한 무게추(133)가 제공될 수 있다. 무게추(133)가 제공됨으로 인해 제2 가이드(160)로부터 약한 힘만 가해지더라도 제1 가이드(130) 측에 큰 모멘트가 발생될 수 있으므로, 쉽게 반사부(140)가 회전될 수 있다.The first guide 130 may be provided with a weight 133 for adding weight to the side of the first guide 130 around the shaft 120. Since the weight 133 is provided, even when only a weak force is applied from the second guide 160, a large moment may be generated on the side of the first guide 130, so that the reflector 140 may be easily rotated.
반사부(140)는 제1 가이드(130)에 연결되어 축(120)을 중심으로 회전 가능하도록 제공될 수 있다. 반사부(140)는 축(120)을 향해 태양광을 반사하는 주 반사면(141)과 주 반사면(141)을 지지하는 지지부(142)를 포함할 수 있다. 주 반사면(141)은 축(120)을 향해 오목하게 형성될 수 있으며, 지지부(142)는 반사부(140)의 곡률과 형상을 고정하도록, 일정한 중심각을 갖는 부채꼴 형상의 단면을 가질 수 있다. 이 때, 주 반사면(141)의 곡률은 지지부(142)의 각도에 따라 변경될 수 있다. The reflector 140 may be connected to the first guide 130 and provided to be rotatable about the shaft 120. The reflector 140 may include a main reflecting surface 141 reflecting sunlight toward the axis 120 and a support 142 supporting the main reflecting surface 141. The main reflective surface 141 may be concave toward the axis 120, and the support 142 may have a sector shape having a flat center angle to fix the curvature and the shape of the reflector 140. . At this time, the curvature of the main reflective surface 141 may be changed according to the angle of the support 142.
바이메탈(150)은 고정수단(110)에 변형 가능하게 고정 설치될 수 있다. 이 때, 바이메탈(150)은 서로 다른 열전달률을 갖는 두 개의 금속판으로 형성되는 것으로서, 사각형 단면을 가질 수 있으며, 예를 들어, X축 방향으로 더 길게 연장된 직사각형 단면을 가질 수 있다.The bimetal 150 may be deformably fixed to the fixing means 110. In this case, the bimetal 150 may be formed of two metal plates having different heat transfer rates, and may have a rectangular cross section. For example, the bimetal 150 may have a rectangular cross section extending longer in the X-axis direction.
본 실시예에서는 한 쌍의 바이메탈(150)이 태양광을 흡수하기 위한 면이 각각 바깥쪽을 향하도록 배치되는 것을 예로 들어 설명한다. 이 경우, 태양광이 어느 쪽에서 비춰지더라도 바이메탈이 반응할 수 있다는 장점이 있다.In the present embodiment, a pair of bimetals 150 will be described as an example in which faces for absorbing sunlight are disposed to face outwards. In this case, there is an advantage that the bimetal can react even if sunlight is emitted from either side.
한 쌍의 바이메탈(150)은 볼트 등의 체결 수단(151)에 의해 고정수단(110)에 고정되거나, 서로 연결될 수 있으며, 체결 수단(151)이 통과할 수 있도록 일정한 간격을 두고 형성된 2개 또는 그 이상의 체결 구멍(152)을 포함할 수 있다. 본 실시예에서는, 바이메탈(150)에 4개의 체결 구멍(152)이 형성된 것을 예로 들어 도시하였으나, 이에 한정되지 않는다.The pair of bimetals 150 may be fixed to the fixing means 110 by a fastening means 151 such as a bolt, or may be connected to each other, and the two bimetals 150 may be formed at regular intervals to allow the fastening means 151 to pass therethrough. More fastening holes 152 may be included. In the present exemplary embodiment, four fastening holes 152 are formed in the bimetal 150, but the present disclosure is not limited thereto.
구체적으로, 바이메탈(150)의 양 단부 측에 있는 체결 구멍(152)은 한 쌍의 바이메탈(150)을 서로 결합하는 용도로 사용될 수 있으며, 중앙 측의 체결 구멍(152)은 고정수단(110)의 체결 구멍(114)과 대응하게 구성되어 바이메탈(150)을 고정수단(110)에 결합하는 용도로 사용될 수 있다. 체결수단(151)은 와셔와 슬리브 및 볼트와 너트가 사용될 수 있으나, 이에 한정되지 않는다.Specifically, the fastening holes 152 at both end sides of the bimetal 150 may be used for joining a pair of bimetals 150 to each other, and the fastening hole 152 at the center side may be fastening means 110. It is configured to correspond to the fastening hole 114 of the bimetal 150 may be used for the purpose of coupling to the fixing means (110). The fastening means 151 may include a washer, a sleeve, a bolt, and a nut, but is not limited thereto.
여기서, 바이메탈(150)은 열팽창률이 더 큰 금속판이 중심측, 즉 고정부(113) 측을 향하도록 배치될 수 있다. 이에 의해 바이메탈(150)이 열 에너지를 흡수하여 변형할 때, 태양광이 제공되는 방향을 향해 휘어질 수 있다.Here, the bimetal 150 may be disposed such that the metal plate having a higher thermal expansion coefficient faces the center side, that is, the fixing part 113 side. As a result, when the bimetal 150 absorbs and deforms thermal energy, the bimetal 150 may be bent toward the direction in which sunlight is provided.
바이메탈(150)의 바깥쪽을 향하는 면은 티타늄 진공 증착 등의 기법으로 저 반사 흑체 처리되어 태양광을 잘 흡수할 수 있으며, 그 배면은 전반사가 가능한 면, 일 예로 거울일 수 있다. 즉, 바이메탈(150)이 한 쌍으로 제공될 때, 바이메탈(150)의 마주보는 내부면은 전반사 면일 수 있다. 전반사 면은 한 쌍의 바이메탈(150) 사이의 복사에 의한 상호 열 간섭을 방지할 수 있다. 본 실시예에서는 바이메탈(150)의 내측면이 전반사 면으로 형성되는 것을 예로 들었으나, 본 발명의 사상은 이에 한정되지 않는다. 예를 들어, 탄성이 높은 단열재가 한 쌍의 바이메탈(150) 사이에 제공되어 열전달을 차단할 수도 있다.The outer surface of the bimetal 150 may be treated with a low reflective black body by a technique such as titanium vacuum deposition to absorb sunlight well, and the rear surface may be a mirror that can be totally reflected. That is, when the bimetals 150 are provided in pairs, the opposite inner surfaces of the bimetals 150 may be total reflection surfaces. The total reflection surface can prevent mutual thermal interference due to radiation between the pair of bimetals 150. In the present exemplary embodiment, the inner surface of the bimetal 150 is formed as a total reflection surface, but the spirit of the present invention is not limited thereto. For example, a highly elastic insulating material may be provided between the pair of bimetals 150 to block heat transfer.
바이메탈(150)은 태양열을 흡수함에 따라 휘어지게 된다. 구체적으로, 바이메탈(150)의 바깥쪽 면, 즉 흑체 처리된 면은 태양광을 잘 흡수할 수 있으므로, 바이메탈(150)의 변형량은 커질 수 있다. 태양광을 흡수함에 따라 바이메탈(150)을 형성하는 두 금속의 열 팽창률 차이에 따라 바이메탈(150)은 휘어지게 된다. 이때, 바이메탈(150)은 열 팽창률이 더 큰 금속판이 중심측, 즉 고정부(113)를 향해 배치되어 있으므로, 태양광을 향해 오목하게 휘어지게 된다.The bimetal 150 is bent as it absorbs solar heat. Specifically, since the outer surface of the bimetal 150, that is, the black body treated surface, may absorb sunlight well, the deformation amount of the bimetal 150 may be increased. As the solar light is absorbed, the bimetal 150 is bent according to the difference in thermal expansion rates of the two metals forming the bimetal 150. At this time, the bimetal 150 is a metal plate having a greater thermal expansion coefficient is disposed toward the center side, that is, the fixing portion 113, it is concave concave toward the sunlight.
본 실시예에서, 바이메탈(150)은 한 쌍으로 제공되는데, 태양광이 한 쌍의 바이메탈(150) 중 어느 하나(150a)를 향해 조사되는 경우, 다른 하나의 바이메탈(150b)은 에너지를 잘 흡수하지 못하므로, 열 팽창되지 않거나, 상대적으로 작은 양만큼만 열 팽창된다. 이 경우, 다른 하나의 바이메탈(150b)은 어느 하나의 바이메탈(150a)과 체결 수단(151)에 의해 연결되어 있으므로 어느 하나의 바이메탈(150a)의 변형에 따라 함께 변형된다.In this embodiment, the bimetals 150 are provided in pairs, and when sunlight is irradiated toward either 150a of the pair of bimetals 150, the other bimetals 150b absorb energy well. It does not thermally expand or only thermally expand by a relatively small amount. In this case, since the other bimetal 150b is connected by any one of the bimetals 150a and the fastening means 151, the other bimetals 150b are deformed together according to the deformation of any one of the bimetals 150a.
본 실시예에서, 바이메탈(150)은 축(120)의 연장 방향과 동일한 방향(X축 방향)의 길이가 다른 방향(Z축 방향)의 길이보다 긴 형태로 제공된다. 아울러, 바이메탈(150)의 중심부가 고정부(113)에 고정되어 있으므로, 결국 바이메탈(150)은 중심부를 기준으로 양 측 단부가 수평 방향으로 휘어질 수 있다.In the present embodiment, the bimetal 150 is provided in a form in which the length of the same direction (X-axis direction) as the extension direction of the shaft 120 is longer than the length of the other direction (Z-axis direction). In addition, since the center of the bimetal 150 is fixed to the fixing part 113, the bimetal 150 may be bent in the horizontal direction at both ends with respect to the center.
