WO2019045421A2 - Cultivation device - Google Patents
Cultivation device Download PDFInfo
- Publication number
- WO2019045421A2 WO2019045421A2 PCT/KR2018/009930 KR2018009930W WO2019045421A2 WO 2019045421 A2 WO2019045421 A2 WO 2019045421A2 KR 2018009930 W KR2018009930 W KR 2018009930W WO 2019045421 A2 WO2019045421 A2 WO 2019045421A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- cultivation
- mounting plate
- optical fiber
- crop
- Prior art date
Links
- 230000005611 electricity Effects 0.000 claims abstract description 6
- 239000013307 optical fiber Substances 0.000 claims description 51
- 239000011324 bead Substances 0.000 claims description 43
- 238000005286 illumination Methods 0.000 claims description 36
- 230000003287 optical effect Effects 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 19
- 230000001678 irradiating effect Effects 0.000 claims description 13
- 235000015097 nutrients Nutrition 0.000 claims description 13
- 239000007769 metal material Substances 0.000 claims description 10
- 241000233866 Fungi Species 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 6
- 239000008400 supply water Substances 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 15
- 238000010168 coupling process Methods 0.000 abstract description 15
- 238000005859 coupling reaction Methods 0.000 abstract description 15
- 241000196324 Embryophyta Species 0.000 description 34
- 239000000463 material Substances 0.000 description 23
- 238000004577 artificial photosynthesis Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000029553 photosynthesis Effects 0.000 description 11
- 238000010672 photosynthesis Methods 0.000 description 11
- 238000010248 power generation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 241000208340 Araliaceae Species 0.000 description 6
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 6
- 235000003140 Panax quinquefolius Nutrition 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 235000008434 ginseng Nutrition 0.000 description 6
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 2
- 229920006328 Styrofoam Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000008261 styrofoam Substances 0.000 description 2
- KCYOZNARADAZIZ-CWBQGUJCSA-N 2-[(2e,4e,6e,8e,10e,12e,14e)-15-(4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl)-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-6-ol Chemical compound O1C2(C)CC(O)CC(C)(C)C2=CC1C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)C1C=C2C(C)(C)CCCC2(C)O1 KCYOZNARADAZIZ-CWBQGUJCSA-N 0.000 description 1
- KCYOZNARADAZIZ-PPBBKLJYSA-N Cryptochrome Natural products O[C@@H]1CC(C)(C)C=2[C@@](C)(O[C@H](/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(\C)/[C@H]3O[C@@]4(C)C(C(C)(C)CCC4)=C3)/C)\C)/C)C=2)C1 KCYOZNARADAZIZ-PPBBKLJYSA-N 0.000 description 1
- 108010037139 Cryptochromes Proteins 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 108010020577 Phototropins Proteins 0.000 description 1
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- KCYOZNARADAZIZ-XZOHMNSDSA-N beta-cryptochrome Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C1OC2(C)CC(O)CC(C)(C)C2=C1)C=CC=C(/C)C3OC4(C)CCCC(C)(C)C4=C3 KCYOZNARADAZIZ-XZOHMNSDSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000002015 leaf growth Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000005082 stem growth Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/24—Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
- A01G9/249—Lighting means
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
- A01G31/02—Special apparatus therefor
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/04—Electric or magnetic or acoustic treatment of plants for promoting growth
- A01G7/045—Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a cultivation apparatus for cultivating crops.
- plant factory based on artificial photosynthesis is a fusion or systematization of agricultural-IT-energy or agriculture-IT-biotechnology, which not only expects to develop high-value future industry Is a research field that attracts attention in terms of solving the global problems of the global village.
- the plant is a system that automatically produces plants by artificially controlling and supplying light, temperature, humidity, CO 2 concentration, culture liquid, etc. in a production facility where vegetables and functional plants are the main cultivated crops. It is a future type industry that can plan and produce pollution-free crops without relying on the external environment by fusion of technologies such as bio.
- the light irradiation at 440 nm and 680 nm which are the core wavelengths for promoting photosynthesis, mainly uses LED light near 450/650 nm, A fluorescent lamp or the like has been used for the formation of the optical environment necessary for the formation of the target component.
- the plant factories using LED and fluorescent lamps are consuming a lot of electricity to maintain the cultivation environment.
- the plant cost per kW / m 2 or more per unit cultivation area At least, in order to secure the profitability of the plant, the cost of electricity should be reduced to less than 1/3 of the total production cost.
- a number of light-emitting members such as LEDs and fluorescent lamps are generally provided on the upper part of cultivated crops, and it is troublesome to install the light-emitting members on the upper part of each cultivated crop.
- ginseng is a root plant, which grows in the shade. Therefore, it is cultivated in a field where shrubs of trees around the house or house are grown, or artificial shade is made by covering the shade net.
- Such a cultivation method may adversely affect the growth of ginseng due to environmental conditions such as typhoons, rainy and floods, and sunlight may be caused by strong ultraviolet rays in summer.
- environmental conditions such as typhoons, rainy and floods, and sunlight may be caused by strong ultraviolet rays in summer.
- the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a plant plant for artificial photosynthesis based on photosynthesis, which can simultaneously irradiate a wavelength of 440 nm and a wavelength of 680 nm,
- the object of the present invention is to provide a pink LED light source for artificial photosynthesis of plants capable of reducing power consumption.
- the present invention also provides an energy-independent cultivation apparatus capable of efficiently and economically growing crops such as root plants such as ginseng.
- Another object of the present invention is to provide an energy-independent cultivation apparatus capable of collecting natural light efficiently by using a light-condensing plate and utilizing the collected natural light to cultivate crops.
- the present invention also provides an energy-independent cultivation apparatus capable of uniformly controlling cultivation conditions such as natural light dimming and the like for crops cultivated by each layer.
- the present invention is to provide a cultivation apparatus in which a plurality of unit pieces of the light emitting member can be easily installed on the crop cultivation.
- an energy-independent growing apparatus comprises: a cultivation unit in which at least one cultivation unit for cultivating crops is arranged in layers; And a lighting device for irradiating artificial light to crops cultivated in the cultivation unit, wherein the lighting device comprises: a light emitting member having a light source for generating light using electricity; A mounting plate on which the light emitting member is installed; And one of the opposite ends of the mounting plate is slidably inserted in a direction from one end of the engaging member toward the other end of the engaging member, A rail groove is formed.
- the mounting plate and the coupling member may be made of a metal material.
- the mounting plate may be formed with a bead having a concave surface on one side and a convex surface on the opposite side.
- the engaging member may be provided in a square pillar shape, and the rail groove may be formed on each side of the engaging member.
- the mounting plate includes a driving element for driving the light source; A camera capable of photographing the up or down direction from the installation plate in real time; An apparatus for operating the camera and a connection member for connecting the camera; A temperature sensor for measuring the temperature in the cultivation unit; A humidity sensor for measuring the humidity in the cultivation unit; And a fan for generating a flow of air in the cultivation unit.
- the driving device may include a switched mode power supply (SMPS) connected to the light source or a bridge circuit.
- SMPS switched mode power supply
- the mounting plate may be formed with a single or plural holes in which the driving element, the camera, the connecting member, the temperature sensor, the humidity sensor, or the fan are installed.
- the cultivation apparatus can be provided in an energy-independent manner.
- the cultivation apparatus includes a cultivation unit in which at least one cultivation unit for cultivating a crop is arranged in layers; Photovoltaic panels that convert solar energy into electrical energy; An illumination device for illuminating artificial light with crops cultivated in the cultivation unit using electric energy converted by the photovoltaic panel; At least one condensing plate provided on an outer surface of the body and having a concave curved surface to condense natural light; An optical fiber member for transmitting the natural light condensed by the light condensing plate to the cultivation unit; And an auxiliary lighting device for irradiating the cultivated crop with natural light transmitted through the optical fiber member.
- the illumination device may include: a pink LED light source that simultaneously illuminates blue light and red light.
- the illumination device comprising: a white LED providing white light; And a red LED that provides red light.
- the illumination device may include: an artificial LED light source that simultaneously illuminates the blue light and the yellow light.
- the cultivation apparatus can be provided in a container form.
- An energy-independent container-type cultivation apparatus includes: a body provided in a container form; A growing section provided in the body and in which at least one cultivation unit for growing crops is arranged in layers; A solar photovoltaic panel provided on an upper surface of the body for converting solar energy into electrical energy; An illumination device for illuminating light on a crop cultivated in the cultivation unit using electric energy converted by the solar cell plate; At least one condensing plate provided on an outer surface of the body and having a concave curved surface to condense natural light; An optical fiber member for transmitting the natural light condensed by the light condensing plate to the cultivation unit; And an auxiliary lighting device for irradiating the cultivated crop with natural light transmitted through the optical fiber member.
- the cultivation unit includes: a re-battle; A support member inserted into a hole formed in the re-battle to support the crop; And a supply unit provided at a lower portion of the re-battle and supplying water and nutrients to a root portion of the crop, wherein the auxiliary illumination unit is adapted to supply natural light, which is transmitted through the optical fiber member, You can investigate.
- an ultraviolet ray generator provided at a lower portion of the re-battle and irradiating ultraviolet rays to a root portion of the crop to prevent fungi from roots of the crop.
- an optical distributor for distributing natural light condensed by the condenser to ultraviolet light and non-ultraviolet light
- the optical fiber member comprises: a first optical fiber tube for transmitting non-ultraviolet light distributed by the optical distributor to the auxiliary illumination device; And a second optical fiber tube for transmitting ultraviolet rays distributed by the optical distributor to the ultraviolet ray generating device.
- the ultraviolet ray generator includes an ultraviolet ray irradiator for irradiating ultraviolet rays transmitted through the second optical fiber tube to a root portion of the crop; A measuring unit for measuring an amount of ultraviolet light transmitted through the second optical fiber tube; And an ultraviolet ray generator for generating ultraviolet light according to the amount of ultraviolet light and irradiating ultraviolet light to the root of the crop.
- the optical distributor may include a beam splitter that transmits any one of ultraviolet and non-ultraviolet rays of the natural light and reflects the other.
- the first optical fiber tube and the second optical fiber tube may include at least one optical coupler for distributing the natural light so as to transmit uniform natural light to a plurality of layers of the cultivation unit.
- a sensing unit including a plurality of thermoelectric elements provided along a circumferential direction of the light condensing plate and generating an electric signal according to a temperature difference between the plurality of thermoelectric elements; And a driving unit for adjusting the direction of the light-condensing plate according to an electrical signal generated by the sensing unit.
- the sensing unit may include: a first pair of thermoelectric elements provided on both sides of the condenser plate along a first direction; And a second pair of thermoelectric elements provided on both sides of the condenser plate along a second direction perpendicular to the first direction, wherein the driving unit controls the condenser plate in accordance with the temperature difference of the first thermoelectric- A first driving device which rotates in one direction; And a second driving device for rotating the light-condensing plate in the second direction according to a temperature difference of the pair of the second thermoelectric elements.
- a wavelength in the range of 440 nm and a wavelength in the range of 780 nm, which are two wavelengths necessary for plant photosynthesis can be simultaneously irradiated from one light source, the power consumption of the plant can be remarkably reduced, It is effective.
- an energy-independent cultivation apparatus capable of efficiently and economically growing crops such as root plants such as ginseng is provided.
- an energy-independent cultivation apparatus capable of efficiently collecting natural light by using a light-condensing plate and utilizing the collected natural light for crop cultivation is provided.
- an energy-independent cultivation apparatus capable of uniformly controlling cultivation conditions such as natural light dimming and the like for crops cultivated by each layer is provided.
- an energy-independent cultivation apparatus which can economically prevent fungi from spreading on the roots of a crop using ultraviolet rays of natural light.
- the cultivation apparatus can easily mount a plurality of unit pieces of the light emitting member on the cultivation crop.
- FIG. 1 is a cross-sectional view of a cultivation apparatus according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of the cultivation unit of Fig.
- FIG. 3 is a front view of the illumination device of Fig.
- Fig. 4 is a bottom view of the illumination device of Fig. 3;
- FIG. 5 is a front view showing a mounting plate of Fig. 3 installed so as to be bent;
- FIG. 6 is a plan view of a lighting apparatus according to another embodiment.
- FIG. 7 is a cross-sectional view of the mounting plate of Fig. 6 taken in the direction of arrow AA.
- FIG. 8 is a front view showing a state in which the mounting plate of Fig. 6 is bent.
- FIG. 9 is a plan view of a lighting apparatus according to another embodiment.
- FIG. 10 is a cross-sectional view of the mounting plate in FIG.
- FIG. 11 is a plan view of a mounting plate according to another embodiment.
- FIG. 12 is a plan view of a mounting plate according to another embodiment.
- Figure 13 is a perspective view of the coupling member of Figure 3;
- FIG. 14 is a view showing an example of use of the coupling member of Fig.
- FIG. 15 is a view showing a mounting plate inserted into rail grooves formed on two opposite sides of the coupling member of FIG. 13;
- 16 is a perspective view showing a part of a mounting plate according to still another embodiment.
- FIG. 17 is a side view of the mounting plate of FIG. 16 inserted into the rail groove at a predetermined position.
- FIG. 18 is a perspective view showing a part of a mounting plate according to another embodiment.
- Fig. 19 is a side view showing the mounting plate of Fig. 18 inserted into the rail groove at a predetermined position.
- 20 is a perspective view of an energy-standing type cultivating apparatus according to another embodiment of the present invention.
- FIG. 21 is a sectional view of the energy-standing type cultivation apparatus of Fig.
- FIG. 22 is a sectional view of a light-collecting plate, an optical distributor, and an optical fiber member constituting the energy-standing type cultivation apparatus of Fig.
- Fig. 23 is a sectional view of a cultivation unit constituting the energy-standing type cultivation apparatus of Fig. 20; Fig.
- FIG. 24 is a diagram illustrating a configuration of a pink LED light source for artificial photosynthesis of plants according to an embodiment of the present invention.
- 25A and 25B are diagrams showing two wavelengths irradiated from a pink LED light source for artificial photosynthesis of a plant according to an embodiment of the present invention.
- 26 is a diagram illustrating the color coordinates of a pink LED light source for artificial photosynthesis of plants according to an embodiment of the present invention.
- 27 is an image of a light emitted from a pink LED light source according to an exemplary embodiment of the present invention.
- 29 is a diagram showing the emission wavelength of the red phosphor CaAlSiN 3: Eu 2+ .
- FIG. 30 is a diagram showing the emission wavelength of the red fluorescent substance 6MgO ⁇ As 2 O 5 : Mn 4+ .
- 31 is a red fluorescent substance 3.5MgO ⁇ 0.5MgF 2 ⁇ GeO 2: a diagram showing an emission wavelength of Mn 4+.
- 32 is a configuration diagram of an ultraviolet ray generator constituting an energy-standing container type cultivation apparatus according to an embodiment of the present invention.
- 33 is a cross-sectional view of a light-condensing plate constituting an energy-standing type cultivating apparatus according to another embodiment of the present invention.
- FIG. 34 is a plan view of the light collecting plate of Fig. 33;
- 35 is a sectional view showing the operation state of the light collecting plate of FIG. 33;
- FIG. 1 is a cross-sectional view of a cultivation apparatus 100 according to an embodiment of the present invention.
- the cultivation apparatus 100 according to the present embodiment may be provided as a cultivation apparatus.
- the cultivation apparatus (100) includes a body (1000) and a cultivation unit (2000).
- the cultivation apparatus of the present invention can be provided with various kinds of cultivation apparatuses in which the lighting apparatuses of the respective embodiments to be described below are installed and crops can be cultivated.
- the cultivation apparatus 100 is provided so as to be suitable for growing the crop 20 such as root plants such as ginseng.
- the body 1000 is provided in the form of a hexahedron so that environmental effects such as season, ambient temperature, weather conditions, typhoon, and rainy season are eliminated, and the crop can be grown constantly regardless of the surrounding environment.
- the body 1000 may have a sealable interior space.
- the construction of the cultivation apparatus 100 such as the cultivation unit 2000 is provided in the inner space of the body 1000.
- the body 1000 may be provided with an entrance for entering and exiting the internal space, and a ventilation device for ventilating the internal space.
- the inner space is ventilated by the ventilation device, so that the photosynthesis of the crop 20 can be promoted.
- a solar cell plate 1100 may be provided on the body 1000.
- the solar power generation plate 1100 converts solar energy into electrical energy.
- the electric energy converted by the solar power generation plate 1100 is utilized for the cultivation of the crop 20.
- the solar power generation board 1100 may be provided on the upper surface of the body 1000 for efficient power generation.
- the electric energy converted by the solar power generation board 1100 is supplied to the cultivation units 2100 to be utilized for cultivation of crops such as lighting or can be stored in a charging device (not shown) such as a battery.
- the rearing unit 2000 is arranged such that at least one cultivation unit 2100 for cultivating crops is layered.
- FIG. 1 shows a structure in which the cultivation unit 2100 is laminated in four layers, but it is also possible that the number of layers in the cultivation unit 2000 is provided in a plurality of layers other than one or four layers.
- Fig. 2 is a cross-sectional view of the cultivation unit 2100 of Fig. 2, the cultivation unit 2100 may include a re-battle 2110, a support member 2120, a supply unit 2130, and a drainage unit 2140 for hydroponic cultivation.
- the re-battle 2110 may be in the form of a plate.
- the re-battle 2110 may be provided with a plate member such as styrofoam.
- holes are pierced at predetermined intervals in the longitudinal and transverse directions.
- the support member 2120 can be inserted into the hole formed in the re-battle 2110 to support the stem portion of the crop 20.
- the support member 2120 may be provided with a member such as a sponge.
- the supply part 2130 is provided at the lower part of the re-battle 2110 and supplies water and nutrients through piping (not shown) by means of a pump or the like to spray upward through the nozzles, ) Can be supplied with water and nutrients.
- the drainage section 2140 is provided at the bottom of the cultivation unit 2100 for recovering the water and nutrients to be dropped after being supplied to the root 21 part of the crop 20.
- the water and nutrients recovered by the drainage section 2140 are transferred to the supply tank and circulated, thereby reducing the amount of water and nutrients used thereby reducing the cultivation cost.
- an illumination device 3000 for illuminating light on the stem and leaf portions of the crop 20 being cultivated in the cultivation unit 2100.
- the lighting apparatus 3000 can irradiate the artificial light to the crop 20 using the electric energy converted by the solar power generation board 1100.
- the lighting apparatus 3000 includes a light emitting member 3100, a mounting plate 3200, and a coupling member 3300.
- the light emitting member 3100 includes a light source 3110 and a socket member 3120.
- the light source 3110 generates light by using electricity.
- the light source 3110 may be provided as a surface emitting device such as a light emitting diode (LED).
- the socket member 3120 is installed on one side of the mounting plate 3200.
- the socket member 3120 is provided with a light source 3110.
- a plurality of light emitting diodes are arranged in a line in the socket member 3120.
- the plurality of socket members 3120 may be arranged apart from each other along the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged.
- the socket member 3120 may optionally be provided in various shapes and arrangements as desired.
- the mounting plate 3200 is provided with a light emitting member 3100.
- the mounting plate 3200 may be made of a metal material.
- the mounting plate 3200 may be made of a metal material having flexibility such as aluminum (Al). Since the mounting plate 3200 is made of a metal material, the heat generated from the light source 3110 due to the metal material having a high thermal conductivity can be easily transmitted to the entire interior of the cultivation unit 2100 through the mounting plate 3200 .
- the mounting plate 3200 is made of a metal material having flexibility such as aluminum, so that the mounting plate 3200 can be provided in a curved shape as needed, and can be illuminated in various directions. In addition, it is easy to cut and use it in an appropriate size according to the width of the installation position.
- a bead 3210 is formed on the mounting plate 3200a.
- the beads 3210 are concave on one side and convex on the other side.
- the bead 3210 is provided so as to protrude from the upper surface of the mounting plate 3200a.
- the beads 3210 may be provided in plurality. The distance between the end of one face of the mounting plate 3200a and the end of the opposite face is increased by the bead 3210.
- the bead 3210 increases the moment of inertia.
- the bending stress is inversely related to the moment of inertia. Therefore, by providing the bead 3210, the moment of inertia is increased, and the bending stress can be reduced.
- the durability against the bending moment is enhanced as compared with the case where the mounting plate 3200a is provided flat. Further, when the bead 3210 is formed, the heatable area of the mounting plate 3200a is increased. Therefore, heat generated from the light source 3110 can be more easily transmitted to the entire interior of the cultivation unit 2100 through the installation plate 3200a.
- the mounting plate has different durability with respect to the direction of the moment of inertia depending on the shape of the bead 3210. [ Thus, beads 3210 can optionally be provided in various shapes as needed.
- the bead 3210 may be provided linearly when viewed from one side of the mounting plate 3200a.
- the linear bead 3210 may comprise a first linear bead 3211.
- the first linear beads 3211 are provided at both ends in a direction looking toward the first engaging member 3300a and the second engaging member 3300b.
- the mounting plate 3200a has a durability against a moment that is rotated about the axis parallel to the longitudinal direction of the linear bead 3210 with respect to a moment that is rotated about a direction perpendicular to the longitudinal direction of the linear bead 3210 Respectively. Therefore, the durability of the mounting plate 3200a with respect to the bending direction moment is different according to the longitudinal direction of the linear bead 3210.
- FIG. 8 is a front view showing a state in which the mounting plate 3200a of FIG. 6 is bent.
- the first linear bead 3211 is provided on the mounting plate 3200a, for example, when the mounting plate 3200a is viewed from one side, the first and second connecting members 3300a and 3300a,
- the both ends inserted into the engaging member 3300b can be easily bent in the direction in which they are adjacent to each other.
- the mounting plate 3200a has enhanced durability with respect to moments in which both ends of the mounting plate 3200a facing each other in the direction perpendicular to the both ends are adjacent to each other.
- the light emitting member 3100 can be provided to irradiate light in various directions by being bent so that both ends connected to the first and second coupling members 3300a and 3300b are adjacent to each other and the central region is raised.
- the deformation of the mounting plate 3200a is not affected by the bending moment in the direction perpendicular to the first linear bead 3211, It is possible to prevent breakage of the socket member 3120 due to deformation of the mounting plate 3200a and separation of the socket member 3120 from the mounting plate 3200a.
- the linear bead 3100 may include a second linear bead 3212.
- the second linear bead 3212 is provided in a direction perpendicular to the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged when viewed from above. Therefore, when the second linear bead 3212 is provided, the mounting plate 3200b is bent at a bending moment about the axis perpendicular to the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged The durability is enhanced.
- FIG. 11 is a plan view of a mounting plate 3200c according to another embodiment.
- the linear beads 3210a may be provided with a first linear bead 3211a and a second linear bead 3212a in one mounting plate 3200c.
