WO2012008659A1 - Solar tracking device and solar tracking method using same - Google Patents

Solar tracking device and solar tracking method using same Download PDF

Info

Publication number
WO2012008659A1
WO2012008659A1 PCT/KR2010/008424 KR2010008424W WO2012008659A1 WO 2012008659 A1 WO2012008659 A1 WO 2012008659A1 KR 2010008424 W KR2010008424 W KR 2010008424W WO 2012008659 A1 WO2012008659 A1 WO 2012008659A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
solar
photodiode
sensing unit
tracking
Prior art date
Application number
PCT/KR2010/008424
Other languages
French (fr)
Korean (ko)
Inventor
박종식
양시창
Original Assignee
(주)씨엘에프하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨엘에프하이텍 filed Critical (주)씨엘에프하이텍
Publication of WO2012008659A1 publication Critical patent/WO2012008659A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar tracking device and a solar tracking method using the same so that the focus of the solar light is accurately formed in the concentrated solar power module.
  • Photovoltaic power generation is a technology that directly converts sunlight into electrical energy, unlike conventional solar power generation, and refers to a power generation method using a solar cell that generates electricity by photoelectric effect when sunlight is received.
  • Such photovoltaic power generation systems are generally composed of modules consisting of solar cells, storage batteries, and power converters.
  • a solar cell is a photovoltaic cell manufactured for converting solar energy into electrical energy. When a solar cell is irradiated with light on a contact surface of a metal and a semiconductor or a pn junction of a semiconductor, photovoltaic power is generated by photoelectric effect.
  • the solar cell is a semiconductor represented by silicon and developed naturally by the development of semiconductor technology and semiconductor characteristics.
  • the solar cell has a structure in which N (negative) type semiconductor and P (positive) type semiconductor which have different electrical properties are bonded together.
  • the two semiconductor boundary portions are called PN junctions.
  • When sunlight hits the solar cell the sunlight is absorbed into the solar cell, and the energy of the absorbed solar light causes the electricity of holes (+) and electrons (-) in the semiconductor. Particles (holes and electrons) are generated and move freely in the solar cell, but electrons (-) are collected toward the N-type semiconductor, and holes (+) are collected toward the P-type semiconductor, thereby generating potentials.
  • a load such as a light bulb or a motor is connected to an electrode made on the electrode, current flows. This is the principle of photovoltaic power generation by PN junction of a solar cell. Photovoltaic power generation can be said to be a large-scale power generation system using the principle of such a solar cell.
  • the photovoltaic device has high power generation efficiency when the solar light irradiated to the semiconductor is well focused, and the technology of tracking the position of the sun and precisely controlling the focus of the solar light in the photovoltaic power generation determines the efficiency of power generation.
  • photodiodes have been used for sun tracking of such photovoltaic modules.
  • Photodiode is a kind of semiconductor diode, also called photodiode, and converts light energy into electric energy.
  • Photodiodes are a type of optical sensor that converts light energy into electrical energy, which adds photodetection to the PN junctions of semiconductors.
  • Photodiode When light hits a diode, electrons and positive charge holes are created, causing current to flow, and the magnitude of the voltage is almost proportional to the intensity of the light.
  • the phenomenon in which the voltage appears at the junction of the semiconductor as a result of the photoelectric effect is called the photovoltaic effect.
  • Photodiode is characterized by fast response speed, wide sensitivity wavelength, and good linearity of light current.It is mainly used in electronic devices such as CD player, fire alarm, and remote control receiver of TV. It is also used for the purpose of measuring the intensity of solar light in the photovoltaic module using the effect of such a photodiode and increasing the power generation efficiency by tracking the position of the sun according to the measurement.
  • the conventional solar tracking technology using such a photodiode has a long time until the focus of the photodiode is irradiated with the photodiode, so the initial approach speed of the photovoltaic module is reduced, and the focus is again in case of being covered by clouds or when the weather is cloudy.
  • the efficiency of solar power generation is poor because it did not respond quickly in the process of matching.
  • the photodiode and the condenser lens forming the focus of sunlight on the solar cell have limitations in the size of the photodiode and the range of tracking of the sun, and a plurality of tracking devices must be installed to track the sun over a wide range. There was a problem.
  • the present invention has been proposed to solve such a problem, and an object thereof is to extend the concept of a thermal sensor to a conventional photodiode sensor so that the sun can be quickly tracked in a wider range.
  • a solar tracking device for achieving the above object, a condensing lens to form the focus of sunlight;
  • a sensing unit installed below the condensing lens and formed in a horn shape that becomes narrower toward the lower side of the converging lens so that a focal point is formed on the inner surface thereof, and a plurality of thermocouples are provided along a circumference;
  • a photodiode provided at a lower end of the sensing unit and divided into a plurality of pieces; And outputting an induction signal such that the solar power module is tilted to the opposite side of the thermocouple having a high temperature among the thermocouples of the sensing unit, and precisely adjusting the solar power module to be tilted to the opposite side of the detected photodiode when the focus is detected on the photodiode.
  • a control unit for outputting a signal.
  • the condensing lens may be installed in the housing so as to be horizontal with the solar power module, and the sensing unit may be provided inside the housing, and the photodiode may be provided at the lower end of the sensing unit so as to be horizontal with the solar power module.
  • the sensing unit may have a polygonal pyramid shape in which a plurality of sensing panels form a side surface, and a thermocouple may be provided on each sensing panel, and the sensing unit may have a quadrangular pyramid shape formed of four sensing panels, and the control unit may detect focus on a photodiode. By comparing the temperature of each thermocouple until it can output the induction signal of up, down, left and right.
  • the photodiode may be quadrangular diodes formed in a quadrangular shape so that vertices are positioned on a tangent line where each sensing panel meets, and divided into diagonal lines, and the sensing unit includes a plurality of sensing panels vertically divided. It is composed of a heat insulating member may be coupled between each sensing panel.
  • the solar tracking method according to the present invention is a solar tracking method for tilting a solar power module using a condenser lens, a sensor, a controller, and a driving unit so that the focus of the solar light is accurately formed on the solar power module.
  • the temperature difference between the thermocouples provided along the circumference of the sensing unit may be compared to tilt the solar power module toward the opposite side of the solar focus.
  • the photodiode is composed of a multi-divided photodiode, and the solar power module can be tilted to the opposite side of the solar focus by comparing the intensity of sunlight measured on the fragment of the divided photodiode.
  • the sun tracking method if the focus is not detected in the sensing unit or photodiode, sets the altitude and azimuth angle of the sun at the current position, the altitude and azimuth angle of the sun and the altitude angle toward the current solar power module And comparing the azimuth angle and automatically tilting the solar power module with the set altitude and azimuth angle when there is an angle difference greater than or equal to a set value.
  • the precision tracking step may perform an automatic control step when the focus of the sun is not sensed for more than the time set in the sensing unit or the photodiode.
  • the sun tracking device having the structure as described above and the sun tracking method using the same, the sun is first tracked through the sensing unit, and secondly by using a photodiode to precisely track the sun in a wider range You can track quickly.
  • the tracking of the sun is quicker at the initial position, and when the clouds are lifted or the weather is sunny, the solar position can be quickly responded to, thus increasing the power generation efficiency of the solar module.
  • FIG. 1 is a perspective view showing a condensing type solar power generation device installed with a solar tracking device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the solar tracking device shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line A-A of the solar tracking device shown in FIG.
  • FIG. 4 is a view showing a sun tracking process of the sun tracking device shown in FIG.
  • FIG. 5 is a flowchart illustrating a sun tracking method using the sun tracking device shown in FIG. 1.
  • sensing unit 180 thermocouple
  • FIG. 1 is a perspective view illustrating a concentrating solar power generator equipped with a solar tracking device according to an exemplary embodiment of the present invention, wherein the concentrating solar power generator includes a plate 12 through a driving unit (not shown) in a base 16 of a lower portion. ) Is installed, and a plurality of condensing solar elements 14 are embedded in the plate 12.
  • the concentrating solar power module 10 is installed with a solar tracking device 100 according to an embodiment of the present invention so that the focus of the solar light is always perpendicular to the module.
  • the solar tracking device 100 the embodiment of the present invention, the solar power module 10 is driven by tilting the driving unit to always generate power while tracking the sun.
  • the driving unit may control the tilting by the control unit of the sun tracking device.
  • the solar tracking device of the present invention has been described with reference to the embodiment applied to the condensing photovoltaic device as shown in FIG. 1, the solar tracking device of the present invention is not limited to the condensing photovoltaic device. It may not be widely applied to the solar tracking equipment or conventional solar power equipment to maximize the efficiency of power generation.
  • FIG. 2 is a plan view of the sun tracking device shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line A-A of the sun tracking device shown in FIG.
  • a solar tracking device is a solar tracking device provided for tracking the position of the solar concentrating solar module 10, the condensing lens 140 to form a focus of sunlight; It is installed below the condenser lens 140, is formed in a horn shape that becomes narrower toward the bottom is formed by the focus by the condenser lens 140 on the inner surface, a plurality of thermocouples 180 are provided along the circumference Sensing unit 160; A photodiode 200 provided at a lower end of the sensing unit 160 and divided into a plurality of pieces; And outputs an induction signal such that the solar power module 10 is tilted to the opposite side of the thermocouple having a high temperature among the thermocouples 180 of the sensing unit 160, and when the focus is detected on the photodiode 200, the detected photo And a controller (not
  • the condenser lens 140, the detector 160, and the photodiode 200 may provide a housing 120 in the solar module 10 and may be installed in the housing 120. Specifically, the condenser lens 140 ) Is installed in the housing 120 so as to be horizontal with the solar power module 10, the sensing unit 160 is provided inside the housing 120, and the photodiode 180 is located at the bottom of the sensing unit 160. It may be provided to be parallel to the power generation module 10.
  • the condenser lens 140 may include various lenses capable of forming a focal point of sunlight, such as a convex lens, a semi-convex lens, a spherical lens, or an aspherical lens. Since the condenser lens 140 and the photodiode 200 are installed horizontally in the solar power generation module 10, the altitude angle or the azimuth angle is also formed in the same manner as the solar power generation module 10, thus focusing on the solar tracking device 100. If this is exactly the same can be seen that the focus of the solar module 10 also coincides.
  • a condenser lens 140 is installed at the upper end of the housing 120 to transmit incident sunlight and form a focal point.
  • the focus of the formed sunlight is formed on the inner surface of the sensing unit 160 inside the housing 120, and the thermocouple 180 provided in the sensing unit 160 measures whether the focus is formed and the degree of heat generation of the sensing unit 160. This is to know where the focus of the solar light is formed in the current sensing unit 160. Therefore, through this, the solar power generation module 10 will know where the focus is formed.
  • the present invention can detect the focus of the sun in a relatively wide range than the case of using only the photodiode through the focus detection of the sensing unit 160, according to the position of the focus detected by the sensing unit 160 solar module By tilting (10), the sun can be tracked more quickly. This allows the solar power module to be aligned to the position of the sun faster than the conventional solar tracking with the photodiode alone, and there is no need to install additional photodiodes or provide other tracking devices for quick alignment. It is also concise in its configuration and considerably convenient for further maintenance.
  • the sensing unit 160 may be provided inside the housing 120 below the condenser lens 140 of the upper portion of the housing 120.
  • the sensing unit 160 is installed below the condenser lens 140, and is formed in a horn shape that becomes narrower toward the lower side thereof, thereby forming a focus by the condenser lens 140 on an inner side thereof,
  • Thermocouple 180 is provided.
  • the sensing unit 160 may be in the shape of a cone or polygonal inverted upside down, when the sensing unit 160 is in the shape of a polygonal pyramid, a plurality of sensing panels form the sides of the polygonal pyramid, the thermocouple on each sensing panel 180 may be provided.
  • thermocouple 180 provided in each sensing panel can measure the temperature of each sensing panel, and thus can determine where the focus of the current solar light is formed. Accordingly, the thermocouples 182, 184, 186, and 188 are provided in the respective sensing panels, and even though the sensing unit has a cone shape, the thermocouples 182, 184, 186, and 188 may be configured as a plurality of sensing panels in which the cones are vertically divided.
  • the sensing unit 160 has a quadrangular pyramid shape composed of four sensing panels 162, 164, 166, and 168.
  • each of the sensing panels 160 has directions of east / west / south / north. Through this, it is possible to determine which one of the respective spots has been formed.
  • the solar tracking device is also tilted and the focus formed is closer to the photodiode 200. Since the insulating member 130 is installed between the sensing panels, heat exchange between the sensing panels can be blocked, and the position of focus can be clearly identified through more accurate heat measurement.
  • thermocouple 180 in the sensing panel is transmitted to a controller (not shown).
  • the control unit may be provided at the lower end of the sensing unit 160 in the housing 120, or may be provided at another position of the solar power module 10 so as to be in electrical communication with the sensing unit and the photodiode. It may be.
  • the control unit receives a temperature value detected by the thermocouple 180 of the sensing unit 160, and determines a thermocouple having a high temperature among them, so that the solar power generation module 10 is tilted to the opposite side of the thermocouple.
  • the guidance signal is output to the movable part (not shown).
  • the movable part is configured to change the position or tilting angle of the solar power module.
  • the movable part is divided into a horizontal driving part and a vertical driving part so that the solar power generation module can be tilted in all directions of up, down, left and right. can do.
  • the control unit transmits a tilting signal in a predetermined direction to the movable unit based on the measurement result of the thermocouple, the movable unit tilts the solar power module according to the tilting signal, and the solar tracking device installed in the solar power module is also tilted together.
  • the photodiode 200 is installed at the lower end of the sensing unit 160 to allow more accurate sun tracking.
  • the photodiode 200 is installed at the lower end of the sensing unit 160.
  • the sensing unit 160 has a shape of a horn, and cuts a part of the vertex of the horn and the photodiode 200 on the cut surface. Install it.
  • the sensing unit 160 senses the focus of sunlight, and accordingly, the solar power module is tilted. When this process is performed two or three times, the focus of the sunlight is formed on the photodiode 200.
  • the photodiode 200 may measure the intensity of sunlight, and when the input of the predetermined intensity of the solar intensity into the control unit is the focal point, the photodiode 200 may determine whether the solar light is focused on the photodiode 200. .
  • the photodiode 200 can be precisely controlled so that the photodiode 200 is focused in the center according to the position of the solar focus.
  • the photodiode is a four-part photodiode divided into four pieces 220, 240, 260, and 280, and the photodiode 200 is formed in a quadrangular shape such that a vertex is formed on a tangent point where each sensing panel 162, 164, 166, 168 meets. It is combined to be positioned, and have a piece divided into four pieces (220, 240, 260, 280) on a diagonal basis.
  • the photodiode structure detects the solar focus in the up / down / left / right directions and transmits the signal to the control unit, and the control unit receives the signal of each piece of the photodiode to provide the The position of the focal point is detected and the precision control signal is output to the movable part so that the solar power generation module 10 is tilted in the direction opposite to the focal point.
  • the solar power module is tilted so that the focus of the sunlight is close to the photodiode in the sensing unit 160, and the photodiode 200 is secondary.
  • the single tracker enables fast and accurate sun tracking.
  • the control unit may have Note that focus is formed on the top panel 162 through the thermocouples 182, 184, 186, 188.
  • the focal point of the sunlight may be blurred as the distance from the center, but the difference in the thermocouple temperature will occur by the formation of the focus alone, at least the position of the focal point is possible.
  • the controller recognizes the focus of the upper panel 162, the controller outputs an induction signal for tilting the solar power module in the opposite direction to the position where the focus is formed, that is, downward. With the tilting of the solar modules, the focus of the sunlight is shifted downward. The closer the focus of sunlight is to the center, the smaller the focus will be and the higher the intensity will be.
  • the control unit detects the moved position of the focus through the thermocouple 184 of the left panel 164.
  • the temperature of the thermocouple 184 of the left panel 164 will be the highest, and accordingly, the control unit transmits a tilting guidance signal to the right side opposite to the left side to the driving unit of the solar power module.
  • the focus of sunlight is shifted to the right to be formed inside the photodiode.
  • the pieces of each photodiode can measure the intensity of the sunlight, so that the current focus is located on any of the fragments of the photodiode 220, 240, 260 and 280 in the control unit. You can see if If it is detected that the focal point is located at the left side 240, a tilting signal is output to the right side. In this case, the signal is a fine adjustment signal and the solar power module has a very small angle (for example, 0.1 degree). The signal is transmitted to the movable part so as to be tilted.
  • the focus of sunlight is concentrated at the center of the photodiode, and after that, the intensity of the sunlight is detected in the photodiode piece continuously or continuously and the focus is continuously aligned at the center.
  • the sun tracking device continuously tracks the sun, and the solar power module can always face the sun in front to maintain the maximum power generation efficiency.
  • the sun when the weather improves again after cloudy or when the clouds pass after the sun is obscured by the clouds, the sun needs to track the sun again. Since the focus is established, the sensor can be quickly measured to align the sun's focus on the photodiode and immediately perform precise tracking to maximize the efficiency of solar power generation.
  • FIG. 5 is a flowchart illustrating a sun tracking method using the sun tracking device shown in FIG. 1.
  • the solar tracking method according to an embodiment of the present invention includes a condensing lens so that the focus of sunlight is accurately formed in a solar power module.
  • Focus derivation step (S210) to reach the lower end of the sensing unit; Focus detection step (S220) by the focus derivation step (S210), detecting whether the focus of the sunlight reaches the photodiode provided at the lower end of the sensing unit; And a precision tracking step S230 of tilting the solar power module toward the opposite side of the focus when the focus is sensed in the focus sensing step S220 such that the focus is formed at the center of the photodiode.
  • the sun tracking method is to set the altitude and azimuth angle of the sun at the current position, if the focus is not detected in the sensing unit or photodiode, the altitude and azimuth angle of the sun and the altitude angle toward the current solar power module And comparing the azimuth angle and automatically tilting the solar power generation module with the set altitude angle and the azimuth angle when there is an angle difference greater than or equal to a set value.
  • Solar tracking method is largely composed of a sensor tracking process (S200) and a program tracking process (automatic control step, S300).
  • Sensor tracking process (S200) is to track the focus of the solar power module by directly sensing the focus of sunlight in the physical configuration of the sensor method, program tracking process (S300) without a direct detection of sunlight by using azimuth and elevation angles It is to track the focus of solar modules.
  • the sensor of the sensor tracking process (S200) may be used the solar tracking device of the present invention described above, the sensor tracking process (S200) and the program tracking process (S300) is used in a complementary manner.
  • the process detects the focus of sunlight through the sun tracking device (S100). Detects whether the focus of the solar light is formed on the sensing unit or the photodiode of the solar tracking device, and if the focus is detected, the process proceeds to the sensor tracking process (S200), and if the focus is not detected, the process proceeds to the program tracking process (S300). do.
  • the focus induction step is executed (S210).
  • the solar power module is tilted toward the opposite side of the solar focal point formed inside the sensing unit provided to narrow the width below the condenser lens to induce the focus to reach the lower end of the sensing unit. This is done through the sensing unit and thermocouple of the solar tracker described above and as a result the focus of sunlight is bound to the photodiode at the bottom.
  • the solar power module is tilted to the opposite side of the focus by using the multi-segment photodiode at the bottom of the sensing unit so that the focus reaches the center of the photodiode. If the sun's focus is on the center of the photodiode (for example, in 0.1-degree increments), the solar module can see the sun accurately and maintain maximum power generation efficiency. On the other hand, the focus of sunlight may not be temporarily formed in the sensing unit or photodiode due to weather change or failure of the sensor.
  • the focal point if it is not formed for a certain time, it enters the program tracking process so that sunlight can be tracked by the azimuth and altitude angles (S250).
  • the program tracking process is performed.
  • the program tracking process (S300) will be described in detail.
  • the process proceeds to the program tracking process (automatic control step, S300).
  • the program tracking process sets the altitude and azimuth angle of the sun at the current position, and compares the altitude and azimuth angle of the sun with the altitude and azimuth heading of the current solar module.
  • the automatic control step (S300) to receive the position information of the modern solar power module through the GPS module, and to set the altitude and azimuth angle of the sun at the current position using the received position information (S310).
  • the current time and the geographic information of the received GPS may be imported into a data table prepared in advance, or may be obtained by calculation through a formula.
  • Altitude and azimuth calculation formula may have a variety of calculation methods, an example of the calculation formula can be applied as follows.
  • the altitude and azimuth angle of the current sun are calculated as described above, it is compared with the altitude and azimuth angle of the current solar module to tilt the solar power module at the calculated angle when there is an angle difference greater than the set value ( S320, S330).
  • the set value is set to 0.5 degrees.
  • the difference in angle is less than 0.5 degrees, the focus of the sunlight at the presently directed angle can be formed in the sensing unit and the photodiode, and the process proceeds to the sensor tracking process (S200) to perform the focus derivation step (S210). In this state, if the focus of the solar light is not formed for 5 minutes, the process goes back to the program tracking process (S250).
  • the solar module is tilted at the altitude and azimuth which are the set values (S330). If the incidence of sunlight to the sensing unit or photodiode is detected during the tilting process to the set value or after the tilting, the tilting is stopped and the sensor tracking process is started (S340).
  • the sensor tracking and the program tracking are performed in parallel, so that even if the weather is cloudy, the sun can be continuously tracked and the accurate tracking can be performed immediately at the location when the weather improves, thereby providing optimum power generation efficiency. It will be able to maintain the efficiency of solar power generation, especially in climatic conditions such as Korea, where the weather fluctuates severely.
  • the solar tracking method according to an embodiment of the present invention is summarized as follows with reference to FIG. 5.
  • the sensing unit and the photodiode detect the focus of sunlight (S100).
  • the focus of the solar light is induced to the photodiode through the focus induction step, and the sun is precisely tracked in units of 0.1 degrees by the four-segment photodiode in the precision tracking step (S210, S220, and S230).
  • the program proceeds to the program tracking process (S240, S250). It is possible to keep track of the sun, which means that if the weather is good again, it can quickly enter the sensor tracking process to ensure the efficiency of solar power generation).
  • the current position is received through GPS, and the azimuth and altitude angles of the sun at the current position are calculated and compared with the azimuth and altitude angles currently directed by the solar power generation module (S310 and S320).
  • the solar module is tilted at the calculated altitude and azimuth (S330).