제2 가이드(160)는 바이메탈(150)의 변형량에 따라 제1 가이드(130)를 회전시킬 수 있다. 바이메탈(150)은 고정 수단(110)에 고정되어 휘어지게 되는데, 제2 가이드(160)는 바이메탈(150)이 휘어지는 정도에 따라 함께 회전되도록 구성될 수 있다. 구체적으로, 바이메탈(150)은 도 2를 기준으로 좌우 방향으로 휘어지고, 제2 가이드(160)는 이러한 바이메탈(150)의 직선 방향 운동을 회전 운동으로 전환시켜 제1 가이드(130)에 전달하는 캠일 수 있다. 이때, 제2 가이드(160)는 열전도율이 낮고 내열성이 높은 테플론 소재 등으로 이루어질 수 있으나, 이에 한정되지 않는다. The second guide 160 may rotate the first guide 130 according to the deformation amount of the bimetal 150. The bimetal 150 is fixed to the fixing means 110 and is bent, and the second guide 160 may be configured to rotate together according to the degree to which the bimetal 150 is bent. Specifically, the bimetal 150 is bent in the left and right directions based on FIG. 2, and the second guide 160 converts the linear motion of the bimetal 150 into a rotational motion to transmit the bimetal 150 to the first guide 130. It may be a cam. In this case, the second guide 160 may be made of a Teflon material having a low thermal conductivity and high heat resistance, but is not limited thereto.
제2 가이드(160)는 바이메탈(130)과 직접적으로 연결되어, 바이메탈(130)의 변화에 따라 제1 가이드(130)가 회전하도록 하는 것으로서, 바이메탈(130)과 제1 가이드(130)의 연결 구조로 사용될 수 있다. 따라서, 제2 가이드(160)는 제1 가이드(130)의 상부에 제공되어, 바이메탈(130)과 연동되는 구조일 수 있다.The second guide 160 is directly connected to the bimetal 130, so that the first guide 130 rotates according to the change of the bimetal 130, and the connection between the bimetal 130 and the first guide 130 is performed. Can be used as a structure. Therefore, the second guide 160 may be provided on the first guide 130 to have a structure interlocked with the bimetal 130.
구체적으로, 제2 가이드(160)는 바이메탈(150)을 감싸는 고리부(161)와, 제1 가이드(130)를 회전시킬 수 있도록 제1 가이드(130)와 접촉되는 헤드부(162)를 포함할 수 있다. 이 때, 제2 가이드(160)가 제1 가이드(130)와 연동되도록, 헤드부(162)는 제1 가이드(130)의 상면 형상과 대응되는 형상을 가질 수 있다. 상세히, 헤드부(162)는 제1 가이드(130)에 연결되어 제1 가이드(130)와 함께 회전된다. 일 예로, 제1 가이드(130)가 한 쌍의 날개부(131)를 갖는 경우, 헤드부(162)는 계곡부(134)에 끼워지는 쐐기 형태로 형성될 수 있으며, 헤드부(162)와 날개부(131)는 접착 고정될 수 있다.Specifically, the second guide 160 includes a ring portion 161 surrounding the bimetal 150, and a head portion 162 in contact with the first guide 130 to rotate the first guide 130. can do. In this case, the head part 162 may have a shape corresponding to the top shape of the first guide 130 so that the second guide 160 is interlocked with the first guide 130. In detail, the head 162 is connected to the first guide 130 and rotates together with the first guide 130. For example, when the first guide 130 has a pair of wings 131, the head portion 162 may be formed in a wedge shape that fits into the valley portion 134, and the head portion 162 and The wing 131 may be adhesively fixed.
고리부(161)는 바이메탈(150)이 휘어짐에 따라 회전되며, 회전 중심은 헤드부(162)와 제1 가이드(130)의 접촉부분이 될 수 있다. 상세히, 고리부(161)는 소정의 곡률을 갖는 타원 형상 또는 캠 형상으로 형성되며 바이메탈(150)을 감싸는 형태로 끼워질 수 있다. 바이메탈(150)이 휘어지게 되면 바이메탈(150)의 모서리 부분은 고리부(161)의 내측면을 밀게 되는데, 이에 의해 고리부(161)에는 축(120)의 접선 방향(도 2의 좌우 방향)으로 외력이 가해지게 된다. 헤드부(162)가 제1 가이드(130)에 연결되어 있으므로 이러한 외력은 제1 가이드(130) 전체를 회전시키는 모멘트로 작용하게 된다. 따라서, 바이메탈(150)은 휘어질 때 고리부(161)의 내측면을 따라 슬라이딩되고, 제1 가이드(130)는 전체적으로 헤드부(162)와 제1 가이드(130)의 접촉부분을 중심으로 회전된다.The ring portion 161 is rotated as the bimetal 150 is bent, and the rotation center may be a contact portion between the head portion 162 and the first guide 130. In detail, the ring portion 161 may be formed in an elliptic shape or a cam shape having a predetermined curvature and may be fitted in a shape surrounding the bimetal 150. When the bimetal 150 is bent, the edge portion of the bimetal 150 pushes the inner surface of the ring portion 161, whereby the ring portion 161 is in a tangential direction of the shaft 120 (left and right directions in FIG. 2). External force is applied. Since the head portion 162 is connected to the first guide 130, the external force acts as a moment to rotate the entire first guide 130. Therefore, the bimetal 150 is slid along the inner surface of the ring portion 161 when bent, and the first guide 130 rotates around the contact portion of the head portion 162 and the first guide 130 as a whole. do.
본 실시예에서는, 헤드부(162)가 제1 가이드(130)의 계곡부(134)에 접착되어 고정되는 방법을 예로 들었으나, 제2 가이드(160)와 제1 가이드(130)의 결합방법은 이에 한정되지 않는다. 예를 들어, 제2 가이드(160)의 하부가 제1 가이드(130)의 일부에 끼움 결합되어 고정될 수 있다.In the present embodiment, a method in which the head portion 162 is bonded to the valley portion 134 of the first guide 130 is fixed as an example, but the coupling method of the second guide 160 and the first guide 130 is illustrated. Is not limited to this. For example, a lower portion of the second guide 160 may be fitted and fixed to a portion of the first guide 130.
도 4는 도 1의 무전원 태양광 추적 장치가 태양 방위각 변화에 대응하여 작동하는 모습을 보여주는 도면이다.4 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 1 operates in response to a change in solar azimuth angle.
도 4의 (a)는 태양광 추적 장치의 측면도이고, 도 4의 (b)는 태양광 추적 장치의 평면도이다. 도 4를 참조하면, 태양의 위치 변화에 따른 바이메탈(150)의 형상 및 그에 따른 제1 가이드(130), 반사부(140), 및 제2 가이드(160)의 상태를 확인할 수 있다. FIG. 4A is a side view of the solar tracking device, and FIG. 4B is a plan view of the solar tracking device. Referring to FIG. 4, the shape of the bimetal 150 according to the change of the position of the sun and the states of the first guide 130, the reflector 140, and the second guide 160 may be confirmed.
구체적으로 태양광 추적 장치(10)는 정오를 기준으로 오전일 때 태양이 태양광 추적 장치(10)의 일측에 위치되고, 오후일 때 태양이 태양광 추적 장치(10)의 타측에 위치되도록 배치될 수 있다. 본 실시예에서는 오전에는 태양이 태양광 추적 장치(10)의 좌측에 위치되고, 오후에는 우측에 위치되는 것을 예로 들어 도시하였다.In detail, the solar tracking device 10 is disposed such that the sun is located on one side of the solar tracking device 10 when the morning is based on the noon, and the sun is located on the other side of the solar tracking device 10 when the afternoon occurs. Can be. In the present embodiment, the sun is positioned on the left side of the solar tracking device 10 in the morning, and the example is positioned on the right side in the afternoon.
바이메탈(150)은 태양이 위치하는 방향을 향해 휠 수 있다. 구체적으로, 상술한 바와 같이 바이메탈(150)은 한 쌍이 제공될 수 있고, 각각 열 팽창률이 큰 금속판이 내측에 위치하도록 설치될 수 있다 즉, 바이메탈(150)은 열 팽창률이 더 큰 금속판이 중심측인 고정부(113)를 향해 배치되어 있으므로, 태양광을 향해 오목하게 휘어지게 된다.The bimetal 150 may bend toward the direction in which the sun is located. Specifically, as described above, a pair of bimetals 150 may be provided, and each of the bimetals 150 may be installed such that a metal plate having a high thermal expansion rate is positioned inside. Since it is arrange | positioned toward the phosphorus fixing part 113, it becomes curved concave toward sunlight.
또한, 태양광이 한 쌍의 바이메탈(150) 중 어느 하나(150a)를 향해 조사되는 경우, 다른 하나의 바이메탈(150b)은 에너지를 잘 흡수하지 못하므로, 열 팽창되지 않거나, 상대적으로 작은 양만큼만 열 팽창된다. 이 경우, 다른 하나의 바이메탈(150b)은 어느 하나의 바이메탈(150a)과 체결 수단(151)에 의해 연결되어 있으므로 어느 하나의 바이메탈(150a)의 변형에 따라 함께 변형된다.In addition, when sunlight is irradiated toward any one 150a of the pair of bimetals 150, the other bimetals 150b do not absorb energy well, and thus are not thermally expanded or only by a relatively small amount. Thermal expansion. In this case, since the other bimetal 150b is connected by any one of the bimetals 150a and the fastening means 151, the other bimetals 150b are deformed together according to the deformation of any one of the bimetals 150a.
일출 전에는 태양광에 의해 바이메탈(150)이 열팽창되지 않으므로, 도 4에서 정오와 같은 상태를 유지하게 된다.Since the bimetal 150 is not thermally expanded by sunlight before sunrise, the bimetal 150 is maintained at noon in FIG. 4.
오전에는 태양이 하우징(100)의 좌측에 위치하므로, 어느 하나의 바이메탈(150a)이 태양광을 더 잘 흡수할 수 있으며, 그에 따라 바이메탈(150) 전체가 태양을 향해 좌측 방향으로 오목하게 휘게 된다. In the morning, since the sun is located on the left side of the housing 100, any one of the bimetals 150a can absorb sunlight better, so that the entire bimetals 150 concave concave leftward toward the sun. .