- some of the first linear bead 3211a and the second linear bead 3212a may be alternately arranged along the longitudinal direction of the first linear bead 3211a and the longitudinal direction of the second linear bead 3212a .
- the mounting plate 3200c can be bent in the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged and the direction perpendicular thereto Durability is enhanced for both moments.
- a bead 3210c may be formed between the socket member 3120.
- the area in which the socket member 3120 of the mounting plate 3200d can be contacted is widened, so that the socket member 3120 can be easily installed.
- interference between the bead 3210c and the socket member 3120 is not generated, so that the projecting direction of the bead 3210c is not limited. That is, if necessary, the beads 3210c may protrude in the same direction as the surface on which the socket member 3120 is mounted, or in the opposite direction.
- a part of the beads 3210c may protrude in the same direction as the surface on which the socket member 3120 is provided, and the other part may protrude in the direction opposite to the surface on which the socket member 3120 is provided.
- Figures 4 to 12 show linear beads.
- the beads may optionally be provided in a non-linear shape as desired.
- the beads may optionally be provided in a circular or cross shape.
- FIG. 13 is a perspective view of the coupling member 3300 of Fig. Referring to Figs. 3 and 13, the engaging member 3300 supports the mounting plate 3200.
- the engaging member 3300 is fixed within the cultivation unit 2100.
- a rail groove 3310 is formed on the side surface of the engaging member 3300.
- One of both ends of the mounting plate 3200 is slidably inserted into the rail groove 3310 in a direction from one end of the engaging member 3300 toward the other end.
- the one end is an end that faces the user when the mounting plate 3200 is inserted into the rail groove 3310.
- the engaging member 3300 may be made of a metal material.
- the engaging member 3300 may be made of an aluminum material. Since the joining member 3300 is made of a metal material, the heat generated from the light source due to the metallic material having a high thermal conductivity can be easily transmitted to the inside of the cultivation unit 2100 through the joining member 3300.
- the engaging member 3300 includes a first engaging member 3300a and a second engaging member 3300b.
- the first engaging member 3300a supports one end of the mounting plate 3200 and the second engaging member 3300b supports the other end of the mounting plate 3200.
- the engaging member 3300 is provided in a square pillar shape, and the rail groove 3310 can be formed on each side of the engaging member 3300.
- Fig. 14 is a view showing an example of use of the coupling member 3300 of Fig. Referring to FIG. 14, flanges 3311 projecting in mutually facing directions are formed along the longitudinal direction of the rail groove 3310 at the outer ends of the inner side surfaces of the rail grooves 3310 facing each other. 14, various members such as a ring 30 that can support electric wires or the like connected to the light source 3110 can be installed to be inserted into the rail groove 3310 .
- FIG. 15 is a view showing a state in which the mounting plate 3200 is inserted into the rail groove 3310 formed on two opposite sides of the coupling member 3300 of FIG. 15, since the rail groove 3310 is formed on each side surface of the engaging member 3300, when the engaging member 3300 is installed on the mounting plate 3200, the consideration of the direction of the rail groove 3310 Not required.
- the mounting plate 3200 can be inserted into both opposite sides of one coupling member 3300, the number of the coupling members 3300 to be provided for the plurality of mounting plates 3200 can be reduced .
- 16 is a perspective view showing a part of a mounting plate 3200e according to still another embodiment.
- 17 is a side view showing the mounting plate 3200e of FIG. 16 inserted into the rail groove 3310 at a predetermined position.
- a wheel 4100 may be provided on the bottom surface of the rail groove 3310 to rotate along the direction in which the mounting plate 3200e is slid.
- a protrusion 4200 protruding downward may be formed in a region of the mounting plate 3200e corresponding to the wheel 4100.
- the protrusion 4200 is brought into contact with the wheel 4100 at a position adjacent to the other end of the engaging member 3300 with respect to the center of the wheel 4100 in a state where the mounting plate 3200e is inserted in the right position of the rail groove 3310 / RTI >
- a plurality of wheels 4100 may be provided along the longitudinal direction of the rail groove 3310.
- the projection 4200 may be provided so as to correspond to one or more of the plurality of wheels 4100 or the wheels 4100.
- the contact of the wheel 4100 and the protrusion 4200 prevents the mounting plate 3200e from being detached from the rail groove 3310 by vibration such as inclination or earthquake of the coupling member 3300.
- FIGS. 18 and 19 are perspective views showing a part of a mounting plate 3200f according to still another embodiment.
- 19 is a side view showing the mounting plate 3200f of FIG. 18 inserted into the rail groove 3310 at a predetermined position.
- a first magnet member 5100 is provided at an end of the engaging member 3300 of the rail groove 3310 in the other end direction, unlike the case of FIG. 16 and FIG.
- the mounting plate 3200f is provided with a second magnet member 5100 provided in a position corresponding to the first magnet member 5100 in a state of being inserted into the rail groove 3310 so as to face the first magnet member 5100, 5200).
- the fixed mounting plate 3200f can be held on the fixed position of the rail groove 3310 by the first magnet member 5100 and the second magnet member 5200.
- the first magnet member 5100 and the second magnet member 5200 prevent the mounting plate 3200e from being detached from the rail groove 3310 by vibration such as inclination or earthquake of the engaging member 3300.
- the first magnet member 5100 and the second magnet member 5200 may optionally be provided with the wheel 4100 and the protrusion 4200 of Figs. 16 and 17, respectively, to the mounting plate and the engaging member.
- the mounting plate is slidably inserted into the rail groove of the engaging member in a state where the light emitting member is installed on the mounting plate. Therefore, a plurality of unit pieces of the light emitting member can be easily installed on the crops in the cultivation unit.
- various driving elements necessary for driving a light source such as a SMPS (Switched Mode Power Supply) and a bridge circuit may be installed in an area other than the area where the light emitting member of the mounting plate is provided. These component elements can be installed on either or both surfaces of the mounting plate.
- SMPS Switchched Mode Power Supply
- each embodiment of the present invention may be provided with a camera capable of photographing in the up or down direction in real time. By installing the camera on the mounting plate, it is possible to monitor the cultivation situation provided above or below the mounting plate.
- the mounting plate may be formed with a single or a plurality of holes for providing a configuration for connecting a camera, a camera, and other equipment for operating the camera, and other required configurations.
- the mounting plate of each embodiment of the present invention may be provided with a temperature sensor for measuring the temperature in the cultivation unit 2100 and / or a humidity sensor for measuring the humidity in the cultivation unit 2100.
- each embodiment of the present invention may be provided with a fan capable of generating an air flow in the cultivation unit 2100 to improve air circulation in the cultivation unit 2100.
- 20 is a perspective view of an energy-standing type cultivating apparatus according to another embodiment of the present invention.
- 21 is a sectional view of the energy-standing type cultivation apparatus of Fig.
- the energy standing type cultivation apparatus 100a includes a body 110, a cultivation unit 120, a solar photovoltaic generation plate 130, a condenser plate 140, an optical distributor 150 And optical fiber members 170 and 180, respectively.
- the energy-standing type cultivation apparatus 100a is provided to cultivate crops such as root plants such as ginseng.
- the body 110 may be provided in the form of a container of hexahedron so that the environmental influences of the season, ambient temperature, weather conditions, typhoon, rainy season, etc. are eliminated and the crops are constantly grown regardless of the surrounding environment. have. That is, the energy-standing type cultivation apparatus 100a according to the present embodiment can be provided as a container type cultivation apparatus.
- the body 110 may have a sealable interior space.
- the solar cell module 130, the condenser plate 140, the optical distributor 150 and the optical fiber members 170 and 180 are provided in the inner space of the body 110.
- the body 110 may be provided with an entrance for entering and exiting the internal space, and a ventilation device for ventilating the internal space.
- the growing unit 120 is arranged in layers with at least one cultivation unit 122, 124, 126, 128 for cultivating crops.
- 21 shows a structure in which the cultivation units 122, 124, 126 and 128 are laminated in four layers, but the number of layers in the cultivation unit 120 may be provided in a plurality of layers other than one or four layers Do.
- the photovoltaic power generation board 130 may be provided on the upper surface of the body 110 for efficient power generation by converting solar energy into electrical energy for cultivating the crop so that the crop can be cultivated in an energy independent manner.
- the electric energy converted by the solar power generation plate 130 is supplied to the cultivation units 122, 124, 126 and 128 to be used for the purpose of growing crops such as lighting or to be supplied to a charging device It can be stored.
- the light collecting plate 140 is provided on the outer surface of the body 110 for collecting natural light and directing the natural light to crops for cultivation of crops.
- the light collecting plate 140 has a concave curved surface directed downward to collect natural light.
- the inner surface of the light collecting plate 140 may be provided with a highly reflective material so that natural light can be reflected and effectively introduced into the optical fiber.
- condenser plates 140 are disposed at four corners of the upper surface of the body 110 so as not to interfere with the photovoltaic plate 130.
- the condenser plate 140 may have one or four As shown in FIG.
- the light collecting plate 140 may be arranged to face upward for efficient collection of natural light.
- a light transmitting plate 142 may be installed on the upper opening of the light condensing plate 140 so that rainwater or foreign matter may not flow into the light condensing plate 140.
- means such as a lens for condensing light may be provided at the upper opening of the light condensing plate 140.
- the natural light condensed by the condenser 140 is transmitted to the cultivation units 122, 124, 126 and 128 through the optical distributor 150 and the optical fiber members 170 and 180.
- FIG. 22 is a sectional view of a light-collecting plate, an optical distributor, and an optical fiber member constituting the energy-standing type cultivation apparatus of Fig. 20 to 22, the natural light condensed by the condenser 140 is transmitted to the optical distributor 150 through the optical fiber 160 connected to the center of the condenser 140.
- the optical distributor 150 distributes the natural light L provided at the end of the optical fiber 160 to the ultraviolet light L2 and the non-ultraviolet light L1 through the optical fiber 160.
- the optical distributor 150 includes a beam splitter 152 that transmits any one of the ultraviolet light L2 and the non-ultraviolet light L1 of the natural light L transmitted through the optical fiber 160, ). ≪ / RTI >
- the beam splitter 152 is configured to transmit the ultraviolet light L2 of the natural light L and reflect the non-ultraviolet light L1 such as visible light.
- the beam splitter 152 may be configured to transmit non- .
- the optical distributor 150 can be used not only as the beam splitter 152 but also as a device capable of separating light into ultraviolet rays and non-ultraviolet rays, without any particular limitation.
- the optical fiber members 170 and 180 may include a first optical fiber tube 170 and a second optical fiber tube 180 that are branched from the optical distributor 150.
- the first optical fiber tube 170 transmits the non-ultraviolet ray L1 distributed by the optical distributor 150 to the growth units 122, 124, 126
- the second optical fiber tube 180 transmits ultraviolet rays L2 distributed by the optical distributor 150 to the cultivation units 122, 124, 126, and 128.
- the first optical fiber tube 170 and the second optical fiber tube 180 are configured such that a uniform amount of light is supplied to each of the stacked growth units 122, 124, 126, 128 by means of an optical coupler .
- (n-1) optical couplers may be provided when n (n is an integer greater than or equal to 2) layers of layered units 122, 124, 126, 128 are stacked, Natural light of 1 / n can be supplied to the cultivation units 122, 124, 126, and 128 for each layer by branching natural light to 1: (nk) (k is an order of the optical couplers).
- each condenser plate 140 in the case where natural light condensed by each condenser plate 140 is transmitted to a plurality of layers of different layers using a plurality of condenser plates 140,
- the optocoupler can be omitted.
- the non-ultraviolet ray L1 transmitted to the cultivation unit 122, 124, 126, 128 through the first optical fiber pipe 170 can be utilized for providing auxiliary illumination to crops.
- Ultraviolet rays L2 transmitted to the cultivation units 122, 124, 126 and 128 through the second optical fiber pipe 180 can be used to sterilize the roots of the crops to prevent fungi from spreading on the roots of the crops .
- Fig. 23 is a sectional view of a cultivation unit constituting the energy-standing type cultivation apparatus of Fig. 20; Fig. 20 to 23, the cultivation unit 122 may include a re-battle 122a, a support member 122b, a supply part 122c, and a drain part 122d for hydroponic cultivation.
- the re-battle 122a may be in the form of a plate.
- the re-battle 122a may be provided as a plate member such as styrofoam.
- the holes penetrate in the longitudinal direction and the transverse direction at predetermined intervals.
- the support member 122b can be inserted into the hole formed in the re-battle 122a to support the stem portion of the crop 10.
- the support member 122b may be provided with a member such as a sponge.
- the supply part 122c is provided below the re-battle 122a and supplies water and nutrients through piping (not shown) by means of a pump or the like to spray upward through the nozzles to supply the roots 12 ) Can be supplied with water and nutrients.
- the drain portion 122d is provided at the bottom of the cultivation unit 122 for recovering water and nutrients to be dropped after being supplied to the root portion 12 of the crop 10. [ Water and nutrients recovered by the drainage section 122d are transferred to the supply tank and circulated, thereby reducing the amount of water and nutrients used thereby reducing the cultivation cost.
- the illumination device 132 for illuminating light on the stem and leaf portions of the crop 10 being cultivated in the cultivation unit 122.
- the illumination device 132 can illuminate the crop 10 with artificial light using the electric energy converted by the solar power generation plate 130.
- the illumination device 132 may be provided as a surface emitting device such as a light emitting diode (LED).
- the illumination device 132 may include a pink LED light source that simultaneously illuminates the purple light and the red light. The details of the pink LED light source will be described later.
- the illumination device 132 may include a white LED providing white light and a red LED providing red light.
- the white LED and the red LED are arranged adjacent to each other so that white light and red light can be simultaneously irradiated to the crop.
- the red light may have a wavelength of 660 nm, but is not limited thereto.
- auxiliary illumination device 172 for providing auxiliary light for the appropriate light to the stem and leaf portions of the crop 10.
- Non-ultraviolet rays transmitted to the auxiliary illumination device 172 through the first optical fiber pipe 170 are supplied to the crop 10 through the light transmitting window 174.
- the illumination device 132 may be provided to adjust the amount of illumination light according to the amount of natural light provided by the auxiliary illumination device 172.
- a measuring device (not shown) for measuring the amount of non-ultraviolet light transmitted to the auxiliary illuminator 172 may be provided, and the measured non-ultraviolet light amount may be compared with a reference value to determine the difference between the reference value and the non- The brightness of the illumination device 132 can be adjusted according to the value.
- natural light is supplied to the crop 10 as an auxiliary light source, so that the power consumption of the illumination device 132 is reduced by the amount of non-ultraviolet light provided to the crop 10 by the auxiliary illumination device 172 .
- the natural light is not transmitted to the cultivation unit of the lower layer, so that uniform light may not be supplied to each crop in each layer.
- uniform natural light non-ultraviolet rays
- crops can be standard cultured over all the layers.
- the ultraviolet ray generator 190 may be provided below the re-battle 122a.
- the ultraviolet ray generator 190 irradiates ultraviolet rays to the root 12 of the crop 10 to prevent the root 12 of the crop 10 from getting moldy.
- the ultraviolet rays distributed by the optical distributor 150 are transmitted to the ultraviolet ray generator 190 through the second optical fiber tube 180.
- the crops are irradiated with light (artificial light and / or natural light), ultraviolet light amount, water and nutrients Can be controlled in different ways, and the cultivation conditions can be controlled according to the growth process of each crop.
- light artificial light and / or natural light
- ultraviolet light amount ultraviolet light amount
- water and nutrients Can be controlled in different ways, and the cultivation conditions can be controlled according to the growth process of each crop.
- Table 1 shows the characteristics of the absorption wavelength range of the photoreceptor of plants and the light distribution ratio of various light sources. It can be seen that the light absorption spectrum of the photoreceptor chlorophyll is mainly concentrated in blue, purple and red .
- Chlorophyll Blue 400-500 Red: 640-700
- Carotenoid Blue 400-530
- Optical shaping Phytochrome UV-A + Blue 380-480 Red: 540-690 Red: 700-750 (Guangzhou reaction)
- Cryptochrome Near UV-A380 Blue Near 450
- Phototropin UV-near A380 Blue near 450 (light-sensitive reaction)
- the optimal light distribution for photosynthesis is reported to be 24% of blue light, 32% of green light and 44% of red light, and the shape of the plant (leaf and stem growth) is 660 nm (red light) and 730 nm (far red light: Far- (R / FR), which includes the wavelength range of red (R) and red (R). If this value is too large, the leaves and stems do not grow properly.
- Artificial light sources except for incandescent bulbs, generally do not have enough light environment to grow plants because of their large R / FR values compared with natural light.
- blue LEDs do not emit wavelengths of 680 nm required for photosynthesis of plants, and blue, white, and red LEDs are used as light sources for plant artificial photosynthesis in actual plants.
- the artificial light source for artificial photosynthesis of plants uses only one light source to simultaneously irradiate a wavelength of 440 nm and a wavelength of 680 nm required for plant photosynthesis, It is an invention which aims to economically reduce electric power dramatically.
- the artificial light source for artificial photosynthesis of plants includes a blue LED light source 10a and a red fluorescent material 20a.
- the blue LED light source generates a wavelength in the range of 440 nm and emits a red fluorescent material emitting a wavelength in the range of 600 nm to 700 nm.
- the pink color irradiated from the light source was subjected to spectral analysis through a spectroscopic analyzer.
- a wavelength in the range of 440 nm and a wavelength in the range of 680 nm required for photosynthesis of the plant were simultaneously generated.
- FIG. 27 is an image of a light emitted from a pink LED light source according to an exemplary embodiment of the present invention. As shown in FIG. 27, it can be confirmed that a light source coated with a red fluorescent material emits pink light according to an embodiment of the present invention.
- M 2 Si 5 N 8: Eu 2+ can be used as a red fluorescent material.
- M may be any element of Ca, Sr, or Ba.
- CaAlSiN 3 Eu 2+
- a red phosphor as shown in FIG. 29, since it has a peak wavelength in the range of about 650 nm, a red phosphor capable of applying the blue LED of the present invention can be used.
- a red fluorescent material that can be applied to the blue LED of the present invention can be used.
- the artificial light source for artificial photosynthesis of plants may be formed by applying a red fluorescent material and a green fluorescent material to a blue LED light source.
- the red fluorescent material and the green fluorescent material may be mixed in a predetermined ratio and applied to the blue LED light source.
- the red fluorescent material and the green fluorescent material may be mixed in a weight ratio of about 6: 4 and applied to the blue LED light source.
- the artificial light source according to the embodiment of the present invention can supply blue light, purple light, green light, and red light together to supply light required for photosynthesis to the plant.
- the green fluorescent material can be prepared by doping activator ion Tb 3+ having different concentration in the host crystal BaMoO 4 .
- the method for producing the green fluorescent material is as follows.
- the BaMoO 4 : Tb 3+ phosphor was synthesized using the solid phase reaction method to produce the green phosphor.
- the starting materials BaCO 3 (purity: 99.995%), MoO 3 ( 99.9%), Tb 4 O 7 was prepared the (99.9%) to the stoichiometric, Tb 3+ ion concentration (x) of each of 0, 1, 5 , 10, 15 and 20 mol%, respectively, and the chemical reaction was as follows:
- Each of the initial materials measured by the precision scale was separated by the concentration, and the resultant was put into a plastic bottle together with ethanol and ZrO 2 balls, followed by ball-milling for 10 hours.
- the ball-mill was then placed in a beaker and dried at 60 ° C. for 10 hours
- the dried samples were finely pulverized to 80 ⁇ m in size and synthesized by calcination at 400 ° C. for 3 hours and sintering at 1100 ° C. for 5 hours in 6 alumina crucibles.
- the artificial light source for artificial photosynthesis of plants may be formed by applying a yellow fluorescent material to a blue LED light source.
- the yellow fluorescent material may be at least one of a silicate-based, garnet-based YAG and an oxynitride-based fluorescent material.
- the yellow fluorescent material may be selected from the fluorescent materials selected from Y 3 Al 5 O 12 : Ce 3+ (Ce: YAG), CaAlSiN 3 : Ce 3+ , Eu 2+ -SiAlON series, BOSE series, have.
- the yellow fluorescent material may also be doped to any suitable level to provide light output of the desired wavelength. At least one of Ce and Eu may be doped into the fluorescent substance at a dopant concentration ranging from about 0.1 to about 20%.
- the ultraviolet ray generator 190 includes an ultraviolet ray irradiator 192, an ultraviolet ray generator 194, and a measuring unit 196.
- the ultraviolet ray irradiating unit 192 irradiates ultraviolet rays transmitted through the second optical fiber tube 180 to the roots 12 of the crop 10 to prevent the generation of mold.
- the ultraviolet ray generator 194 generates ultraviolet light and irradiates the root 12 of the crop 10 when the intensity of ultraviolet rays supplied through the second optical fiber 180 is not sufficient to prevent root mold.
- the measuring unit 196 measures the amount of ultraviolet light transmitted through the second optical fiber tube 180.
- the measurement unit 196 divides a part of the ultraviolet ray transmitted through the second optical fiber tube 180 by an optical coupler, measures the amount of the light, and irradiates the ultraviolet ray transmitted through the second optical fiber tube 180 It is possible to measure the light amount of the light source.
- the ultraviolet ray generator 194 compares the ultraviolet light quantity measured by the measuring unit 196 with the reference light quantity, and when the light quantity of the measured ultraviolet light is lower than the reference light quantity, the ultraviolet light generator 194 compares the difference (reference light quantity- ultraviolet light quantity) Ultraviolet light can be generated and irradiated to the root 12 portion of the crop 10.
- ultraviolet rays separated by the optical distributor 150 are used for roots sterilization of crops, it is possible to prevent fungi from roots of crops by using natural light, thereby reducing the cost for supplying ultraviolet rays And can prevent root mold without using pesticides. Further, by controlling the ultraviolet light supply amount of the ultraviolet ray generator 194 according to the amount of natural light (ultraviolet ray), it is possible to efficiently and economically prevent root fungi.
- 33 is a cross-sectional view of a light-condensing plate constituting an energy-standing type cultivating apparatus according to another embodiment of the present invention.
- 34 is a plan view of the light collecting plate of Fig. 33;
- 35 is a sectional view showing the operation state of the light collecting plate of FIG. 33;
- 33 and 34 includes a sensing unit including a plurality of thermoelectric elements 144a-d embedded along the circumferential direction of the condenser 140, and a plurality of thermoelectric elements 144a-d (Angle) of the condenser plate 140 in accordance with an electrical signal generated by the sensing unit according to a temperature difference between the condenser 140 and the condenser 140.
- a sensing unit including a plurality of thermoelectric elements 144a-d embedded along the circumferential direction of the condenser 140, and a plurality of thermoelectric elements 144a-d (Angle) of the condenser plate 140 in accordance with an electrical signal generated by the sensing unit according to a temperature difference between the condenser 140 and the condenser 140.
