CZ283818B6 - Apparatus for orientation of solar energy collectors - Google Patents

Apparatus for orientation of solar energy collectors Download PDF

Info

Publication number
CZ283818B6
CZ283818B6 CZ963653A CZ365396A CZ283818B6 CZ 283818 B6 CZ283818 B6 CZ 283818B6 CZ 963653 A CZ963653 A CZ 963653A CZ 365396 A CZ365396 A CZ 365396A CZ 283818 B6 CZ283818 B6 CZ 283818B6
Authority
CZ
Czechia
Prior art keywords
solar
parallel
rotational axis
solar cells
cell
Prior art date
Application number
CZ963653A
Other languages
Czech (cs)
Other versions
CZ365396A3 (en
Inventor
Vladislav Ing. Csc. Poulek
Original Assignee
Vladislav Ing. Csc. Poulek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vladislav Ing. Csc. Poulek filed Critical Vladislav Ing. Csc. Poulek
Priority to CZ963653A priority Critical patent/CZ283818B6/en
Priority to PCT/CZ1997/000042 priority patent/WO1998026303A1/en
Priority to US09/319,721 priority patent/US6089224A/en
Priority to EP97945725A priority patent/EP0944843B1/en
Priority to AU51152/98A priority patent/AU730831B2/en
Publication of CZ365396A3 publication Critical patent/CZ365396A3/en
Publication of CZ283818B6 publication Critical patent/CZ283818B6/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/428Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis with inclined axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Crystal (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Zařízení obsahuje alespoň jeden sluneční článek (1), připevněný k rotační ose (4) zařízení tak, že rovina článku (1) je od roviny kolmé ke kolektorům (7) sluneční energie a rovnoběžné s rotační osou (4) zařízení odchýlena o 0,1-45 úhlových stupňů k východu. Článek (1) je přímo připojený k elektromotoru (3), spojenému s rotační osou (4) zařízení, pro orientaci rotační osy (4) zařízení, dokud je výkon článku (1) větší než výkon potřebný pro orientaci rotační osy (4) zařízení. Obsahuje-li dva antiparalelně zapojené sluneční články (1, 2), jsou přibližně rovinné, přibližně stejných parametrů a navzájem přibližně rovnoběžné a mohou být umístěny ve společném pouzdře (5). Mohou být také vyrobeny na společném nosiči. V rotační ose (4) lze s výhodou umístit revenzibilní elektromotor opatřený samosvorným převodem (6). ŕThe apparatus comprises at least one solar cell (1) fixed to the rotary axis (4) of the device such that the plane of the cell (1) is deviated by 0 from the plane perpendicular to the solar energy collectors (7) parallel to the rotary axis (4) 1-45 degrees to the east. The cell (1) is directly connected to the electric motor (3) connected to the rotary axis (4) of the device to orient the rotary axis (4) of the device as long as the power of the cell (1) is greater than the power required to orient the rotary axis (4) of the device . If two anti-parallel solar cells (1, 2) are present, they are approximately planar, approximately the same parameters, and are approximately parallel to each other and may be located in a common housing (5). They can also be made on a common carrier. In the rotary axis (4), a reversible electric motor provided with a self-locking gear (6) can be advantageously positioned. ŕ

Description

Zařízení pro orientaci kolektorů sluneční energieDevice for orientation of solar energy collectors

Oblast technikyTechnical field

Vynález se týká zařízení pro sledování Slunce.The invention relates to a device for tracking the sun.

Dosavadní stav technikyBACKGROUND OF THE INVENTION

Existují aktivní sledovače slunce pracující obvykle na principu elektrooptických čidel Slunce jako planety U.S. 3,493,765, 4,223,214, 4,328,417 a 5,317,145. Elektrooptické sledovače Slunce se obvykle skládají nejméně z jedné dvojice fotoodporů nebo fotovoltaických slunečních článků v antiparalelním zapojení, které je při stejné intenzitě osvětlení obou prvků elektricky vyváženo tak, že na hnacím motoru je nulový nebo zanedbatelný řídicí signál. Při nestejném osvětlení elektrooptických čidel vzniká rozdílový signál, který je využit k pohonu motoru a k orientaci zařízení takovým směrem, ve kterém je osvětlení elektrooptických čidel stejné a je obnovena rovnováha.There are active solar trackers, usually operating on the principle of electro-optical sensors of the Sun as the planet U.S. 3,493,765, 4,223,214, 4,328,417 and 5,317,145. Electro-optic solar trackers usually consist of at least one pair of photoresist or photovoltaic solar cells in an antiparallel circuit, which is electrically balanced under the same illumination intensity of both elements so that the driving motor has a zero or negligible control signal. The unequal illumination of the electro-optical sensors produces a differential signal which is used to drive the motor and orient the device in a direction in which the illumination of the electro-optical sensors is the same and the equilibrium is restored.