바이메탈(150)의 양측 단부측에는 제2 가이드(160)가 연결되어 있고, 상술한 것처럼 바이메탈(150)이 제2 가이드(160)의 고리부(162)를 밀어 회전시키는 것에 인해, 제2 가이드(160)가 바이메탈(150)이 휘는 방향으로 바이메탈(150)과 함께 움직이게 되고, 이로 인해 제2 가이드(160)와 결합되어 있는 제1 가이드(130), 및 반사부(140)가 축(120)을 중심으로 회전하게 된다. 즉, 바이메탈(150)이 좌측으로 휘어지게 되면, 제1 가이드(130)와, 제2 가이드(160), 및 반사부(140)는 반시계 방향으로 회전된다. 이에 의해, 반사부(140)의 주 반사면(141)은 태양을 향하게 위치될 수 있다.The second guide 160 is connected to both end portions of the bimetal 150, and as described above, the bimetal 150 pushes and rotates the annular portion 162 of the second guide 160 so that the second guide 160 is rotated. 160 moves together with the bimetal 150 in the direction in which the bimetal 150 is bent, so that the first guide 130 and the reflector 140 coupled to the second guide 160 may be the shaft 120. Rotate around. That is, when the bimetal 150 is bent to the left side, the first guide 130, the second guide 160, and the reflector 140 rotate in the counterclockwise direction. As a result, the main reflection surface 141 of the reflection unit 140 may be positioned to face the sun.
정오가 되어 감에 따라, 태양의 고도는 점점 높아지게 되고, 어느 하나의 바이메탈(150a)에 입사되는 태양광의 입사각은 점점 작아지게 된다. 즉, 어느 하나의 바이메탈(150a)에 전달되는 열량이 작아지게 되므로, 어느 하나의 바이메탈(150a)의 열팽창량은 서서히 작아지게 된다. 그에 따라, 반사부(140)의 회전 각도도 작아지게 된다.At noon, the altitude of the sun becomes higher and higher, and the angle of incidence of sunlight incident on any one of the bimetals 150a becomes smaller. That is, since the amount of heat transmitted to any one of the bimetals 150a is reduced, the amount of thermal expansion of any one of the bimetals 150a is gradually reduced. Accordingly, the rotation angle of the reflector 140 also becomes small.
정오가 되면, 태양은 양 바이메탈(150a, 150b)에 동일한 에너지를 공급하게 되는 바, 양 바이메탈(150a, 150b)의 열 팽창량은 동일한 바 바이메탈(150)은 어느 방향으로도 휘지 않게 되고, 반사부(140)는 정 상방을 향할 수 있다.At noon, the sun supplies the same energy to both bimetals 150a and 150b, so that the amount of thermal expansion of both bimetals 150a and 150b is the same, so that the bimetals 150 do not bend in any direction. The unit 140 may face upward.
오후가 되면, 태양이 하우징(100)의 우측에 위치하므로, 어느 하나의 바이메탈(150b)이 태양광을 더 잘 흡수할 수 있으며, 그에 따라 바이메탈(150) 전체가 태양을 향해 우측 방향으로 오목하게 휘게 된다. In the afternoon, since the sun is located on the right side of the housing 100, any one of the bimetals 150b can absorb sunlight better, so that the entire bimetals 150 concave in the right direction towards the sun. Bent.
바이메탈(150)의 양측 단부측에는 제2 가이드(160)가 연결되어 있고, 상술한 것처럼 바이메탈(150)이 제2 가이드(160)의 고리부(162)를 밀어 회전시키는 것에 인해, 제2 가이드(160)가 바이메탈(150)이 휘는 방향으로 바이메탈(150)과 함께 움직이게 되고, 이로 인해 제2 가이드(160)와 결합되어 있는 제1 가이드(130), 및 반사부(140)가 축(120)을 중심으로 회전하게 된다. 즉, 바이메탈(150)이 우측으로 휘어지게 되면, 제1 가이드(130)와, 제2 가이드(160), 및 반사부(140)는 시계 방향으로 회전된다. 이에 의해, 반사부(140)의 주 반사면(141)은 태양을 향하게 위치될 수 있다.The second guide 160 is connected to both end portions of the bimetal 150, and as described above, the bimetal 150 pushes and rotates the annular portion 162 of the second guide 160 so that the second guide 160 is rotated. 160 moves together with the bimetal 150 in the direction in which the bimetal 150 is bent, so that the first guide 130 and the reflector 140 coupled to the second guide 160 may be the shaft 120. Rotate around. That is, when the bimetal 150 is bent to the right, the first guide 130, the second guide 160, and the reflector 140 are rotated in the clockwise direction. As a result, the main reflection surface 141 of the reflection unit 140 may be positioned to face the sun.
상기와 같은 설명은 바이메탈(150)의 민감도가 아주 뛰어난 경우 이상적으로 발생되는 상황이며, 실제로는 태양으로부터 전달되는 에너지를 바이메탈(150)이 흡수하여 열 팽창하는데 시간이 소요되므로, 태양의 움직임보다 반사판이 다소 늦게 따라가는 형태로 작동될 수도 있다. 이 경우, 집광 효율을 높이기 위해 반사부(140)를 제1 가이드(130)의 중심과 축(120)의 중심을 이은 가상의 선을 중심으로 소정 각도 시계 방향으로 회전시켜 놓을 수도 있다.The above description is an ideal situation when the sensitivity of the bimetal 150 is very excellent, and in fact, since the bimetal 150 takes time to absorb and thermally expand energy transmitted from the sun, the reflector rather than the movement of the sun. This may be done in a somewhat late fashion. In this case, in order to increase the light collecting efficiency, the reflector 140 may be rotated in a clockwise direction at an angle about a virtual line connecting the center of the first guide 130 and the center of the axis 120.
상기와 같은 본 발명의 실시예에 따른 무전원 태양광 추적 장치(10)는, 별도의 전원 장치를 포함하지 않고, 바이메탈(150)이 휘는 방향에 따라 제1 가이드(130)와, 반사부(140) 및 제2 가이드(160)를 회전하게 하므로, 무동력으로 작동이 가능한 효과가 있다.The non-powered solar tracking device 10 according to the embodiment of the present invention as described above does not include a separate power supply device, and the first guide 130 and the reflector 140 according to the direction in which the bimetal 150 is bent. And the second guide 160 to rotate, there is an effect that can be operated with no power.
또한, 하나의 축(120)에 제1 가이드(130), 제 2가이드(160) 및 반사부(140)가 연결되어 회전하므로, 연속적으로 태양의 추적이 가능한 효과가 있다.In addition, since the first guide 130, the second guide 160 and the reflector 140 is connected to one axis 120 and rotates, there is an effect capable of continuously tracking the sun.
또한, 하나의 축(120)이 제공되어 설치가 간단해지므로, 저비용으로 설치 및 제조할 수 있는 효과가 있다.In addition, because one shaft 120 is provided to simplify the installation, there is an effect that can be installed and manufactured at a low cost.
또한, 밀폐된 하우징(100) 내부에 바이메탈(150)이 제공되어 외부 환경의 영향을 받지 않으므로, 작동 신뢰성을 높일 수 있는 장점이 있다.In addition, since the bimetal 150 is provided inside the sealed housing 100 and is not affected by the external environment, there is an advantage of increasing the operation reliability.
또한, 반사부(140)의 각도를 조절하여, 집광 비율을 변화시켜, 여러 분야에서 광범위하게 사용할 수 있는 효과가 있다.In addition, by adjusting the angle of the reflector 140, by changing the light condensing ratio, there is an effect that can be used in various fields.
이하에서는 본 발명의 다른 실시예에 따른 무전원 태양광 추적 장치에 대하여 도 5 내지 도8을 참조하여 설명한다. 다만, 다른 실시예는 일 실시예와 비교하여 바이메탈과 제2 가이드의 연결 형태에 있어서 차이가 있으므로, 차이점을 위주로 설명한다. 또한, 이하의 설명에서는 중복 설명을 방지하기 위해, 구성요소들에 대한 상세한 설명은 생략하며, 필요한 경우 도면부호의 앞자리를 각각, 2, 3, 4로 바꾸어 설명하겠다. 예를 들어, 무전원 태양광 추적 장치(10)의 하우징(100)에 대응되는 무전원 태양광 추적 장치(20)의 하우징은 도면부호 200으로 표현될 수 있다. 예를 들어, 무전원 태양광 추적 장치(20)는 하우징(200), 고정수단(210), 축(220), 제1 가이드(230), 반사부(240), 바이메탈(250), 제2 가이드(260), 베어링(270), 단열부싱(280)을 가질 수 있다.Hereinafter, a non-powered solar tracking device according to another embodiment of the present invention will be described with reference to FIGS. 5 to 8. However, other embodiments have a difference in the form of connection between the bimetal and the second guide as compared to the embodiment, and thus the description will be mainly focused on the differences. In addition, in the following description, in order to avoid duplicate description, detailed descriptions of the components will be omitted, and if necessary, the preceding numerals will be replaced with 2, 3, and 4 respectively. For example, the housing of the non-powered solar tracking device 20 corresponding to the housing 100 of the non-powered solar tracking device 10 may be represented by reference numeral 200. For example, the non-powered solar tracking device 20 includes a housing 200, a fixing means 210, a shaft 220, a first guide 230, a reflector 240, a bimetal 250, and a second guide. 260, bearing 270, and thermal insulation bushing 280.
도 5는 본 발명의 다른 실시예에 따른 무전원 태양광 추적 장치를 보여주는 사시도이고, 도 6은 도 5의 측면도이며, 도 7은 도 5의 B부분의 분해 사시도이다. 5 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention, Figure 6 is a side view of Figure 5, Figure 7 is an exploded perspective view of the portion B of FIG.