Abstract

A solar tracking device and a solar tracking method using same are introduced. The solar tracking device is prepared for a solar power module to accurately condense light, and includes a horn-shaped sensing panel (160), a thermocouple (180) at the sensing panel, and a multi-section photodiode (200) below the sensing panel to allow a condensing light-type solar power module (10) to track the sun fast and accurately.

Description

태양 추적장치 및 이를 이용한 태양 추적방법Sun tracking device and sun tracking method using the same
본 발명은 집광형 태양발전 모듈에 태양광의 초점이 정확히 형성되도록 하는 태양 추적장치 및 이를 이용한 태양 추적방법에 관한 것이다.The present invention relates to a solar tracking device and a solar tracking method using the same so that the focus of the solar light is accurately formed in the concentrated solar power module.
최근에는 환경오염의 방지와 효율적인 에너지 생산의 입장에서 태양광 발전이 주목받고 있다. 태양광 발전은 종래의 태양열 발전과는 달리 태양광을 직접 전기에너지로 변환시키는 기술로서, 태양광을 받으면 광전효과에 의해 전기를 발생하는 태양전지를 이용한 발전방식을 말한다. 이러한 태양광 발전시스템은 태양전지(solar cell)로 구성된 모듈(module)과 축전지 및 전력변환장치로 구성됨이 일반적이다. 태양전지는 태양에너지를 전기에너지로 변환할 목적으로 제작된 광전지로서 금속과 반도체의 접촉면 또는 반도체의 pn접합에 빛을 조사하면 광전효과에 의해 광기전력이 일어나는 것을 이용한 것이다.Recently, photovoltaic power generation has attracted attention in terms of prevention of environmental pollution and efficient energy production. Photovoltaic power generation is a technology that directly converts sunlight into electrical energy, unlike conventional solar power generation, and refers to a power generation method using a solar cell that generates electricity by photoelectric effect when sunlight is received. Such photovoltaic power generation systems are generally composed of modules consisting of solar cells, storage batteries, and power converters. A solar cell is a photovoltaic cell manufactured for converting solar energy into electrical energy. When a solar cell is irradiated with light on a contact surface of a metal and a semiconductor or a pn junction of a semiconductor, photovoltaic power is generated by photoelectric effect.
태양전지는 실리콘으로 대표되는 반도체이며 반도체기술의 발달과 반도체 특성에 의해 자연스럽게 개발되었고, 태양전지는 전기적 성질이 다른 N(negative)형의 반도체와 P(positive)형의 반도체를 접합시킨 구조를 하고 있으며 2개의 반도체 경계부분을 PN접합(PN-junction)이라 한다. 이러한 태양전지에 태양광이 닿으면 태양광은 태양전지 속으로 흡수되며, 흡수된 태양광이 가지고 있는 에너지에 의해 반도체내에서 정공(hole)(+)과 전자(electron)(-)의 전기를 갖는 입자(정공과 전자)가 발생하여 각각 자유롭게 태양전지 속을 움직이게 되지만, 전자(-)는 N형 반도체쪽으로, 정공(+)는 P형 반도체쪽으로 모이게 되어 전위가 발생하게 되며 이 때문에 앞면과 됫면에 붙여 만든 전극에 전구나 모터와 같은 부하를 연결하게 되면 전류가 흐르게 되는 데 이것이 태양전지의 PN접합에 의한 태양광발전의 원리이다. 태양광 발전은 이러한 태양전지의 원리를 이용한 대규모의 발전 시스템이라고 할 수 있다.The solar cell is a semiconductor represented by silicon and developed naturally by the development of semiconductor technology and semiconductor characteristics. The solar cell has a structure in which N (negative) type semiconductor and P (positive) type semiconductor which have different electrical properties are bonded together. The two semiconductor boundary portions are called PN junctions. When sunlight hits the solar cell, the sunlight is absorbed into the solar cell, and the energy of the absorbed solar light causes the electricity of holes (+) and electrons (-) in the semiconductor. Particles (holes and electrons) are generated and move freely in the solar cell, but electrons (-) are collected toward the N-type semiconductor, and holes (+) are collected toward the P-type semiconductor, thereby generating potentials. When a load such as a light bulb or a motor is connected to an electrode made on the electrode, current flows. This is the principle of photovoltaic power generation by PN junction of a solar cell. Photovoltaic power generation can be said to be a large-scale power generation system using the principle of such a solar cell.
이러한 태양광 발전 장치는 반도체에 조사되는 태양광의 초점이 잘 맺혀져야 발전 효율이 높은바, 태양광 발전에서 태양의 위치를 추적하고 태양광의 초점을 정밀하게 제어하는 기술이 발전의 효율을 좌우하게 된다. 종래에는 이러한 태양광 발전 모듈의 태양 추적을 위하여 포토다이오드를 이용하였다. 포토다이오드는 반도체 다이오드의 일종으로 광다이오드라고도 하며, 빛에너지를 전기에너지로 변환한다. 포토다이오드는 빛에너지를 전기에너지로 변환하는 광센서의 한 종류이고, 이것은 반도체의 PN 접합부에 광검출 기능을 추가한 것이다. 빛이 다이오드에 닿으면 전자와 양의 전하 정공이 생겨서 전류가 흐르며, 전압의 크기는 빛의 강도에 거의 비례한다. 이처럼 광전 효과의 결과 반도체의 접합부에 전압이 나타나는 현상을 광기전력 효과라고 한다. 포토다이오드는 응답속도가 빠르고, 감도 파장이 넓으며, 광전류의 직진성이 양호하다는 특징이 있고, 주로 CD 플레이어나 화재경보기, 텔레비전의 리모컨 수신부와 같은 전자제품 소자에 사용되며, 빛의 세기를 정확하게 측정하기 위하여 활용되기도 하는데, 그러한 포토다이오드의 효과를 이용하여 태양발전 모듈에서 태양광의 세기를 측정하고 측정에 따라 태양의 위치를 태양광 발전 모듈이 추적하여 발전효율을 증대시키는 것이다.The photovoltaic device has high power generation efficiency when the solar light irradiated to the semiconductor is well focused, and the technology of tracking the position of the sun and precisely controlling the focus of the solar light in the photovoltaic power generation determines the efficiency of power generation. . Conventionally, photodiodes have been used for sun tracking of such photovoltaic modules. Photodiode is a kind of semiconductor diode, also called photodiode, and converts light energy into electric energy. Photodiodes are a type of optical sensor that converts light energy into electrical energy, which adds photodetection to the PN junctions of semiconductors. When light hits a diode, electrons and positive charge holes are created, causing current to flow, and the magnitude of the voltage is almost proportional to the intensity of the light. The phenomenon in which the voltage appears at the junction of the semiconductor as a result of the photoelectric effect is called the photovoltaic effect. Photodiode is characterized by fast response speed, wide sensitivity wavelength, and good linearity of light current.It is mainly used in electronic devices such as CD player, fire alarm, and remote control receiver of TV. It is also used for the purpose of measuring the intensity of solar light in the photovoltaic module using the effect of such a photodiode and increasing the power generation efficiency by tracking the position of the sun according to the measurement.
그러나 종래의 이러한 포토다이오드를 이용한 태양추적기술은 포토다이오드에 태양광의 초점이 조사될 때까지 소요되는 시간이 많아 태양광 발전 모듈의 초기 접근속도가 떨어졌고, 구름에 가리거나 날씨가 흐려지는 경우 다시 초점을 맞춰야 하는 과정에서 신속히 대응하지 못하였기 때문에 태양발전의 효율이 떨어지는 문제가 있었다. However, the conventional solar tracking technology using such a photodiode has a long time until the focus of the photodiode is irradiated with the photodiode, so the initial approach speed of the photovoltaic module is reduced, and the focus is again in case of being covered by clouds or when the weather is cloudy. There was a problem that the efficiency of solar power generation is poor because it did not respond quickly in the process of matching.
또한, 포토다이오드 및 그에 태양광의 초점을 형성하는 집광렌즈는 그 크기에 한계가 있어 태양을 추적할 수 있는 범위가 좁은 문제가 있었으며, 넓은 범위에 걸쳐 태양을 추적하기 위해 복수의 추적장치를 장착해야 하는 문제가 있었다.In addition, the photodiode and the condenser lens forming the focus of sunlight on the solar cell have limitations in the size of the photodiode and the range of tracking of the sun, and a plurality of tracking devices must be installed to track the sun over a wide range. There was a problem.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안될 것이다.The matters described as the background art are only for the purpose of improving the understanding of the background of the present invention, and should not be taken as acknowledging that they correspond to the related art already known to those skilled in the art.
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 종래의 포토다이오드 센서에 열센서의 개념을 확장하여 좀 더 넓은 범위에서 신속하게 태양을 추적할 수 있도록 하는데 그 목적이 있다.The present invention has been proposed to solve such a problem, and an object thereof is to extend the concept of a thermal sensor to a conventional photodiode sensor so that the sun can be quickly tracked in a wider range.
상기의 목적을 달성하기 위한 본 발명에 따른 태양 추적장치는, 태양광의 초첨을 형성하는 집광렌즈; 상기 집광렌즈의 하방에 설치되며, 하방으로 갈수록 폭이 좁아지는 뿔 형상으로 형성되어 내측면에 집광렌즈에 의한 초점이 형성되고, 둘레를 따라 복수의 열전대가 마련된 감지부; 상기 감지부의 하단부에 마련되며 복수의 조각으로 분할된 포토다이오드; 및 상기 감지부의 열전대 중 온도가 높은 열전대의 반대측으로 태양발전 모듈이 틸팅되도록 유도신호를 출력하고, 상기 포토다이오드에 초점이 감지될 경우 감지된 포토다이오드 조각의 반대측으로 태양발전 모듈이 틸팅되도록 정밀조정신호를 출력하는 제어부;를 포함한다.A solar tracking device according to the present invention for achieving the above object, a condensing lens to form the focus of sunlight; A sensing unit installed below the condensing lens and formed in a horn shape that becomes narrower toward the lower side of the converging lens so that a focal point is formed on the inner surface thereof, and a plurality of thermocouples are provided along a circumference; A photodiode provided at a lower end of the sensing unit and divided into a plurality of pieces; And outputting an induction signal such that the solar power module is tilted to the opposite side of the thermocouple having a high temperature among the thermocouples of the sensing unit, and precisely adjusting the solar power module to be tilted to the opposite side of the detected photodiode when the focus is detected on the photodiode. And a control unit for outputting a signal.
상기 집광렌즈는 하우징에 태양발전 모듈과 수평이 되도록 설치되고, 상기 감지부는 하우징의 내부에 마련되며 감지부의 하단에 포토다이오드가 태양발전 모듈과 수평이 되도록 마련될 수 있다.The condensing lens may be installed in the housing so as to be horizontal with the solar power module, and the sensing unit may be provided inside the housing, and the photodiode may be provided at the lower end of the sensing unit so as to be horizontal with the solar power module.
상기 감지부는 복수의 감지패널이 측면을 이루는 다각뿔 형상이며, 각각의 감지패널에 열전대가 마련될 수 있고, 상기 감지부는 네 개의 감지패널로 구성된 사각뿔 형상이며, 상기 제어부는 포토다이오드에 초점이 감지될 때까지 각 열전대의 온도를 비교하여 상하좌우의 유도신호를 출력하도록 할 수 있다.The sensing unit may have a polygonal pyramid shape in which a plurality of sensing panels form a side surface, and a thermocouple may be provided on each sensing panel, and the sensing unit may have a quadrangular pyramid shape formed of four sensing panels, and the control unit may detect focus on a photodiode. By comparing the temperature of each thermocouple until it can output the induction signal of up, down, left and right.
또한, 상기 포토다이오드는 사각형으로 형성되어 꼭지점이 각 감지패널이 만나는 접선 상에 위치되도록 결합되고, 대각선을 기준으로 분할된 4분할 다이오드일 수 있으며, 상기 감지부는 세로방향으로 분할된 복수의 감지패널로 구성되며 각각의 감지패널 사이에는 단열부재가 결합될 수 있다.In addition, the photodiode may be quadrangular diodes formed in a quadrangular shape so that vertices are positioned on a tangent line where each sensing panel meets, and divided into diagonal lines, and the sensing unit includes a plurality of sensing panels vertically divided. It is composed of a heat insulating member may be coupled between each sensing panel.