Dále existující aktivní sledovače slunce pracují na principu hodinových strojů nebo kombinující oba principy jako U.S. patent 4,031,385. Takové sledovače mohou pracovat s velkou přesností, ale jsou složité a proto i nákladné a málo spolehlivé.In addition, existing active solar trackers operate on a clockwork principle or a combination of both principles such as U.S. Pat. No. 4,031,385. Such trackers can work with great accuracy, but are complex and therefore costly and less reliable.

Existující pasivní sledovače Slunce pracují na principu tepelné roztažnosti hmoty nebo tvarové paměti kovů. Obvykle se skládají z dvojice proti sobě pracujících hnacích prvků, která je při stejné intenzitě osvětlení obou prvků silově vyvážena. Při nestejném osvětlení hnacích prvků vzniká nerovnováha sil, která je využita k orientaci zařízení takovým směrem, ve kterém je dosaženo stejné osvětlení hnacích prvků a je obnovena rovnováha sil jako například U.S. patenty 2,967,249 a 4,027,651, GB patent 1,566,797, CZ patent 279 801 a DE 33 03 000 Al. Pasivní sledovače Slunce jsou ve srovnání s aktivními sledovači méně složité a méně nákladné, ale pracují s velmi malou účinností a při nízkých teplotách atmosféry nefungují.Existing passive solar trackers work on the principle of thermal expansion of mass or shape memory of metals. They usually consist of a pair of opposing driving elements, which is equally balanced with the same illumination intensity. Unequal illumination of the drive elements results in a force imbalance which is used to orient the device in the direction in which the same illumination of the drive elements is achieved and the force equilibrium such as U.S. Pat. patents 2,967,249 and 4,027,651, GB patent 1,566,797, CZ patent 279 801 and DE 33 03 000 A1. Passive solar trackers are less complex and less expensive than active trackers, but operate at very low efficiency and do not work at low ambient temperatures.

Aktivní i pasivní sledovače Slunce využívají pro rozdílné osvětlení čidel i hnacích prvků clony, zrcadla, čočky nebo vzájemnou polohu čidel nebo hnacích prvků nebo kombinaci těchto opatření, jak popisují např. patenty U.S. 4,082,947 a SU 1474397 Al a DE 43 06 656 Al.Active and passive solar trackers use apertures, mirrors, lenses, or relative positioning of sensors or actuators, or a combination of these, for different illumination of sensors and actuators, as described, for example, in U.S. Pat. 4,082,947 and SU 1474397 A1 and DE 43 06 656 A1.

Například pro dvouosé sledování Slunce jsou sluneční články rozmístěny obvykle symetricky na různoběžných stěnách čtyřbokého jehlanu nebo komolého jehlanu přičemž osa symetrie je určena vrcholem jehlanu a Sluncem. Pro jednoosé sledování Slunce jsou sluneční články rozmístěny obvykle symetricky na dvou různoběžných stěnách trojbokého rovnoramenného nebo lichoběžníkového rovnoramenného hranolu, přičemž rovina symetrie je určena průsečnicí různoběžných rovin a Sluncem.For example, for biaxial observation of the Sun, the solar cells are usually distributed symmetrically on the parallel walls of a tetrahedral pyramid or truncated pyramid, the axis of symmetry being determined by the pyramid apex and the Sun. For uniaxial observation of the Sun, the solar cells are usually distributed symmetrically on two intersecting walls of a triangular isosceles or trapezoid isosceles prism, the plane of symmetry being determined by the intersection of the parallel planes and the Sun.

Různoběžné symetrické umístění antiparalelně zapojených slunečních článků je výhodné pro přesné sledování Slunce, protože kompenzuje izotropní i cirkumsolámí difuzní složky slunečního záření, které snižují přesnost sledování. Pro sledování Slunce je v tomto případě využito pouze přímé sluneční záření.Differential symmetrical placement of antiparallel solar cells is beneficial for accurate solar tracking, as it compensates for both isotropic and circolasolar diffuse components of solar radiation, which reduce tracking accuracy. In this case, only direct solar radiation is used for tracking the Sun.

Nevýhodou tohoto uspořádání je snížení výkonu slunečních článků, protože difuzní cirkumsolární záření nese podstatnou část energie slunečního záření.The disadvantage of this arrangement is a decrease in solar cell performance because diffuse circumsolar radiation carries a substantial part of the solar energy.

Celkový výkon různoběžné umístěných antiparalelně zapojených slunečních článků dále snižuje to, že pracují s rozdílem výkonů slunečních článků.Furthermore, the overall power of the interposed solar cells connected in parallel to each other reduces the power of the solar cells.