- the sensing unit generates an electrical signal according to a temperature difference between the plurality of thermoelectric elements 144a-d.
- the sensing unit includes a first pair of thermoelectric elements 144a-b provided on both sides of the condenser 140 along a first direction X and a pair of first thermoelectric elements 144a-b provided in a second direction Y And a second pair of thermoelectric elements 144c-d provided on both sides of the condenser 140 along the first pair of thermoelectric elements 144c-d.
- the driving unit 146 includes a first driving device 146a for rotating the condenser plate 140 in the first direction X in accordance with the temperature difference of the first pair of thermoelectric elements 144a-b, And a second driving device 146b for rotating the condenser plate 140 in the second direction Y in accordance with the temperature difference of the pair of thermoelectric elements 144c-d.
- thermoelectric element 144b of the first pair of thermoelectric elements 144a-b
- the amount of light per unit area of the natural light incident on the first thermoelectric element 144a side increases. Accordingly, a temperature difference occurs between the first thermoelectric element 144a and the second thermoelectric element 144b, and an electric signal is generated according to the temperature difference.
- the driving unit 146 rotates the condenser plate 140 according to an electrical signal generated according to a temperature difference between the thermoelectric elements 144a-b and 144c-d. 14, the first driving device 146a adjusts the direction (angle) of the condenser plate 140 by rotating the condenser plate 140 clockwise in the first direction X as shown in FIG. 16,
- the opening surface of the light collecting plate 140 is arranged in a direction perpendicular to the natural light SL to efficiently collect the natural light SL.
- the direction (angle) of the light condensing plate can be adjusted by using natural light by introducing thermoelectric elements using the shape and characteristics of the light collecting plate for collecting natural light, The efficiency can be increased.
- FIG. 34 shows an example of driving the condenser plate 140 using four thermoelectric elements, the number and arrangement of the thermoelectric elements can be variously modified.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cultivation Of Plants (AREA)
Abstract
The present invention relates to a cultivation device. An energy independent cultivation device according to an embodiment comprises: a cultivation part in which at least one cultivation unit for cultivating crops is arranged in layers; and a lighting device for emitting artificial light to the crops cultivated in the cultivation unit, wherein the lighting device comprises: a light-emitting member having a light source for generating light by using electricity; a mounting plate on which the light-emitting member is mounted; and a coupling member which is fixed in the cultivation unit so as to support the mounting plate, and a rail groove is formed on a side surface of the coupling member, so that one of both ends of the mounting plate slides in a direction from one end of the coupling member toward the other end thereof so as to be inserted in the rail groove.
Description
본 발명은 작물을 재배하기 위한 재배 장치에 관한 것이다.The present invention relates to a cultivation apparatus for cultivating crops.
일반적으로 인공 광합성(Artificial Photosynthesis) 기반의 식물공장(Plant Factory)은 농업-IT-에너지 혹은 농업-IT-바이오 기술을 융복합 혹은 시스템화한 것으로써 고부가가치의 미래 산업으로의 발전이 기대될 뿐만 아니라, 지구촌의 당면과제를 해결한다는 측면에서 주목받는 연구 분야이다.In general, plant factory based on artificial photosynthesis is a fusion or systematization of agricultural-IT-energy or agriculture-IT-biotechnology, which not only expects to develop high-value future industry Is a research field that attracts attention in terms of solving the global problems of the global village.
식물공장은 야채나 기능성 식물을 주요 재배작물로 하는 생산시설 내에 광, 온도, 습도, CO2 농도, 배양액 등을 인공적으로 제어, 공급함으로써 식물을 자동적으로 생산하는 시스템으로써 농업기술에 IT, 에너지, 바이오 등의 기술융합에 의해 외부 환경에 의존하지 않고 무공해 농작물을 계획 생산할 수 있는 미래형 산업이다. The plant is a system that automatically produces plants by artificially controlling and supplying light, temperature, humidity, CO 2 concentration, culture liquid, etc. in a production facility where vegetables and functional plants are the main cultivated crops. It is a future type industry that can plan and produce pollution-free crops without relying on the external environment by fusion of technologies such as bio.
최근 정부차원에서 실용화를 적극 검토하여 일부 지자체를 중심으로 시범 운영되고 있고, 사업규모도 매년 증가일로에 있지만, 본격적 양산단계에 이르기 위해서는 극복해야할 장벽들이 많이 남아있다. Recently, it has been actively piloted by the government at the government level and has been running pilot projects centering on some local governments. The scale of the project is increasing every year, but there are many barriers to overcome in order to reach the mass production stage.
대표적으로 식물공장의 재배환경 유지에 많은 전력비용이 소요되는 문제점이 있다 즉, 광합성 촉진의 핵심 파장대인 440nm와 680nm에 해당하는 광 조사는 주로 450/650nm 부근의 LED 광을 사용하고 있으며, 광형태 형성, 즉 목적성분 증대에 필요한 광 환경조성은 형광램프 등을 사용하여 왔다.In other words, the light irradiation at 440 nm and 680 nm, which are the core wavelengths for promoting photosynthesis, mainly uses LED light near 450/650 nm, A fluorescent lamp or the like has been used for the formation of the optical environment necessary for the formation of the target component.
그러나, LED와 형광램프를 사용하는 식물공장은 재배환경을 유지하기 위해 많은 전력이 소비되고, 생산규모의 확장을 통해 시장 경쟁력을 강화하려면 단위 재배면적당 매월 수 kW/m2 이상의 전력비용을 부담해야 하므로 적어도 식물공장의 채산성 확보를 위해서는 전력비용이 전체 생산비용의 1/3이하로 낮아져야 한다.However, plant factories using LED and fluorescent lamps are consuming a lot of electricity to maintain the cultivation environment. In order to enhance the market competitiveness by expanding the production scale, the plant cost per kW / m 2 or more per unit cultivation area At least, in order to secure the profitability of the plant, the cost of electricity should be reduced to less than 1/3 of the total production cost.
따라서, 저가격(Cost-effectiveness), 고효율(High-efficiency)이면서 식물생장에 최적화된 혁신적 광원(조명) 기술의 개발은 인공 광합성 기반 식물공장의 발전과 도약을 위한 필수적 선결과제에 해당한다.Therefore, the development of cost-effective, high-efficiency and innovative light source technology optimized for plant growth is an essential precondition for the development and leap of artificial photosynthesis-based plant factories.
또한, 이러한 LED 및 형광램프 등의 발광 부재는 일반적으로 다수개가 재배 작물의 상부에 제공되고, 재배 작물의 상부에 각 단위체 마다 설치해야하는 번거로움이 있다.In addition, a number of light-emitting members such as LEDs and fluorescent lamps are generally provided on the upper part of cultivated crops, and it is troublesome to install the light-emitting members on the upper part of each cultivated crop.
또한, 식물공장에서 재배할 수 있는 작물 중 인삼은 뿌리식물로서 그늘에서 자라는 식물이므로 밭이나 집 주변의 나무그늘이 진 곳에서 재배되거나, 차광망을 씌워 인공적으로 그늘을 만들어 재배되고 있다. 이와 같은 재배 방식은 태풍이나 장마, 홍수 등의 환경 조건에 따라 인삼의 생육에 악영향이 미칠 수 있으며, 여름철의 강한 자외선에 의해 일소 현상이 발생할 수도 있다. 이러한 환경 제약 요인을 배제하고, 작물을 주변 환경에 의한 영향 없이 표준 재배하기 위한 방안이 요구된다.In addition, among the crops that can be grown in plant factories, ginseng is a root plant, which grows in the shade. Therefore, it is cultivated in a field where shrubs of trees around the house or house are grown, or artificial shade is made by covering the shade net. Such a cultivation method may adversely affect the growth of ginseng due to environmental conditions such as typhoons, rainy and floods, and sunlight may be caused by strong ultraviolet rays in summer. There is a need for measures to exclude such environmental constraints and standard cultivation of crops without any influence from surrounding environment.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 식물의 광합성에 필요한 두 개의 파장인 440nm 범위의 파장과 680nm 범위의 파장이 하나의 광원에서 동시에 조사될 수 있도록 하여 인공 광합성 기반 식물공장의 소비전력을 절감할 수 있는 식물의 인공 광합성을 위한 핑크 LED 광원을 제공하는 데 그 목적이 있다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a plant plant for artificial photosynthesis based on photosynthesis, which can simultaneously irradiate a wavelength of 440 nm and a wavelength of 680 nm, The object of the present invention is to provide a pink LED light source for artificial photosynthesis of plants capable of reducing power consumption.
또한, 본 발명은 인삼과 같은 뿌리식물 등의 작물을 효율적이고 경제적으로 재배할 수 있는 에너지 자립형 재배 장치를 제공하기 위한 것이다.The present invention also provides an energy-independent cultivation apparatus capable of efficiently and economically growing crops such as root plants such as ginseng.
또한, 본 발명은 집광판을 이용하여 자연광을 효율적으로 수집하여 작물의 재배에 활용할 수 있는 에너지 자립형 재배 장치를 제공하기 위한 것이다.Another object of the present invention is to provide an energy-independent cultivation apparatus capable of collecting natural light efficiently by using a light-condensing plate and utilizing the collected natural light to cultivate crops.
또한, 본 발명은 각 층 별로 재배 중인 작물들에 대한 자연광 조광 등의 재배 조건을 균일하게 조절할 수 있는 에너지 자립형 재배 장치를 제공하기 위한 것이다.The present invention also provides an energy-independent cultivation apparatus capable of uniformly controlling cultivation conditions such as natural light dimming and the like for crops cultivated by each layer.
또한, 본 발명은 자연광의 자외선을 이용하여 경제적으로 작물의 뿌리에 곰팡이가 피는 것을 방지할 수 있는 에너지 자립형 재배 장치를 제공하기 위한 것이다.It is another object of the present invention to provide an energy-independent cultivation apparatus capable of economically preventing fungi from roots of crops using ultraviolet rays of natural light.
또한, 본 발명은 재배 작물의 상부에 발광 부재의 다수개의 단위체를 쉽게 설치할 수 있는 재배 장치를 제공하기 위한 것이다.Further, the present invention is to provide a cultivation apparatus in which a plurality of unit pieces of the light emitting member can be easily installed on the crop cultivation.
본 발명은 재배 장치를 제공한다. 일 실시 예에 따르면, 에너지 자립형 재배 장치는, 작물을 재배하기 위한 적어도 하나의 재배 유닛이 층을 이루어 배열되는 재배부와; 상기 재배 유닛 내에 재배 중인 작물에 인공광을 조사하는 조명 장치를 포함하되, 상기 조명 장치는, 전기를 이용하여 빛을 발생시키는 광원을 가지는 발광 부재와; 상기 발광 부재가 설치되는 설치 플레이트와; 상기 재배 유닛 내에 고정되고, 상기 설치 플레이트를 지지하는 결합 부재를 포함하고, 상기 결합 부재의 측면에는, 상기 설치 플레이트의 양 끝단 중 하나가 상기 결합 부재의 일단으로부터 타단을 향한 방향으로 슬라이드되어 삽입되는 레일 홈이 형성된다.The present invention provides a cultivation apparatus. According to one embodiment, an energy-independent growing apparatus comprises: a cultivation unit in which at least one cultivation unit for cultivating crops is arranged in layers; And a lighting device for irradiating artificial light to crops cultivated in the cultivation unit, wherein the lighting device comprises: a light emitting member having a light source for generating light using electricity; A mounting plate on which the light emitting member is installed; And one of the opposite ends of the mounting plate is slidably inserted in a direction from one end of the engaging member toward the other end of the engaging member, A rail groove is formed.
상기 설치 플레이트 및 상기 결합 부재는 금속 재질로 제공될 수 있다.The mounting plate and the coupling member may be made of a metal material.
상기 설치 플레이트에는 일면은 오목하고 반대면은 볼록하게 제공된 비드가 형성될 수 있다.The mounting plate may be formed with a bead having a concave surface on one side and a convex surface on the opposite side.
상기 결합 부재는 사각 기둥 형상으로 제공되고, 상기 레일 홈은 상기 결합 부재의 각 측면에 형성될 수 있다.The engaging member may be provided in a square pillar shape, and the rail groove may be formed on each side of the engaging member.
상기 설치 플레이트에는, 상기 광원을 구동시키는 구동 소자; 상기 설치 플레이트로부터 위 또는 아래 방향을 실시간 촬영할 수 있는 카메라; 상기 카메라를 운용하는 장비 및 상기 카메라를 연결하는 연결 부재; 상기 재배 유닛 내의 온도를 측정하는 온도 센서; 상기 재배 유닛 내의 습도를 측정하는 습도 센서; 및 상기 재배 유닛 내에 공기의 흐름을 발생시키는 팬(Fan) 중 적어도 하나가 설치될 수 있다.The mounting plate includes a driving element for driving the light source; A camera capable of photographing the up or down direction from the installation plate in real time; An apparatus for operating the camera and a connection member for connecting the camera; A temperature sensor for measuring the temperature in the cultivation unit; A humidity sensor for measuring the humidity in the cultivation unit; And a fan for generating a flow of air in the cultivation unit.
상기 구동 소자는, 상기 광원과 연결되는 SMPS(Switched Mode Power Supply) 또는 브릿지 회로를 포함할 수 있다.The driving device may include a switched mode power supply (SMPS) connected to the light source or a bridge circuit.
상기 설치 플레이트에는, 상기 구동 소자, 상기 카메라, 상기 연결 부재, 상기 온도 센서, 상기 습도 센서 또는 상기 팬이 설치되는 단수 또는 복수개의 홀이 형성될 수 있다.The mounting plate may be formed with a single or plural holes in which the driving element, the camera, the connecting member, the temperature sensor, the humidity sensor, or the fan are installed.
다른 실시 예에 따르면, 재배 장치는 에너지 자립형으로 제공될 수 있다. 재배 장치는, 작물을 재배하기 위한 적어도 하나의 재배 유닛이 층을 이루어 배열되는 재배부; 태양광 에너지를 전기에너지로 변환하는 태양광 발전판; 상기 태양광 발전판에 의해 변환된 전기에너지를 이용하여 상기 재배 유닛 내에 재배 중인 작물에 인공광을 조명하는 조명 장치; 상기 몸체의 외면에 제공되고, 오목한 곡면 형상으로 이루어져 자연광을 집광하는 적어도 하나의 집광판; 상기 집광판에 의해 집광된 자연광을 상기 재배 유닛으로 전달하는 광섬유 부재; 및 상기 광섬유 부재를 통해 전달되는 자연광을 상기 재배 중인 작물에 조사하는 보조 조명 장치;를 포함한다.According to another embodiment, the cultivation apparatus can be provided in an energy-independent manner. The cultivation apparatus includes a cultivation unit in which at least one cultivation unit for cultivating a crop is arranged in layers; Photovoltaic panels that convert solar energy into electrical energy; An illumination device for illuminating artificial light with crops cultivated in the cultivation unit using electric energy converted by the photovoltaic panel; At least one condensing plate provided on an outer surface of the body and having a concave curved surface to condense natural light; An optical fiber member for transmitting the natural light condensed by the light condensing plate to the cultivation unit; And an auxiliary lighting device for irradiating the cultivated crop with natural light transmitted through the optical fiber member.
상기 조명 장치는: 청색광과 적색광을 동시에 조명하는 핑크 LED 광원을 포함할 수 있다.The illumination device may include: a pink LED light source that simultaneously illuminates blue light and red light.
상기 조명 장치는: 백색광을 제공하는 백색 LED; 및 적색광을 제공하는 적색 LED를 포함할 수 있다.The illumination device comprising: a white LED providing white light; And a red LED that provides red light.
상기 조명 장치는: 청색광과 황색광을 동시에 조명하는 인조 LED 광원을 포함할 수 있다.The illumination device may include: an artificial LED light source that simultaneously illuminates the blue light and the yellow light.
또 다른 실시 예에 따르면, 재배 장치는 컨테이너식으로 제공될 수 있다. 에너지 자립형 컨테이너식 재배 장치는, 컨테이너 형태로 제공되는 몸체; 상기 몸체 내에 제공되고, 작물을 재배하기 위한 적어도 하나의 재배 유닛이 층을 이루어 배열되는 재배부; 상기 몸체의 상면에 제공되고, 태양광 에너지를 전기에너지로 변환하는 태양광 발전판; 상기 태양광 발전판에 의해 변환된 전기에너지를 이용하여 상기 재배 유닛 내에 재배 중인 작물에 광을 조명하는 조명 장치; 상기 몸체의 외면에 제공되고, 오목한 곡면 형상으로 이루어져 자연광을 집광하는 적어도 하나의 집광판; 상기 집광판에 의해 집광된 자연광을 상기 재배 유닛으로 전달하는 광섬유 부재; 및 상기 광섬유 부재를 통해 전달되는 자연광을 상기 재배 중인 작물에 조사하는 보조 조명 장치;를 포함한다.According to another embodiment, the cultivation apparatus can be provided in a container form. An energy-independent container-type cultivation apparatus includes: a body provided in a container form; A growing section provided in the body and in which at least one cultivation unit for growing crops is arranged in layers; A solar photovoltaic panel provided on an upper surface of the body for converting solar energy into electrical energy; An illumination device for illuminating light on a crop cultivated in the cultivation unit using electric energy converted by the solar cell plate; At least one condensing plate provided on an outer surface of the body and having a concave curved surface to condense natural light; An optical fiber member for transmitting the natural light condensed by the light condensing plate to the cultivation unit; And an auxiliary lighting device for irradiating the cultivated crop with natural light transmitted through the optical fiber member.
상기 재배 유닛은, 재배틀; 상기 재배틀에 형성된 구멍에 삽입되어 상기 작물을 지지하는 지지부재; 및 상기 재배틀의 하부에 제공되어 상기 작물의 뿌리 부분에 물과 양분을 공급하는 공급부;를 포함하며, 상기 보조 조명 장치는 상기 재배틀의 상부에서 상기 광섬유 부재를 통해 전달되는 자연광을 상기 작물에 조사할 수 있다.The cultivation unit includes: a re-battle; A support member inserted into a hole formed in the re-battle to support the crop; And a supply unit provided at a lower portion of the re-battle and supplying water and nutrients to a root portion of the crop, wherein the auxiliary illumination unit is adapted to supply natural light, which is transmitted through the optical fiber member, You can investigate.
상기 재배틀의 하부에 제공되고, 상기 작물의 뿌리 부분에 자외선을 조사하여 상기 작물의 뿌리에 곰팡이가 피는 것을 방지하는 자외선 발생 장치;를 더 포함할 수 있다.And an ultraviolet ray generator provided at a lower portion of the re-battle and irradiating ultraviolet rays to a root portion of the crop to prevent fungi from roots of the crop.
상기 집광판에 의해 집광된 자연광을 자외선과 비자외선으로 분배하는 광분배기;를 더 포함하고, 상기 광섬유 부재는, 상기 광분배기에 의해 분배된 비자외선을 상기 보조 조명 장치로 전달하는 제1 광섬유관; 및 상기 광분배기에 의해 분배된 자외선을 상기 자외선 발생 장치로 전달하는 제2 광섬유관;을 포함할 수 있다.And an optical distributor for distributing natural light condensed by the condenser to ultraviolet light and non-ultraviolet light, wherein the optical fiber member comprises: a first optical fiber tube for transmitting non-ultraviolet light distributed by the optical distributor to the auxiliary illumination device; And a second optical fiber tube for transmitting ultraviolet rays distributed by the optical distributor to the ultraviolet ray generating device.
상기 자외선 발생 장치는, 상기 제2 광섬유관을 통해 전달되는 자외선을 상기 작물의 뿌리 부분에 조사하는 자외선 조사부; 상기 제2 광섬유관을 통해 전달되는 자외선의 광량을 측정하는 측정부; 및 상기 자외선의 광량에 따라 자외광을 생성하여 상기 작물의 뿌리 부분에 조사하는 자외선 발생기;를 포함할 수 있다.The ultraviolet ray generator includes an ultraviolet ray irradiator for irradiating ultraviolet rays transmitted through the second optical fiber tube to a root portion of the crop; A measuring unit for measuring an amount of ultraviolet light transmitted through the second optical fiber tube; And an ultraviolet ray generator for generating ultraviolet light according to the amount of ultraviolet light and irradiating ultraviolet light to the root of the crop.
상기 광분배기는, 상기 자연광의 자외선 및 비자외선 중 어느 하나를 투과하고, 다른 하나를 반사하는 빔스플리터;를 포함할 수 있다.The optical distributor may include a beam splitter that transmits any one of ultraviolet and non-ultraviolet rays of the natural light and reflects the other.
상기 제1 광섬유관 및 상기 제2 광섬유관은 복수 층의 재배 유닛에 균일한 자연광이 전달되도록 상기 자연광을 분배하는 적어도 하나의 광커플러를 포함할 수 있다.The first optical fiber tube and the second optical fiber tube may include at least one optical coupler for distributing the natural light so as to transmit uniform natural light to a plurality of layers of the cultivation unit.
상기 집광판의 둘레 방향을 따라 제공되는 복수 개의 열전 소자를 포함하고, 상기 복수 개의 열전 소자의 온도 차이에 따라 전기신호를 생성하는 감지부; 및 상기 감지부에 의해 생성되는 전기신호에 따라 상기 집광판의 방향을 조절하는 구동부;를 더 포함할 수 있다.A sensing unit including a plurality of thermoelectric elements provided along a circumferential direction of the light condensing plate and generating an electric signal according to a temperature difference between the plurality of thermoelectric elements; And a driving unit for adjusting the direction of the light-condensing plate according to an electrical signal generated by the sensing unit.
상기 감지부는, 제 1 방향을 따라 상기 집광판의 양측에 제공되는 제1 열전소자 쌍; 및 상기 제 1 방향과 수직인 제 2 방향을 따라 상기 집광판의 양측에 제공되는 제2 열전소자 쌍;을 포함하고, 상기 구동부는, 상기 제1 열전소자 쌍의 온도 차이에 따라 상기 집광판을 상기 제 1 방향으로 회동시키는 제1 구동장치; 및 상기 제2 열전소자 쌍의 온도 차이에 따라 상기 집광판을 상기 제 2 방향으로 회동시키는 제2 구동장치;를 포함할 수 있다.The sensing unit may include: a first pair of thermoelectric elements provided on both sides of the condenser plate along a first direction; And a second pair of thermoelectric elements provided on both sides of the condenser plate along a second direction perpendicular to the first direction, wherein the driving unit controls the condenser plate in accordance with the temperature difference of the first thermoelectric- A first driving device which rotates in one direction; And a second driving device for rotating the light-condensing plate in the second direction according to a temperature difference of the pair of the second thermoelectric elements.