한편, 본 발명에 따른 태양 추적방법은, 태양발전 모듈에 태양광의 초점이 정확히 형성되도록, 집광렌즈, 센서, 제어부 및 구동부를 이용하여 태양발전 모듈을 틸팅시키는 태양 추적방법으로서, 집광렌즈의 하방에 폭이 좁아지도록 마련된 감지부의 내측에 형성되는 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 감지부의 하단부에 다다르도록 하는 초점유도단계; 상기 초점유도단계에 의하여, 감지부의 하단부에 마련된 포토다이오드에 태양광의 초점이 다다르는지 감지하는 초점감지단계; 및 상기 초점감지단계에서 초점을 감지할 경우 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 포토다이오드의 중앙부에 맺히도록 하는 정밀추적단계;를 포함한다.Meanwhile, the solar tracking method according to the present invention is a solar tracking method for tilting a solar power module using a condenser lens, a sensor, a controller, and a driving unit so that the focus of the solar light is accurately formed on the solar power module. A focus inducing step of tilting the solar power module toward the opposite side of the solar focus formed on the inside of the sensing unit provided to narrow the width so that the focus reaches the lower end of the sensing unit; A focus sensing step of detecting whether a focus of sunlight reaches a photodiode provided at a lower end of the sensing unit by the focus inducing step; And a precision tracking step of tilting the solar power module toward the opposite side of the focus when the focus is sensed in the focus sensing step so that the focus is formed at the center of the photodiode.
상기 초점유도단계는, 감지부의 둘레를 따라 마련된 복수의 열전대의 온도차이를 비교하여 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하도록 할 수 있다.In the focus derivation step, the temperature difference between the thermocouples provided along the circumference of the sensing unit may be compared to tilt the solar power module toward the opposite side of the solar focus.
상기 정밀추적단계는, 포토다이오드가 다분할 포토다이오드로 구성되며, 분할된 포토다이오드의 조각에 측정된 태양광의 세기를 비교하여 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하도록 할 수 있다.In the precise tracking step, the photodiode is composed of a multi-divided photodiode, and the solar power module can be tilted to the opposite side of the solar focus by comparing the intensity of sunlight measured on the fragment of the divided photodiode.
또한 태양 추적방법은, 상기 감지부 또는 포토다이오드에 초점이 감지되지 않을 경우, 현재 위치에서의 태양의 고도각 및 방위각을 설정하고, 설정된 태양의 고도각 및 방위각과 현재 태양발전 모듈이 향하는 고도각 및 방위각을 비교하여 설정값 이상의 각도 차이가 있을 경우 태양발전 모듈을 상기 설정된 고도각과 방위각으로 틸팅시키는 자동제어단계;를 더 포함할 수 있다.In addition, the sun tracking method, if the focus is not detected in the sensing unit or photodiode, sets the altitude and azimuth angle of the sun at the current position, the altitude and azimuth angle of the sun and the altitude angle toward the current solar power module And comparing the azimuth angle and automatically tilting the solar power module with the set altitude and azimuth angle when there is an angle difference greater than or equal to a set value.
상기 정밀추적단계는 감지부 또는 포토다이오드에 설정된 시간 이상 태양의 초점이 감지되지 않을 경우 자동제어단계를 수행하도록 할 수 있다.The precision tracking step may perform an automatic control step when the focus of the sun is not sensed for more than the time set in the sensing unit or the photodiode.
상술한 바와 같은 구조로 이루어진 태양 추적장치 및 이를 이용한 태양 추적방법에 따르면, 감지부를 통하여 1차적으로 태양을 추적하고, 2차적으로 포토다이오드를 이용하여 정밀추적을 함에 따라 좀 더 넓은 범위에서 태양을 신속하게 추적할 수 있게 된다.According to the sun tracking device having the structure as described above and the sun tracking method using the same, the sun is first tracked through the sensing unit, and secondly by using a photodiode to precisely track the sun in a wider range You can track quickly.
그에 따라 초기 위치에서 태양의 추적이 신속해지며, 구름이 걷히거나 날씨가 화창해진 경우 신속히 태양의 위치에 대응할 수 있어 태양발전 모듈의 발전 효율이 증대된다.As a result, the tracking of the sun is quicker at the initial position, and when the clouds are lifted or the weather is sunny, the solar position can be quickly responded to, thus increasing the power generation efficiency of the solar module.
또한, 태양 추적의 범위를 넓히기 위하여 포토다이오드나 기타 추적 장치를 추가할 필요가 없어 발전장치를 구성함에 있어 효과적이고 유지보수가 용이한 효과가 있다.In addition, there is no need to add photodiodes or other tracking devices in order to broaden the range of solar tracking, which is effective and easy to maintain in generating a power generation device.
도 1은 본 발명의 일 실시예에 따른 태양 추적장치가 설치된 집광형 태양발전 장치를 나타낸 사시도.1 is a perspective view showing a condensing type solar power generation device installed with a solar tracking device according to an embodiment of the present invention.
도 2는 도 1에 도시된 태양 추적장치의 평면도.2 is a plan view of the solar tracking device shown in FIG.
도 3은 도 2에 도시된 태양 추적장치의 A-A선을 따라 절개한 단면도.3 is a cross-sectional view taken along the line A-A of the solar tracking device shown in FIG.
도 4는 도 1에 도시된 태양 추적장치의 태양 추적 과정을 나타낸 도면.4 is a view showing a sun tracking process of the sun tracking device shown in FIG.
도 5는 도 1에 도시된 태양 추적장치를 이용한 태양 추적방법을 나타낸 순서도.FIG. 5 is a flowchart illustrating a sun tracking method using the sun tracking device shown in FIG. 1.
100 : 태양 추적장치 120 : 하우징100: solar tracking device 120: housing
130 : 단열부재 140 : 집광렌즈130: heat insulating member 140: condensing lens
160 : 감지부 180 : 열전대160: sensing unit 180: thermocouple
200 : 포토다이오드 F,F',F'' : 태양광 초점200: photodiode F, F ', F' ': solar focus
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 태양 추적장치에 대하여 살펴본다.Hereinafter, a solar tracking device according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 태양 추적장치가 설치된 집광형 태양발전 장치를 나타낸 사시도로서, 집광형 태양발전 장치는 하부의 베이스(16)에 구동부(도면 미도시)를 통하여 플레이트(12)가 설치되고, 그 플레이트(12)에 복수의 집광형 태양발전용 소자(14)들이 매설된다. 이러한 집광형 태양발전 모듈(10)에는 본 발명의 일 실시예에 따른 태양 추적장치(100)가 설치되어 모듈에 항상 태양광의 초점이 수직으로 맺히게끔 한다. 본 발명의 실시예에 따른 태양 추적장치(100)에 의하여 태양발전 모듈(10)은 구동부가 틸팅됨으로써 항상 태양을 추적하며 발전을 하게 된다. 한편, 도시되지는 아니하였으나 구동부는 태양 추적장치의 제어부에 의하여 틸팅이 제어되도록 한다.FIG. 1 is a perspective view illustrating a concentrating solar power generator equipped with a solar tracking device according to an exemplary embodiment of the present invention, wherein the concentrating solar power generator includes a plate 12 through a driving unit (not shown) in a base 16 of a lower portion. ) Is installed, and a plurality of condensing solar elements 14 are embedded in the plate 12. The concentrating solar power module 10 is installed with a solar tracking device 100 according to an embodiment of the present invention so that the focus of the solar light is always perpendicular to the module. By the solar tracking device 100 according to the embodiment of the present invention, the solar power module 10 is driven by tilting the driving unit to always generate power while tracking the sun. Meanwhile, although not shown, the driving unit may control the tilting by the control unit of the sun tracking device.
본 발명의 실시예에 따른 태양 추적장치는 도 1에 도시된 바와 같이 집광형 태양광 발전장치에 적용된 실시예를 살펴보았으나, 본 발명의 태양 추적장치는 집광형 태양광 발전장치에만 국한되지는 않을 것이며 널리 태양의 추적이 필요한 장비 또는 종래의 태양열 발전 장비에도 발전의 효율을 극대화하기 위하여 적용될 수 있다.Although the solar tracking device according to the embodiment of the present invention has been described with reference to the embodiment applied to the condensing photovoltaic device as shown in FIG. 1, the solar tracking device of the present invention is not limited to the condensing photovoltaic device. It may not be widely applied to the solar tracking equipment or conventional solar power equipment to maximize the efficiency of power generation.
도 2는 도 1에 도시된 태양 추적장치의 평면도이며, 도 3은 도 2에 도시된 태양 추적장치의 A-A선을 따라 절개한 단면도이다. 본 발명의 일 실시예에 따른 태양 추적장치는 집광형 태양발전 모듈(10)의 태양 위치추적을 위하여 마련된 태양 추적장치로서, 태양광의 초첨을 형성하는 집광렌즈(140); 상기 집광렌즈(140)의 하방에 설치되며, 하방으로 갈수록 폭이 좁아지는 뿔 형상으로 형성되어 내측면에 집광렌즈(140)에 의한 초점이 형성되고, 둘레를 따라 복수의 열전대(180)가 마련된 감지부(160); 상기 감지부(160)의 하단부에 마련되며 복수의 조각으로 분할된 포토다이오드(200); 및 상기 감지부(160)의 열전대(180) 중 온도가 높은 열전대의 반대측으로 태양발전 모듈(10)이 틸팅되도록 유도신호를 출력하고, 상기 포토다이오드(200)에 초점이 감지될 경우 감지된 포토다이오드 조각의 반대측으로 태양발전 모듈(10)이 틸팅되도록 정밀조정신호를 출력하는 제어부(도면 미도시);를 포함한다.FIG. 2 is a plan view of the sun tracking device shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line A-A of the sun tracking device shown in FIG. A solar tracking device according to an embodiment of the present invention is a solar tracking device provided for tracking the position of the solar concentrating solar module 10, the condensing lens 140 to form a focus of sunlight; It is installed below the condenser lens 140, is formed in a horn shape that becomes narrower toward the bottom is formed by the focus by the condenser lens 140 on the inner surface, a plurality of thermocouples 180 are provided along the circumference Sensing unit 160; A photodiode 200 provided at a lower end of the sensing unit 160 and divided into a plurality of pieces; And outputs an induction signal such that the solar power module 10 is tilted to the opposite side of the thermocouple having a high temperature among the thermocouples 180 of the sensing unit 160, and when the focus is detected on the photodiode 200, the detected photo And a controller (not shown) for outputting a fine adjustment signal such that the solar power generation module 10 is tilted to the opposite side of the diode piece.
상기 집광렌즈(140), 감지부(160) 및 포토다이오드(200)는 태양발전 모듈(10)에 하우징(120)을 마련하고 그 하우징(120)에 설치할 수 있으며, 구체적으로, 집광렌즈(140)는 하우징(120)에 태양발전 모듈(10)과 수평이 되도록 설치되고, 감지부(160)는 하우징(120)의 내부에 마련되며 감지부(160)의 하단에 포토다이오드(180)가 태양발전 모듈(10)과 수평이 되도록 마련될 수 있다. The condenser lens 140, the detector 160, and the photodiode 200 may provide a housing 120 in the solar module 10 and may be installed in the housing 120. Specifically, the condenser lens 140 ) Is installed in the housing 120 so as to be horizontal with the solar power module 10, the sensing unit 160 is provided inside the housing 120, and the photodiode 180 is located at the bottom of the sensing unit 160. It may be provided to be parallel to the power generation module 10.