-1 CZ 283818 B6-1 CZ 283818 B6

Nízká účinnost různoběžně umístěných antiparalelně zapojených slunečních článků výrazně zvyšuje celkovou cenu zařízení, protože náklady na sluneční články tvoří velmi podstatnou část nákladů na zařízení.The low efficiency of interposed solar cells connected in parallel to each other significantly increases the overall cost of the device, since the cost of the solar cells is a very substantial part of the cost of the device.

Další nevýhodou antiparalelního zapojení různoběžně umístěných slunečních článků je opožděná dopolední zpětná orientace kolektorů sluneční energie od západu k východu protože u zařízení, které ukončilo činnost odpoledne předcházejícího dne nesměřuje žádný sluneční článek k východu. Proto dochází k reorientaci až v pozdních dopoledních hodinách kdy je Slunce vysoko nad obzorem. Použití dalších pomocných slunečních článků pro reorientaci zvyšuje náklady na zařízení a jeho složitost. Použití zakřivených slunečních článků rovněž zvyšuje náklady. Protože je vždy osvětlena pouze jejich část je na stejný výkon třeba větší plocha a navíc u částečně osvětlených slunečních článků klesá silně celková účinnost. Provoz částečně osvětlených a částečně zastíněných slunečních článků se nedoporučuje, protože může sluneční články poškodit.Another disadvantage of the antiparallel engagement of the solar cells that are located in different directions is the delayed morning reverse orientation of the solar energy collectors from west to east, since no solar cell is directed towards the east in the case of the device that stopped the afternoon of the previous day. Therefore, reorientation occurs only in the late morning hours when the Sun is high above the horizon. The use of additional auxiliary solar cells for reorientation increases equipment cost and complexity. The use of curved solar cells also increases costs. Since only a part of them is always illuminated, a larger area is needed for the same power and, in addition, the overall efficiency decreases strongly with partially illuminated solar cells. Operation of partially lit and partially shaded solar cells is not recommended as it may damage the solar cells.

Podstata vynálezuSUMMARY OF THE INVENTION

Nedostatky známého stavu řeší zařízení pro orientaci kolektorů sluneční energie připevněných k rotační ose zařízení podle vynálezu.The drawbacks of the prior art are solved by a device for orienting solar energy collectors attached to the rotational axis of the device according to the invention.

Podstata vynálezu spočívá vtom, že nejméně 1 solární článek, nebo solární panel obsahující nejméně 1 solární článek pro přeměnu sluneční energie na energii elektrickou je připevněný k rotační ose zařízení a jeho rovina je od roviny kolmé ke kolektorům sluneční energie a rovnoběžné s rotační osou zařízení odchýlena o 0,1 až 45 úhlových stupňů k východu a je připojený k elektromotoru, spojenému s rotační osou zařízení, pro orientaci zařízení dokud je výkon slunečního článku větší než výkon potřebný pro orientaci zařízení.The principle of the invention is that at least 1 solar cell or a solar panel comprising at least 1 solar cell for converting solar energy into electrical energy is attached to the rotational axis of the device and its plane deviates from a plane perpendicular to the solar energy collectors and parallel to the rotational axis of the device. and is connected to an electric motor connected to the rotational axis of the device to orient the device as long as the power of the solar cell is greater than the power required to orient the device.

Při pohybu Slunce po obloze od východu k západu dochází k zvětšování úhlu β pod kterým sluneční záření dopadá na sluneční článek. Současně roste výkon slunečního článku připojeného k motoru až do okamžiku kdy je síla motoru napájeného slunečními články větší než síla potřebná pro orientaci kolektorů sluneční energie. V tomto okamžiku začne motor otáčet kolektory sluneční energie, připevněné k rotační ose zařízení spolu se slunečním článkem, směrem k východu. Úhel β pod kterým sluneční záření dopadá na sluneční článek se začne zmenšovat až do okamžiku kdy je výkon slunečního článku menší než výkon potřebný pro orientaci kolektorů sluneční energie. Zařízení využívá záporné zpětné vazby.As the Sun moves across the sky from east to west, the angle β below which the solar radiation strikes the solar cell increases. At the same time, the power of the solar cell connected to the motor increases until the power of the solar-powered motor is greater than the power required to orient the solar energy collectors. At this point, the engine begins to rotate the solar energy collectors attached to the rotational axis of the device along with the solar cell toward the exit. The angle β below which the solar radiation strikes the solar cell begins to decrease until the power of the solar cell is less than the power required to orient the solar energy collectors. The device uses negative feedback.

Úhel 0,1 až 45° o který je sluneční článek odchýlen, od roviny kolmé ke kolektorům sluneční energie a rovnoběžné s rotační osou zařízení, k východu se nastaví tak, aby byl výkon slunečního článku blízko prahové hodnoty potřebné pro orientaci zařízení a současně aby při tomto úhlu dopadalo na kolektory maximum sluneční energie. Tento úhel závisí zejména na parametrech zařízení a na místním podnebí a je nejčastěji cca. 20°.The angle of 0.1 to 45 ° from which the solar cell is deviated, from a plane perpendicular to the solar energy collectors and parallel to the rotational axis of the device, is set so that the solar cell power is close to the threshold required for device orientation and at this angle the maximum solar energy hit the collectors. This angle depends mainly on the parameters of the device and on the local climate and is most often approx. 20 °.