본 발명의 실시예에 의하면, 하나의 광원에서 식물 광합성에 필요한 두 파장인 440nm 범위의 파장과 780nm 범위의 파장이 동시에 조사될 수 있으므로 식물공장의 소비전력을 획기적으로 감소시켜 경제성을 도모할 수 있는 효과가 있다.According to the embodiment of the present invention, since a wavelength in the range of 440 nm and a wavelength in the range of 780 nm, which are two wavelengths necessary for plant photosynthesis, can be simultaneously irradiated from one light source, the power consumption of the plant can be remarkably reduced, It is effective.
본 발명의 실시예에 의하면, 인삼과 같은 뿌리식물 등의 작물을 효율적이고 경제적으로 재배할 수 있는 에너지 자립형 재배 장치가 제공된다.INDUSTRIAL APPLICABILITY According to the embodiments of the present invention, an energy-independent cultivation apparatus capable of efficiently and economically growing crops such as root plants such as ginseng is provided.
또한, 본 발명의 실시예에 의하면, 집광판을 이용하여 자연광을 효율적으로 수집하여 작물의 재배에 활용할 수 있는 에너지 자립형 재배 장치가 제공된다.In addition, according to the embodiment of the present invention, an energy-independent cultivation apparatus capable of efficiently collecting natural light by using a light-condensing plate and utilizing the collected natural light for crop cultivation is provided.
또한, 본 발명의 실시예에 의하면, 각 층 별로 재배 중인 작물들에 대한 자연광 조광 등의 재배 조건을 균일하게 조절할 수 있는 에너지 자립형 재배 장치가 제공된다.In addition, according to the embodiment of the present invention, an energy-independent cultivation apparatus capable of uniformly controlling cultivation conditions such as natural light dimming and the like for crops cultivated by each layer is provided.
또한, 본 발명의 실시예에 의하면, 자연광의 자외선을 이용하여 경제적으로 작물의 뿌리에 곰팡이가 피는 것을 방지할 수 있는 에너지 자립형 재배 장치가 제공된다.In addition, according to the embodiment of the present invention, there is provided an energy-independent cultivation apparatus which can economically prevent fungi from spreading on the roots of a crop using ultraviolet rays of natural light.
또한, 본 발명의 실시 예에 따른 재배 장치는 재배 작물의 상부에 발광 부재의 다수개의 단위체를 쉽게 설치할 수 있다.In addition, the cultivation apparatus according to the embodiment of the present invention can easily mount a plurality of unit pieces of the light emitting member on the cultivation crop.
도 1은 본 발명의 일 실시 예에 따른 재배 장치의 단면도이다. 1 is a cross-sectional view of a cultivation apparatus according to an embodiment of the present invention.
도 2는 도 1의 재배 유닛의 단면도이다.2 is a cross-sectional view of the cultivation unit of Fig.
도 3은 도 2의 조명 장치의 정면도이다.3 is a front view of the illumination device of Fig.
도 4는 도 3의 조명 장치의 저면도이다.Fig. 4 is a bottom view of the illumination device of Fig. 3;
도 5는 도 3의 설치 플레이트가 휘어지도록 설치된 모습을 나타낸 정면도이다.5 is a front view showing a mounting plate of Fig. 3 installed so as to be bent;
도 6은 다른 실시 예에 따른 조명 장치의 평면도이다. 6 is a plan view of a lighting apparatus according to another embodiment.
도 7은 도 6의 설치 플레이트의 AA방향에서 바라본 단면도이다.7 is a cross-sectional view of the mounting plate of Fig. 6 taken in the direction of arrow AA.
도 8은 도 6의 설치 플레이트가 휘어진 모습을 나타낸 정면도이다.8 is a front view showing a state in which the mounting plate of Fig. 6 is bent.
도 9는 또 다른 실시 예에 따른 조명 장치의 평면도이다. 9 is a plan view of a lighting apparatus according to another embodiment.
도 10은 도 9의 설치 플레이트의 AA방향에서 바라본 단면도이다.10 is a cross-sectional view of the mounting plate in FIG.
도 11은 또 다른 실시 예에 따른 설치 플레이트의 평면도이다.11 is a plan view of a mounting plate according to another embodiment.
도 12는 또 다른 실시 예에 따른 설치 플레이트의 평면도이다.12 is a plan view of a mounting plate according to another embodiment.
도 13은 도 3의 결합 부재의 사시도이다.Figure 13 is a perspective view of the coupling member of Figure 3;
도 14는 도 3의 결합 부재의 일 사용 예를 나타낸 도면이다.14 is a view showing an example of use of the coupling member of Fig.
도 15는 도 13의 결합 부재의 마주보는 두 측면에 형성된 레일 홈에 각각 설치 플레이트가 삽입된 모습을 나타낸 도면이다.FIG. 15 is a view showing a mounting plate inserted into rail grooves formed on two opposite sides of the coupling member of FIG. 13; FIG.
도 16은 또 다른 실시 예에 따른 설치 플레이트의 일부를 나타낸 사시도이다. 16 is a perspective view showing a part of a mounting plate according to still another embodiment.
도 17은 도 16의 설치 플레이트가 레일 홈의 정위치에 삽입된 모습을 나타낸 측면도이다.17 is a side view of the mounting plate of FIG. 16 inserted into the rail groove at a predetermined position.
도 18은 또 다른 실시 예에 따른 설치 플레이트의 일부를 나타낸 사시도이다. 18 is a perspective view showing a part of a mounting plate according to another embodiment.
도 19는 도 18의 설치 플레이트가 레일 홈의 정위치에 삽입된 모습을 나타낸 측면도이다.Fig. 19 is a side view showing the mounting plate of Fig. 18 inserted into the rail groove at a predetermined position. Fig.
도 20은 본 발명의 다른 실시예에 따른 에너지 자립형 재배 장치의 사시도이다. 20 is a perspective view of an energy-standing type cultivating apparatus according to another embodiment of the present invention.
도 21는 도 20의 에너지 자립형 재배 장치의 단면도이다.21 is a sectional view of the energy-standing type cultivation apparatus of Fig.
도 22는 도 20의 에너지 자립형 재배 장치를 구성하는 집광판, 광분배기 및 광섬유 부재의 단면도이다.22 is a sectional view of a light-collecting plate, an optical distributor, and an optical fiber member constituting the energy-standing type cultivation apparatus of Fig.
도 23은 도 20의 에너지 자립형 재배 장치를 구성하는 재배 유닛의 단면도이다.Fig. 23 is a sectional view of a cultivation unit constituting the energy-standing type cultivation apparatus of Fig. 20; Fig.
도 24는 본 발명의 일 실시 예에 따른 식물의 인공 광합성을 위한 핑크 LED 광원의 구성을 도시한 도면이다.FIG. 24 is a diagram illustrating a configuration of a pink LED light source for artificial photosynthesis of plants according to an embodiment of the present invention.
도 25a 및 도 25b는 본 발명의 일 실시예에 따른 식물의 인공 광합성을 위한 핑크 LED 광원에서 조사되는 두 파장을 도시한 도면이다.25A and 25B are diagrams showing two wavelengths irradiated from a pink LED light source for artificial photosynthesis of a plant according to an embodiment of the present invention.
도 26은 본 발명의 일 실시예에 따른 식물의 인공 광합성을 위한 핑크 LED 광원의 색좌표를 도시한 도면이다.26 is a diagram illustrating the color coordinates of a pink LED light source for artificial photosynthesis of plants according to an embodiment of the present invention.
도 27은 본 발명의 일 실시예에 따라 제작된 핑크 LED 광원에서 광이 발광되는 모습을 촬영한 이미지이다.27 is an image of a light emitted from a pink LED light source according to an exemplary embodiment of the present invention.
도 28은 적색 형광물질 M2Si5N8:Eu2+의 발광 파장을 도시한 도면이다.28 is a diagram showing the emission wavelength of the red fluorescent material M 2 Si 5 N 8: Eu 2+ .
도 29는 적색 형광물질 CaAlSiN3:Eu2+의 발광 파장을 도시한 도면이다.29 is a diagram showing the emission wavelength of the red phosphor CaAlSiN 3: Eu 2+ .
도 30은 적색 형광물질 6MgO·As2O5:Mn4+의 발광 파장을 도시한 도면이다.30 is a diagram showing the emission wavelength of the red fluorescent substance 6MgO · As 2 O 5 : Mn 4+ .
도 31은 적색 형광물질 3.5MgO·0.5MgF2·GeO2:Mn4+의 발광 파장을 도시한 도면이다.31 is a red fluorescent substance 3.5MgO · 0.5MgF 2 · GeO 2: a diagram showing an emission wavelength of Mn 4+.
도 32는 본 발명의 일 실시예에 따른 에너지 자립형 컨테이너식 재배 장치를 구성하는 자외선 발생 장치의 구성도이다.32 is a configuration diagram of an ultraviolet ray generator constituting an energy-standing container type cultivation apparatus according to an embodiment of the present invention.
도 33은 본 발명의 또 다른 실시예에 따른 에너지 자립형 재배 장치를 구성하는 집광판의 단면도이다. 33 is a cross-sectional view of a light-condensing plate constituting an energy-standing type cultivating apparatus according to another embodiment of the present invention.
도 34는 도 33의 집광판의 평면도이다. 34 is a plan view of the light collecting plate of Fig. 33;
도 35는 도 33의 집광판의 동작 상태를 보여주는 단면도이다.35 is a sectional view showing the operation state of the light collecting plate of FIG. 33;
이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되었다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention can be modified in various forms, and the scope of the present invention should not be construed as being limited to the following embodiments. This embodiment is provided to more fully describe the present invention to those skilled in the art. Thus, the shape of the elements in the figures has been exaggerated to emphasize a clearer description.
도 1은 본 발명의 일 실시 예에 따른 재배 장치(100)의 단면도이다. 도 1을 참조하면, 본 실시 예에 따른 재배 장치(100)는 재배 장치로 제공될 수 있다. 재배 장치(100)는 몸체(1000), 재배부(2000)를 포함한다. 이와 달리, 본 발명의 재배 장치는 이하 설명될 각 실시 예의 조명 장치가 설치되고, 작물을 재배할 수 있는 다양한 종류의 재배 장치로 제공될 수 있다.1 is a cross-sectional view of a cultivation apparatus 100 according to an embodiment of the present invention. Referring to FIG. 1, the cultivation apparatus 100 according to the present embodiment may be provided as a cultivation apparatus. The cultivation apparatus (100) includes a body (1000) and a cultivation unit (2000). Alternatively, the cultivation apparatus of the present invention can be provided with various kinds of cultivation apparatuses in which the lighting apparatuses of the respective embodiments to be described below are installed and crops can be cultivated.
본 실시 예에 따른 재배 장치(100)는 인삼과 같은 뿌리식물 등의 작물(20)을 재배하기에 적합하도록 제공된다. 계절이나, 주변 기온, 기상 조건, 태풍, 장마 등의 환경 영향을 배제하고, 작물을 주변 환경에 관계 없이 일정하게 생육할 수 있도록, 몸체(1000)는 육면체의 형태로 제공된다.The cultivation apparatus 100 according to the present embodiment is provided so as to be suitable for growing the crop 20 such as root plants such as ginseng. The body 1000 is provided in the form of a hexahedron so that environmental effects such as season, ambient temperature, weather conditions, typhoon, and rainy season are eliminated, and the crop can be grown constantly regardless of the surrounding environment.
일 실시 예에 따르면, 몸체(1000)는 밀폐 가능한 내부 공간을 가질 수 있다. 재배부(2000) 등의 재배 장치(100)의 구성은 몸체(1000)의 내부 공간에 제공된다. 도시되지 않았으나, 몸체(1000)에는 상기 내부 공간으로 출입을 위한 출입구와, 내부 공간을 환기시킬 수 있는 통풍 장치가 마련될 수 있다. 통풍 장치에 의해 내부 공간이 환기됨으로써 작물(20)의 광합성을 촉진시킬 수 있다.According to one embodiment, the body 1000 may have a sealable interior space. The construction of the cultivation apparatus 100 such as the cultivation unit 2000 is provided in the inner space of the body 1000. [ Although not shown, the body 1000 may be provided with an entrance for entering and exiting the internal space, and a ventilation device for ventilating the internal space. The inner space is ventilated by the ventilation device, so that the photosynthesis of the crop 20 can be promoted.
몸체(1000)에는 태양광 발전판(1100)이 제공될 수 있다. 태양광 발전판(1100)은 태양광 에너지를 전기 에너지로 변환한다. 태양광 발전판(1100)에 의해 변환된 전기 에너지는 작물(20) 재배에 활용된다. 태양광 발전판(1100)은 효율적인 발전을 위하여 몸체(1000)의 상면에 제공될 수 있다. 태양광 발전판(1100)에 의해 변환된 전기에너지는 재배 유닛들(2100)로 공급되어 조명 등 작물 재배를 위한 목적으로 활용되거나, 배터리 등의 충전 장치(미도시)에 축전될 수 있다.A solar cell plate 1100 may be provided on the body 1000. The solar power generation plate 1100 converts solar energy into electrical energy. The electric energy converted by the solar power generation plate 1100 is utilized for the cultivation of the crop 20. The solar power generation board 1100 may be provided on the upper surface of the body 1000 for efficient power generation. The electric energy converted by the solar power generation board 1100 is supplied to the cultivation units 2100 to be utilized for cultivation of crops such as lighting or can be stored in a charging device (not shown) such as a battery.
재배부(2000)는 작물을 재배하기 위한 적어도 하나의 재배 유닛(2100)이 층을 이루어 배열된다. 도 1에는 재배 유닛(2100)이 4개의 층으로 적층된 구조가 도시되어 있으나, 재배부(2000)의 층 수는 1층 또는 4층 이외의 복수 층으로 제공되는 것도 가능하다.The rearing unit 2000 is arranged such that at least one cultivation unit 2100 for cultivating crops is layered. FIG. 1 shows a structure in which the cultivation unit 2100 is laminated in four layers, but it is also possible that the number of layers in the cultivation unit 2000 is provided in a plurality of layers other than one or four layers.
도 2는 도 1의 재배 유닛(2100)의 단면도이다. 도 2를 참조하면, 재배 유닛(2100)은 수경 재배를 위하여 재배틀(2110), 지지부재(2120), 공급부(2130) 및 배수부(2140)를 포함할 수 있다.Fig. 2 is a cross-sectional view of the cultivation unit 2100 of Fig. 2, the cultivation unit 2100 may include a re-battle 2110, a support member 2120, a supply unit 2130, and a drainage unit 2140 for hydroponic cultivation.
재배틀(2110)은 판 형태로 이루어질 수 있다. 일 예로, 재배틀(2110)은 스티로폼 등의 판부재로 제공될 수 있다. 재배틀(2110)에는 종방향 및 횡방향으로 구멍들이 소정 간격으로 관통된다.The re-battle 2110 may be in the form of a plate. As an example, the re-battle 2110 may be provided with a plate member such as styrofoam. In the re-battle 2110, holes are pierced at predetermined intervals in the longitudinal and transverse directions.
지지부재(2120)는 재배틀(2110)에 형성된 구멍에 삽입되어 작물(20)의 줄기 부분을 지지할 수 있다. 일 예로, 지지부재(2120)는 스펀지 등의 부재로 제공될 수 있다.The support member 2120 can be inserted into the hole formed in the re-battle 2110 to support the stem portion of the crop 20. In one example, the support member 2120 may be provided with a member such as a sponge.
공급부(2130)는 재배틀(2110)의 하부에 제공되며, 펌프 등의 수단에 의해 배관(미도시)을 통해 물과 양분을 공급받아 노즐을 통해 상방으로 분무하여 작물(20)의 뿌리(21) 부분에 물과 양분을 공급할 수 있다.The supply part 2130 is provided at the lower part of the re-battle 2110 and supplies water and nutrients through piping (not shown) by means of a pump or the like to spray upward through the nozzles, ) Can be supplied with water and nutrients.
배수부(2140)는 작물(20)의 뿌리(21) 부분에 공급된 후 낙하되는 물과 양분을 회수하기 위한 것으로, 재배 유닛(2100)의 저부에 제공된다. 배수부(2140)에 의해 회수된 물과 양분은 공급탱크로 전달되어 순환되며, 이에 따라 물과 양분의 사용량을 줄여 재배 비용을 절감할 수 있다.The drainage section 2140 is provided at the bottom of the cultivation unit 2100 for recovering the water and nutrients to be dropped after being supplied to the root 21 part of the crop 20. The water and nutrients recovered by the drainage section 2140 are transferred to the supply tank and circulated, thereby reducing the amount of water and nutrients used thereby reducing the cultivation cost.
재배 유닛(2100)의 상부에는 재배 유닛(2100) 내에 재배 중인 작물(20)의 줄기 및 잎 부분에 광을 조명하는 조명 장치(3000)가 제공된다. 조명 장치(3000)는 태양광 발전판(1100)에 의해 변환된 전기 에너지를 이용하여 작물(20)에 인공광을 조사할 수 있다. Above the cultivation unit 2100 is provided an illumination device 3000 for illuminating light on the stem and leaf portions of the crop 20 being cultivated in the cultivation unit 2100. The lighting apparatus 3000 can irradiate the artificial light to the crop 20 using the electric energy converted by the solar power generation board 1100.
도 3은 도 2의 조명 장치(3000)의 정면도이다. 도 3을 참조하면, 조명 장치(3000)는 발광 부재(3100), 설치 플레이트(3200) 및 결합 부재(3300)를 포함한다.3 is a front view of the illumination device 3000 of FIG. Referring to FIG. 3, the lighting apparatus 3000 includes a light emitting member 3100, a mounting plate 3200, and a coupling member 3300.
일 실시 예에 따르면, 발광 부재(3100)는 광원(3110) 및 소켓 부재(3120)를 포함한다. 광원(3110)은 전기를 이용하여 빛을 발생시킨다. 광원(3110)은 발광 다이오드(LED: Light Emitting Diode) 등의 면발광 장치로 제공될 수 있다.According to one embodiment, the light emitting member 3100 includes a light source 3110 and a socket member 3120. The light source 3110 generates light by using electricity. The light source 3110 may be provided as a surface emitting device such as a light emitting diode (LED).
도 4는 도 3의 조명 장치(3000)의 저면도이다. 도 4를 참조하면, 소켓 부재(3120)는 설치 플레이트(3200)의 일면에 설치된다. 예를 들면, 설치 플레이트(3200)가 작물(20)의 상부에 설치되는 경우, 소켓 부재(3120)는 설치 플레이트(3200)의 저면에 설치된다. 소켓 부재(3120)에는 광원(3110)이 설치된다. 예를 들면, 소켓 부재(3120)에는 복수개의 발광 다이오드가 일렬로 배열되어 설치된다. 일 실시 예에 따르면, 소켓 부재(3120)는 설치 플레이트(3200)의 일면을 바라볼 때, 길이 방향이 각각 아래에 설명될 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)가 배열된 방향과 수직인 방향으로 제공될 수 있다. 이 경우, 소켓 부재(3120)는 복수개가 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)가 배열된 방향을 따라 서로 이격되어 배열될 수 있다. 이와 달리, 소켓 부재(3120)는 필요에 따라 선택적으로 다양한 형상 및 배열로 제공될 수 있다.4 is a bottom view of the illumination device 3000 of FIG. Referring to Fig. 4, the socket member 3120 is installed on one side of the mounting plate 3200. Fig. For example, when the mounting plate 3200 is installed on the top of the crop 20, the socket member 3120 is installed on the bottom surface of the mounting plate 3200. The socket member 3120 is provided with a light source 3110. For example, a plurality of light emitting diodes are arranged in a line in the socket member 3120. According to one embodiment, when the socket member 3120 is viewed from one side of the mounting plate 3200, the first engaging member 3300a and the second engaging member 3300b, which will be described below, Direction perpendicular to the longitudinal direction. In this case, the plurality of socket members 3120 may be arranged apart from each other along the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged. Alternatively, the socket member 3120 may optionally be provided in various shapes and arrangements as desired.
설치 플레이트(3200)에는 발광 부재(3100)가 설치된다. 설치 플레이트(3200)는 금속 재질로 제공될 수 있다. 예를 들면, 설치 플레이트(3200)는 알루미늄(Al)과 같이 연성을 가지는 금속 재질로 제공될 수 있다. 설치 플레이트(3200)가 금속 재질로 제공됨으로써, 높은 열전도율을 가지는 금속 재질의 특성 상 광원(3110)으로부터 발생된 열이 설치 플레이트(3200)를 통해 재배 유닛(2100) 내부 전체에 쉽게 전달될 수 있다. The mounting plate 3200 is provided with a light emitting member 3100. The mounting plate 3200 may be made of a metal material. For example, the mounting plate 3200 may be made of a metal material having flexibility such as aluminum (Al). Since the mounting plate 3200 is made of a metal material, the heat generated from the light source 3110 due to the metal material having a high thermal conductivity can be easily transmitted to the entire interior of the cultivation unit 2100 through the mounting plate 3200 .
도 5는 도 3의 설치 플레이트(3200)가 휘어지도록 설치된 모습을 나타낸 정면도이다. 도 5를 참조하면, 설치 플레이트(3200)는 알루미늄과 같이 연성을 가지는 금속 재질로 제공됨으로써, 필요에 따라 휘어진 형태로 제공하여, 다양한 방향으로 광을 조사할 수 있다. 또한, 설치 위치의 넓이에 따라 적절한 크기로 절단하여 사용하기에 용이하다.5 is a front view showing a state in which the mounting plate 3200 of FIG. 3 is installed to be bent. Referring to FIG. 5, the mounting plate 3200 is made of a metal material having flexibility such as aluminum, so that the mounting plate 3200 can be provided in a curved shape as needed, and can be illuminated in various directions. In addition, it is easy to cut and use it in an appropriate size according to the width of the installation position.