집광렌즈(140)는 볼록렌즈나 반볼록렌즈 또는 구면렌즈나 비구면렌즈 등 태양광의 초점을 형성할 수 있는 다양한 렌즈가 포함될 수 있다. 집광렌즈(140)와 포토다이오드(200)가 태양발전 모듈(10)에 수평으로 설치됨으로써 고도각이나 방위각 역시 태양발전 모듈(10)과 동일하게 형성되고, 따라서 상기 태양 추적장치(100)에 초점이 정확히 일치한다면 태양발전 모듈(10)의 초점 역시 일치한다고 볼 수 있는 것이다.The condenser lens 140 may include various lenses capable of forming a focal point of sunlight, such as a convex lens, a semi-convex lens, a spherical lens, or an aspherical lens. Since the condenser lens 140 and the photodiode 200 are installed horizontally in the solar power generation module 10, the altitude angle or the azimuth angle is also formed in the same manner as the solar power generation module 10, thus focusing on the solar tracking device 100. If this is exactly the same can be seen that the focus of the solar module 10 also coincides.
하우징(120)의 상단에는 집광렌즈(140)가 설치되어 입사된 태양광을 투과시키며 초점을 형성하게 된다. 형성된 태양광의 초점은 하우징(120) 내부의 감지부(160) 내측면에 맺히게 되고 감지부(160)에 마련된 열전대(180,thermocouple)가 초점의 형성 여부 및 감지부(160)의 발열 정도를 측정하게 됨으로써 현재 감지부(160) 내부에 태양광의 초점이 어디에 형성되어 있는지 알게 되는 것이다. 따라서 이를 통하여 태양발전 모듈(10)에도 어디에 초점이 형성되어 있는지 알게 되는 것이다.A condenser lens 140 is installed at the upper end of the housing 120 to transmit incident sunlight and form a focal point. The focus of the formed sunlight is formed on the inner surface of the sensing unit 160 inside the housing 120, and the thermocouple 180 provided in the sensing unit 160 measures whether the focus is formed and the degree of heat generation of the sensing unit 160. This is to know where the focus of the solar light is formed in the current sensing unit 160. Therefore, through this, the solar power generation module 10 will know where the focus is formed.
본 발명은 이러한 감지부(160)의 초점 감지를 통하여 포토다이오드만을 이용하는 경우보다 비교적 넓은 범위에서 태양의 초점을 감지할 수 있게 되며, 감지부(160)에서 감지된 초점의 위치에 따라 태양발전 모듈(10)을 틸팅시킴으로써 좀 더 빠르게 태양의 추적이 가능해지는 것이다. 이는 종래에 포토다이오드만으로 태양을 추적하는 경우보다 더 빠르게 태양의 위치에 태양발전 모듈을 정렬시킬 수 있는 것이며, 빠른 정렬을 위하여 포토다이오드를 추가로 설치하거나 기타 추적장치를 별도로 마련할 필요가 없기 때문에 그 구성에 있어서도 간결하고, 추후 유지보수를 함에 있어서도 상당히 편리해지는 것이다.The present invention can detect the focus of the sun in a relatively wide range than the case of using only the photodiode through the focus detection of the sensing unit 160, according to the position of the focus detected by the sensing unit 160 solar module By tilting (10), the sun can be tracked more quickly. This allows the solar power module to be aligned to the position of the sun faster than the conventional solar tracking with the photodiode alone, and there is no need to install additional photodiodes or provide other tracking devices for quick alignment. It is also concise in its configuration and considerably convenient for further maintenance.
하우징(120) 상단의 집광렌즈(140) 하방에는 감지부(160)가 하우징(120)의 내측에 마련될 수 있다. 그러한 감지부(160)는 집광렌즈(140)의 하방에 설치되며, 하방으로 갈수록 폭이 좁아지는 뿔 형상으로 형성되어 내측면에 집광렌즈(140)에 의한 초점이 형성되고, 둘레를 따라 복수의 열전대(180)가 마련된다. 구체적으로, 감지부(160)는 거꾸로 뒤집어진 원뿔 또는 다각뿔의 형상일 수 있으며, 감지부(160)가 다각뿔의 형상일 경우에는 복수의 감지패널이 다각뿔의 측면을 이루고, 각각의 감지패널에 열전대(180)가 마련될 수 있다. 각각의 감지패널에 마련된 열전대(180)는 감지패널마다의 온도를 측정할 수 있으며 이를 통하여 현재 태양광의 초점이 어느 위치에 형성되었는지를 파악할 수 있게 된다. 따라서 열전대(182,184,186,188)는 각각의 감지패널에 마련되는 것이며, 감지부의 형상이 원뿔의 형상이라고 하더라도 원뿔이 세로방향으로 분할된 복수의 감지패널로 구성되도록 하는 것도 가능한 것이다.The sensing unit 160 may be provided inside the housing 120 below the condenser lens 140 of the upper portion of the housing 120. The sensing unit 160 is installed below the condenser lens 140, and is formed in a horn shape that becomes narrower toward the lower side thereof, thereby forming a focus by the condenser lens 140 on an inner side thereof, Thermocouple 180 is provided. Specifically, the sensing unit 160 may be in the shape of a cone or polygonal inverted upside down, when the sensing unit 160 is in the shape of a polygonal pyramid, a plurality of sensing panels form the sides of the polygonal pyramid, the thermocouple on each sensing panel 180 may be provided. The thermocouple 180 provided in each sensing panel can measure the temperature of each sensing panel, and thus can determine where the focus of the current solar light is formed. Accordingly, the thermocouples 182, 184, 186, and 188 are provided in the respective sensing panels, and even though the sensing unit has a cone shape, the thermocouples 182, 184, 186, and 188 may be configured as a plurality of sensing panels in which the cones are vertically divided.
도 2 및 도 3에 도시된 실시예의 경우에는 감지부(160)가 네 개의 감지패널(162,164,166,168)로 구성된 사각뿔 형상인 경우를 나타낸다. 감지부(160)가 네 개의 감지패널로 구성될 경우 각각 동/서/남/북의 방향을 갖게 되는 것이고, 이를 통하여 각각의 지점 중 어느 지점에 초점이 형성되었는지 판단할 수 있으며, 초점이 형성된 지점의 반대방향으로 태양발전 모듈(10)을 틸팅할 경우 이와 함께 태양 추적장치 역시 틸팅되고 형성된 초점은 포토다이오드(200)에 더욱 근접하게 되는 것이다. 이러한 감지패널의 사이에는 단열부재(130)가 설치되도록 함으로써 감지패널간의 열교환을 차단할 수 있고 더욱 정확한 열 측정을 통하여 초점의 형성위치를 명확히 파악할 수 있게 한다.2 and 3 illustrate a case in which the sensing unit 160 has a quadrangular pyramid shape composed of four sensing panels 162, 164, 166, and 168. When the sensing unit 160 is composed of four sensing panels, each of the sensing panels 160 has directions of east / west / south / north. Through this, it is possible to determine which one of the respective spots has been formed. When the solar module 10 is tilted in the opposite direction of the point, the solar tracking device is also tilted and the focus formed is closer to the photodiode 200. Since the insulating member 130 is installed between the sensing panels, heat exchange between the sensing panels can be blocked, and the position of focus can be clearly identified through more accurate heat measurement.
상기 감지패널에서 열전대(180)에 측정된 각각의 온도값은 제어부(도면 미도시)로 전송된다. 제어부는 도시되지는 아니하였으나 상기 하우징(120)에서 감지부(160)의 하단부에 마련될 수 있고, 또는 태양발전 모듈(10)의 다른 위치에 마련되어 감지부 및 포토다이오드와 전기통신이 가능하도록 연결될 수도 있다.Each temperature value measured by the thermocouple 180 in the sensing panel is transmitted to a controller (not shown). Although not shown, the control unit may be provided at the lower end of the sensing unit 160 in the housing 120, or may be provided at another position of the solar power module 10 so as to be in electrical communication with the sensing unit and the photodiode. It may be.
이러한 제어부는 상기 감지부(160)의 열전대(180)에 감지된 온도값을 수신하고, 이들 중 온도가 높은 열전대를 판별하여 그 열전대의 반대측으로 태양발전 모듈(10)이 틸팅되도록 태양발전 모듈의 가동부(도면 미도시)에 유도신호를 출력한다. 가동부는 도시되지는 아니하였으나, 태양발전 모듈의 위치 또는 틸팅각을 변화시키기 위한 구성으로서, 일 예로 수평구동부와 수직구동부로 구분되어 상/하/좌/우의 사방으로 태양발전 모듈이 틸팅될 수 있도록 할 수 있다. 제어부는 열전대의 측정결과를 바탕으로 가동부에 일정방향으로의 틸팅신호를 전송하고, 가동부는 그 틸팅신호에 따라 태양발전 모듈을 틸팅시키고 태양발전 모듈에 설치된 태양 추적장치 역시 함께 틸팅되는 것이다.The control unit receives a temperature value detected by the thermocouple 180 of the sensing unit 160, and determines a thermocouple having a high temperature among them, so that the solar power generation module 10 is tilted to the opposite side of the thermocouple. The guidance signal is output to the movable part (not shown). Although not shown, the movable part is configured to change the position or tilting angle of the solar power module. For example, the movable part is divided into a horizontal driving part and a vertical driving part so that the solar power generation module can be tilted in all directions of up, down, left and right. can do. The control unit transmits a tilting signal in a predetermined direction to the movable unit based on the measurement result of the thermocouple, the movable unit tilts the solar power module according to the tilting signal, and the solar tracking device installed in the solar power module is also tilted together.
상기 감지부(160)의 하단부에는 포토다이오드(200)가 설치되어 좀 더 정밀한 태양 추적이 가능토록 한다. 포토다이오드(200)는 감지부(160)의 하단부에 설치되는데, 앞서 살핀 바와 같이 감지부(160)는 뿔의 형상을 갖는바, 그 뿔의 꼭지점 일부를 자르고 그 자른면에 포토다이오드(200)를 설치하도록 한다. 감지부(160)는 태양광의 초점을 감지하고, 그에 따라 태양발전 모듈이 틸팅되는데, 이러한 과정을 두세번 거치게 되면 태양광의 초점은 포토다이오드(200) 상에 맺히게 된다. 포토다이오드(200)는 태양광의 세기를 측정할 수 있는바, 제어부에 일정수준의 태양광 세기를 초점이라고 입력하여 둘 경우 포토다이오드(200)에 태양광의 초점이 맺힌 것인지 여부를 알 수 있게 되는 것이다.The photodiode 200 is installed at the lower end of the sensing unit 160 to allow more accurate sun tracking. The photodiode 200 is installed at the lower end of the sensing unit 160. As described above, the sensing unit 160 has a shape of a horn, and cuts a part of the vertex of the horn and the photodiode 200 on the cut surface. Install it. The sensing unit 160 senses the focus of sunlight, and accordingly, the solar power module is tilted. When this process is performed two or three times, the focus of the sunlight is formed on the photodiode 200. The photodiode 200 may measure the intensity of sunlight, and when the input of the predetermined intensity of the solar intensity into the control unit is the focal point, the photodiode 200 may determine whether the solar light is focused on the photodiode 200. .
포토다이오드(200)는 복수의 조각으로 분할된 다분할 포토다이오드를 이용할 경우 포토다이오드의 내부에서도 태양광 초점의 위치에 따라 정중앙으로 초점이 맺히도록 정밀제어가 가능해진다. 도면에 도시된 실시예의 경우 포토다이오드는 네 개의 조각(220,240,260,280)으로 분할된 4분할 포토다이오드의 경우이며, 포토다이오드(200)는 사각형으로 형성되어 꼭지점이 각 감지패널(162,164,166,168)이 만나는 접선 상에 위치되도록 결합되고, 대각선을 기준으로 4조각(220,240,260,280)으로 분할된 조각을 갖도록 한다. 이러한 포토다이오드 구조는 상기 감지부(160)와 마찬가지로 상/하/좌/우 방향의 태양광 초점을 감지하여 제어부에 그 신호를 전송하고 제어부는 포토다이오드의 각 조각의 신호를 수신하여 연해 태양의 초점의 위치를 파악하고 초점의 반대방향으로 태양발전 모듈(10)이 틸팅되도록 정밀제어신호를 가동부에 출력하는 것이다.When the photodiode 200 uses a multi-segmented photodiode divided into a plurality of pieces, the photodiode 200 can be precisely controlled so that the photodiode 200 is focused in the center according to the position of the solar focus. In the embodiment shown in the drawing, the photodiode is a four-part photodiode divided into four pieces 220, 240, 260, and 280, and the photodiode 200 is formed in a quadrangular shape such that a vertex is formed on a tangent point where each sensing panel 162, 164, 166, 168 meets. It is combined to be positioned, and have a piece divided into four pieces (220, 240, 260, 280) on a diagonal basis. Like the sensing unit 160, the photodiode structure detects the solar focus in the up / down / left / right directions and transmits the signal to the control unit, and the control unit receives the signal of each piece of the photodiode to provide the The position of the focal point is detected and the precision control signal is output to the movable part so that the solar power generation module 10 is tilted in the direction opposite to the focal point.