도 5 내지 도 7을 참조하면, 발명의 다른 실시예에 따른 무전원 태양광 추적 장치(20)는 빛이 통과할 수 있는 통 형상의 하우징(200)과, 하우징(200)의 내부에 제공된 고정수단(210)과, 하우징(200)의 밑면을 통과하는 방향(도 5에서의 x축 방향)으로 통과하며, 내부에 열매개 유체가 통과하는 축(220)과, 축(220)을 중심으로 회전 가능한 제1 가이드(230)와, 제1 가이드(230)에 연결되어 축(220)을 중심으로 회전 가능한 반사부(240)와, 고정수단(210)에 고정 설치되는 바이메탈(250)과, 바이메탈(250)의 변형량에 따라 제1 가이드(230)를 회전 시키는 제2 가이드(260)를 포함한다.5 to 7, the non-powered solar tracking device 20 according to another embodiment of the present invention is a cylindrical housing 200 through which light can pass, and fixing means provided in the housing 200. 210 and a shaft 220 passing in the direction (x-axis direction in FIG. 5) passing through the bottom surface of the housing 200 and passing through the fruiting fluid therein, and rotating about the shaft 220. Possible first guide 230, a reflector 240 connected to the first guide 230 and rotatable about an axis 220, a bimetal 250 fixed to the fixing means 210, and a bimetal It includes a second guide 260 for rotating the first guide 230 in accordance with the deformation amount of (250).
바이메탈(250)은 고정수단(210)에 변형 가능하게 고정 설치될 수 있다. 이 때, 바이메탈(250)은 서로 다른 열전달률을 갖는 두 개의 금속판으로 형성되는 것으로서, 사각형 단면을 가질 수 있으며, 예를 들어, Z축 방향으로 더 길게 연장된 직사각형 단면을 가질 수 있다.The bimetal 250 may be deformably fixed to the fixing means 210. In this case, the bimetal 250 may be formed of two metal plates having different heat transfer rates, and may have a rectangular cross section. For example, the bimetal 250 may have a rectangular cross section extending longer in the Z-axis direction.
본 실시예에서는 한 쌍의 바이메탈(250)이 서로 태양광을 흡수하기 위한 면이 바깥쪽을 향하도록 배치되는 것을 예로 들어 설명한다. 이 경우, 태양광이 어느 쪽에서 비춰지더라도 바이메탈이 반응할 수 있다는 장점이 있다.In this embodiment, a pair of bimetals 250 will be described as an example in which faces for absorbing sunlight from each other are disposed to face outwards. In this case, there is an advantage that the bimetal can react even if sunlight is emitted from either side.
한 쌍의 바이메탈(250)은 볼트 등의 체결 수단(251)에 의해 고정수단(210)에 고정되거나, 서로 연결될 수 있으며, 체결 수단(251)이 통과할 수 있도록 일정한 간격을 두고 형성된 2개 또는 그 이상의 체결 구멍(252)을 포함할 수 있다. 본 실시예에서는, 바이메탈(250)에 4개의 체결 구멍(252)이 형성된 것을 예로 들어 도시하였으나, 이에 한정되지 않는다.The pair of bimetals 250 may be fixed to the fixing means 210 by fastening means 251 such as bolts or may be connected to each other, and two or more bimetals 250 may be formed at regular intervals to allow the fastening means 251 to pass therethrough. It may include more fastening holes 252. In the present exemplary embodiment, four fastening holes 252 are formed in the bimetal 250, but the present disclosure is not limited thereto.
구체적으로, 바이메탈(250)의 상부 측에 있는 체결 구멍(252)은 고정수단(210)의 체결 구멍(214)과 대응하게 구성되어 바이메탈(250)을 고정수단(210)에 결합하는 용도로 사용될 수 있다. 또한, 바이메탈(250)의 하부 측에 있는 체결 구멍(252)은 한 쌍의 바이메탈(250)을 서로 결합하는 용도로 사용될 수 있다. 체결수단(251)은 와셔와 슬리브 및 볼트와 너트가 사용될 수 있으나, 이에 한정되지 않는다.Specifically, the fastening hole 252 on the upper side of the bimetal 250 is configured to correspond to the fastening hole 214 of the fixing means 210 to be used for coupling the bimetal 250 to the fixing means 210. Can be. In addition, the fastening hole 252 at the lower side of the bimetal 250 may be used to join the pair of bimetals 250 to each other. The fastening means 251 may include a washer, a sleeve, a bolt, and a nut, but is not limited thereto.
여기서, 바이메탈(250)은 열팽창률이 더 큰 금속판이 고정부(213) 측을 향하도록 배치될 수 있다. 이에 의해 바이메탈(250)이 열 에너지를 흡수하여 변형할 때, 태양광이 제공되는 방향을 향해 하부가 휘어질 수 있다.In this case, the bimetal 250 may be disposed such that the metal plate having a higher thermal expansion coefficient faces the fixing part 213. As a result, when the bimetal 250 absorbs and deforms thermal energy, the lower portion of the bimetal 250 may be bent toward the direction in which sunlight is provided.
바이메탈(250)은 태양열을 흡수함에 따라 휘어지게 된다. 구체적으로, 바이메탈(250)의 바깥쪽 면, 즉 흑체 처리된 면은 태양광을 잘 흡수할 수 있으므로, 바이메탈(250)의 변형량은 커질 수 있다. 태양광을 흡수함에 따라 바이메탈(250)을 형성하는 두 금속의 열 팽창률 차이에 따라 바이메탈(250)은 휘어지게 된다. 이때, 바이메탈(250)은 열 팽창률이 더 큰 금속판이 고정부(213)를 향해 배치되어 있으므로, 태양광을 향해 오목하게 휘어지게 된다.The bimetal 250 is bent as it absorbs solar heat. Specifically, since the outer surface of the bimetal 250, that is, the black body treated surface may absorb sunlight well, the deformation amount of the bimetal 250 may be increased. As the solar light is absorbed, the bimetal 250 is bent according to the difference in thermal expansion rates of the two metals forming the bimetal 250. In this case, since the metal plate having a larger thermal expansion rate is disposed toward the fixing part 213, the bimetal 250 may be concavely curved toward the sunlight.
본 실시예에서, 바이메탈(250)의 상부가 고정부(213)에 고정되어 있으므로, 결국 바이메탈(250)은 상부를 기준으로 하부가 수평 방향으로 휘어질 수 있다.In the present embodiment, since the upper part of the bimetal 250 is fixed to the fixing part 213, the lower part of the bimetal 250 may be bent in the horizontal direction with respect to the upper part.
제2 가이드(260)는 한 쌍의 바이메탈(250)의 사이에 회전 가능하게 끼워지는 회동 바(261)와, 회동 바(261)의 단부에 제공되는 헤드부(262)를 포함할 수 있다. 이 때, 회동 바(261)의 양측 단부는 절곡되어 하방으로 연장될 수 있으며, 헤드부(262)는 절곡된 단부에 한 쌍이 제공될 수 있다.The second guide 260 may include a rotation bar 261 rotatably fitted between the pair of bimetals 250 and a head portion 262 provided at an end of the rotation bar 261. At this time, both ends of the pivoting bar 261 may be bent to extend downward, and the head portion 262 may be provided with a pair of the bent ends.
헤드부(262)는 제2 가이드(260)가 제1 가이드(230)와 연동되도록 제1 가이드(230)의 상면 형상과 대응되는 형상을 가질 수 있다. 상세히, 헤드부(262)는 제1 가이드(130)에 연결되어 제1 가이드(230)와 함께 회전된다. 일 예로, 제1 가이드(230)가 한 쌍의 날개부(231)를 갖는 경우, 헤드부(262)는 계곡부(234)에 끼워지는 쐐기 형태로 형성될 수 있으며, 헤드부(262)와 날개부(231)는 접착 고정될 수 있다.The head part 262 may have a shape corresponding to the shape of the top surface of the first guide 230 so that the second guide 260 is interlocked with the first guide 230. In detail, the head 262 is connected to the first guide 130 and rotates together with the first guide 230. For example, when the first guide 230 has a pair of wings 231, the head portion 262 may be formed in a wedge shape that fits into the valley portion 234, and the head portion 262 and The wing 231 may be adhesively fixed.
회동 바(261)는 바이메탈(250)이 휘어짐에 따라 회전되며, 회전 중심은 헤드부(262)와 제1 가이드(230)의 접촉부분이 될 수 있다. 상세히, 회동 바(261)는 한 쌍의 바이메탈(250) 하부의 사이 공간에 제공될 수 있다. The rotation bar 261 is rotated as the bimetal 250 is bent, and the rotation center may be a contact portion of the head 262 and the first guide 230. In detail, the pivoting bar 261 may be provided in a space between the bottoms of the pair of bimetals 250.
바이메탈(250)이 휘어지게 되면 바이메탈(250)은 하부에 끼워진 회동 바(261)의 외측면을 밀게 되는데, 이에 의해 회동 바(261)에는 축(220)의 접선 방향(도 6의 좌우 방향)으로 외력이 가해지게 된다. 헤드부(262)가 제1 가이드(230)에 연결되어 있으므로 이러한 외력은 제1 가이드(230) 전체를 회전시키는 모멘트로 작용하게 된다. 따라서, 바이메탈(250)이 휘어질 때 회동 바(261)가 바이메탈(250)에 끌려가게 되고, 제1 가이드(230)는 전체적으로 헤드부(262)와 제1 가이드(230)의 접촉부분을 중심으로 회전된다.When the bimetal 250 is bent, the bimetal 250 pushes the outer surface of the pivoting bar 261 fitted to the lower part, whereby the pivoting bar 261 is tangential to the shaft 220 (left and right directions in FIG. 6). External force is applied. Since the head portion 262 is connected to the first guide 230, this external force acts as a moment to rotate the entire first guide 230. Therefore, when the bimetal 250 is bent, the pivoting bar 261 is attracted to the bimetal 250, and the first guide 230 generally centers the contact portion between the head part 262 and the first guide 230. Is rotated.