도 6은 다른 실시 예에 따른 조명 장치(3000a)의 평면도이다. 도 7은 도 6의 설치 플레이트(3200a)의 AA방향에서 바라본 단면도이다. 도 6 및 도 7을 참조하면, 일 실시 예에 따르면, 설치 플레이트(3200a)에는 비드(3210)가 형성된다. 비드(3210)는 일면은 오목하고, 반대면은 볼록한 형상으로 제공된다. 예를 들면, 비드(3210)는 설치 플레이트(3200a)의 상면으로부터 돌출되도록 제공된다. 비드(3210)는 복수개로 제공될 수 있다. 비드(3210)에 의해 설치 플레이트(3200a)의 일면의 끝단 및 반대면의 끝단 간의 거리가 증가된다. 이로 인해, 설치 플레이트(3200a)에 굽힘 모멘트(Bending Moment)가 작용되는 경우, 비드(3210)는 관성 모멘트(Moment of Inertia)를 증가시킨다. 또한, 굽힘 응력(Bending Stress)은 관성 모멘트(Moment of Inertia)와 반비례 관계에 있다. 따라서, 비드(3210)가 제공됨으로써, 관성 모멘트가 증가되어 굽힘 응력을 줄일 수 있다. 따라서, 비드(3210)가 형성됨으로써, 설치 플레이트(3200a)는 평평하게 제공되는 경우에 비해 굽힘 모멘트에 대한 내구성이 강화된다. 또한, 비드(3210)가 형성되면 설치 플레이트(3200a)의 발열할 수 있는 면적이 증가된다. 따라서, 광원(3110)으로부터 발생된 열이 설치 플레이트(3200a)를 통해 재배 유닛(2100) 내부 전체에 보다 쉽게 전달될 수 있다.6 is a plan view of a lighting apparatus 3000a according to another embodiment. Fig. 7 is a cross-sectional view of the mounting plate 3200a of Fig. 6 taken in the AA direction. 6 and 7, according to one embodiment, a bead 3210 is formed on the mounting plate 3200a. The beads 3210 are concave on one side and convex on the other side. For example, the bead 3210 is provided so as to protrude from the upper surface of the mounting plate 3200a. The beads 3210 may be provided in plurality. The distance between the end of one face of the mounting plate 3200a and the end of the opposite face is increased by the bead 3210. [ Therefore, when a bending moment is applied to the mounting plate 3200a, the bead 3210 increases the moment of inertia. In addition, the bending stress is inversely related to the moment of inertia. Therefore, by providing the bead 3210, the moment of inertia is increased, and the bending stress can be reduced. Thus, by forming the bead 3210, the durability against the bending moment is enhanced as compared with the case where the mounting plate 3200a is provided flat. Further, when the bead 3210 is formed, the heatable area of the mounting plate 3200a is increased. Therefore, heat generated from the light source 3110 can be more easily transmitted to the entire interior of the cultivation unit 2100 through the installation plate 3200a.
설치 플레이트는 비드(3210)의 형상에 따라 관성 모멘트의 방향에 대해 상이한 내구성을 가진다. 따라서, 비드(3210)는 필요에 따라 선택적으로 다양한 형상으로 제공될 수 있다. The mounting plate has different durability with respect to the direction of the moment of inertia depending on the shape of the bead 3210. [ Thus, beads 3210 can optionally be provided in various shapes as needed.
일 실시 예에 따르면, 비드(3210)는 설치 플레이트(3200a)의 일면을 바라볼 때, 선형으로 제공될 수 있다. 예를 들면, 선형 비드(3210)는 제 1 선형 비드(3211)를 포함할 수 있다. 제 1 선형 비드(3211)는 양 끝단이 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)를 바라보는 방향으로 제공된다. 설치 플레이트(3200a)는 선형 비드(3210)의 길이 방향에 수직인 방향을 축으로 회전되는 모멘트에 대한 내구성이 선형 비드(3210)의 길이 방향과 평행인 방향을 축으로 회전되는 모멘트에 대한 내구성에 비해 크다. 따라서, 선형 비드(3210)의 길이 방향에 따라 설치 플레이트(3200a)의 굽히는 방향별 모멘트에 대한 내구성이 상이하다. According to one embodiment, the bead 3210 may be provided linearly when viewed from one side of the mounting plate 3200a. For example, the linear bead 3210 may comprise a first linear bead 3211. The first linear beads 3211 are provided at both ends in a direction looking toward the first engaging member 3300a and the second engaging member 3300b. The mounting plate 3200a has a durability against a moment that is rotated about the axis parallel to the longitudinal direction of the linear bead 3210 with respect to a moment that is rotated about a direction perpendicular to the longitudinal direction of the linear bead 3210 Respectively. Therefore, the durability of the mounting plate 3200a with respect to the bending direction moment is different according to the longitudinal direction of the linear bead 3210. [
도 8은 도 6의 설치 플레이트(3200a)가 휘어진 모습을 나타낸 정면도이다. 도 8을 참조하면, 예를 들면, 설치 플레이트(3200a)에 제 1 선형 비드(3211)가 제공되는 경우, 설치 플레이트(3200a)는 일면을 바라볼 때, 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)에 삽입된 양 끝단이 서로 인접해지는 방향으로 용이하게 휘어질 수 있다. 또한, 설치 플레이트(3200a)는 상기 양 끝단과 수직인 방향을 각각 바라보는 양 끝단이 서로 인접해지는 방향으로 휘어지는 모멘트에 대해서는 내구성이 강화된다. 즉, 도 6과 같이 소켓 부재(3120)가 길이 방향이 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)가 배열된 방향과 수직인 방향으로 제공되는 경우, 설치 플레이트(3200a)는 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)와 연결된 양 끝단이 서로 인접해지고, 중앙 영역이 상승하도록 휘어짐으로써, 발광 부재(3100)가 다양한 방향에서 빛을 조사하도록 제공될 수 있다. 또한, 이와 수직인 방향의 굽힘 모멘트에 대해서는 내구성이 강화 되므로, 설치 플레이트(3200a)가 제 1 선형 비드(3211)와 수직인 방향을 축으로 굽힘 모멘트를 받는 경우, 설치 플레이트(3200a)의 변형이 방지되어, 설치 플레이트(3200a)의 변형에 의한 소켓 부재(3120)의 파손 및 설치 플레이트(3200a)로부터 소켓 부재(3120)가 분리되는 것을 방지할 수 있다.FIG. 8 is a front view showing a state in which the mounting plate 3200a of FIG. 6 is bent. 8, when the first linear bead 3211 is provided on the mounting plate 3200a, for example, when the mounting plate 3200a is viewed from one side, the first and second connecting members 3300a and 3300a, The both ends inserted into the engaging member 3300b can be easily bent in the direction in which they are adjacent to each other. In addition, the mounting plate 3200a has enhanced durability with respect to moments in which both ends of the mounting plate 3200a facing each other in the direction perpendicular to the both ends are adjacent to each other. That is, when the socket member 3120 is provided in the longitudinal direction in a direction perpendicular to the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged as shown in FIG. 6, The light emitting member 3100 can be provided to irradiate light in various directions by being bent so that both ends connected to the first and second coupling members 3300a and 3300b are adjacent to each other and the central region is raised. When the mounting plate 3200a is subjected to a bending moment about a direction perpendicular to the first linear bead 3211, the deformation of the mounting plate 3200a is not affected by the bending moment in the direction perpendicular to the first linear bead 3211, It is possible to prevent breakage of the socket member 3120 due to deformation of the mounting plate 3200a and separation of the socket member 3120 from the mounting plate 3200a.
도 9는 또 다른 실시 예에 따른 조명 장치(3000b)의 평면도이다. 도 10은 도 9의 설치 플레이트(3200b)의 AA방향에서 바라본 단면도이다. 도 9 및 도 10을 참조하면, 일 실시 예에 따르면, 선형 비드(3100)는 제 2 선형 비드(3212)를 포함할 수 있다. 제 2 선형 비드(3212)는 위에서 바라볼 때, 길이 방향이 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)가 배열된 방향과 수직인 방향으로 제공된다. 따라서, 제 2 선형 비드(3212)가 제공되는 경우, 설치 플레이트(3200b)는 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)가 배열된 방향과 수직인 방향을 축으로 하는 굽힘 모멘트에 대해 내구성이 강화된다. 따라서, 설치 플레이트(3200b)가 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)에 설치된 상태에서 자체의 무게 및 발광 부재(3100)의 무게에 의해 중앙 영역이 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)에 삽입된 양 끝단보다 아래 방향으로 처지게 되는 현상을 방지할 수 있다. 9 is a plan view of a lighting apparatus 3000b according to another embodiment. 10 is a cross-sectional view of the mounting plate 3200b of Fig. 9 viewed in the AA direction. 9 and 10, according to one embodiment, the linear bead 3100 may include a second linear bead 3212. [ The second linear bead 3212 is provided in a direction perpendicular to the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged when viewed from above. Therefore, when the second linear bead 3212 is provided, the mounting plate 3200b is bent at a bending moment about the axis perpendicular to the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged The durability is enhanced. The weight of the light emitting member 3100 and the weight of the mounting plate 3200b in the state where the mounting plate 3200b is mounted on the first engaging member 3300a and the second engaging member 3300b, And the second engaging member 3300b can be prevented from being sagged downward than the both ends inserted into the second engaging member 3300b.
도 11은 또 다른 실시 예에 따른 설치 플레이트(3200c)의 평면도이다. 도 11을 참조하면, 선형 비드(3210a)는 제 1 선형 비드(3211a) 및 제 2 선형 비드(3212a)가 하나의 설치 플레이트(3200c)에 함께 제공될 수 있다. 예를 들면, 제 1 선형 비드(3211a) 및 제 2 선형 비드(3212a) 중 일부는, 제 1 선형 비드(3211a)의 길이 방향 및 제 2 선형 비드(3212a)의 길이 방향을 따라 서로 번갈아 배열될 수 있다. 이 경우, 서로 길이 방향이 수직인 비드가 제공됨으로써, 설치 플레이트(3200c)는 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)가 배열된 방향 및 이에 수직인 방향을 각각 축으로 하는 굽힘 모멘트 모두에 대해 내구성이 강화된다.11 is a plan view of a mounting plate 3200c according to another embodiment. Referring to FIG. 11, the linear beads 3210a may be provided with a first linear bead 3211a and a second linear bead 3212a in one mounting plate 3200c. For example, some of the first linear bead 3211a and the second linear bead 3212a may be alternately arranged along the longitudinal direction of the first linear bead 3211a and the longitudinal direction of the second linear bead 3212a . In this case, by providing the bead whose lengthwise direction is perpendicular to each other, the mounting plate 3200c can be bent in the direction in which the first engaging member 3300a and the second engaging member 3300b are arranged and the direction perpendicular thereto Durability is enhanced for both moments.
도 12는 또 다른 실시 예에 따른 설치 플레이트(3200d)의 평면도이다. 도 12를 참조하면, 비드(3210c)는 소켓 부재(3120)의 사이에 형성될 수 있다. 이 경우, 설치 플레이트(3200d)의 소켓 부재(3120)가 접촉될 수 있는 면적이 넓어져 소켓 부재(3120)의 설치가 용이하다. 또한, 비드(3210c) 및 소켓 부재(3120) 간의 간섭이 발생되지 않음으로써, 비드(3210c)의 돌출 방향이 제한되지 않는다. 즉, 필요에 따라, 비드(3210c)가 소켓 부재(3120)가 설치된 면과 동일한 방향 또는 이와 반대 방향으로 돌출될 수 있다. 또한, 필요에 따라 선택적으로 비드(3210c)의 일부는 소켓 부재(3120)가 설치된 면과 동일한 방향으로 돌출되고, 다른 일부는 소켓 부재(3120)가 설치된 면의 반대 방향으로 돌출될 수 있다.12 is a plan view of a mounting plate 3200d according to another embodiment. 12, a bead 3210c may be formed between the socket member 3120. [ In this case, the area in which the socket member 3120 of the mounting plate 3200d can be contacted is widened, so that the socket member 3120 can be easily installed. Further, interference between the bead 3210c and the socket member 3120 is not generated, so that the projecting direction of the bead 3210c is not limited. That is, if necessary, the beads 3210c may protrude in the same direction as the surface on which the socket member 3120 is mounted, or in the opposite direction. Optionally, a part of the beads 3210c may protrude in the same direction as the surface on which the socket member 3120 is provided, and the other part may protrude in the direction opposite to the surface on which the socket member 3120 is provided.
도 4 내지 도 12에는 선형의 비드가 도시되어 있다. 그러나, 비드는 필요에 따라 선택적으로 선형 외의 형상으로 제공될 수 있다. 예를 들면, 설치 플레이트의 일면을 바라볼 때, 비드는 필요에 따라 선택적으로, 원형 또는 십자형으로 제공될 수 있다. Figures 4 to 12 show linear beads. However, the beads may optionally be provided in a non-linear shape as desired. For example, when looking at one side of the mounting plate, the beads may optionally be provided in a circular or cross shape.
도 13은 도 3의 결합 부재(3300)의 사시도이다. 도 3 및 도 13을 참조하면, 결합 부재(3300)는 설치 플레이트(3200)를 지지한다. 일 실시 예에 따르면, 결합 부재(3300)는 재배 유닛(2100) 내에 고정된다. 결합 부재(3300)의 측면에는 레일 홈(3310)이 형성된다. 레일 홈(3310)에는 설치 플레이트(3200)의 양 끝단 중 하나가 결합 부재(3300)의 일단으로부터 타단을 향한 방향으로 슬라이드되어 삽입된다. 상기 일단은 설치 플레이트(3200)를 레일 홈(3310)에 삽입 시 사용자를 바라보는 끝단이다. 상기 타단은 상기 일단의 반대측 끝단이다. 결합 부재(3300)는 금속 재질로 제공될 수 있다. 예를 들면, 결합 부재(3300)는 알루미늄 재질로 제공될 수 있다. 결합 부재(3300)가 금속 재질로 제공됨으로써, 높은 열전도율을 가지는 금속 재질의 특성 상 광원으로부터 발생된 열이 결합 부재(3300)를 통해 재배 유닛(2100) 내부에 쉽게 전달될 수 있다.13 is a perspective view of the coupling member 3300 of Fig. Referring to Figs. 3 and 13, the engaging member 3300 supports the mounting plate 3200. Fig. According to one embodiment, the engaging member 3300 is fixed within the cultivation unit 2100. A rail groove 3310 is formed on the side surface of the engaging member 3300. One of both ends of the mounting plate 3200 is slidably inserted into the rail groove 3310 in a direction from one end of the engaging member 3300 toward the other end. The one end is an end that faces the user when the mounting plate 3200 is inserted into the rail groove 3310. And the other end is the opposite end of the one end. The engaging member 3300 may be made of a metal material. For example, the engaging member 3300 may be made of an aluminum material. Since the joining member 3300 is made of a metal material, the heat generated from the light source due to the metallic material having a high thermal conductivity can be easily transmitted to the inside of the cultivation unit 2100 through the joining member 3300.
일 실시 예에 따르면, 결합 부재(3300)는 제 1 결합 부재(3300a) 및 제 2 결합 부재(3300b)를 포함한다. 제 1 결합 부재(3300a)는 설치 플레이트(3200)의 일단을 지지하고 제 2 결합 부재(3300b)는 설치 플레이트(3200)의 타단을 지지한다. According to one embodiment, the engaging member 3300 includes a first engaging member 3300a and a second engaging member 3300b. The first engaging member 3300a supports one end of the mounting plate 3200 and the second engaging member 3300b supports the other end of the mounting plate 3200. [
일 실시 예에 따르면, 결합 부재(3300)는 사각 기둥 형상으로 제공되고, 레일 홈(3310)은 결합 부재(3300)의 각 측면에 형성될 수 있다. According to one embodiment, the engaging member 3300 is provided in a square pillar shape, and the rail groove 3310 can be formed on each side of the engaging member 3300.
도 14는 도 3의 결합 부재(3300)의 일 사용 예를 나타낸 도면이다. 도 14를 참조하면, 레일 홈(3310)의 서로 마주보는 내측면의 외측 끝단에는 각각 서로 마주 보는 방향으로 돌출된 플랜지(3311)가 레일 홈(3310)의 길이 방향을 따라 형성된다. 플랜지(3311)가 제공됨으로써, 도 14에 도시된 바와 같이, 광원(3110)과 연결되는 전선 등이 지지될 수 있는 고리(30) 등의 다양한 부재가 레일 홈(3310)에 삽입되도록 설치 가능하다. Fig. 14 is a view showing an example of use of the coupling member 3300 of Fig. Referring to FIG. 14, flanges 3311 projecting in mutually facing directions are formed along the longitudinal direction of the rail groove 3310 at the outer ends of the inner side surfaces of the rail grooves 3310 facing each other. 14, various members such as a ring 30 that can support electric wires or the like connected to the light source 3110 can be installed to be inserted into the rail groove 3310 .
도 15는 도 13의 결합 부재(3300)의 마주보는 두 측면에 형성된 레일 홈(3310)에 각각 설치 플레이트(3200)가 삽입된 모습을 나타낸 도면이다. 도 15를 참조하면, 결합 부재(3300)의 각 측면에 레일 홈(3310)이 형성됨으로써, 결합 부재(3300)를 설치 플레이트(3200)에 설치 시, 레일 홈(3310)의 방향에 대한 고려가 요구되지 않는다. 또한, 하나의 결합 부재(3300)의 서로 반대되는 양 측면에 각각 설치 플레이트(3200)를 삽입할 수 있으므로, 복수개의 설치 플레이트(3200)를 위해 설치해야하는 결합 부재(3300)의 수를 줄일 수 있다. FIG. 15 is a view showing a state in which the mounting plate 3200 is inserted into the rail groove 3310 formed on two opposite sides of the coupling member 3300 of FIG. 15, since the rail groove 3310 is formed on each side surface of the engaging member 3300, when the engaging member 3300 is installed on the mounting plate 3200, the consideration of the direction of the rail groove 3310 Not required. In addition, since the mounting plate 3200 can be inserted into both opposite sides of one coupling member 3300, the number of the coupling members 3300 to be provided for the plurality of mounting plates 3200 can be reduced .
도 16은 또 다른 실시 예에 따른 설치 플레이트(3200e)의 일부를 나타낸 사시도이다. 도 17은 도 16의 설치 플레이트(3200e)가 레일 홈(3310)의 정위치에 삽입된 모습을 나타낸 측면도이다. 도 16 및 도 17을 참조하면, 레일 홈(3310)의 저면에는 설치 플레이트(3200e)가 슬라이드 되는 방향을 따라 회전되는 휠(4100)이 제공될 수 있다. 또한, 설치 플레이트(3200e)의 휠(4100)과 대응되는 영역에는 아래 방향으로 돌출된 돌기(4200)가 형성될 수 있다. 돌기(4200)는 설치 플레이트(3200e)가 레일 홈(3310)의 정위치에 삽입된 상태에서, 휠(4100)의 중심보다 결합 부재(3300)의 타단에 인접한 위치에서 휠(4100)에 접촉되게 제공된다. 일 실시 예에 따르면, 휠(4100)은 레일 홈(3310)의 길이 방향을 따라 복수개로 제공될 수 있다. 돌기(4200)는 복수개의 휠(4100) 중 하나 또는 2 이상의 휠(4100)에 대응되도록 제공될 수 있다. 상술한 바와 같이, 휠(4100)이 제공됨으로써, 설치 플레이트(3200e)가 레일 홈(3310)에 삽입되기에 용이하다. 또한, 휠(4100) 및 돌기(4200)의 접촉에 의해, 설치 플레이트(3200e)가 결합 부재(3300)의 경사 또는 지진 등의 진동 등에 의해 레일 홈(3310)으로부터 이탈되는 것을 방지한다.16 is a perspective view showing a part of a mounting plate 3200e according to still another embodiment. 17 is a side view showing the mounting plate 3200e of FIG. 16 inserted into the rail groove 3310 at a predetermined position. 16 and 17, a wheel 4100 may be provided on the bottom surface of the rail groove 3310 to rotate along the direction in which the mounting plate 3200e is slid. Further, a protrusion 4200 protruding downward may be formed in a region of the mounting plate 3200e corresponding to the wheel 4100. The protrusion 4200 is brought into contact with the wheel 4100 at a position adjacent to the other end of the engaging member 3300 with respect to the center of the wheel 4100 in a state where the mounting plate 3200e is inserted in the right position of the rail groove 3310 / RTI > According to one embodiment, a plurality of wheels 4100 may be provided along the longitudinal direction of the rail groove 3310. The projection 4200 may be provided so as to correspond to one or more of the plurality of wheels 4100 or the wheels 4100. As described above, by providing the wheel 4100, it is easy for the mounting plate 3200e to be inserted into the rail groove 3310. [ The contact of the wheel 4100 and the protrusion 4200 prevents the mounting plate 3200e from being detached from the rail groove 3310 by vibration such as inclination or earthquake of the coupling member 3300. [
도 18은 또 다른 실시 예에 따른 설치 플레이트(3200f)의 일부를 나타낸 사시도이다. 도 19는 도 18의 설치 플레이트(3200f)가 레일 홈(3310)의 정위치에 삽입된 모습을 나타낸 측면도이다. 도 18 및 도 19를 참조하면, 도 16 및 도 17의 경우와 달리, 레일 홈(3310)의 결합 부재(3300)의 타단 방향의 끝단에는 제 1 자석 부재(5100)가 제공된다. 또한, 설치 플레이트(3200f)에는 레일 홈(3310)에 삽입된 상태에서 제 1 자석 부재(5100)에 대응되는 위치에 제 1 자석 부재(5100)와 서로 상이한 극이 마주보도록 제공된 제 2 자석 부재(5200)가 제공된다. 정위치된 설치 플레이트(3200f)는 제 1 자석 부재(5100) 및 제 2 자석 부재(5200)에 의해 레일 홈(3310)의 정위치 상에 유지될 수 있다. 따라서, 제 1 자석 부재(5100) 및 제 2 자석 부재(5200)는 설치 플레이트(3200e)가 결합 부재(3300)의 경사 또는 지진 등의 진동 등에 의해 레일 홈(3310)으로부터 이탈되는 것을 방지한다. 제 1 자석 부재(5100) 및 제 2 자석 부재(5200)는 선택적으로 도 16 및 도 17의 휠(4100) 및 돌기(4200)와 함께 각각 설치 플레이트 및 결합 부재에 제공될 수 있다. 18 is a perspective view showing a part of a mounting plate 3200f according to still another embodiment. 19 is a side view showing the mounting plate 3200f of FIG. 18 inserted into the rail groove 3310 at a predetermined position. Referring to FIGS. 18 and 19, a first magnet member 5100 is provided at an end of the engaging member 3300 of the rail groove 3310 in the other end direction, unlike the case of FIG. 16 and FIG. The mounting plate 3200f is provided with a second magnet member 5100 provided in a position corresponding to the first magnet member 5100 in a state of being inserted into the rail groove 3310 so as to face the first magnet member 5100, 5200). The fixed mounting plate 3200f can be held on the fixed position of the rail groove 3310 by the first magnet member 5100 and the second magnet member 5200. [ The first magnet member 5100 and the second magnet member 5200 prevent the mounting plate 3200e from being detached from the rail groove 3310 by vibration such as inclination or earthquake of the engaging member 3300. [ The first magnet member 5100 and the second magnet member 5200 may optionally be provided with the wheel 4100 and the protrusion 4200 of Figs. 16 and 17, respectively, to the mounting plate and the engaging member.