이러한 감지부(160), 포토다이오드(200) 및 제어부의 구성으로 통하여 태양광의 초점을 감지부(160)에서 1차적으로 포토다이오드에 근접하도록 태양발전 모튤을 틸팅시키고, 2차적으로 포토다이오드(200)의 내부에서 초점이 중앙에 정렬되도록 태양발전 모듈을 틸팅시킴으로써 하나의 추적장치만으로도 빠르고 정확한 태양의 추적이 가능해지는 것이다.Through the configuration of the sensing unit 160, the photodiode 200, and the control unit, the solar power module is tilted so that the focus of the sunlight is close to the photodiode in the sensing unit 160, and the photodiode 200 is secondary. By tilting the solar power module so that the focal point is centered inside, the single tracker enables fast and accurate sun tracking.
도 4는 상기 태양 추적장치의 태양 추적 과정을 나타낸 것으로서, (a) 태양의 초점(F)이 감지부(160)의 감지패널 중 상부 패널(162)에서 좌측에 치우쳐 형성될 경우 제어부는 각각의 열전대(182,184,186,188)를 통하여 상부 패널(162)에 초점이 형성되었음을 인지한다. 참고로, 태양광의 초점은 중심으로부터 멀어질수록 흐리게 형성될 수 있을 것이나, 초점의 형성 자체만으로도 열전대 온도의 차이는 발생할 것이므로 최소한 초점의 위치파악은 가능한 것이다. 제어부에서 상부 패널(162)의 초점을 인식한 경우 그 초점이 형성된 위치와는 반대방향 즉, 하방으로 태양발전 모듈을 틸팅시키는 유도신호를 출력한다. 태양발전 모듈의 틸팅과 함께 태양광의 초점은 하방으로 이동된다. 태양광의 초점이 중심에 가까워질수록 초점의 크기가 작아지며 그 강도는 높아질 것이다.4 illustrates a sun tracking process of the sun tracking device. (A) When the focal point F of the sun is formed on the left side of the upper panel 162 of the sensing panel of the sensing unit 160, the control unit may have Note that focus is formed on the top panel 162 through the thermocouples 182, 184, 186, 188. For reference, the focal point of the sunlight may be blurred as the distance from the center, but the difference in the thermocouple temperature will occur by the formation of the focus alone, at least the position of the focal point is possible. When the controller recognizes the focus of the upper panel 162, the controller outputs an induction signal for tilting the solar power module in the opposite direction to the position where the focus is formed, that is, downward. With the tilting of the solar modules, the focus of the sunlight is shifted downward. The closer the focus of sunlight is to the center, the smaller the focus will be and the higher the intensity will be.
(b) 초점(F')이 하방으로 이동됨에 따라 좌측 패널(164)의 열전대(184)를 통하여 제어부가 초점의 이동된 위치를 파악하게 된다. 이 경우에는 좌측 패널(164)의 열전대(184)의 온도가 가장 높을 것이고, 그에 따라 제어부는 태양발전 모듈의 구동부에 좌측의 반대 방향인 우측으로의 틸팅 유도신호를 전송한다. 그에 따라 태양광의 초점은 우측으로 이동되어 포토다이오드의 내부에 맺히게 된다. (b) As the focus F 'is moved downward, the control unit detects the moved position of the focus through the thermocouple 184 of the left panel 164. In this case, the temperature of the thermocouple 184 of the left panel 164 will be the highest, and accordingly, the control unit transmits a tilting guidance signal to the right side opposite to the left side to the driving unit of the solar power module. As a result, the focus of sunlight is shifted to the right to be formed inside the photodiode.
(c) 태양광의 초점(F'')이 포토다이오드에 맺힌 경우 각 포토다이오드의 조각들은 태양광의 세기를 측정할 수 있게 때문에 제어부에서도 현재 초점이 포토다이오드의 조각들(220,240,260,280) 중 어느 조각에 위치하는지 파악할 수 있게 된다. 좌측의 조각(240)에 초점이 위치하는 것으로 감지된 경우에는 우측으로의 틸팅신호를 출력하게 되며 이 경우의 신호는 정밀조정신호로서 태양발전 모듈이 매우 작은 각도(예를 들어, 0.1도)로 틸팅되도록 가동부에 신호를 전달하는 것이다. 포토다이오드에서의 정밀 제어에 의하여 태양광의 초점은 포토다이오드의 중앙부에 맺히게 되는 것이고, 이후부터는 일정 주기 또는 연속적으로 태양광의 세기를 포토다이오드 조각에서 감지하여 초점을 지속적으로 중앙부에 정렬시키는 것이다. 이러한 과정을 통하여 태양 추적장치는 지속적으로 태양을 추적하게 되고, 태양발전 모듈은 항상 태양을 정면으로 바라보아 최대의 발전 효율을 유지할 수 있게 된다.(c) When the focal point F '' of the solar light is formed on the photodiode, the pieces of each photodiode can measure the intensity of the sunlight, so that the current focus is located on any of the fragments of the photodiode 220, 240, 260 and 280 in the control unit. You can see if If it is detected that the focal point is located at the left side 240, a tilting signal is output to the right side. In this case, the signal is a fine adjustment signal and the solar power module has a very small angle (for example, 0.1 degree). The signal is transmitted to the movable part so as to be tilted. By precise control of the photodiode, the focus of sunlight is concentrated at the center of the photodiode, and after that, the intensity of the sunlight is detected in the photodiode piece continuously or continuously and the focus is continuously aligned at the center. Through this process, the sun tracking device continuously tracks the sun, and the solar power module can always face the sun in front to maintain the maximum power generation efficiency.
특히, 본 발명의 일 실시예에 따르면, 날씨가 흐려진 후 다시 좋아지는 경우나 구름에 의하여 태양이 가려진 후 구름이 지나간 경우, 재차 태양을 추적할 필요가 있게 되는데, 이러한 경우에도 상기 감지부에는 태양의 초점이 맺혀있게 되므로 감지부의 측정을 통하여 빠르게 태양의 초점을 포토다이오드 상에 정렬시키고 바로 정밀 추적을 실행하여 태양 발전의 효율을 극대화할 수 있게 되는 것이다.Particularly, according to an embodiment of the present invention, when the weather improves again after cloudy or when the clouds pass after the sun is obscured by the clouds, the sun needs to track the sun again. Since the focus is established, the sensor can be quickly measured to align the sun's focus on the photodiode and immediately perform precise tracking to maximize the efficiency of solar power generation.
한편, 도 5는 도 1에 도시된 태양 추적장치를 이용한 태양 추적방법을 나타낸 순서도로서, 본 발명의 일 실시예에 따른 태양 추적방법은, 태양발전 모듈에 태양광의 초점이 정확히 형성되도록, 집광렌즈, 센서, 제어부 및 구동부를 이용하여 태양발전 모듈을 틸팅시키는 태양 추적방법으로서, 집광렌즈의 하방에 폭이 좁아지도록 마련된 감지부의 내측에 형성되는 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 감지부의 하단부에 다다르도록 하는 초점유도단계(S210); 상기 초점유도단계(S210)에 의하여, 감지부의 하단부에 마련된 포토다이오드에 태양광의 초점이 다다르는지 감지하는 초점감지단계(S220); 및 상기 초점감지단계(S220)에서 초점을 감지할 경우 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 포토다이오드의 중앙부에 맺히도록 하는 정밀추적단계(S230);를 포함한다.Meanwhile, FIG. 5 is a flowchart illustrating a sun tracking method using the sun tracking device shown in FIG. 1. The solar tracking method according to an embodiment of the present invention includes a condensing lens so that the focus of sunlight is accurately formed in a solar power module. , A solar tracking method for tilting a solar power module by using a sensor, a controller, and a driver, wherein the focus of the solar power module is tilted to the opposite side of the solar focal point formed inside the sensing unit provided to narrow the width below the condenser lens. Focus derivation step (S210) to reach the lower end of the sensing unit; Focus detection step (S220) by the focus derivation step (S210), detecting whether the focus of the sunlight reaches the photodiode provided at the lower end of the sensing unit; And a precision tracking step S230 of tilting the solar power module toward the opposite side of the focus when the focus is sensed in the focus sensing step S220 such that the focus is formed at the center of the photodiode.
또한, 상기 태양 추적방법은 감지부 또는 포토다이오드에 초점이 감지되지 않을 경우, 현재 위치에서의 태양의 고도각 및 방위각을 설정하고, 설정된 태양의 고도각 및 방위각과 현재 태양발전 모듈이 향하는 고도각 및 방위각을 비교하여 설정값 이상의 각도 차이가 있을 경우 태양발전 모듈을 상기 설정된 고도각과 방위각으로 틸팅시키는 자동제어단계(S300);를 더 포함할 수 있다.In addition, the sun tracking method is to set the altitude and azimuth angle of the sun at the current position, if the focus is not detected in the sensing unit or photodiode, the altitude and azimuth angle of the sun and the altitude angle toward the current solar power module And comparing the azimuth angle and automatically tilting the solar power generation module with the set altitude angle and the azimuth angle when there is an angle difference greater than or equal to a set value.
본 발명의 일 실시예에 따른 태양 추적방법은 크게 센서추적과정(S200)과 프로그램추적과정(자동제어단계,S300)으로 구성된다. 센서추적과정(S200)은 태양광의 초점을 센서방식의 물리적인 구성으로 직접 감지하여 태양발전 모듈의 초점을 추적하는 것이고, 프로그램추적과정(S300)은 방위각과 고도각을 이용하여 직접적인 태양광의 감지 없이 태양발전 모듈의 초점을 추적하는 것이다. 또한 센서추적과정(S200)의 센서는 상기 기재된 본 발명의 태양 추적장치가 이용될 수 있으며, 센서추적과정(S200)과 프로그램추적과정(S300)은 상호 보완적으로 병용된다.Solar tracking method according to an embodiment of the present invention is largely composed of a sensor tracking process (S200) and a program tracking process (automatic control step, S300). Sensor tracking process (S200) is to track the focus of the solar power module by directly sensing the focus of sunlight in the physical configuration of the sensor method, program tracking process (S300) without a direct detection of sunlight by using azimuth and elevation angles It is to track the focus of solar modules. In addition, the sensor of the sensor tracking process (S200) may be used the solar tracking device of the present invention described above, the sensor tracking process (S200) and the program tracking process (S300) is used in a complementary manner.
먼저, 태양 추적장치를 통하여 태양광의 초점을 감지한다(S100). 태양 추적장치의 감지부 또는 포토다이오드에 태양광의 초점이 형성되는지 감지하고, 초점이 감지될 경우에는 센서추적과정(S200)으로 돌입하며, 초점이 감지되지 않을 경우에는 프로그램추적과정(S300)으로 돌입한다.First, it detects the focus of sunlight through the sun tracking device (S100). Detects whether the focus of the solar light is formed on the sensing unit or the photodiode of the solar tracking device, and if the focus is detected, the process proceeds to the sensor tracking process (S200), and if the focus is not detected, the process proceeds to the program tracking process (S300). do.
태양광의 초점이 감지되어 센서추적과정(S200)으로 돌입하면, 초점유도단계를 실행한다(S210). 초점유도단계(S210)에서는 집광렌즈의 하방에 폭이 좁아지도록 마련된 감지부의 내측에 형성되는 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 감지부의 하단부에 다다르도록 유도한다. 이는 상기 설명한 태양 추적장치의 감지부 및 열전대를 통하여 실행되며 그 결과 태양광의 초점은 하단부의 포토다이오드에 맺히게 된다.When the focus of sunlight is sensed and enters the sensor tracking process (S200), the focus induction step is executed (S210). In the focus derivation step (S210), the solar power module is tilted toward the opposite side of the solar focal point formed inside the sensing unit provided to narrow the width below the condenser lens to induce the focus to reach the lower end of the sensing unit. This is done through the sensing unit and thermocouple of the solar tracker described above and as a result the focus of sunlight is bound to the photodiode at the bottom.