본 실시예에서는, 헤드부(262)가 제1 가이드(230)의 계곡부(234)에 접착되어 고정되는 방법을 예로 들었으나, 제2 가이드(260)와 제1 가이드(230)의 결합방법은 이에 한정되지 않는다. 예를 들어, 제2 가이드(260)의 하부가 제1 가이드(230)의 일부에 끼움 결합되어 고정될 수 있다.In the present embodiment, a method in which the head portion 262 is bonded to the valley portion 234 of the first guide 230 is fixed as an example, but the coupling method of the second guide 260 and the first guide 230 is illustrated. Is not limited to this. For example, a lower portion of the second guide 260 may be fitted and fixed to a portion of the first guide 230.
도 8은 도 5의 무전원 태양광 추적 장치가 태양 방위각 변화에 대응하여 작동하는 모습을 보여주는 도면이다. 도 8의 (a)는 태양광 추적 장치의 측면도이고, 도 8의 (b)는 태양광 추적 장치의 평면도이다. 도 8를 참조하면, 태양의 위치 변화에 따른 바이메탈(250)의 형상 및 그에 따른 제1 가이드(230), 반사부(240), 및 제2 가이드(260)의 상태를 확인할 수 있다. FIG. 8 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 5 operates in response to a solar azimuth change. FIG. 8A is a side view of the solar tracking device, and FIG. 8B is a plan view of the solar tracking device. Referring to FIG. 8, the shape of the bimetal 250 according to the change of the position of the sun and the states of the first guide 230, the reflector 240, and the second guide 260 may be confirmed.
본 실시예에서는 오전에는 태양이 태양광 추적 장치(20)의 좌측에 위치되고, 오후에는 우측에 위치되는 것을 예로 들어 도시하였다.In the present embodiment, the sun is positioned on the left side of the solar tracking device 20 in the morning, and the example is positioned on the right side in the afternoon.
일출 전에는 태양광에 의해 바이메탈(250)이 열팽창되지 않으므로, 도 8에서 정오와 같은 상태를 유지하게 된다.Since the bimetal 250 is not thermally expanded by sunlight before sunrise, the bimetal 250 is maintained at noon in FIG. 8.
오전에는 태양이 하우징(200)의 좌측에 위치하므로, 어느 하나의 바이메탈(250a)이 태양광을 더 잘 흡수할 수 있으며, 그에 따라 바이메탈(250) 전체가 태양을 향해 좌측 방향으로 오목하게 휘게 된다. In the morning, since the sun is located on the left side of the housing 200, any one of the bimetals 250a can absorb sunlight better, so that the entire bimetal 250 concave concave leftward toward the sun. .
바이메탈(250)의 하부에는 제2 가이드(260)가 연결되어 있고, 상술한 것처럼 바이메탈(250)의 하부 사이에 회동 바(261)가 끼워져 제공되므로, 회동 바(261)가 바이메탈(250)이 휘는 방향으로 바이메탈(250)과 함께 움직이게 되고, 이로 인해 제2 가이드(260)와 결합되어 있는 제1 가이드(230), 및 반사부(240)가 축(220)을 중심으로 회전하게 된다. 즉, 바이메탈(250)이 좌측으로 휘어지게 되면, 제1 가이드(230)와, 제2 가이드(260), 및 반사부(240)는 반시계 방향으로 회전된다. 이에 의해, 반사부(240)의 주 반사면(241)은 태양을 향하게 위치될 수 있다.The second guide 260 is connected to the lower part of the bimetal 250, and as described above, since the rotating bar 261 is provided between the lower parts of the bimetal 250, the rotating bar 261 includes the bimetal 250. The bimetal 250 moves together in the bending direction, and thus, the first guide 230 and the reflector 240 coupled to the second guide 260 rotate about the axis 220. That is, when the bimetal 250 is bent to the left side, the first guide 230, the second guide 260, and the reflector 240 rotate in the counterclockwise direction. As a result, the main reflective surface 241 of the reflector 240 may be positioned to face the sun.
정오가 되어 감에 따라 태양의 고도는 점점 높아지게 되고, 정오가 되면, 태양은 양 바이메탈(250a, 250b)에 동일한 에너지를 공급하게 되는 바, 양 바이메탈(250a, 250b)의 열 팽창량은 동일한 바 바이메탈(250)은 어느 방향으로도 휘지 않게 되고, 반사부(240)는 정 상방을 향할 수 있다.At noon, the altitude of the sun becomes higher and higher, and at noon, the sun supplies the same energy to both bimetals 250a and 250b, with the same amount of thermal expansion of both bimetals 250a and 250b. The bimetal 250 may not be bent in any direction, and the reflector 240 may face upward.
오후가 되면, 태양이 하우징(200)의 우측에 위치하므로, 어느 하나의 바이메탈(250b)이 태양광을 더 잘 흡수할 수 있으며, 그에 따라 바이메탈(250) 전체가 태양을 향해 우측 방향으로 오목하게 휘게 된다. 따라서, 회동 바(261)가 바이메탈(250)이 휘는 방향으로 바이메탈(250)과 함께 움직이게 되고, 이로 인해 제2 가이드(260)와 결합되어 있는 제1 가이드(230), 및 반사부(240)가 축(220)을 중심으로 시계 방향으로 회전하게 되므로, 반사부(240)의 주 반사면(241)은 태양을 향하게 위치될 수 있다.In the afternoon, since the sun is located on the right side of the housing 200, any one of the bimetals 250b can absorb sunlight better, so that the entire bimetal 250 is concave in the right direction towards the sun. Bent. Accordingly, the rotation bar 261 moves together with the bimetal 250 in the direction in which the bimetal 250 is bent, and thus the first guide 230 and the reflector 240 coupled to the second guide 260. Since the axis 220 rotates in a clockwise direction, the main reflective surface 241 of the reflector 240 may be positioned to face the sun.
이하에서는 본 발명의 또 다른 실시예에 따른 무전원 태양광 추적 장치에 대하여 도 9 내지 도 14를 참조하여 설명한다. 다만, 또 다른 실시예는 일 실시예와 비교하여 제2 가이드에 볼 체인과 벨트 풀리가 포함되는 점에 있어서 차이가 있으므로, 차이점을 위주로 설명한다. 또한, 이하의 설명에서는 중복 설명을 방지하기 위해, 구성요소들에 대한 상세한 설명은 생략하며, 필요한 경우 도면부호의 앞자리를 각각, 2, 3, 4로 바꾸어 설명하겠다. 예를 들어, 무전원 태양광 추적 장치(10)의 하우징(100)에 대응되는 무전원 태양광 추적 장치(30)의 하우징은 도면부호 300으로 표현될 수 있다. 예를 들어, 무전원 태양광 추적 장치(30)는 하우징(300), 고정수단(310), 축(230), 제1 가이드(330), 반사부(340), 바이메탈(350), 제2 가이드(360), 베어링(370), 단열부싱(380)을 가질 수 있다.Hereinafter, a non-powered solar tracking device according to another embodiment of the present invention will be described with reference to FIGS. 9 to 14. However, another embodiment has a difference in that a ball chain and a belt pulley are included in the second guide as compared to the embodiment, and thus, the difference will be mainly described. In addition, in the following description, in order to avoid duplicate description, detailed descriptions of the components will be omitted, and if necessary, the preceding numerals will be replaced with 2, 3, and 4 respectively. For example, the housing of the non-powered solar tracking device 30 corresponding to the housing 100 of the non-powered solar tracking device 10 may be represented by the reference numeral 300. For example, the non-powered solar tracking device 30 includes the housing 300, the fixing means 310, the shaft 230, the first guide 330, the reflector 340, the bimetal 350, and the second guide. 360, bearing 370, and thermal insulation bushing 380.
도 9는 본 발명의 또 다른 실시예에 따른 무전원 태양광 추적 장치를 보여주는 사시도이고, 도 10은 도 9의 볼 체인 부근에서 절단된 측단면도이며, 도 11은 도 9의 볼 체인 및 풀리의 부분 확대 사시도이고, 도 12는 도 11의측면도이며, 도 13은 도 9의 풀리의 구성을 보여주는 횡단면도이다.9 is a perspective view showing a non-powered solar tracking device according to another embodiment of the present invention, Figure 10 is a side cross-sectional view cut near the ball chain of Figure 9, Figure 11 is a part of the ball chain and pulley of Figure 9 12 is an enlarged perspective view, FIG. 12 is a side view of FIG. 11, and FIG. 13 is a cross-sectional view showing the configuration of the pulley of FIG. 9.
도 9 내지 도 13을 참조하면, 발명의 또 다른 실시예에 따른 무전원 태양광 추적 장치(30)는 빛이 통과할 수 있는 통 형상의 하우징(300)과, 하우징(300)의 내부에 제공된 고정수단(310)과, 하우징(300)의 밑면을 통과하는 방향(도 9에서의 x축 방향)으로 통과하며, 내부에 열매개 유체가 통과하는 축(320)과, 축(320)을 중심으로 회전 가능한 제1 가이드(330)와, 제1 가이드(330)의 양측에 연결되어 축(320)을 중심으로 회전 가능한 반사부(340)와, 고정수단(310)에 고정 설치되는 바이메탈(350)과, 바이메탈(350)의 변형량에 따라 제1 가이드(330)를 회전 시키는 제2 가이드(360)를 포함한다.9 to 13, the non-powered solar tracking device 30 according to another embodiment of the present invention has a cylindrical housing 300 through which light can pass, and a fixing provided inside the housing 300. It passes about the means 310 and the direction through which the bottom surface of the housing 300 passes (the x-axis direction in FIG. 9), and the axis 320 through which a nut fluid flows through, and the axis 320 about. The rotatable first guide 330, the reflecting portion 340 is connected to both sides of the first guide 330 rotatable about the shaft 320, and the bimetal 350 is fixed to the fixing means 310 And a second guide 360 for rotating the first guide 330 according to the deformation amount of the bimetal 350.