상술한 바와 같이, 본 발명의 실시 예에 따른 조명 장치 및 이를 포함하는 재배 장치는 설치 플레이트에 발광 부재가 기 설치된 상태에서, 설치 플레이트가 결합 부재의 레일 홈에 슬라이드 되어 삽입되도록 제공된다. 따라서, 재배 유닛 내의 재배 작물의 상부에 발광 부재의 다수개의 단위체를 쉽게 설치할 수 있다.As described above, in the illuminating device and the cultivating device including the illuminating device according to the embodiment of the present invention, the mounting plate is slidably inserted into the rail groove of the engaging member in a state where the light emitting member is installed on the mounting plate. Therefore, a plurality of unit pieces of the light emitting member can be easily installed on the crops in the cultivation unit.
또한, 설치 플레이트의 발광 부재가 설치된 영역 외의 영역에는 SMPS(Switched Mode Power Supply) 및 브릿지 회로 등 광원의 구동에 필요한 다양한 구동 소자가 설치될 수 있다. 이러한 부품 소자는 설치 플레이트의 양면 중 어느 하나 또는 양면 모두에 설치될 수 있다.In addition, various driving elements necessary for driving a light source such as a SMPS (Switched Mode Power Supply) and a bridge circuit may be installed in an area other than the area where the light emitting member of the mounting plate is provided. These component elements can be installed on either or both surfaces of the mounting plate.
또한, 본 발명의 각 실시 예의 설치 플레이트에는 위 또는 아래 방향을 실시간 촬영할 수 있는 카메라가 설치될 수 있다. 설치 플레이트에 카메라가 설치됨으로써, 설치 플레이트의 위 또는 아래에 제공되는 재배 상황을 모니터링 가능하다. 또한, 설치 플레이트에는 카메라, 카메라 및 카메라를 운용하기 위한 다른 장비를 연결하기 위한 구성 및 그 외의 요구되는 구성을 설치하기 위한 단수 또는 복수개의 홀이 형성될 수 있다.In addition, the installation plate of each embodiment of the present invention may be provided with a camera capable of photographing in the up or down direction in real time. By installing the camera on the mounting plate, it is possible to monitor the cultivation situation provided above or below the mounting plate. In addition, the mounting plate may be formed with a single or a plurality of holes for providing a configuration for connecting a camera, a camera, and other equipment for operating the camera, and other required configurations.
또한, 본 발명의 각 실시 예의 설치 플레이트에는 재배 유닛(2100) 내의 온도를 측정하는 온도 센서 및/또는 재배 유닛(2100) 내의 습도를 측정하는 습도 센서가 설치될 수 있다.The mounting plate of each embodiment of the present invention may be provided with a temperature sensor for measuring the temperature in the cultivation unit 2100 and / or a humidity sensor for measuring the humidity in the cultivation unit 2100.
또한 본 발명의 각 실시 예의 설치 플레이트에는 재배 유닛(2100) 내에 공기의 흐름을 발생시켜 재배 유닛(2100) 내의 공기 순환을 개선시킬 수 있는 팬(Fan)이 설치될 수 있다.In addition, the installation plate of each embodiment of the present invention may be provided with a fan capable of generating an air flow in the cultivation unit 2100 to improve air circulation in the cultivation unit 2100.
도 20은 본 발명의 다른 실시예에 따른 에너지 자립형 재배 장치의 사시도이다. 도 21는 도 20의 에너지 자립형 재배 장치의 단면도이다.20 is a perspective view of an energy-standing type cultivating apparatus according to another embodiment of the present invention. 21 is a sectional view of the energy-standing type cultivation apparatus of Fig.
도 20 및 도 21를 참조하면, 본 실시예에 따른 에너지 자립형 재배 장치(100a)는 몸체(110), 재배부(120), 태양광 발전판(130), 집광판(140), 광분배기(150) 및 광섬유 부재(170, 180)를 포함한다.20 and 21, the energy standing type cultivation apparatus 100a according to the present embodiment includes a body 110, a cultivation unit 120, a solar photovoltaic generation plate 130, a condenser plate 140, an optical distributor 150 And optical fiber members 170 and 180, respectively.
본 실시예에 따른 에너지 자립형 재배 장치(100a)는 인삼과 같은 뿌리식물 등의 작물을 재배하기에 적합하도록 제공된다. 계절이나, 주변 기온, 기상 조건, 태풍, 장마 등의 환경 영향을 배제하고, 작물을 주변 환경에 관계 없이 일정하게 생육할 수 있도록, 몸체(110)는 육면체의 컨테이너(container) 형태로 제공될 수 있다. 즉, 본 실시예에 따른 에너지 자립형 재배 장치(100a)는 컨테이너식 재배 장치로 제공될 수 있다.The energy-standing type cultivation apparatus 100a according to the present embodiment is provided to cultivate crops such as root plants such as ginseng. The body 110 may be provided in the form of a container of hexahedron so that the environmental influences of the season, ambient temperature, weather conditions, typhoon, rainy season, etc. are eliminated and the crops are constantly grown regardless of the surrounding environment. have. That is, the energy-standing type cultivation apparatus 100a according to the present embodiment can be provided as a container type cultivation apparatus.
일 실시예로, 몸체(110)는 밀폐 가능한 내부 공간을 가질 수 있다. 재배부(120), 태양광 발전판(130), 집광판(140), 광분배기(150) 및 광섬유 부재(170, 180)는 몸체(110)의 내부 공간에 제공된다. 도시되지 않았으나, 몸체(110)에는 상기 내부 공간으로 출입을 위한 출입구와, 내부 공간을 환기시킬 수 있는 통풍 장치가 마련될 수 있다.In one embodiment, the body 110 may have a sealable interior space. The solar cell module 130, the condenser plate 140, the optical distributor 150 and the optical fiber members 170 and 180 are provided in the inner space of the body 110. Although not shown, the body 110 may be provided with an entrance for entering and exiting the internal space, and a ventilation device for ventilating the internal space.
재배부(120)는 작물을 재배하기 위한 적어도 하나의 재배 유닛(122, 124, 126, 128)이 층을 이루어 배열된다. 도 21에는 재배 유닛(122, 124, 126, 128)이 4개의 층으로 적층된 구조가 도시되어 있으나, 재배부(120)의 층 수는 1층 또는 4층 이외의 복수 층으로 제공되는 것도 가능하다.The growing unit 120 is arranged in layers with at least one cultivation unit 122, 124, 126, 128 for cultivating crops. 21 shows a structure in which the cultivation units 122, 124, 126 and 128 are laminated in four layers, but the number of layers in the cultivation unit 120 may be provided in a plurality of layers other than one or four layers Do.
태양광 발전판(130)은 에너지 자립형으로 작물을 재배할 수 있도록 태양광 에너지를 전기에너지로 변환하여 작물 재배에 활용하기 위한 것으로, 효율적인 발전을 위하여 몸체(110)의 상면에 제공될 수 있다.The photovoltaic power generation board 130 may be provided on the upper surface of the body 110 for efficient power generation by converting solar energy into electrical energy for cultivating the crop so that the crop can be cultivated in an energy independent manner.
태양광 발전판(130)에 의해 변환된 전기에너지는 재배 유닛들(122, 124, 126, 128)로 공급되어 조명 등 작물 재배를 위한 목적으로 활용되거나, 배터리 등의 충전 장치(도시 생략)에 축전될 수 있다.The electric energy converted by the solar power generation plate 130 is supplied to the cultivation units 122, 124, 126 and 128 to be used for the purpose of growing crops such as lighting or to be supplied to a charging device It can be stored.
집광판(140)은 자연광을 수집하여 작물에 직접 조서하여 작물 재배에 활용하기 위한 것으로, 몸체(110)의 외면에 제공되며, 자연광의 집광을 위해 하방을 향하여 오목한 곡면 형상으로 이루어진다. 집광판(140)의 내면은 자연광을 반사시켜 광섬유로 효과적으로 유입시킬 수 있도록 반사도가 높은 물질로 제공될 수 있다.The light collecting plate 140 is provided on the outer surface of the body 110 for collecting natural light and directing the natural light to crops for cultivation of crops. The light collecting plate 140 has a concave curved surface directed downward to collect natural light. The inner surface of the light collecting plate 140 may be provided with a highly reflective material so that natural light can be reflected and effectively introduced into the optical fiber.
도 20의 실시예는 몸체(110)의 상면에서 태양광 발전판(130)과 간섭되지 않는 네 모서리 위치에 4개의 집광판(140)이 설치되어 있으나, 집광판(140)은 1개 또는 4개 외의의 복수 개로 제공될 수도 있다.20, four condenser plates 140 are disposed at four corners of the upper surface of the body 110 so as not to interfere with the photovoltaic plate 130. However, the condenser plate 140 may have one or four As shown in FIG.
집광판(140)은 자연광의 효율적인 수집을 위하여 상부를 향하도록 배치될 수 있다. 집광판(140) 내부에 빗물이나 이물질 등이 유입되지 않도록, 집광판(140)의 상부 개구부에는 투광판(142)이 설치될 수 있다. 또한, 집광판(140)의 상부 개구부에 집광을 위한 렌즈 등의 수단이 설치되는 것도 가능하다. 집광판(140)에 의해 집광된 자연광은 광분배기(150)와 광섬유 부재(170, 180)를 통해 재배 유닛(122, 124, 126, 128)로 전달된다.The light collecting plate 140 may be arranged to face upward for efficient collection of natural light. A light transmitting plate 142 may be installed on the upper opening of the light condensing plate 140 so that rainwater or foreign matter may not flow into the light condensing plate 140. Further, means such as a lens for condensing light may be provided at the upper opening of the light condensing plate 140. The natural light condensed by the condenser 140 is transmitted to the cultivation units 122, 124, 126 and 128 through the optical distributor 150 and the optical fiber members 170 and 180.
도 22는 도 20의 에너지 자립형 재배 장치를 구성하는 집광판, 광분배기 및 광섬유 부재의 단면도이다. 도 20 내지 도 22를 참조하면, 집광판(140)에 의해 집광된 자연광은 집광판(140)의 중심부에 연결되는 광섬유(160)를 통해 광분배기(150)로 전달된다.22 is a sectional view of a light-collecting plate, an optical distributor, and an optical fiber member constituting the energy-standing type cultivation apparatus of Fig. 20 to 22, the natural light condensed by the condenser 140 is transmitted to the optical distributor 150 through the optical fiber 160 connected to the center of the condenser 140.
광분배기(150)는 광섬유(160)의 말단에 구비되어 광섬유(160)를 통해 전달되는 자연광(L)을 자외선(L2)과 비자외선(L1)으로 분배한다. 일 실시예로, 광분배기(150)는 광섬유(160)를 통해 전달되는 자연광(L)의 자외선(L2) 및 비자외선(L1) 중 어느 하나를 투과하고, 다른 하나를 반사하는 빔스플리터(152)로 제공될 수 있다.The optical distributor 150 distributes the natural light L provided at the end of the optical fiber 160 to the ultraviolet light L2 and the non-ultraviolet light L1 through the optical fiber 160. In one embodiment, the optical distributor 150 includes a beam splitter 152 that transmits any one of the ultraviolet light L2 and the non-ultraviolet light L1 of the natural light L transmitted through the optical fiber 160, ). ≪ / RTI >
도 22의 예에서, 빔스플리터(152)는 자연광(L) 중 자외선(L2)을 투과시키고 가시광 등의 비자외선(L1)을 반사시키도록 구성되나, 비자외선을 투과시키고 자외선을 반사시키도록 구성되는 것도 가능하다. 또는, 광분배기(150)는 빔스플리터(152) 뿐 아니라, 광을 자외선과 비자외선으로 분리할 수 있는 장치라면 특별히 제한되지 않고 사용될 수 있다.22, the beam splitter 152 is configured to transmit the ultraviolet light L2 of the natural light L and reflect the non-ultraviolet light L1 such as visible light. However, the beam splitter 152 may be configured to transmit non- . Alternatively, the optical distributor 150 can be used not only as the beam splitter 152 but also as a device capable of separating light into ultraviolet rays and non-ultraviolet rays, without any particular limitation.
일 실시예에서, 광섬유 부재(170, 180)는 광분배기(150)로부터 분기되는 제1 광섬유관(170)과 제2 광섬유관(180)을 포함할 수 있다. 제1 광섬유관(170)은 광분배기(150)에 의해 분배된 비자외선(L1)을 재배 유닛(122, 124, 126, 128)으로 전달한다. 제2 광섬유관(180)은 광분배기(150)에 의해 분배된 자외선(L2)을 재배 유닛(122, 124, 126, 128)으로 전달한다.In one embodiment, the optical fiber members 170 and 180 may include a first optical fiber tube 170 and a second optical fiber tube 180 that are branched from the optical distributor 150. The first optical fiber tube 170 transmits the non-ultraviolet ray L1 distributed by the optical distributor 150 to the growth units 122, 124, 126, The second optical fiber tube 180 transmits ultraviolet rays L2 distributed by the optical distributor 150 to the cultivation units 122, 124, 126, and 128.
제1 광섬유관(170)과 제2 광섬유관(180)은 광커플러(도시 생략) 등의 수단을 이용하여, 적층된 재배 유닛(122, 124, 126, 128) 별로 균일한 광량이 공급되도록 구성될 수 있다.The first optical fiber tube 170 and the second optical fiber tube 180 are configured such that a uniform amount of light is supplied to each of the stacked growth units 122, 124, 126, 128 by means of an optical coupler .
일 예로, n개(n은 2 이상의 정수) 층의 재배 유닛(122, 124, 126, 128)이 적층되어 있는 경우, (n-1)개의 광커플러들이 제공될 수 있으며, 광커플러들은 순차적으로 자연광을 1:(n-k)로 분기하여(k는 광커플러의 순번), 각 층별로 1/n의 자연광을 재배 유닛(122, 124, 126, 128)으로 공급할 수 있다.In one example, (n-1) optical couplers may be provided when n (n is an integer greater than or equal to 2) layers of layered units 122, 124, 126, 128 are stacked, Natural light of 1 / n can be supplied to the cultivation units 122, 124, 126, and 128 for each layer by branching natural light to 1: (nk) (k is an order of the optical couplers).
다른 실시예로, 복수 개의 집광판(140)을 이용하여, 각 집광판(140)에 의해 집광된 자연광이 서로 다른 층의 재배 유닛으로 전달되도록 구성될 경우, 자연광을 복수 층의 재배 유닛으로 분배하기 위한 광커플러는 생략될 수 있다.In another embodiment, in the case where natural light condensed by each condenser plate 140 is transmitted to a plurality of layers of different layers using a plurality of condenser plates 140, The optocoupler can be omitted.
제1 광섬유관(170)을 통해 재배 유닛(122, 124, 126, 128)으로 전달된 비자외선(L1)은 작물에 보조 조명을 제공하는 용도로 활용될 수 있다. 제2 광섬유관(180)을 통해 재배 유닛(122, 124, 126, 128)으로 전달된 자외선(L2)은 작물의 뿌리에 곰팡이가 피는 것을 방지하도록 작물의 뿌리를 살균하는 용도로 활용될 수 있다.The non-ultraviolet ray L1 transmitted to the cultivation unit 122, 124, 126, 128 through the first optical fiber pipe 170 can be utilized for providing auxiliary illumination to crops. Ultraviolet rays L2 transmitted to the cultivation units 122, 124, 126 and 128 through the second optical fiber pipe 180 can be used to sterilize the roots of the crops to prevent fungi from spreading on the roots of the crops .
도 23은 도 20의 에너지 자립형 재배 장치를 구성하는 재배 유닛의 단면도이다. 도 20 내지 도 23을 참조하면, 재배 유닛(122)은 수경재배를 위하여 재배틀(122a), 지지부재(122b), 공급부(122c) 및 배수부(122d)를 포함할 수 있다.Fig. 23 is a sectional view of a cultivation unit constituting the energy-standing type cultivation apparatus of Fig. 20; Fig. 20 to 23, the cultivation unit 122 may include a re-battle 122a, a support member 122b, a supply part 122c, and a drain part 122d for hydroponic cultivation.
재배틀(122a)은 판 형태로 이루어질 수 있다. 일 예로, 재배틀(122a)은 스티로폼 등의 판부재로 제공될 수 있다. 재배틀(122a)에는 종방향 및 횡방향으로 구멍들이 소정 간격으로 관통된다.The re-battle 122a may be in the form of a plate. As an example, the re-battle 122a may be provided as a plate member such as styrofoam. In the re-battle 122a, the holes penetrate in the longitudinal direction and the transverse direction at predetermined intervals.
지지부재(122b)는 재배틀(122a)에 형성된 구멍에 삽입되어 작물(10)의 줄기 부분을 지지할 수 있다. 일 예로, 지지부재(122b)는 스펀지 등의 부재로 제공될 수 있다.The support member 122b can be inserted into the hole formed in the re-battle 122a to support the stem portion of the crop 10. [ In one example, the support member 122b may be provided with a member such as a sponge.
공급부(122c)는 재배틀(122a)의 하부에 제공되며, 펌프 등의 수단에 의해 배관(도시 생략)을 통해 물과 양분을 공급받아 노즐을 통해 상방으로 분무하여 작물(10)의 뿌리(12) 부분에 물과 양분을 공급할 수 있다.The supply part 122c is provided below the re-battle 122a and supplies water and nutrients through piping (not shown) by means of a pump or the like to spray upward through the nozzles to supply the roots 12 ) Can be supplied with water and nutrients.
배수부(122d)는 작물(10)의 뿌리(12) 부분에 공급된 후 낙하되는 물과 양분을 회수하기 위한 것으로, 재배 유닛(122)의 저부에 제공된다. 배수부(122d)에 의해 회수된 물과 양분은 공급탱크로 전달되어 순환되며, 이에 따라 물과 양분의 사용량을 줄여 재배 비용을 절감할 수 있다.The drain portion 122d is provided at the bottom of the cultivation unit 122 for recovering water and nutrients to be dropped after being supplied to the root portion 12 of the crop 10. [ Water and nutrients recovered by the drainage section 122d are transferred to the supply tank and circulated, thereby reducing the amount of water and nutrients used thereby reducing the cultivation cost.
재배 유닛(122)의 상부에는 재배 유닛(122) 내에 재배 중인 작물(10)의 줄기 및 잎 부분에 광을 조명하는 조명 장치(132)가 제공된다. 조명 장치(132)는 태양광 발전판(130)에 의해 변환된 전기에너지를 이용하여 작물(10)에 인공광을 조명할 수 있다. 일 실시예로, 조명 장치(132)는 발광장치(LED; Light Emitting Diode) 등의 면발광 장치로 제공될 수 있다.Above the cultivation unit 122 is provided an illumination device 132 for illuminating light on the stem and leaf portions of the crop 10 being cultivated in the cultivation unit 122. [ The illumination device 132 can illuminate the crop 10 with artificial light using the electric energy converted by the solar power generation plate 130. In one embodiment, the illumination device 132 may be provided as a surface emitting device such as a light emitting diode (LED).
본 발명의 일 실시예에 따르면, 상기 조명 장치(132)는 자색광과 적색광을 동시에 조명하는 핑크 LED 광원을 포함할 수 있다. 핑크 LED 광원에 대해서는 뒤에서 상세하게 설명하기로 한다.According to one embodiment of the present invention, the illumination device 132 may include a pink LED light source that simultaneously illuminates the purple light and the red light. The details of the pink LED light source will be described later.
본 발명의 다른 실시예에 따르면, 상기 조명 장치(132)는 백색광을 제공하는 백색 LED 및 적색광을 제공하는 적색 LED를 포함할 수 있다. 이 실시예에서 백색 LED와 적색 LED는 서로 인접하도록 배치되어 작물에 백색광과 적색광을 동시에 조사할 수 있다. 여기서, 적색광은 파장이 660 nm일 수 있으나 이에 제한되지는 않는다.According to another embodiment of the present invention, the illumination device 132 may include a white LED providing white light and a red LED providing red light. In this embodiment, the white LED and the red LED are arranged adjacent to each other so that white light and red light can be simultaneously irradiated to the crop. Here, the red light may have a wavelength of 660 nm, but is not limited thereto.
재배틀(122a)의 상부에는 작물(10)의 줄기와 잎 부분에 적정 광의 보조 조명을 제공하기 위한 보조 조명 장치(172)가 제공된다. 제1 광섬유관(170)을 통하여 보조 조명 장치(172)로 전달되는 비자외선은 투광창(174)을 통해 작물(10)로 공급된다.Above the re-battle 122a is provided an auxiliary illumination device 172 for providing auxiliary light for the appropriate light to the stem and leaf portions of the crop 10. [ Non-ultraviolet rays transmitted to the auxiliary illumination device 172 through the first optical fiber pipe 170 are supplied to the crop 10 through the light transmitting window 174. [
일 실시예로, 조명 장치(132)는 보조 조명 장치(172)에 의해 제공되는 자연광의 광량에 따라 조명 광량을 조절하도록 제공될 수 있다. 이를 위해, 보조 조명 장치(172)로 전달되는 비자외선의 광량을 측정하기 위한 측정 장치(도시 생략)가 제공될 수 있으며, 측정된 비자외선 광량을 기준값과 비교하여, 기준값과 비자외선 광량의 차이값에 따라 조명 장치(132)의 광도를 조절할 수 있다.In one embodiment, the illumination device 132 may be provided to adjust the amount of illumination light according to the amount of natural light provided by the auxiliary illumination device 172. For this purpose, a measuring device (not shown) for measuring the amount of non-ultraviolet light transmitted to the auxiliary illuminator 172 may be provided, and the measured non-ultraviolet light amount may be compared with a reference value to determine the difference between the reference value and the non- The brightness of the illumination device 132 can be adjusted according to the value.
작물(10)에 자연광의 강한 자외선이 조사될 경우, 작물(10)의 잎이 타들어가 광합성 등의 작용을 원활하게 하지 못하여 작물(10)의 생육에 악영향을 미칠 수 있으나, 본 실시예에 의하면, 광분배기(150)에 의해 자외선을 배제한 비자외선만을 작물(10)에 공급함으로써, 작물(10)의 재배에 필요한 적정 자연광을 제공하면서도 강한 자외선에 의한 일소현상을 방지할 수 있다.When strong ultraviolet rays of natural light are irradiated on the crop 10, the leaves of the crop 10 burn and the photosynthesis and the like can not be smoothly performed, and the growth of the crop 10 may be adversely affected. However, Only the non-ultraviolet rays excluding ultraviolet rays are supplied to the crop 10 by the optical distributor 150 so that sunlight due to strong ultraviolet rays can be prevented while providing appropriate natural light necessary for cultivation of the crop 10.
또한, 본 실시예에 의하면, 자연광을 보조 광원으로 작물(10)에 제공함으로서, 보조 조명 장치(172)에 의해 작물(10)에 제공되는 비자외선 광량만큼 조명 장치(132)의 전력 사용량을 줄일 수 있다.According to this embodiment, natural light is supplied to the crop 10 as an auxiliary light source, so that the power consumption of the illumination device 132 is reduced by the amount of non-ultraviolet light provided to the crop 10 by the auxiliary illumination device 172 .