2~3회의 초점유도단계를 거쳐 태양광의 초점이 포토다이오드에 감지된 경우에는 정밀추적단계를 수행한다(S220). 정밀추적단계(S230)에서는 감지부 하단의 다분할 포토다이오드를 이용하여 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 포토다이오드의 중앙부에 다다르도록 한다. 태양광의 초점이 포토다이오드의 중앙부에 위치한 상태에서 (예를 들어, 0.1도의 단위로) 계속적으로 태양을 추적할 경우 태양발전 모듈은 태양을 정확히 바라보며 최대의 발전 효율을 유지할 수 있게 되는 것이다. 한편, 날씨의 변동이나 센서의 고장에 의하여 감지부나 포토다이오드에 태양광의 초점이 일시적으로 형성되지 않는 경우도 있을 것이다. 이러한 경우에는 일정시간 동안 초점이 형성되지 않을 경우 프로그램추적과정으로 돌입하여 방위각과 고도각에 의해 태양광을 추적할 수 있도록 한다(S250). 도 5의 실시예에서는 5분 동안 태양광의 초점이 감지되지 않을 경우 프로그램추적과정으로 돌입하는 것을 나타낸다. 이하에서는 프로그램추적과정(S300)에 대하여 구체적으로 살펴본다.If the focus of the sunlight is detected in the photodiode through the two to three times the focus guide step (S220). In the precision tracking step S230, the solar power module is tilted to the opposite side of the focus by using the multi-segment photodiode at the bottom of the sensing unit so that the focus reaches the center of the photodiode. If the sun's focus is on the center of the photodiode (for example, in 0.1-degree increments), the solar module can see the sun accurately and maintain maximum power generation efficiency. On the other hand, the focus of sunlight may not be temporarily formed in the sensing unit or photodiode due to weather change or failure of the sensor. In this case, if the focal point is not formed for a certain time, it enters the program tracking process so that sunlight can be tracked by the azimuth and altitude angles (S250). In the example of FIG. 5, when the focus of the sunlight is not sensed for 5 minutes, the program tracking process is performed. Hereinafter, the program tracking process (S300) will be described in detail.
태양 추적장치를 통하여 태양광의 초점을 감지할 때, 감지부 또는 포토다이오드에 태양광의 초점이 감지되지 않을 경우에는 프로그램추적과정(자동제어단계,S300)으로 돌입한다. 프로그램추적과정에서는 현재 위치에서의 태양의 고도각 및 방위각을 설정하고, 설정된 태양의 고도각 및 방위각과 현재 태양발전 모듈이 향하는 고도각 및 방위각을 비교하여 설정값 이상의 각도 차이가 있을 경우 태양발전 모듈을 상기 설정된 고도각과 방위각으로 틸팅시키는 자동제어단계(S300)를 수행한다. 자동제어단계(S300)에서는 GPS모듈을 통하여 현대 태양발전 모듈의 위치정보를 수신하고, 수신된 위치정보를 이용하여 현재 위치에서의 태양의 고도각 및 방위각을 설정(S310)하도록 한다. 태양 방위각 및 고도각의 경우 미리 마련된 데이터 테이블에 현재의 시각과 수신된 GPS의 지리 정보를 대입하여 불러들일 수도 있을 것이고, 수식을 통하여 계산함으로써 얻어낼 수도 있다. 고도각과 방위각의 계산식은 다양한 계산방법이 있을 것이나, 일 예로 적용될 수 있는 계산식은 하기와 같다.When detecting the focus of sunlight through the sun tracking device, if the focus of the sunlight is not detected by the sensing unit or the photodiode, the process proceeds to the program tracking process (automatic control step, S300). The program tracking process sets the altitude and azimuth angle of the sun at the current position, and compares the altitude and azimuth angle of the sun with the altitude and azimuth heading of the current solar module. Perform an automatic control step (S300) for tilting the set altitude and azimuth. In the automatic control step (S300) to receive the position information of the modern solar power module through the GPS module, and to set the altitude and azimuth angle of the sun at the current position using the received position information (S310). In the case of solar azimuth and elevation angles, the current time and the geographic information of the received GPS may be imported into a data table prepared in advance, or may be obtained by calculation through a formula. Altitude and azimuth calculation formula may have a variety of calculation methods, an example of the calculation formula can be applied as follows.
수학식 1
Figure PCTKR2010008424-appb-M000001
Equation 1
Figure PCTKR2010008424-appb-M000001
상기와 같이 현재 태양의 고도각과 방위각이 산출된 경우에는 이를 현재 태양발전 모듈이 지향하는 고도각 및 방위각과 비교하여 설정값 이상의 각도 차이가 있을 경우 태양발전 모듈을 산출된 각도로 틸팅시키도록 한다(S320,S330). 도시된 실시예의 경우는 설정값을 0.5도로 설정한 경우이다. 각도의 차이가 0.5도 미만일 경우에는 현재 지향하는 각도에서 태양광의 초점이 감지부 및 포토다이오드에 형성될 수 있는 것으로 보고 센서추적과정(S200)으로 돌입하여 초점유도단계(S210)를 수행한다. 이 상태에서 만약 5분 동안 태양광의 초점이 형성되지 않는다면 다시 프로그램추적과정으로 돌입한다(S250). 각도의 차이가 0.5도 이상일 경우에는 태양발전 모듈을 상기 설정값인 고도각과 방위각으로 틸팅한다(S330). 설정값으로의 틸팅과정 중 또는 틸팅 후 감지부나 포토다이오드에 태양광의 입사가 감지될 경우에는 틸팅을 중지하고 센서추적과정으로 돌입한다(S340). 이와 같은 태양 추적방법에 따르면, 센서추적과 프로그램추적이 병행하여 이루어짐으로써, 날씨가 흐려진 경우에도 지속적으로 태양을 추적하고 날씨가 다시 좋아진 경우 해당 위치에서 바로 정밀추적을 행할 수 있게 되어 최적의 발전 효율을 유지할 수 있게 되는 것이다(특히 우리나라와 같이 날씨의 변동이 심한 기후조건일 경우에도 태양 발전의 효율을 최대한 이끌어낼 수 있게 된다). When the altitude and azimuth angle of the current sun are calculated as described above, it is compared with the altitude and azimuth angle of the current solar module to tilt the solar power module at the calculated angle when there is an angle difference greater than the set value ( S320, S330). In the illustrated embodiment, the set value is set to 0.5 degrees. When the difference in angle is less than 0.5 degrees, the focus of the sunlight at the presently directed angle can be formed in the sensing unit and the photodiode, and the process proceeds to the sensor tracking process (S200) to perform the focus derivation step (S210). In this state, if the focus of the solar light is not formed for 5 minutes, the process goes back to the program tracking process (S250). If the difference is more than 0.5 degrees, the solar module is tilted at the altitude and azimuth which are the set values (S330). If the incidence of sunlight to the sensing unit or photodiode is detected during the tilting process to the set value or after the tilting, the tilting is stopped and the sensor tracking process is started (S340). According to such a sun tracking method, the sensor tracking and the program tracking are performed in parallel, so that even if the weather is cloudy, the sun can be continuously tracked and the accurate tracking can be performed immediately at the location when the weather improves, thereby providing optimum power generation efficiency. It will be able to maintain the efficiency of solar power generation, especially in climatic conditions such as Korea, where the weather fluctuates severely.
한편, 일몰 후부터 일출 전까지는 태양광 발전이 이루어질 수 없는 시간대이다. 따라서 이 시간대에는 태양발전 모듈을 궂은 날씨나 태풍으로부터 보호하기 위하여 태양발전 모듈이 정북 0도를 기준으로 방위각 40~50도 및 고도각 80~90도를 지향하도록 태양발전 모듈을 틸팅시키는 안전단계를 수행할 수 있다(S400,S500). 일몰은 현재 시간 또는 지향하는 방위각과 고도각으로 일몰의 여부를 판단할 수 있다. 안전단계의 방위각을 40~50도로 유지함에 따라 일출 후 바로 태양광의 빠른 추적이 가능해지고, 고도각을 80~90도로 유지함에 따라 밤사이 바람의 방향과 수평하게 태양발전 모듈을 유지함으로써 강풍으로부터의 모듈 손상을 방지할 수 있게 된다.On the other hand, it is a time when the solar power generation is not possible from sunset to sunrise. Therefore, during this time, in order to protect the solar power module from inclement weather or typhoon, there is a safety step for tilting the solar power module so that the solar power module is aimed at 40-50 degrees azimuth and 80-90 degrees altitude with respect to 0 degree north of North Korea. Can be performed (S400, S500). The sunset may be determined whether the sunset is based on the current time or azimuth and elevation angle. By keeping the azimuth angle at 40 ~ 50 degrees in the safe phase, it is possible to quickly track the sunlight immediately after sunrise, and maintain the solar power module in parallel with the wind direction at night by keeping the altitude angle at 80 ~ 90 degrees. Module damage can be prevented.
본 발명의 일 실시예에 따른 태양추적 방법을 도 5를 참고하여 단계별로 정리하면 다음과 같다.The solar tracking method according to an embodiment of the present invention is summarized as follows with reference to FIG. 5.
1-1. 태양발전 모듈을 가동하면 우선 감지부와 포토다이오드에서 태양광의 초점을 감지한다(S100).1-1. When the solar module is activated, first, the sensing unit and the photodiode detect the focus of sunlight (S100).
1-2. 태양광의 초점이 감지된 경우 센서추적과정으로 돌입한다(S200). 1-2. When the focus of sunlight is sensed, it enters the sensor tracking process (S200).
1-3. 센서추적과정에서는 초점유도단계를 통하여 포토다이오드로 태양광의 초점을 유도하고 정밀추적단계에서 4분할 포토다이오드에 의하여 0.1도 단위로 태양을 정밀 추적한다(S210,S220,S230).1-3. In the sensor tracking process, the focus of the solar light is induced to the photodiode through the focus induction step, and the sun is precisely tracked in units of 0.1 degrees by the four-segment photodiode in the precision tracking step (S210, S220, and S230).
1-4. 만약 초점유도단계 또는 정밀추적단계 수행 중 5분 동안 태양광의 초점이 감지되지 않을 경우에는 프로그램추적과정으로 돌입한다(S240,S250, 이를 통하여 일시적인 날씨 변동이나, 구름이 태양을 가리는 등의 경우에도 태양을 지속적으로 추적하는 것이 가능해진다. 태양을 지속적으로 추적할 경우에는 날씨가 다시 좋아진 경우 신속하게 센서추적과정으로 돌입할 수 있어 태양발전의 효율이 보장되는 것이다).1-4. If the focus of the sunlight is not detected for five minutes during the focus derivation step or the precision tracking step, the program proceeds to the program tracking process (S240, S250). It is possible to keep track of the sun, which means that if the weather is good again, it can quickly enter the sensor tracking process to ensure the efficiency of solar power generation).
2-1. 감지부와 포토다이오드에서 태양광의 초점이 감지되지 않은 경우에는 프로그램추적과정(자동제어단계)으로 돌입한다(S300).2-1. If the focus of the sunlight is not detected by the detection unit and the photodiode, the process proceeds to the program tracking process (automatic control step) (S300).
2-2. 프로그램추적과정에서는 GPS를 통하여 현재 위치를 전송받고, 현재위치에서의 태양의 방위각과 고도각을 산출하여 이를 현재 태양발전 모듈이 지향하고 있는 방위각 및 고도각과 비교한다(S310,S320).2-2. In the program tracking process, the current position is received through GPS, and the azimuth and altitude angles of the sun at the current position are calculated and compared with the azimuth and altitude angles currently directed by the solar power generation module (S310 and S320).
2-3. 비교 결과 그 차이가 0.5도 이하라면 센서추적과정으로 돌입하여 태양광의 초점을 감지하도록 한다(만약 5분 동안 태양광의 초점이 감지되지 않는다면 다시 프로그램추적과정으로 돌입함은 앞서 살핀 바와 같다). 2-3. As a result of the comparison, if the difference is less than 0.5 degrees, the sensor goes into the tracking process to detect the focus of the sunlight (if the focus of the sunlight is not detected for 5 minutes, the process goes back to the program tracking process as described above).
2-4. 비교 결과 그 차이가 0.5도 이상이라면 태양발전 모듈을 산출된 고도각과 방위각으로 틸팅한다(S330).2-4. If the difference is 0.5 degrees or more as a result of the comparison, the solar module is tilted at the calculated altitude and azimuth (S330).
2-5. 틸팅의 완료 후 또는 틸팅 과정 중에도 태양광의 초점이 감지될 경우에는 바로 센서추적과정으로 돌입한다. 만약 틸팅 후에도 태양광의 초점이 감지되지 않을 경우에는 지속적으로 날씨가 좋지 못한 것으로 보아 계속하여 프로그램추적과정을 수행한다(S340).2-5. After the completion of the tilting or during the tilting process, if the focus of sunlight is detected, the process immediately proceeds to the sensor tracking process. If the focus of the sunlight is not detected even after the tilting, it is considered that the weather is not good continuously and continues the program tracking process (S340).
2-6. 만약 일몰 상황으로 판단될 경우에는 안전단계를 수행한다(S400,S500).2-6. If it is determined that the sunset situation (S400, S500).
본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the invention has been shown and described with respect to particular embodiments, it is within the skill of the art that various changes and modifications can be made therein without departing from the spirit of the invention provided by the following claims. It will be self-evident for those of ordinary knowledge.