고정수단(310)은 하우징(300) 내부에서 X축으로 연장된 2개 이상의 직선부(311a)를 가질 수 있다. 이 때, 직선부(311a)에는 바이메탈(350)을 직접적으로 고정하기 위한 사각형 단면의 고정부(312)가 제공될 수 있으므로, 고정부(312)는 직선부(311a)와 함께 2개 이상 제공될 수 있다.The fixing means 310 may have two or more straight portions 311a extending in the X axis in the housing 300. At this time, since the fixing portion 312 having a rectangular cross section for directly fixing the bimetal 350 may be provided in the straight portion 311a, two or more fixing portions 312 may be provided together with the straight portion 311a. Can be.
제1 가이드(330)는 축(320)을 중심으로 회전 가능하게 제공될 수 있고, 바이메탈(350)의 움직임을 반사부(340)로 전달하여 반사부(340)를 회전시키는 기능을 한다. 이 때, 제1 가이드(330)는 복수개의 동일한 크기의 홈을 가진 풀리일 수 있으며, 복수개의 홈이 일정하게 배열된 구조일 수 있다. The first guide 330 may be provided to be rotatable about the axis 320, and transmits the movement of the bimetal 350 to the reflector 340 to rotate the reflector 340. In this case, the first guide 330 may be a pulley having a plurality of grooves having the same size, and may have a structure in which the plurality of grooves are constantly arranged.
또한, 제1 가이드(330)는 축(320)의 중심부에 끼워지는 형태로 제공될 수 있다. 따라서, 반사부(340)와 보조 반사부(390)는 제1 가이드(330)의 양측에 제공될 수 있다.In addition, the first guide 330 may be provided to be fitted to the central portion of the shaft (320). Therefore, the reflector 340 and the auxiliary reflector 390 may be provided at both sides of the first guide 330.
한 쌍의 바이메탈(350)은 축(320)을 중심으로 소정거리 이격 되어, 고정수단(310)에 변형 가능하게 고정 설치될 수 있다. 이 때, 바이메탈(350)은 서로 다른 열전달률을 갖는 두 개의 금속판으로 형성되는 것으로서, 사각형 단면을 가질 수 있으며, 예를 들어, Z축 방향으로 더 길게 연장된 직사각형 단면을 가질 수 있다.The pair of bimetals 350 may be spaced apart from each other by a predetermined distance about the shaft 320 and may be fixedly fixed to the fixing means 310. In this case, the bimetal 350 may be formed of two metal plates having different heat transfer rates, and may have a rectangular cross section. For example, the bimetal 350 may have a rectangular cross section extending longer in the Z-axis direction.
한 쌍의 바이메탈(350)은 볼트 등의 체결 수단(351)에 의해 고정수단(310)에 고정되거나, 서로 연결될 수 있으며, 체결 수단(351)이 통과할 수 있도록 일정한 간격을 두고 형성된 1개 이상의 체결 구멍(352)을 포함할 수 있다. 본 실시예에서는, 바이메탈(350)에 2개의 체결 구멍(352)이 형성된 것을 예로 들어 도시하였으나, 이에 한정되지 않는다.The pair of bimetals 350 may be fixed to the fixing means 310 by fastening means 351 such as bolts, or may be connected to each other, and at least one formed at regular intervals to allow the fastening means 351 to pass therethrough. The fastening hole 352 may be included. In the present embodiment, the bimetal 350 has two fastening holes 352 formed as an example, but is not limited thereto.
구체적으로, 바이메탈(350)의 상부 측에 있는 체결 구멍(352)은 고정수단(310)의 체결 구멍(314)과 대응하게 구성되어 바이메탈(350)을 고정수단(310)에 결합하는 용도로 사용될 수 있다. 체결수단(351)은 와셔와 슬리브 및 볼트와 너트가 사용될 수 있으나, 이에 한정되지 않는다.Specifically, the fastening hole 352 on the upper side of the bimetal 350 is configured to correspond to the fastening hole 314 of the fixing means 310 to be used for coupling the bimetal 350 to the fixing means 310. Can be. The fastening means 351 may include a washer, a sleeve, a bolt, and a nut, but is not limited thereto.
여기서, 바이메탈(350)은 열팽창률이 더 큰 금속판이 하우징(300)의 내측을 향하도록 배치될 수 있다. 이에 의해 바이메탈(350)이 열 에너지를 흡수하여 변형할 때, 태양광이 제공되는 방향을 향해 하부가 휘어질 수 있다.Here, the bimetal 350 may be disposed such that the metal plate having a higher thermal expansion coefficient faces the inside of the housing 300. As a result, when the bimetal 350 absorbs and deforms thermal energy, the lower portion of the bimetal 350 may be bent toward the direction in which sunlight is provided.
바이메탈(350)은 태양열을 흡수함에 따라 휘어지게 된다. 구체적으로, 바이메탈(350)의 바깥쪽 면, 즉 흑체 처리된 면은 태양광을 잘 흡수할 수 있으므로, 바이메탈(350)의 변형량은 커질 수 있다. 태양광을 흡수함에 따라 바이메탈(350)을 형성하는 두 금속의 열 팽창률 차이에 따라 바이메탈(350)은 휘어지게 된다. 이때, 바이메탈(350)은 열 팽창률이 더 큰 금속판이 하우징(300)의 내측을 향해 배치되어 있으므로, 태양광을 향해 오목하게 휘어지게 된다.The bimetal 350 bends as it absorbs solar heat. In detail, since the outer surface of the bimetal 350, that is, the black body treated surface may absorb sunlight well, the deformation amount of the bimetal 350 may be increased. As the solar light is absorbed, the bimetal 350 is bent according to the difference in thermal expansion rates of the two metals forming the bimetal 350. At this time, the bimetal 350 has a larger thermal expansion coefficient is disposed toward the inside of the housing 300, it is bent concave toward the sunlight.
본 실시예에서, 바이메탈(350)의 상부가 고정부(312)에 고정되어 있으므로, 결국 바이메탈(350)은 상부를 기준으로 하부가 수평 방향으로 휘어질 수 있다.In the present embodiment, since the upper part of the bimetal 350 is fixed to the fixing part 312, the lower part of the bimetal 350 may be bent in the horizontal direction with respect to the upper part.
제2 가이드(360)는 바이메탈(350)과 직접 연결되어, 바이메탈(350)의 변형량에 따라 제1 가이드(330)가 회전될 수 있도록 작동될 수 있다. 이 때, 제2 가이드(360)는 제1 가이드(330)를 감싸고, 양측이 바이메탈(350)에 연결되어 있는 구조일 수 있다. The second guide 360 may be directly connected to the bimetal 350 to operate the first guide 330 to be rotated according to the deformation amount of the bimetal 350. In this case, the second guide 360 may surround the first guide 330, and both sides of the second guide 360 may be connected to the bimetal 350.
제2 가이드(360)는 복수개의 볼이 연장된 구조인 볼 체인일 수 있다. 이 때, 볼은 제1 가이드(330)의 홈에 대응되는 크기로 형성될 수 있고, 제2 가이드(360)의 볼이 제1 가이드(330)의 홈에 결합될 수 있다. 따라서, 바이메탈(350)이 휘게 되면, 제2 가이드(360)는 바이메탈(350)이 휘는 방향을 따라 이동하게 되고, 이에 의해 제2 가이드(360)의 볼로 인하여, 볼에 겹쳐진 제1 가이드(330)의 홈이 회전하게 되면서, 제1 가이드(330)가 회전할 수 있다.The second guide 360 may be a ball chain having a structure in which a plurality of balls are extended. At this time, the ball may be formed in a size corresponding to the groove of the first guide 330, the ball of the second guide 360 may be coupled to the groove of the first guide 330. Therefore, when the bimetal 350 is bent, the second guide 360 moves along the direction in which the bimetal 350 is bent, whereby the first guide 330 overlapped with the ball due to the ball of the second guide 360. As the groove is rotated, the first guide 330 may rotate.
본 실시예에서는, 제1 가이드(330)를 풀리로 예를 들어 설명하였고, 제2 가이드(360)를 볼 체인으로 예를 들어 설명하였으나, 제1 가이드(330) 및 제2 가이드(360)는 이에 한정되지 않는다. 일 예로, 톱니 구조를 갖는 스프로킷과 이에 대응하는 체인으로 제공될 수 있다.In the present exemplary embodiment, the first guide 330 is described as an example of the pulley, and the second guide 360 is described as an example of the ball chain, but the first guide 330 and the second guide 360 are described. It is not limited to this. For example, it may be provided as a sprocket having a tooth structure and a corresponding chain.
도 14는 도 9의 무전원 태양광 추적 장치가 태양 방위각 변화에 대응하여 작동하는 모습을 보여주는 도면이다.FIG. 14 is a diagram illustrating a state in which the non-powered solar tracking device of FIG. 9 operates in response to a change in solar azimuth angle.
도 14의 (a)는 태양광 추적 장치의 측면도이고, 도 14의 (b)는 태양광 추적 장치의 평면도이다. 도 14를 참조하면, 태양의 위치 변화에 따른 바이메탈(350)의 형상 및 그에 따른 제1 가이드(330), 반사부(340), 및 제2 가이드(360)의 상태를 확인할 수 있다. FIG. 14A is a side view of the solar tracking device, and FIG. 14B is a plan view of the solar tracking device. Referring to FIG. 14, the shape of the bimetal 350 according to the change of the position of the sun and the states of the first guide 330, the reflector 340, and the second guide 360 may be confirmed.