또한, 밀폐되어 있는 컨테이너식 재배 장치의 경우, 복수 층의 재배 유닛이 적층되어 구성되면, 자연광이 하부 층의 재배 유닛으로 전달되지 않아 각 층별로 작물에 균일한 광이 공급되지 않을 수 있으나, 본 실시예에 의하면, 제1 광섬유관(170)을 통하여 각 층별로 균일한 자연광(비자외선)을 제공하여, 전 층에 걸쳐서 작물을 표준 재배할 수 있다.In the closed container type cultivation apparatus, when a plurality of cultivation units are stacked, the natural light is not transmitted to the cultivation unit of the lower layer, so that uniform light may not be supplied to each crop in each layer. According to the embodiment, uniform natural light (non-ultraviolet rays) can be provided for each layer through the first optical fiber pipe 170, and crops can be standard cultured over all the layers.
재배틀(122a)의 하부에는 자외선 발생 장치(190)가 제공될 수 있다. 자외선 발생 장치(190)는 작물(10)의 뿌리(12) 부분에 자외선을 조사하여 작물(10)의 뿌리(12)에 곰팡이가 피는 것을 방지한다. 광분배기(150)에 의해 분배된 자외선은 제2 광섬유관(180)을 통해 자외선 발생 장치(190)로 전달된다.The ultraviolet ray generator 190 may be provided below the re-battle 122a. The ultraviolet ray generator 190 irradiates ultraviolet rays to the root 12 of the crop 10 to prevent the root 12 of the crop 10 from getting moldy. The ultraviolet rays distributed by the optical distributor 150 are transmitted to the ultraviolet ray generator 190 through the second optical fiber tube 180.
재배 유닛(122, 124, 126, 128) 별로 상이한 작물을 재배하는 경우에는 각 재배 유닛(122, 124, 126, 128) 마다 작물에 조명(인공 조명 및/또는 자연광), 자외선 광량, 물과 양분의 성분과 공급량 등이 상이하게 조절될 수 있으며, 작물 별 생육 과정에 따라 재배 조건이 조절될 수 있다.When cultivating different crops for each of the cultivation units 122, 124, 126 and 128, the crops are irradiated with light (artificial light and / or natural light), ultraviolet light amount, water and nutrients Can be controlled in different ways, and the cultivation conditions can be controlled according to the growth process of each crop.
아래의 표1은 식물의 광수용체의 흡수파장 범위와 각종 광원의 광분배율의 특성을 나타내는 것으로 광 수용체인 클로로필(chlorophyll)의 광 흡수 스펙트럼은 주로 청색 또는 자색과 적색에 집중되어 있음을 알 수 있다.Table 1 below shows the characteristics of the absorption wavelength range of the photoreceptor of plants and the light distribution ratio of various light sources. It can be seen that the light absorption spectrum of the photoreceptor chlorophyll is mainly concentrated in blue, purple and red .
주요 광반응Major photoreaction | 광수용체Photoreceptor | 주요 흡수파장 범위 (nm)Main absorption wavelength range (nm) |
광합성photosynthesis | ChlorophyllChlorophyll | 청색: 400-500적색: 640-700Blue: 400-500 Red: 640-700 |
CarotenoidCarotenoid | 청색: 400-530Blue: 400-530 | |
광형태 형성Optical shaping | PhytochromePhytochrome | UV-A+청색: 380-480적색: 540-690원적색:700-750 (광주성반응)UV-A + Blue: 380-480 Red: 540-690 Red: 700-750 (Guangzhou reaction) |
CryptochromeCryptochrome | UV-A380 부근청색: 450 부근 Near UV-A380 Blue: Near 450 | |
PhototropinPhototropin | UV-A380 부근청색:450 부근 (굴광성 반응) UV-near A380 Blue: near 450 (light-sensitive reaction) |
광합성에 최적인 광분배율은 청색광 24%, 녹색광 32% 그리고 적색광 44%인 것으로 보고되고 있으며, 더욱이 식물의 형상(잎과 줄기의 성장)은 660nm(적색광; Red)과 730nm(원적색광: Far-Red)의 파장대를 포함하는 광자속비(R/FR)와 밀접한 상관관계가 있는 것으로 알려져 있다. 이값이 너무 커지면 잎과 줄기가 제대로 성장하지 못하는데, 대체로 백열전구를 제외한 인공광원은 자연광에 비해 R/FR 수치가 크기 때문에 식물이 성장하는데 충분한 광 환경을 충족시키지 못하고 있다. The optimal light distribution for photosynthesis is reported to be 24% of blue light, 32% of green light and 44% of red light, and the shape of the plant (leaf and stem growth) is 660 nm (red light) and 730 nm (far red light: Far- (R / FR), which includes the wavelength range of red (R) and red (R). If this value is too large, the leaves and stems do not grow properly. Artificial light sources, except for incandescent bulbs, generally do not have enough light environment to grow plants because of their large R / FR values compared with natural light.
따라서 자연광(광자속비: R/FR=1)에 가까운 광원을 개발하거나, 식물생장에 최적인 광 분배율 조건이 필요하다. Therefore, it is necessary to develop a light source close to natural light (photon ratio ratio: R / FR = 1) or an optimum light distribution ratio condition for plant growth.
일반적으로 청색 LED만으로는 식물의 광합성에 필요한 680nm 범위의 파장이 나오지 않아 실제 식물공장에서는 청색, 백색, 적색 LED를 적절한 비율로 조합하여 식물의 인공 광합성을 위한 광원으로 사용한다.In general, blue LEDs do not emit wavelengths of 680 nm required for photosynthesis of plants, and blue, white, and red LEDs are used as light sources for plant artificial photosynthesis in actual plants.
이럴 경우 수명이나 발광효율은 상승하나 비용 측면에서는 오히려 불리한 측면이 존재한다.In this case, the lifetime or luminous efficiency is increased, but there is a disadvantage in cost.
따라서 본 발명의 실시예에 따른 식물의 인공 광합성을 위한 인조 광원은 하나의 광원만을 사용하여 식물 광합성에 필요한 두 파장인 440nm 범위의 파장과 680nm 범위의 파장이 동시에 조사될 수 있도록 하여 식물공장의 소비전력을 획기적으로 감소시켜 경제성을 도모하고자 하는 발명이다.Therefore, the artificial light source for artificial photosynthesis of plants according to the embodiment of the present invention uses only one light source to simultaneously irradiate a wavelength of 440 nm and a wavelength of 680 nm required for plant photosynthesis, It is an invention which aims to economically reduce electric power dramatically.
본 발명의 일 실시예에 따른 식물의 인공 광합성을 위한 인조 광원은 도 24를 참조하면, 청색 LED 광원(10a) 및 적색 형광물질(20a)을 포함한다.Referring to FIG. 24, the artificial light source for artificial photosynthesis of plants according to an embodiment of the present invention includes a blue LED light source 10a and a red fluorescent material 20a.
440nm 범위의 파장을 발생시키며 발광하는 청색 LED 광원에 600 nm에서 700nm 범위의 파장을 발생하며 발광하는 적색 형광물질를 도포한다.The blue LED light source generates a wavelength in the range of 440 nm and emits a red fluorescent material emitting a wavelength in the range of 600 nm to 700 nm.
이 광원에 전원을 공급하여 발광시키면 조사된 광원의 색깔이 핑크색을 띠게 된다.When power is supplied to the light source to emit light, the color of the irradiated light source becomes pink.
이때 광원에서 조사된 핑크색에는 분광 분석기를 통해 스펙트럼 분석을 한 결과 도 25a 및 도 25b에 도시된 바와 같이 식물의 광합성에 필요한 440nm 범위의 파장과 680nm 범위의 파장을 동시에 발생시킨다.At this time, the pink color irradiated from the light source was subjected to spectral analysis through a spectroscopic analyzer. As a result, as shown in FIGS. 25A and 25B, a wavelength in the range of 440 nm and a wavelength in the range of 680 nm required for photosynthesis of the plant were simultaneously generated.
또한, 도 26의 색좌표에 도시된 바와 같이 청색 또는 자색과 적색이 동시에 나타나는 것을 알 수 있다.Further, as shown in the color coordinates of FIG. 26, it can be seen that blue or purple and red appear at the same time.
도 27은 본 발명의 일 실시예에 따라 제작된 핑크 LED 광원에서 광이 발광되는 모습을 촬영한 이미지이다. 도 27과 같이 본 발명의 일 실시예에 따라 청색 LED에 적색 형광물질이 도포된 광원은 핑크색 광을 발산함을 확인할 수 있다.27 is an image of a light emitted from a pink LED light source according to an exemplary embodiment of the present invention. As shown in FIG. 27, it can be confirmed that a light source coated with a red fluorescent material emits pink light according to an embodiment of the present invention.
한편, 적색 형광물질로 M2Si5N8:Eu2+ 이 사용될 수 있다. 여기서 M은 Ca, Sr, Ba 중 어느 한 원소가 사용될 수 있다.On the other hand, M 2 Si 5 N 8: Eu 2+ can be used as a red fluorescent material. Here, M may be any element of Ca, Sr, or Ba.
M2Si5N8:Eu2+ (M=Ca, Sr, Ba) 는 적색 인광물질로써 도 28에 도시한 발광 스펙트럼(luminescence spectra) 상에서 약 650nm 범위의 피크 파장을 가지는 것을 알 수 있다.It can be seen that M 2 Si 5 N 8: Eu 2+ (M = Ca, Sr, Ba) is a red phosphor and has a peak wavelength in a range of about 650 nm on the luminescence spectrum shown in FIG.
CaAlSiN3:Eu2+ 또한, 적색 형광물질로써 도 29에 도시한 바와 같이 약 650nm 범위의 피크 파장을 가지므로 본 발명의 청색 LED를 도포할 수 있는 적색 형광물질 사용될 수 있다.CaAlSiN 3: Eu 2+ As a red phosphor, as shown in FIG. 29, since it has a peak wavelength in the range of about 650 nm, a red phosphor capable of applying the blue LED of the present invention can be used.
적색 형광물질로 6MgO·As2O5:Mn4+ , 3.5MgO·0.5MgF2·GeO2:Mn4+ 또한 도 30과 도 31에 도시한 바와 같이 약 650nm 범위의 피크 파장을 가지는 것을 알 수 있어 본 발명의 청색 LED에 도포할 수 있는 적색 형광물질 사용될 수 있다.As a red fluorescent substance 6MgO · As 2 O 5: Mn 4+, 3.5MgO · 0.5MgF 2 · GeO 2: Mn 4+ also be seen that has a peak wavelength of about 650nm range as shown in Fig. 30 and Fig. 31 A red fluorescent material that can be applied to the blue LED of the present invention can be used.
나아가, 본 발명의 다른 실시예에 따르면, 식물의 인공 광합성을 위한 인조 광원은 청색 LED 광원에 적색 형광물질 및 녹색 형광물질을 도포함으로써 형성될 수도 있다. 이 경우, 적색 형광물질 및 녹색 형광물질은 기 결정된 비율로 혼합되어 청색 LED 광원에 도포될 수 있다.Furthermore, according to another embodiment of the present invention, the artificial light source for artificial photosynthesis of plants may be formed by applying a red fluorescent material and a green fluorescent material to a blue LED light source. In this case, the red fluorescent material and the green fluorescent material may be mixed in a predetermined ratio and applied to the blue LED light source.
예를 들어, 이 실시예에 따르면 적색 형광물질과 녹색 형광물질은 약 6:4의 중량비율로 혼합되어 청색 LED 광원에 도포될 수 있다.For example, according to this embodiment, the red fluorescent material and the green fluorescent material may be mixed in a weight ratio of about 6: 4 and applied to the blue LED light source.
그 결과, 본 발명의 실시예에 따른 인조 광원은 청색광 또는 자색광과 녹색광 그리고 적색광을 함께 조사하여 식물에게 광합성에 필요한 광을 공급할 수 있다.As a result, the artificial light source according to the embodiment of the present invention can supply blue light, purple light, green light, and red light together to supply light required for photosynthesis to the plant.
이 실시예에서 녹색 형광물질은 모체 결정 BaMoO4에 서로 다른 농도를 갖는 활성제 이온 Tb3+을 도핑하여 제작될 수 있다. 구체적으로, 상기 녹색 형광물질을 제조하는 방법은 다음과 같다.In this embodiment, the green fluorescent material can be prepared by doping activator ion Tb 3+ having different concentration in the host crystal BaMoO 4 . Specifically, the method for producing the green fluorescent material is as follows.
상기 녹색 형광물질을 제조하기 위해 BaMoO4:Tb3+ 형광체는 고상반응법을 사용하여 합성하였다. 초기 물질 BaCO3(순도: 99.995%), MoO3 (99.9%), Tb4O7 (99.9 %)를 화학양론적으로 준비하였으며, Tb3+ 이온의 농도(x)를 각각 0, 1, 5, 10, 15, 20 mol%로 변화시켰으며, 화학 반응은 아래의 식과 같다:The BaMoO 4 : Tb 3+ phosphor was synthesized using the solid phase reaction method to produce the green phosphor. The starting materials BaCO 3 (purity: 99.995%), MoO 3 ( 99.9%), Tb 4 O 7 was prepared the (99.9%) to the stoichiometric, Tb 3+ ion concentration (x) of each of 0, 1, 5 , 10, 15 and 20 mol%, respectively, and the chemical reaction was as follows:
(1 - 1.5x)BaCO3 + MoO3 + 0.25xTb4O7 → Ba1-1.5xMoO4: xTb + (1 - 1.5x)CO2 + 0.125O2
(1 - 1.5x) BaCO 3 + MoO 3 + 0.25xTb 4 O 7 ? Ba 1-1.5x MoO 4 : xTb + (1 - 1.5x) CO 2 + 0.125O 2
정밀 저울로 측량한 초기 물질을 농도별로 각각 분리하여 에탄올, ZrO2 볼과 함께 플라스틱 병에 넣고 10 시간 볼밀(ball-mill) 작업을 수행한 후, 비커에 담아서 60 ℃에서 10 시간의 건조 과정을 거쳐서 건조한 시료를 80 μm의 미세한 크기로 갈아서 6 개의 알루미나 도가니에 담아 400 ℃에서 3 시간의 하소 공정과 1100 ℃에서 5 시간의 소결 공정을 통하여 합성하였다.Each of the initial materials measured by the precision scale was separated by the concentration, and the resultant was put into a plastic bottle together with ethanol and ZrO 2 balls, followed by ball-milling for 10 hours. The ball-mill was then placed in a beaker and dried at 60 ° C. for 10 hours The dried samples were finely pulverized to 80 μm in size and synthesized by calcination at 400 ° C. for 3 hours and sintering at 1100 ° C. for 5 hours in 6 alumina crucibles.
더 나아가, 본 발명의 또 다른 실시예에 따르면, 식물의 인공 광합성을 위한 인조 광원은 청색 LED 광원에 황색 형광물질을 도포함으로써 형성될 수도 있다.Further, according to another embodiment of the present invention, the artificial light source for artificial photosynthesis of plants may be formed by applying a yellow fluorescent material to a blue LED light source.
이 경우, 황색 형광물질은 실리케이트계, 가넷계의 야그(YAG) 및 옥시나이트라이드계 형광물질 중 적어도 하나일 수 있다. 황색 형광물질은 Y3Al5O12:Ce3+(Ce:YAG), CaAlSiN3:Ce3+, Eu2+-SiAlON 계열 중에서 선택된 형광물질, BOSE 계열 중에서 선택된 것, 또는 이들이 혼합된 것일 수 있다. 황색 형광물질은 또한 원하는 파장의 광 출력을 제공하기 위해 임의의 적합한 레벨로 도핑될 수 있다. Ce 및 Eu 중 적어도 하나가 약 0.1 내지 약 20% 범위의 도펀트 농도로 형광 물질에 도핑될 수 있다.In this case, the yellow fluorescent material may be at least one of a silicate-based, garnet-based YAG and an oxynitride-based fluorescent material. The yellow fluorescent material may be selected from the fluorescent materials selected from Y 3 Al 5 O 12 : Ce 3+ (Ce: YAG), CaAlSiN 3 : Ce 3+ , Eu 2+ -SiAlON series, BOSE series, have. The yellow fluorescent material may also be doped to any suitable level to provide light output of the desired wavelength. At least one of Ce and Eu may be doped into the fluorescent substance at a dopant concentration ranging from about 0.1 to about 20%.
도 32는 본 발명의 일 실시예에 따른 에너지 자립형 컨테이너식 재배 장치를 구성하는 자외선 발생 장치의 구성도이다. 도 23 및 도 32를 참조하면, 자외선 발생 장치(190)는 자외선 조사부(192)와, 자외선 발생기(194) 및 측정부(196)를 포함한다.32 is a configuration diagram of an ultraviolet ray generator constituting an energy-standing container type cultivation apparatus according to an embodiment of the present invention. 23 and 32, the ultraviolet ray generator 190 includes an ultraviolet ray irradiator 192, an ultraviolet ray generator 194, and a measuring unit 196.
자외선 조사부(192)는 제2 광섬유관(180)을 통해 전달되는 자외선을 작물(10)의 뿌리(12) 부분에 조사하여 곰팡이 발생을 방지한다. 자외선 발생기(194)는 제2 광섬유관(180)을 통해 공급되는 자외선의 세기가 뿌리 곰팡이 방지를 위해 충분하지 않은 경우, 자외광을 생성하여 작물(10)의 뿌리(12) 부분에 조사한다.The ultraviolet ray irradiating unit 192 irradiates ultraviolet rays transmitted through the second optical fiber tube 180 to the roots 12 of the crop 10 to prevent the generation of mold. The ultraviolet ray generator 194 generates ultraviolet light and irradiates the root 12 of the crop 10 when the intensity of ultraviolet rays supplied through the second optical fiber 180 is not sufficient to prevent root mold.
측정부(196)는 제2 광섬유관(180)을 통해 전달되는 자외선의 광량을 측정한다. 예를 들어, 측정부(196)는 제2 광섬유관(180)을 통해 전달되는 자외선의 일부를 광커플러에 의해 분기시켜 그 광량을 측정함으로써 이로부터 제2 광섬유관(180)을 통해 전달되는 자외선의 광량을 측정할 수 있다.The measuring unit 196 measures the amount of ultraviolet light transmitted through the second optical fiber tube 180. For example, the measurement unit 196 divides a part of the ultraviolet ray transmitted through the second optical fiber tube 180 by an optical coupler, measures the amount of the light, and irradiates the ultraviolet ray transmitted through the second optical fiber tube 180 It is possible to measure the light amount of the light source.
자외선 발생기(194)는 측정부(196)에 의해 측정된 자외선 광량을 기준 광량과 비교하여, 측정된 자외선의 광량이 기준 광량에 미달하는 경우, 그 차이값(기준 광량 - 자외선 광량)에 비례하는 자외광을 생성하여 작물(10)의 뿌리(12) 부분에 조사할 수 있다.The ultraviolet ray generator 194 compares the ultraviolet light quantity measured by the measuring unit 196 with the reference light quantity, and when the light quantity of the measured ultraviolet light is lower than the reference light quantity, the ultraviolet light generator 194 compares the difference (reference light quantity- ultraviolet light quantity) Ultraviolet light can be generated and irradiated to the root 12 portion of the crop 10.
본 실시예에 의하면, 광분배기(150)에 의해 분리된 자외선을 작물의 뿌리 살균을 위한 용도로 활용함으로써, 자연광을 이용하여 작물의 뿌리에 곰팡이가 피는 것을 방지하여 자외선 공급을 위한 비용을 절감할 수 있으며, 농약을 사용하지 않고 뿌리 곰팡이를 방지할 수 있다. 또한, 자연광(자외선)의 광량에 따라 자외선 발생기(194)의 자외광 공급량을 조절함으로써, 효율적이고 경제적으로 뿌리 곰팡이를 방지할 수 있다.According to this embodiment, since ultraviolet rays separated by the optical distributor 150 are used for roots sterilization of crops, it is possible to prevent fungi from roots of crops by using natural light, thereby reducing the cost for supplying ultraviolet rays And can prevent root mold without using pesticides. Further, by controlling the ultraviolet light supply amount of the ultraviolet ray generator 194 according to the amount of natural light (ultraviolet ray), it is possible to efficiently and economically prevent root fungi.
도 33은 본 발명의 또 다른 실시예에 따른 에너지 자립형 재배 장치를 구성하는 집광판의 단면도이다. 도 34는 도 33의 집광판의 평면도이다. 도 35는 도 33의 집광판의 동작 상태를 보여주는 단면도이다.33 is a cross-sectional view of a light-condensing plate constituting an energy-standing type cultivating apparatus according to another embodiment of the present invention. 34 is a plan view of the light collecting plate of Fig. 33; 35 is a sectional view showing the operation state of the light collecting plate of FIG. 33;
도 33 및 도 34의 실시예에 따른 에너지 자립형 재배 장치는 집광판(140)의 둘레 방향을 따라 내장되는 복수 개의 열전 소자(144a-d)를 포함하는 감지부와, 복수 개의 열전 소자(144a-d)의 온도 차이에 따라 감지부에 의해 생성되는 전기신호에 따라 집광판(140)의 방향(각도)을 조절하는 구동부(146)를 포함하는 점에서 앞서 설명한 실시예와 차이가 있다.33 and 34 includes a sensing unit including a plurality of thermoelectric elements 144a-d embedded along the circumferential direction of the condenser 140, and a plurality of thermoelectric elements 144a-d (Angle) of the condenser plate 140 in accordance with an electrical signal generated by the sensing unit according to a temperature difference between the condenser 140 and the condenser 140. In the embodiment shown in FIG.
감지부는 복수 개의 열전 소자(144a-d)의 온도 차이에 따라 전기신호를 생성한다. 일 실시예에서, 감지부는 제 1 방향(X)을 따라 집광판(140)의 양측에 제공되는 제1 열전소자 쌍(144a-b)과, 제 1 방향(X)에 수직인 제 2 방향(Y)을 따라 집광판(140)의 양측에 제공되는 제2 열전소자 쌍(144c-d)을 포함한다.The sensing unit generates an electrical signal according to a temperature difference between the plurality of thermoelectric elements 144a-d. In one embodiment, the sensing unit includes a first pair of thermoelectric elements 144a-b provided on both sides of the condenser 140 along a first direction X and a pair of first thermoelectric elements 144a-b provided in a second direction Y And a second pair of thermoelectric elements 144c-d provided on both sides of the condenser 140 along the first pair of thermoelectric elements 144c-d.