Claims (11)

  1. 집광형 태양발전 모듈(10)의 태양 위치추적을 위하여 마련된 태양 추적장치로서,As a solar tracking device provided for tracking the location of the solar collection module 10,
    태양광의 초첨을 형성하는 집광렌즈(140);A condenser lens 140 forming a focus of sunlight;
    상기 집광렌즈(140)의 하방에 설치되며, 하방으로 갈수록 폭이 좁아지는 뿔 형상으로 형성되어 내측면에 집광렌즈(140)에 의한 초점이 형성되고, 둘레를 따라 복수의 열전대(180)가 마련된 감지부(160);It is installed below the condenser lens 140, is formed in a horn shape that becomes narrower toward the bottom is formed by the focus by the condenser lens 140 on the inner surface, a plurality of thermocouples 180 are provided along the circumference Sensing unit 160;
    상기 감지부(160)의 하단부에 마련되며 복수의 조각으로 분할된 포토다이오드(200); 및A photodiode 200 provided at a lower end of the sensing unit 160 and divided into a plurality of pieces; And
    상기 감지부(160)의 열전대(180) 중 온도가 높은 열전대의 반대측으로 태양발전 모듈(10)이 틸팅되도록 유도신호를 출력하고, 상기 포토다이오드(200)에 초점이 감지될 경우 감지된 포토다이오드 조각의 반대측으로 태양발전 모듈(10)이 틸팅되도록 정밀조정신호를 출력하는 제어부;를 포함하는 태양 추적장치.The photodiode is output when the solar power module 10 is tilted toward the opposite side of the thermocouple having a high temperature among the thermocouples 180 of the sensing unit 160, and the focus is detected on the photodiode 200. And a control unit for outputting a fine adjustment signal such that the solar module 10 is tilted to the opposite side of the piece.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 집광렌즈(140)는 하우징(120)에 태양발전 모듈(10)과 수평이 되도록 설치되고, 상기 감지부(160)는 하우징(120)의 내부에 마련되며 감지부(160)의 하단에 포토다이오드(180)가 태양발전 모듈(10)과 수평이 되도록 마련된 것을 특징으로 하는 태양 추적장치.The condenser lens 140 is installed in the housing 120 so as to be horizontal with the solar power module 10, and the sensing unit 160 is provided inside the housing 120 and has a photo at the bottom of the sensing unit 160. Solar tracking device, characterized in that the diode 180 is provided to be parallel to the solar module (10).
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 감지부(160)는 복수의 감지패널이 측면을 이루는 다각뿔 형상이며, 각각의 감지패널에 열전대(180)가 마련된 것을 특징으로 하는 태양 추적장치.The sensing unit 160 has a polygonal pyramid shape in which a plurality of sensing panels form a side surface, and a thermocouple 180 is provided in each sensing panel.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 감지부(160)는 네 개의 감지패널(162,164,166,168)로 구성된 사각뿔 형상이며, 상기 제어부는 포토다이오드(200)에 초점이 감지될 때까지 각 열전대(182,184,186,188)의 온도를 비교하여 상하좌우의 유도신호를 출력하는 것을 특징으로 하는 태양 추적장치.The sensing unit 160 has a quadrangular pyramid shape consisting of four sensing panels 162, 164, 166, and 168, and the control unit compares the temperature of each thermocouple 182, 184, 186, 188 until the focus is detected on the photodiode 200. Solar tracker, characterized in that for outputting.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 포토다이오드(200)는 사각형으로 형성되어 꼭지점이 각 감지패널(162,164,166,168)이 만나는 접선 상에 위치되도록 결합되고, 대각선을 기준으로 4조각(220,240,260,280)으로 분할된 4분할 다이오드인 것을 특징으로 하는 태양 추적장치.The photodiode 200 is formed in a quadrangular shape so that vertices are positioned on a tangential line where each sensing panel 162, 164, 166, and 168 meet, and is a quadrant diode divided into four pieces 220, 240, 260, and 280 based on a diagonal line. Tracking device.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 감지부(160)는 세로방향으로 분할된 복수의 감지패널로 구성되며 각각의 감지패널 사이에는 단열부재(130)가 결합된 것을 특징으로 하는 태양 추적장치.The sensing unit 160 is composed of a plurality of sensing panels divided in the vertical direction and the solar tracking device, characterized in that the insulating member 130 is coupled between each sensing panel.
  7. 태양발전 모듈에 태양광의 초점이 정확히 형성되도록, 집광렌즈, 센서, 제어부 및 구동부를 이용하여 태양발전 모듈을 틸팅시키는 태양 추적방법으로서,A solar tracking method for tilting a solar power module using a condenser lens, a sensor, a controller, and a driving unit so that the focus of solar light is accurately formed on the solar power module.
    집광렌즈의 하방에 폭이 좁아지도록 마련된 감지부의 내측에 형성되는 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 감지부의 하단부에 다다르도록 하는 초점유도단계(S210);A focus derivation step (S210) of tilting the solar power module toward the opposite side of the solar focus formed on the inner side of the sensing unit provided to narrow the width below the condenser lens such that the focus reaches the lower end of the sensing unit;
    상기 초점유도단계(S210)에 의하여, 감지부의 하단부에 마련된 포토다이오드에 태양광의 초점이 다다르는지 감지하는 초점감지단계(S220); 및Focus detection step (S220) by the focus derivation step (S210), to detect whether the focus of the sunlight reaches the photodiode provided at the lower end of the sensing unit; And
    상기 초점감지단계(S220)에서 초점을 감지할 경우 초점의 반대측으로 태양발전 모듈을 틸팅하여 초점이 포토다이오드의 중앙부에 맺히도록 하는 정밀추적단계(S230);를 포함하는 태양 추적방법.And a precision tracking step (S230) of tilting the solar power module toward the opposite side of the focus when the focus is sensed in the focus sensing step (S220) so that the focus is formed at the center of the photodiode.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 초점유도단계(S210)는, 감지부의 둘레를 따라 마련된 복수의 열전대의 온도차이를 비교하여 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하는 것을 특징으로 하는 태양 추적방법.The focus derivation step (S210), by comparing the temperature difference of the plurality of thermocouples provided along the circumference of the sensing unit, characterized in that the solar module tilted on the opposite side of the solar focus.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 정밀추적단계(S230)는, 포토다이오드가 다분할 포토다이오드로 구성되며, 분할된 포토다이오드의 조각에 측정된 태양광의 세기를 비교하여 태양광 초점의 반대측으로 태양발전 모듈을 틸팅하는 것을 특징으로 하는 태양 추적방법.The precise tracking step (S230), the photodiode is composed of a multi-divided photodiode, by comparing the intensity of sunlight measured on the slice of the divided photodiode, characterized in that the tilting of the solar power module to the opposite side of the solar focus Sun tracking method.
  10. 청구항 7에 있어서,The method according to claim 7,
    상기 감지부 또는 포토다이오드에 초점이 감지되지 않을 경우, 현재 위치에서의 태양의 고도각 및 방위각을 설정하고(S310), 설정된 태양의 고도각 및 방위각과 현재 태양발전 모듈이 향하는 고도각 및 방위각을 비교하여 설정값 이상의 각도 차이가 있을 경우 태양발전 모듈을 상기 설정된 고도각과 방위각으로 틸팅(S330)시키는 자동제어단계(S300);를 더 포함하는 것을 특징으로 하는 태양 추적방법.If the focus is not detected by the sensing unit or the photodiode, the altitude and azimuth angle of the sun at the current position are set (S310), and the altitude and azimuth angles of the sun and the current solar module are set. And an automatic control step (S300) of tilting the solar power module to the set altitude and azimuth angle (S300) when there is an angle difference greater than or equal to a set value.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 정밀추적단계(S230)는 감지부 또는 포토다이오드에 설정된 시간 이상 태양의 초점이 감지되지 않을 경우 자동제어단계(S300)를 수행하는 것을 특징으로 하는 태양 추적방법.The precision tracking step (S230) is a solar tracking method, characterized in that to perform an automatic control step (S300) when the focus of the sun is not detected for more than the time set in the sensing unit or photodiode.
PCT/KR2010/008424 2010-07-14 2010-11-26 Solar tracking device and solar tracking method using same WO2012008659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0068106 2010-07-14
KR1020100068106A KR20120007374A (en) 2010-07-14 2010-07-14 Apparatus and method for tracking the sun