본 실시예에서는 오전에는 태양이 태양광 추적 장치(30)의 좌측에 위치되고, 오후에는 우측에 위치되는 것을 예로 들어 도시하였다.In the present embodiment, the sun is positioned on the left side of the solar tracking device 30 in the morning, and the example is positioned on the right side in the afternoon.
일출 전에는 태양광에 의해 바이메탈(350)이 열팽창되지 않으므로, 도 14에서 정오와 같은 상태를 유지하게 된다.Since the bimetal 350 is not thermally expanded by sunlight before sunrise, the bimetal 350 is maintained at noon in FIG. 14.
바이메탈(350)의 하부에는 제2 가이드(360)가 연결되어 있으므로, 제2 가이드(360)가 바이메탈(350)이 휘는 방향으로 바이메탈(350)과 함께 움직이게 되고, 이로 인해 제2 가이드(360)와 맞물려 결합되어 있는 제1 가이드(330), 및 반사부(340)가 축(320)을 중심으로 회전하게 된다. 즉, 바이메탈(350)이 좌측으로 휘어지게 되면, 제1 가이드(330)와, 제2 가이드(360), 및 반사부(340)는 반시계 방향으로 회전된다. 이에 의해, 반사부(340)의 주 반사면(341)은 태양을 향하게 위치될 수 있다.Since the second guide 360 is connected to the lower portion of the bimetal 350, the second guide 360 moves together with the bimetal 350 in a direction in which the bimetal 350 is bent, thereby causing the second guide 360 to move. The first guide 330 and the reflector 340 coupled to each other are rotated about the shaft 320. That is, when the bimetal 350 is bent to the left side, the first guide 330, the second guide 360, and the reflector 340 rotate in the counterclockwise direction. As a result, the main reflective surface 341 of the reflector 340 may be positioned to face the sun.
정오가 되어 감에 따라 태양의 고도는 점점 높아지게 되고, 정오가 되면, 태양은 양 바이메탈(350a, 350b)에 동일한 에너지를 공급하게 되는 바, 양 바이메탈(350a, 350b)의 열 팽창량은 동일한 바 바이메탈(350)은 어느 방향으로도 휘지 않게 되고, 반사부(340)는 정 상방을 향할 수 있다.At noon, the altitude of the sun becomes higher and higher, and at noon, the sun supplies the same energy to both bimetals 350a and 350b, and the amount of thermal expansion of both bimetals 350a and 350b is the same. The bimetal 350 may not be bent in any direction, and the reflector 340 may face upward.
오후가 되면, 태양이 하우징(300)의 우측에 위치하므로, 바이메탈(350) 전체가 태양을 향해 우측 방향으로 오목하게 휘게 된다. 따라서, 제2 가이드(360)가 바이메탈(350)이 휘는 방향으로 바이메탈(350)과 함께 움직이게 되고, 이로 인해 제2 가이드(360)와 맞물려 결합되어 있는 제1 가이드(330), 및 반사부(340)가 축(320)을 중심으로 시계 방향으로 회전하게 되므로, 반사부(340)의 주 반사면(341)은 태양을 향하게 위치될 수 있다.In the afternoon, since the sun is located on the right side of the housing 300, the entire bimetal 350 concave concave in the right direction toward the sun. Accordingly, the second guide 360 is moved together with the bimetal 350 in the direction in which the bimetal 350 is bent, and thus, the first guide 330 and the reflecting part are engaged with and coupled to the second guide 360. Since the 340 rotates in a clockwise direction about the axis 320, the main reflective surface 341 of the reflector 340 may be positioned to face the sun.
이하에서는 본 발명의 일 실시예에 따른 무전원 태양광 추적 장치의 효율비교 그래프에 대하여 도 15를 참조하여 설명한다. Hereinafter, an efficiency comparison graph of a non-powered solar tracking device according to an embodiment of the present invention will be described with reference to FIG. 15.
도 15는 본 발명의 일 실시예에 따른 태양광 추적 장치가 적용된 태양열 집열기와 종래의 태양열 집열기의 비교 그래프이다.15 is a comparison graph of a solar collector to which a solar tracking device according to an embodiment of the present invention is applied and a conventional solar collector.
도 15를 참조하면, 2축 트래킹 장치를 갖춘 집열기의 효율을 100으로 보았을 때, 본 발명의 의한 무전원 태양광 추적 장치(10, 20, 30)는 시간에 따라 효율이 달라질 수 있다.Referring to FIG. 15, when the efficiency of the collector having a two-axis tracking device is 100, the power-supply solar tracking device 10, 20, 30 according to the present invention may vary in efficiency with time.
예를 들어, 08시에는 바이메탈(150, 250, 350)의 복사에너지 흑체방출이 태양의 직사일달하는 복사에너지보다 작으므로 ⓐ와 같은 효율을 보일 수 있고, 10시에는 바이메탈(150, 250, 350)의 복사에너지 흑체방출이 태양의 직사일달하는 복사에너지와 같으므로, ⓑ와 같은 효율을 보일 수 있으며, 12시에는 바이메탈(150, 250, 350)의 복사에너지 흑체방출이 태양의 직사일달하는 복사에너지보다 다시 작아지므로 ⓒ와 같은 효율을 보일 수 있다.For example, the radiation energy black body emission of the bimetals 150, 250 and 350 at 08 o'clock is smaller than the direct solar radiation, and at 10 o'clock, the bimetals 150, 250 and 350 can exhibit the same efficiency. Since the radiant energy of the black body is the same as the direct solar radiation of the sun, the same efficiency as ⓑ can be obtained, and at 12 o'clock, the radiant energy of the black metal (150, 250, 350) is a direct solar radiation of the sun. Since it becomes smaller than the energy, it can show the efficiency as ⓒ.
또한, 14시에는 바이메탈(150, 250, 350)의 복사에너지 흑체방출이 태양의 직사일달하는 복사에너지와 같으므로, ⓓ와 같은 효율을 보일 수 있고, 약 15시에는 바이메탈(150, 250, 350)의 복사에너지 흑체방출이 태양의 직사일달하는 복사에너지보다 작으므로, ⓔ와 같은 효율을 보일 수 있다.In addition, since the radiation energy black body emission of the bimetals 150, 250 and 350 at 14:00 is the same as the direct radiation of the sun, the efficiency can be the same as ⓓ, and the bimetals 150, 250 and 350 are about 15 o'clock. Since the radiant energy of the blackbody is smaller than the direct radiant energy of the sun, it can exhibit the same efficiency as ⓔ.
이처럼, 본 발명에서의 무전원 태양광 추적 장치(10, 20, 30)는 바이메탈(150, 250, 350)의 반응 시간 지연에 따라 특이한 곡선 형태를 나타낼 수 있다.As such, the non-powered photovoltaic tracking device 10, 20, 30 in the present invention may exhibit a unique curved shape according to the reaction time delay of the bimetals 150, 250, 350.
이상 본 발명의 실시예에 따른 태양광 추적 장치를 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 개시된 실시형태들을 조합, 치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.Although the solar tracking device according to the embodiment of the present invention has been described as a specific embodiment, this is only an example, and the present invention is not limited thereto and is interpreted as having the broadest range in accordance with the basic idea disclosed herein. Should be. One skilled in the art can combine and substitute the disclosed embodiments to implement a pattern of a shape that is not indicated, but this is also within the scope of the present invention. In addition, those skilled in the art can easily change or modify the disclosed embodiments based on the present specification, it is apparent that such changes or modifications belong to the scope of the present invention.
본 발명의 실시예들에 따른 무전원 태양광 추적 장치는, 산업용 태양광 추적 장치 산업에 이용될 수 있다.The non-powered solar tracking device according to the embodiments of the present invention may be used in the industrial solar tracking device industry.

Claims (17)

  1. 빛이 통과할 수 있는 통 형상의 하우징;A cylindrical housing through which light can pass;
    상기 하우징의 내부에 제공된 고정수단;Fastening means provided in the housing;
    상기 하우징의 연장 방향을 따라 상기 하우징을 통과하고, 내부에 에너지 전환 수단이 제공되는 축;An axis passing through the housing along an extension direction of the housing and provided with an energy conversion means therein;
    상기 축을 중심으로 회전 가능한 제1 가이드;A first guide rotatable about the axis;
    상기 제1 가이드에 연결되어 상기 축을 중심으로 상기 제1 가이드와 함께 회전 가능하고, 상기 축을 향해 태양광을 반사하는 반사부;A reflector connected to the first guide and rotatable with the first guide about the axis and reflecting sunlight toward the axis;
    상기 고정수단에 변형 가능하게 고정 설치되고, 서로 다른 열전달률을 갖는 두 개의 금속판으로 형성되는 바이메탈; 및A bimetal deformably fixed to the fixing means and formed of two metal plates having different heat transfer rates; And
    상기 바이메탈의 변형량에 따라 상기 제1 가이드를 회전시키는 제2 가이드를 포함하는,It includes a second guide for rotating the first guide according to the deformation amount of the bimetal,
    무전원 태양광 추적 장치.Powerless solar tracking device.
  2. 제1항에 있어서,The method of claim 1,
    상기 바이메탈이 축 연장 방향으로 길게 연장되고, 중심부가 고정되어 양 단부가 수평 방향으로 휘어지며, 상기 제2 가이드는 상기 바이메탈을 감싸고, 바이메탈의 단부가 내부에서 슬라이딩 이동 가능하게 형성된 고리부와, 상기 고리부의 이동에 따라 상기 제1 가이드에 외력을 가하는 헤드부를 포함하는The bimetal is extended in the axial extension direction, the central portion is fixed, both ends are bent in the horizontal direction, the second guide wraps the bimetal, the ring portion formed so that the end of the bimetal is slidably movable, and It includes a head portion for applying an external force to the first guide in accordance with the movement of the ring portion
    무전원 태양광 추적 장치.Powerless solar tracking device.