일 실시예에서, 구동부(146)는 제1 열전소자 쌍(144a-b)의 온도 차이에 따라 집광판(140)을 제 1 방향(X)으로 회동시키는 제1 구동장치(146a)와, 제2 열전소자 쌍(144c-d)의 온도 차이에 따라 집광판(140)을 제 2 방향(Y)으로 회동시키는 제2 구동장치(146b)를 포함할 수 있다.The driving unit 146 includes a first driving device 146a for rotating the condenser plate 140 in the first direction X in accordance with the temperature difference of the first pair of thermoelectric elements 144a-b, And a second driving device 146b for rotating the condenser plate 140 in the second direction Y in accordance with the temperature difference of the pair of thermoelectric elements 144c-d.
예를 들어, 태양으로부터 입사되는 자연광(SL)에 대해 집광판(140)이 도 14에 도시된 바와 같이 기울어진 경우, 제1 열전소자 쌍(144a-b) 중 제2 열전소자(144b) 측으로 입사되는 자연광이 감소하고, 제1 열전소자(144a) 측으로 입사되는 자연광의 단위 면적당 광량이 증가하게 된다. 이에 따라, 제1 열전소자(144a)와 제2 열전소자(144b) 간에 온도 차이가 발생하게 되고, 그 온도 차이에 따라 전기신호가 생성된다.For example, when the condenser plate 140 is tilted with respect to the natural light SL incident from the sun as shown in Fig. 14, the light is incident on the second thermoelectric element 144b of the first pair of thermoelectric elements 144a-b And the amount of light per unit area of the natural light incident on the first thermoelectric element 144a side increases. Accordingly, a temperature difference occurs between the first thermoelectric element 144a and the second thermoelectric element 144b, and an electric signal is generated according to the temperature difference.
구동부(146)는 열전소자들(144a-b)(144c-d)의 온도 차이에 따라 발생하는 전기신호에 따라 집광판(140)을 회동시킨다. 도 14의 경우, 제1 구동장치(146a)는 도 16의 도시와 같이 집광판(140)을 제 1 방향(X)으로 시계 방향으로 회동시켜 집광판(140)의 방향(각도)을 조절하며, 그에 따라 집광판(140)의 개구면이 자연광(SL)에 수직한 방향으로 배치되어 효율적으로 자연광(SL)을 수집할 수 있게 된다.The driving unit 146 rotates the condenser plate 140 according to an electrical signal generated according to a temperature difference between the thermoelectric elements 144a-b and 144c-d. 14, the first driving device 146a adjusts the direction (angle) of the condenser plate 140 by rotating the condenser plate 140 clockwise in the first direction X as shown in FIG. 16, The opening surface of the light collecting plate 140 is arranged in a direction perpendicular to the natural light SL to efficiently collect the natural light SL.
본 실시예에 의하면, 자연광을 수집하기 위한 집광판의 형상 및 특성을 이용하여 열전소자들(thermoelectric elements)을 도입함으로써, 자연광을 이용하여 집광판의 방향(각도)을 조절할 수 있으며, 저비용으로 자연광의 수집 효율을 높일 수 있다. 도 34에는 4개의 열전소자들을 이용하여 집광판(140)을 구동하는 예가 도시되어 있으나, 열전소자들의 개수 및 배열은 다양하게 변형될 수 있다.According to this embodiment, the direction (angle) of the light condensing plate can be adjusted by using natural light by introducing thermoelectric elements using the shape and characteristics of the light collecting plate for collecting natural light, The efficiency can be increased. Although FIG. 34 shows an example of driving the condenser plate 140 using four thermoelectric elements, the number and arrangement of the thermoelectric elements can be variously modified.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The foregoing detailed description is illustrative of the present invention. In addition, the foregoing is intended to illustrate and explain the preferred embodiments of the present invention, and the present invention may be used in various other combinations, modifications, and environments. That is, it is possible to make changes or modifications within the scope of the concept of the invention disclosed in this specification, within the scope of the disclosure, and / or within the skill and knowledge of the art. The embodiments described herein are intended to illustrate the best mode for implementing the technical idea of the present invention and various modifications required for specific applications and uses of the present invention are also possible. Accordingly, the detailed description of the invention is not intended to limit the invention to the disclosed embodiments. It is also to be understood that the appended claims are intended to cover such other embodiments.
Claims (20)
- 작물을 재배하기 위한 적어도 하나의 재배 유닛이 층을 이루어 배열되는 재배부와;A growing section in which at least one cultivation unit for cultivating crops is arranged in layers;상기 재배 유닛 내에 재배 중인 작물에 인공광을 조사하는 조명 장치를 포함하되,And a lighting device for irradiating artificial light to the crops cultivated in the cultivation unit,상기 조명 장치는,The illumination device includes:전기를 이용하여 빛을 발생시키는 광원을 가지는 발광 부재와;A light emitting member having a light source for generating light using electricity;상기 발광 부재가 설치되는 설치 플레이트와;A mounting plate on which the light emitting member is installed;상기 재배 유닛 내에 고정되고, 상기 설치 플레이트를 지지하는 결합 부재를 포함하고,And an engaging member fixed within the cultivation unit and supporting the mounting plate,상기 결합 부재의 측면에는, 상기 설치 플레이트의 양 끝단 중 하나가 상기 결합 부재의 일단으로부터 타단을 향한 방향으로 슬라이드되어 삽입되는 레일 홈이 형성되는 재배 장치.Wherein a rail groove is formed in a side surface of the engaging member so that one of both ends of the engaging member is slidably inserted into the rail groove from one end of the engaging member toward the other end.
- 제 1 항에 있어서,The method according to claim 1,상기 설치 플레이트 및 상기 결합 부재는 금속 재질로 제공되는 재배 장치.Wherein the mounting plate and the engaging member are made of a metal material.
- 제 1 항에 있어서,The method according to claim 1,상기 설치 플레이트에는 일면은 오목하고 반대면은 볼록하게 제공된 비드가 형성되는 재배 장치.Wherein the mounting plate is formed with a bead provided on one side thereof concave and on the opposite side convex.
- 제 1 항에 있어서,The method according to claim 1,상기 결합 부재는 사각 기둥 형상으로 제공되고,Wherein the engaging member is provided in a square pillar shape,상기 레일 홈은 상기 결합 부재의 각 측면에 형성되는 재배 장치.Wherein the rail groove is formed on each side of the engaging member.
- 제 1 항에 있어서,The method according to claim 1,상기 설치 플레이트에는,In the mounting plate,상기 광원을 구동시키는 구동 소자;A driving element for driving the light source;상기 설치 플레이트로부터 위 또는 아래 방향을 실시간 촬영할 수 있는 카메라;A camera capable of photographing the up or down direction from the installation plate in real time;상기 카메라를 운용하는 장비 및 상기 카메라를 연결하는 연결 부재;An apparatus for operating the camera and a connection member for connecting the camera;상기 재배 유닛 내의 온도를 측정하는 온도 센서;A temperature sensor for measuring the temperature in the cultivation unit;상기 재배 유닛 내의 습도를 측정하는 습도 센서; 및A humidity sensor for measuring the humidity in the cultivation unit; And상기 재배 유닛 내에 공기의 흐름을 발생시키는 팬(Fan) 중 적어도 하나가 설치되는 재배 장치.And at least one of fans for generating a flow of air in the cultivation unit is installed.
- 제 5 항에 있어서,6. The method of claim 5,상기 구동 소자는, 상기 광원과 연결되는 SMPS(Switched Mode Power Supply) 또는 브릿지 회로를 포함하는 재배 장치.Wherein the drive element comprises a switched mode power supply (SMPS) or bridge circuit coupled to the light source.
- 제 5 항에 있어서,6. The method of claim 5,상기 설치 플레이트에는, 상기 구동 소자, 상기 카메라, 상기 연결 부재, 상기 온도 센서, 상기 습도 센서 또는 상기 팬이 설치되는 단수 또는 복수개의 홀이 형성되는 재배 장치.Wherein the mounting plate is formed with a single or plural holes in which the driving element, the camera, the connecting member, the temperature sensor, the humidity sensor, or the fan are installed.
- 작물을 재배하기 위한 적어도 하나의 재배 유닛이 층을 이루어 배열되는 재배부;A growing unit in which at least one cultivation unit for cultivating a crop is arranged in layers;태양광 에너지를 전기에너지로 변환하는 태양광 발전판;Photovoltaic panels that convert solar energy into electrical energy;상기 태양광 발전판에 의해 변환된 전기에너지를 이용하여 상기 재배 유닛 내에 재배 중인 작물에 인공광을 조명하는 조명 장치;An illumination device for illuminating artificial light with crops cultivated in the cultivation unit using electric energy converted by the photovoltaic panel;상기 몸체의 외면에 제공되고, 오목한 곡면 형상으로 이루어져 자연광을 집광하는 적어도 하나의 집광판;At least one condensing plate provided on an outer surface of the body and having a concave curved surface to condense natural light;상기 집광판에 의해 집광된 자연광을 상기 재배 유닛으로 전달하는 광섬유 부재; 및An optical fiber member for transmitting the natural light condensed by the light condensing plate to the cultivation unit; And상기 광섬유 부재를 통해 전달되는 자연광을 상기 재배 중인 작물에 조사하는 보조 조명 장치;An auxiliary illumination device for irradiating the cultivated crop with natural light transmitted through the optical fiber member;를 포함하는 에너지 자립형 재배 장치.And an energy-independent planting apparatus.
- 제 8 항에 있어서,9. The method of claim 8,상기 조명 장치는:The illumination device comprises:청색광과 적색광을 동시에 조명하는 핑크 LED 광원을 포함하는 에너지 자립형 재배 장치.An energy-independent cultivation device comprising a pink LED light source for simultaneously illuminating blue light and red light.
- 제 8 항에 있어서,9. The method of claim 8,상기 조명 장치는:The illumination device comprises:백색광을 제공하는 백색 LED; 및A white LED providing white light; And적색광을 제공하는 적색 LED를 포함하는 에너지 자립형 재배 장치.An energy-independent growing apparatus comprising a red LED providing red light.
- 제 8 항에 있어서,9. The method of claim 8,상기 조명 장치는:The illumination device comprises:청색광과 황색광을 동시에 조명하는 인조 LED 광원을 포함하는 에너지 자립형 재배 장치.An energy-independent cultivation device comprising an artificial LED light source for simultaneously illuminating blue light and yellow light.
- 컨테이너 형태로 제공되는 몸체;A body provided in a container form;상기 몸체 내에 제공되고, 작물을 재배하기 위한 적어도 하나의 재배 유닛이 층을 이루어 배열되는 재배부;A growing section provided in the body and in which at least one cultivation unit for growing crops is arranged in layers;상기 몸체의 상면에 제공되고, 태양광 에너지를 전기에너지로 변환하는 태양광 발전판;A solar photovoltaic panel provided on an upper surface of the body for converting solar energy into electrical energy;상기 태양광 발전판에 의해 변환된 전기에너지를 이용하여 상기 재배 유닛 내에 재배 중인 작물에 광을 조명하는 조명 장치;An illumination device for illuminating light on a crop cultivated in the cultivation unit using electric energy converted by the solar cell plate;상기 몸체의 외면에 제공되고, 오목한 곡면 형상으로 이루어져 자연광을 집광하는 적어도 하나의 집광판;At least one condensing plate provided on an outer surface of the body and having a concave curved surface to condense natural light;상기 집광판에 의해 집광된 자연광을 상기 재배 유닛으로 전달하는 광섬유 부재; 및An optical fiber member for transmitting the natural light condensed by the light condensing plate to the cultivation unit; And상기 광섬유 부재를 통해 전달되는 자연광을 상기 재배 중인 작물에 조사하는 보조 조명 장치;An auxiliary illumination device for irradiating the cultivated crop with natural light transmitted through the optical fiber member;를 포함하는 에너지 자립형 컨테이너식 재배 장치.Wherein the container-type cultivation apparatus comprises:
- 제 12 항에 있어서,13. The method of claim 12,상기 재배 유닛은,The cultivation unit includes:재배틀;Re-battle;상기 재배틀에 형성된 구멍에 삽입되어 상기 작물을 지지하는 지지부재; 및A support member inserted into a hole formed in the re-battle to support the crop; And상기 재배틀의 하부에 제공되어 상기 작물의 뿌리 부분에 물과 양분을 공급하는 공급부;A supply unit provided at a lower portion of the re-battle to supply water and nutrients to a root portion of the crop;를 포함하며,/ RTI >상기 보조 조명 장치는 상기 재배틀의 상부에서 상기 광섬유 부재를 통해 전달되는 자연광을 상기 작물에 조사하는 에너지 자립형 컨테이너식 재배 장치.Wherein the auxiliary illumination device irradiates the crop with natural light transmitted through the optical fiber member from an upper portion of the re-battle.
- 제 13 항에 있어서,14. The method of claim 13,상기 재배틀의 하부에 제공되고, 상기 작물의 뿌리 부분에 자외선을 조사하여 상기 작물의 뿌리에 곰팡이가 피는 것을 방지하는 자외선 발생 장치;An ultraviolet ray generator provided at a lower portion of the re-battle and irradiating ultraviolet rays to root portions of the crop to prevent fungi from roots of the crops;를 더 포함하는 에너지 자립형 컨테이너식 재배 장치.Further comprising the steps of:
- 제 14 항에 있어서,15. The method of claim 14,상기 집광판에 의해 집광된 자연광을 자외선과 비자외선으로 분배하는 광분배기;An optical distributor for distributing natural light condensed by the condenser to ultraviolet light and non-ultraviolet light;를 더 포함하고,Further comprising:상기 광섬유 부재는,Wherein the optical fiber member comprises:상기 광분배기에 의해 분배된 비자외선을 상기 보조 조명 장치로 전달하는 제1 광섬유관; 및A first optical fiber tube for transmitting non-ultraviolet rays distributed by the optical distributor to the auxiliary illumination device; And상기 광분배기에 의해 분배된 자외선을 상기 자외선 발생 장치로 전달하는 제2 광섬유관;A second optical fiber tube for transmitting the ultraviolet ray distributed by the optical distributor to the ultraviolet ray generator;을 포함하는 에너지 자립형 컨테이너식 재배 장치.Wherein the container-type cultivation apparatus comprises:
- 제 15 항에 있어서,16. The method of claim 15,상기 자외선 발생 장치는,The ultraviolet ray generating apparatus includes:상기 제2 광섬유관을 통해 전달되는 자외선을 상기 작물의 뿌리 부분에 조사하는 자외선 조사부;An ultraviolet irradiator for irradiating ultraviolet rays transmitted through the second optical fiber tube to a root of the crop;상기 제2 광섬유관을 통해 전달되는 자외선의 광량을 측정하는 측정부; 및A measuring unit for measuring an amount of ultraviolet light transmitted through the second optical fiber tube; And상기 자외선의 광량에 따라 자외광을 생성하여 상기 작물의 뿌리 부분에 조사하는 자외선 발생기;An ultraviolet generator for generating ultraviolet light according to the intensity of the ultraviolet light and irradiating the ultraviolet light to the root of the crop;를 포함하는 에너지 자립형 컨테이너식 재배 장치.Wherein the container-type cultivation apparatus comprises:
- 제 15 항에 있어서,16. The method of claim 15,상기 광분배기는,The optical splitter comprises:상기 자연광의 자외선 및 비자외선 중 어느 하나를 투과하고, 다른 하나를 반사하는 빔스플리터;A beam splitter for transmitting the ultraviolet light or the non-ultraviolet light of the natural light and reflecting the other one;를 포함하는 에너지 자립형 컨테이너식 재배 장치.Wherein the container-type cultivation apparatus comprises:
- 제 15 항에 있어서,16. The method of claim 15,상기 제1 광섬유관 및 상기 제2 광섬유관은 복수 층의 재배 유닛에 균일한 자연광이 전달되도록 상기 자연광을 분배하는 적어도 하나의 광커플러를 포함하는 에너지 자립형 컨테이너식 재배 장치.Wherein the first optical fiber tube and the second optical fiber tube include at least one optical coupler for distributing the natural light so as to transmit uniform natural light to the plurality of layers of the cultivation unit.
- 제 12 항에 있어서,13. The method of claim 12,상기 집광판의 둘레 방향을 따라 제공되는 복수 개의 열전 소자를 포함하고, 상기 복수 개의 열전 소자의 온도 차이에 따라 전기신호를 생성하는 감지부; 및A sensing unit including a plurality of thermoelectric elements provided along a circumferential direction of the light condensing plate and generating an electric signal according to a temperature difference between the plurality of thermoelectric elements; And상기 감지부에 의해 생성되는 전기신호에 따라 상기 집광판의 방향을 조절하는 구동부;A driving unit for adjusting a direction of the light-condensing plate according to an electrical signal generated by the sensing unit;를 더 포함하는 에너지 자립형 컨테이너식 재배 장치.Further comprising the steps of:
- 제 19 항에 있어서,20. The method of claim 19,상기 감지부는,The sensing unit includes:제 1 방향을 따라 상기 집광판의 양측에 제공되는 제1 열전소자 쌍; 및A pair of first thermoelectric elements provided on both sides of the condenser plate along a first direction; And상기 제 1 방향과 수직인 제 2 방향을 따라 상기 집광판의 양측에 제공되는 제2 열전소자 쌍;A second thermoelectric element pair provided on both sides of the condenser plate along a second direction perpendicular to the first direction;을 포함하고,/ RTI >상기 구동부는,The driving unit includes:상기 제1 열전소자 쌍의 온도 차이에 따라 상기 집광판을 상기 제 1 방향으로 회동시키는 제1 구동장치; 및A first driving device for rotating the light-condensing plate in the first direction according to a temperature difference of the first pair of thermoelectric elements; And상기 제2 열전소자 쌍의 온도 차이에 따라 상기 집광판을 상기 제 2 방향으로 회동시키는 제2 구동장치;A second driving device for rotating the light-condensing plate in the second direction according to a temperature difference of the pair of second thermoelectric elements;를 포함하는 에너지 자립형 컨테이너식 재배 장치.Wherein the container-type cultivation apparatus comprises:
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170108385A KR101835282B1 (en) | 2017-08-28 | 2017-08-28 | Energy independent container type cultivation apparatus |
KR10-2017-0108385 | 2017-08-28 | ||
KR10-2017-0176987 | 2017-12-21 | ||
KR1020170176987A KR101904676B1 (en) | 2017-12-21 | 2017-12-21 | Energy independent container type cultivation apparatus utilizing artificial light source |
KR10-2018-0101144 | 2018-08-28 | ||
KR1020180101144A KR102108635B1 (en) | 2018-08-28 | 2018-08-28 | Lighting device and cultivation apparatus including the same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2019045421A2 true WO2019045421A2 (en) | 2019-03-07 |
WO2019045421A3 WO2019045421A3 (en) | 2019-05-09 |
Family
ID=65527838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/009930 WO2019045421A2 (en) | 2017-08-28 | 2018-08-28 | Cultivation device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019045421A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110250154A (en) * | 2019-07-19 | 2019-09-20 | 扬州大学 | A kind of light barrier for preventing pest from invading crop growing loci |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100694943B1 (en) * | 2002-07-30 | 2007-03-14 | 솔리드라이트 코퍼레이션 | Purplish pink light emitting diode |
KR101132244B1 (en) * | 2009-06-19 | 2012-04-02 | (주)인성테크 | system for growing plant indoors and method thereof |
KR20120007374A (en) * | 2010-07-14 | 2012-01-20 | 주식회사 씨엘에프하이텍 | Apparatus and method for tracking the sun |
KR101251319B1 (en) * | 2010-12-28 | 2013-04-05 | 남경 주식회사 | Home plant growth led lamp for adjusting brightness |
KR101261965B1 (en) * | 2011-07-20 | 2013-05-08 | 공주대학교 산학협력단 | Plant Factory System |
KR20110010702U (en) * | 2011-10-05 | 2011-11-16 | 윤석일 | .LED light for Copper Foil Structure of connection with LED and LED. |
KR101413136B1 (en) * | 2012-11-19 | 2014-07-04 | 대한민국 | vegetation system for wastewater treatment |
KR101696041B1 (en) * | 2014-12-18 | 2017-01-12 | 김동수 | Greenhouse with sliding LED window |
KR101835282B1 (en) * | 2017-08-28 | 2018-03-06 | 경성대학교 산학협력단 | Energy independent container type cultivation apparatus |
-
2018
- 2018-08-28 WO PCT/KR2018/009930 patent/WO2019045421A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110250154A (en) * | 2019-07-19 | 2019-09-20 | 扬州大学 | A kind of light barrier for preventing pest from invading crop growing loci |
CN110250154B (en) * | 2019-07-19 | 2023-12-22 | 扬州大学 | Grating fence for preventing pests from invading crop growing area |
Also Published As
Publication number | Publication date |
---|---|
WO2019045421A3 (en) | 2019-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018230957A1 (en) | Sunlight converting device comprising wavelength converting film | |
CN113940206B (en) | Scanning device and method for agricultural illumination | |
KR101036598B1 (en) | The apparatus of plant cultivation with a concentrate light of fiber-optic cable and solar lighting control unit | |
US20100039804A1 (en) | Illuminating device | |
WO2019203597A1 (en) | Plant cultivation method using uv and plant cultivation system therefor | |
KR20150000369A (en) | Apparatus and method for controlling light in the plant factory | |
KR20150033364A (en) | Plant factory LED lighting system with controllable light source | |
WO2020111833A1 (en) | Led lighting device having sterilizing function | |
WO2010147259A1 (en) | Automatic irradiation angle adjusting device for led type plant cultivation lamp by controlling supplemental light domain of solar light, and method thereof | |
CN201797809U (en) | Plant lamp | |
WO2019045421A2 (en) | Cultivation device | |
JP2005328702A (en) | Lighting device for growing plant | |
WO2014204108A1 (en) | Led lighting module for plant factory and led lighting device for plant factory having same mounted thereon | |
KR101904676B1 (en) | Energy independent container type cultivation apparatus utilizing artificial light source | |
KR20100132621A (en) | A plant growing system with led and light | |
CN105405937B (en) | Light source and plant cultivation method for plant growth | |
CN107750070A (en) | A kind of LED light source and its method for packing of the even light of integrated intelligent plant characteristics spectrum | |
WO2021025481A1 (en) | Light source unit for plant cultivation, and plant cultivation device including same | |
KR20220101266A (en) | Plant cultivation facility | |
WO2014183481A1 (en) | Completely-artificial red-and-blue-light type photosynthetic light-conversion glass plane light source | |
KR20110013164A (en) | Lighting apparatus for cultivation of plants | |
CN105351790A (en) | Non-compensation all-solid light source type LED solar simulator | |
CN204534215U (en) | A kind of irradiating angle adjustable type Multifunctional LED plant cultivation light | |
KR20190075787A (en) | Energy independent cultivation apparatus utilizing artificial light source | |
WO2023085517A1 (en) | Plant-cultivation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18851259 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18851259 Country of ref document: EP Kind code of ref document: A2 |