Publications (1)

Publication Number Publication Date
WO2012008659A1 true WO2012008659A1 (en) 2012-01-19

Family

ID=45469634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008424 WO2012008659A1 (en) 2010-07-14 2010-11-26 Solar tracking device and solar tracking method using same

Country Status (2)

Country Link
KR (1) KR20120007374A (en)
WO (1) WO2012008659A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990797A (en) * 2017-06-09 2017-07-28 上海历挚机电设备有限公司 A kind of solar tracking device and method applied to photovoltaic generation
GR20160100465A (en) * 2016-09-15 2018-05-18 Χρηστος Διονυσιου Δρογγιτης Sun tracker with concentration lens
CN108603786A (en) * 2016-12-08 2018-09-28 苏州聚晟太阳能科技股份有限公司 A kind of sensor and its control method
CN112104316A (en) * 2020-09-27 2020-12-18 内蒙古民族大学 Concentrating solar power generation and heat absorption power generation system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268125B (en) * 2013-04-28 2016-06-29 中国科学院广州能源研究所 A kind of full automatic solar follows the tracks of device and tracking
KR101364804B1 (en) * 2013-06-28 2014-02-20 이광호 Photodector using induction condensing lens and manufacturing method for the photodetector
WO2019045421A2 (en) * 2017-08-28 2019-03-07 경성대학교 산학협력단 Cultivation device
KR102017999B1 (en) * 2018-08-29 2019-09-03 경성대학교 산학협력단 Energy independent cultivation apparatus utilizing artificial light source
KR102493508B1 (en) * 2021-03-15 2023-01-31 주식회사 에스티 Smart apparatus and method for tracking the sun

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427690B1 (en) * 2002-01-16 2004-04-28 신병한 Solar tracking device using optical lens
KR20090098591A (en) * 2008-03-14 2009-09-17 (주) 파루 Control module of photovoltaic sensor
US20090254228A1 (en) * 2007-01-08 2009-10-08 Edtek, Inc. Conversion of solar energy to electrical and/or heat energy
KR100933661B1 (en) * 2009-02-12 2009-12-23 주식회사 유비테크 Sensor and method for tracking position of solar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427690B1 (en) * 2002-01-16 2004-04-28 신병한 Solar tracking device using optical lens
US20090254228A1 (en) * 2007-01-08 2009-10-08 Edtek, Inc. Conversion of solar energy to electrical and/or heat energy
KR20090098591A (en) * 2008-03-14 2009-09-17 (주) 파루 Control module of photovoltaic sensor
KR100933661B1 (en) * 2009-02-12 2009-12-23 주식회사 유비테크 Sensor and method for tracking position of solar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20160100465A (en) * 2016-09-15 2018-05-18 Χρηστος Διονυσιου Δρογγιτης Sun tracker with concentration lens
CN108603786A (en) * 2016-12-08 2018-09-28 苏州聚晟太阳能科技股份有限公司 A kind of sensor and its control method
CN106990797A (en) * 2017-06-09 2017-07-28 上海历挚机电设备有限公司 A kind of solar tracking device and method applied to photovoltaic generation
CN106990797B (en) * 2017-06-09 2023-03-17 上海历挚机电设备有限公司 Sun tracking device and method applied to photovoltaic power generation
CN112104316A (en) * 2020-09-27 2020-12-18 内蒙古民族大学 Concentrating solar power generation and heat absorption power generation system
CN112104316B (en) * 2020-09-27 2024-02-02 内蒙古民族大学 Concentrating solar power generation and heat absorption power generation system

Also Published As

Publication number Publication date
KR20120007374A (en) 2012-01-20

Similar Documents

Publication Publication Date Title
WO2012008659A1 (en) Solar tracking device and solar tracking method using same
CN101995233B (en) Angle measuring method for sun precision tracking and digital photoelectric angle sensor
US8247753B2 (en) Solar tracking device and method for high-effective concentration photovoltaic
CN202255421U (en) Photoelectric sensor for solar track support
KR100988264B1 (en) Solar tracking senser for solar power generating system
WO2013168855A1 (en) Solar energy generating system for high temperature environments
De Oliveira et al. Aerial infrared thermography of a utility-scale PV plant after a meteorological tsunami in Brazil
US8669508B2 (en) Sun-tracking system
CN103728986A (en) Sunlight collecting device and sunlight tracking method
EP2839514A2 (en) Module integrated solar position sensing device for concentration photovoltaic devices
WO2016125938A1 (en) Solar light detection device and solar light tracker having same
WO2019027079A1 (en) Method and system for controlling group of solar trackers
CN103064427B (en) Device is followed the tracks of in high-precision sun orientation based on PSD
KR100930090B1 (en) Sunlight tracking sensor and apparatus for condensing sunlight using this
CN101922927A (en) Dual-coordinate high-precision sun tracing sensor
WO2016093397A1 (en) Greenhouse having solar cell module
CN204788345U (en) Wireless digital sun is trailed position and is detected head
KR102493508B1 (en) Smart apparatus and method for tracking the sun
US20090255566A1 (en) Solar cell modules
KR101530979B1 (en) Sensor Unit for Tracking Sunlight
CN106873643B (en) Optical fiber type photoelectric sensor for sun tracking
CN201828278U (en) Digital photoelectric angle sensor for sun precise tracking
KR101131160B1 (en) Sun tracking sensor and sun light condensing system being equipped with the sensor
KR102352431B1 (en) sun tracking device
CN110375676A (en) A kind of photodetector for double-shaft solar tracing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10854781

Country of ref document: EP

Kind code of ref document: A1