  3. 제1항에 있어서,The method of claim 1,
    상기 바이메탈이 상부가 고정되고, 하부가 수평 방향으로 휘어지며, 상기 제2 가이드는 상기 한 쌍의 바이메탈 사이에 끼워지는 회동 바와, 상기 회동 바의 양측이 절곡되어 하방에 형성되는 헤드부를 포함하는The bimetal is fixed in the upper portion, the lower portion is bent in the horizontal direction, the second guide includes a rotating bar fitted between the pair of bimetal, the both sides of the rotating bar is bent to include a head portion formed below
    무전원 태양광 추적 장치.Powerless solar tracking device.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제1 가이드는 상기 제2 가이드의 헤드부가 연결되어 고정되는 날개부를 포함하는The first guide includes a wing portion to which the head portion of the second guide is connected and fixed
    무전원 태양광 추적 장치.Powerless solar tracking device.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 날개부는 상기 반사부를 향해 오목한 형상을 갖고, 상기 날개부의 배면은 상기 반사부에서 반사된 빛을 재반사하는 보조 반사면으로 형성되는The wing portion has a concave shape toward the reflecting portion, and a rear surface of the wing portion is formed as an auxiliary reflecting surface for reflecting light reflected from the reflecting portion again.
    무전원 태양광 추적 장치.Powerless solar tracking device.
  6. 제1항에 있어서,The method of claim 1,
    상기 바이메탈은 상부가 고정되고, 하부가 수평 방향으로 휘어지며, 이격되어 한 쌍이 제공되고, The bimetal has a top fixed, a bottom bent in a horizontal direction, spaced apart and provided a pair,
    상기 제2 가이드는 상기 바이메탈에 연결되어, 상기 바이메탈의 움직임에 따라 이동하고, The second guide is connected to the bimetal and moves in accordance with the movement of the bimetal,
    상기 제2 가이드의 이동에 따라 제1 가이드가 회전하는The first guide rotates according to the movement of the second guide
    무전원 태양광 추적 장치.Powerless solar tracking device.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 가이드는 일정한 홈을 갖는 풀리이고, 상기 제2 가이드는 상기 풀리의 홈에 대응되는 크기의 볼을 갖는 볼 체인으로 형성되는The first guide is a pulley having a constant groove, the second guide is formed of a ball chain having a ball of a size corresponding to the groove of the pulley
    무전원 태양광 추적 장치.Powerless solar tracking device.
  8. 제1항에 있어서,The method of claim 1,
    상기 바이메탈은 한 쌍이 제공되고, The bimetal is provided in pairs,
    상기 바이메탈을 구성하는 두 금속판 중 상기 축에서 가까운 상기 바이메탈의 내측 금속판이 상기 축에서 먼 상기 바이메탈의 외측 금속판보다 열팽창률이 더 큰Of the two metal plates constituting the bimetal, the inner metal plate of the bimetal close to the axis has a higher coefficient of thermal expansion than the outer metal plate of the bimetal away from the axis.
    무전원 태양광 추적 장치.Powerless solar tracking device.
  9. 제8항에 있어서,The method of claim 8,
    상기 바이메탈은 상기 축에서 먼 외부면이 흑체면이고, 상기 축에서 가까운 내부면이 전반사면인The bimetal has a black body surface outside the shaft and an inner surface close to the axis is a total reflection surface.
    무전원 태양광 추적 장치.Powerless solar tracking device.
  10. 제1항에 있어서,The method of claim 1,
    상기 제2 가이드는 상기 바이메탈의 직선 방향 운동을 회전 운동으로 전환시켜 상기 제1 가이드에 전달하는 캠인The second guide is a cam that converts the linear movement of the bimetal into a rotational movement and transmits it to the first guide.
    무전원 태양광 추적 장치.Powerless solar tracking device.
  11. 제1항에 있어서,The method of claim 1,
    상기 반사부는 태양광을 반사하는 주 반사면과, 상기 주 반사면의 곡률과 형상을 고정하도록 지지부를 더 포함하는The reflector further includes a main reflecting surface that reflects sunlight and a support to fix the curvature and shape of the main reflecting surface.
    무전원 태양광 추적 장치.Powerless solar tracking device.
  12. 제1항에 있어서,The method of claim 1,
    상기 하우징은 진공관인The housing is a vacuum tube
    무전원 태양광 추적 장치.Powerless solar tracking device.
  13. 제1항에 있어서,The method of claim 1,
    상기 축을 감싸는 형태로 제공되는 베어링을 포함하는It includes a bearing provided in the form surrounding the shaft
    무전원 태양광 추적 장치.Powerless solar tracking device.
  14. 제13항에 있어서,The method of claim 13,
    상기 축과 상기 베어링 사이에는 상기 축의 열 간섭을 차단하기 위한 단열부싱을 더 포함하는Further comprising a thermal insulation bushing between the shaft and the bearing for blocking thermal interference of the shaft
    무전원 태양광 추적 장치.Powerless solar tracking device.
  15. 제1항에 있어서,The method of claim 1,
    상기 제1 가이드에는 무게추가 장착되는The weight is mounted on the first guide
    무전원 태양광 추적 장치.Powerless solar tracking device.
  16. 제1항에 있어서,The method of claim 1,
    상기 에너지 전환 수단은 상기 축 내부를 흐르는 열 매개 유체인 The energy conversion means is a heat medium fluid flowing inside the shaft.
    무전원 태양광 추적 장치.Powerless solar tracking device.
  17. 제1항에 있어서,The method of claim 1,
    상기 에너지 전환 수단은 상기 축 내부에 제공된 열전소자인The energy conversion means is a thermoelectric element provided inside the shaft
    무전원 태양광 추적 장치.Powerless solar tracking device.
PCT/KR2016/003596 2015-04-11 2016-04-06 Unpowered sunlight tracking device WO2016167510A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0051331 2015-04-11
KR20150051331 2015-04-11
KR10-2016-0035893 2016-03-25
KR1020160035893A KR101766638B1 (en) 2015-04-11 2016-03-25 Non-powered sunlight tracking device

Publications (1)

Publication Number Publication Date
WO2016167510A1 true WO2016167510A1 (en) 2016-10-20

Family

ID=57126137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003596 WO2016167510A1 (en) 2015-04-11 2016-04-06 Unpowered sunlight tracking device

Country Status (1)

Country Link
WO (1) WO2016167510A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039420A (en) * 2020-08-13 2020-12-04 旻投电力发展有限公司 Hydraulic drive and photovoltaic cleaning device with dust removal function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203345A (en) * 1982-05-20 1983-11-26 Sanyo Electric Co Ltd Solar heat collector
JPH1080167A (en) * 1996-09-06 1998-03-24 Unitika Supaakuraito Kk Solar power generator
KR20110004380U (en) * 2009-10-28 2011-05-04 남기선 Parabolic Trough Concentrator
US20130061911A1 (en) * 2010-05-20 2013-03-14 Yu Bin Shin Photovoltaic power generation apparatus comprising a cylindrical light-collecting device
JP2013514519A (en) * 2008-12-31 2013-04-25 フェレーロ、アドルフォ ルイス ロペス Overheat protection for vacuum tube solar collector with rotating reflector.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203345A (en) * 1982-05-20 1983-11-26 Sanyo Electric Co Ltd Solar heat collector
JPH1080167A (en) * 1996-09-06 1998-03-24 Unitika Supaakuraito Kk Solar power generator
JP2013514519A (en) * 2008-12-31 2013-04-25 フェレーロ、アドルフォ ルイス ロペス Overheat protection for vacuum tube solar collector with rotating reflector.
KR20110004380U (en) * 2009-10-28 2011-05-04 남기선 Parabolic Trough Concentrator
US20130061911A1 (en) * 2010-05-20 2013-03-14 Yu Bin Shin Photovoltaic power generation apparatus comprising a cylindrical light-collecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039420A (en) * 2020-08-13 2020-12-04 旻投电力发展有限公司 Hydraulic drive and photovoltaic cleaning device with dust removal function
CN112039420B (en) * 2020-08-13 2021-10-08 旻投电力发展有限公司 Hydraulic drive and photovoltaic cleaning device with dust removal function

Similar Documents

Publication Publication Date Title
EP2294629B1 (en) Concentrating photovoltaic solar panel
WO2012165697A1 (en) Solar cell module support assembly
US4118249A (en) Modular assembly of a photovoltaic solar energy receiver
WO2013032099A1 (en) Solar power generating apparatus
US20120125404A1 (en) Modular system for concentration of solar radiation
US20110120539A1 (en) On-window solar-cell heat-spreader
WO2009108023A9 (en) Solar concentrator module and device for transmitting solar light
WO2016167510A1 (en) Unpowered sunlight tracking device
KR101766638B1 (en) Non-powered sunlight tracking device
JP2003069065A (en) Photovoltaic power generation system
WO2010090456A2 (en) Heat engine using solar energy
JP5865270B2 (en) Large submicron gap method and apparatus for micron gap thermophotovoltaic
JP3855160B2 (en) Solar radiation concentrator
WO2023214719A1 (en) Solar concentration apparatus capable of adjusting angle of light concentrator by using sliding structure
JP3812794B2 (en) Concentrated vacuum heat collector generator
CN113875024A (en) Opto-mechanical system with hybrid architecture for converting light energy and corresponding method
CN206074887U (en) A kind of small size reflecting mirror flexible support structure suitable under thermal cycle conditions
US20100139768A1 (en) Heat spreading shield
CN201628804U (en) Solar linear multi-lens zooming unidirectional-tracking use system
WO2011074893A2 (en) Device using solar energy of a rolling, sun-tracking type
WO2022102873A1 (en) Light source-tracking solar cell array, and solar power generation system using same
WO2022097792A1 (en) Large-capacity thermoelectric module
WO2024009779A1 (en) Thermoelectric conversion device, control method, and electrical power generation method
KR850002115Y1 (en) Capsule for collecting solar ray
KR20230067297A (en) Fixed solar tracker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780233

Country of ref document: EP

Kind code of ref document: A1