V zařízení podle vynálezu působí výkon slunečního článku připojeného k motoru proti mechanickému odporu v konstrukci zařízení a proti odporu prostředí. Proto může zařízení pracovat také s jedním slunečním článkem nebo panelem.In the device according to the invention, the power of the solar cell connected to the motor acts against the mechanical resistance in the construction of the device and against the resistance of the environment. Therefore, the device can also work with one solar cell or panel.

U existujících zařízení pro orientaci kolektorů sluneční energie působí stále výkony nejméně dvou antiparalelně zapojených slunečních článků proti sobě a motor je poháněn rozdílovým výkonem.In existing solar energy collector orientation devices, the power of at least two anti-parallel solar cells is still opposed and the motor is driven by differential power.

Odpoledne zůstává zařízení s jedním panelem slunečních článků orientováno přibližně k západu. Ráno následujícího dne musí být zařízení přesměrováno směrem k východu ručně.In the afternoon, the device with one solar cell panel remains approximately westward. In the morning of the following day, the device must be redirected towards the exit manually.

-2CZ 283818 B6-2GB 283818 B6

Umístění dalšího pomocného slunečního článku nebo panelu slunečních článků rovnoběžně s hlavním slunečním článkem nebo panelem slouží především ke včasné dopolední reorientaci kolektorů sluneční energie od západu k východu a pouze doplňkově slouží ke kompenzaci 5 izotropního difuzního slunečního záření. V zařízení podle vynálezu je při sledování Slunce vždy jeden z antiparalelně zapojených slunečních článků neosvětlen přímým slunečním zářením a výkon izotropního difuzního slunečního záření je zanedbatelný. U existujících zařízení pro orientaci kolektorů sluneční energie jsou při sledování Slunce přímým slunečním zářením vždy osvětleny oba antiparalelně zapojené sluneční články.Placing another auxiliary solar cell or solar cell panel parallel to the main solar cell or panel serves primarily for early morning reorientation of solar energy collectors from west to east and only additionally compensates for 5 isotropic diffuse solar radiation. In the device according to the invention, one of the antiparallelly connected solar cells is always not illuminated by direct solar radiation and the output of isotropic diffuse solar radiation is negligible. In existing solar energy collector orientation devices, the two solar cells connected in parallel are always illuminated by direct sunlight.

Zařízení podle vynálezu využívá přímé sluneční záření a pracuje při obvyklém provozu s celým, ne rozdílovým, výkonem slunečních článků připojených k motoru. Zařízení využívá navíc difuzní cirkumsolámí záření a kompenzuje pouze izotropní difuzní sluneční záření které nese pouze malou část sluneční energie.The device according to the invention uses direct solar radiation and operates in normal operation with all, not differential, power of the solar cells connected to the motor. In addition, the device uses diffuse circum solar radiation and only compensates for isotropic diffuse solar radiation that carries only a small fraction of the solar energy.

Funkce zařízení není závislá na přesném přizpůsobení antiparalelně zapojených slunečních článků, protože využívá rozdílový signál pouze doplňkově pro kompenzaci izotropního difuzního záření a protože je určeno ke sledování slunce s přesností cca. ± 10°. Proto není nutná ani přesná rovinnost ani přesná rovnoběžnost slunečních článků.The function of the device does not depend on the exact adaptation of the solar cells connected in parallel, since it uses the differential signal only in addition to compensate the isotropic diffuse radiation and because it is intended to monitor the sun with an accuracy of approx. ± 10 °. Therefore, neither exact flatness nor exact parallelism of the solar cells is necessary.

Uspořádání podle vynálezu umožňuje výrobu obou slunečních článků na společném nosiči a umístění obou slunečních článků do společného pouzdra. Protože náklady na výrobu slunečních článků a jejich pouzdření představují velmi podstatnou část ceny zařízení, umožňuje řešení podle vynálezu výrazné snížení celkové ceny zařízení.The arrangement according to the invention allows the production of both solar cells on a common carrier and the placement of both solar cells in a common housing. Since the cost of manufacturing the solar cells and their housing is a very substantial part of the cost of the device, the solution according to the invention allows a significant reduction in the total cost of the device.

Rovnoběžné uspořádání slunečních článků podle vynálezu umožňuje využít difuzní cirkumsolámí složku slunečního záření, které je při mimoběžném uspořádání slunečních článků kompenzováno. Použití difuzní složky ve slunečním záření, která snižuje přesnost sledování Slunce, je možné, protože u plochých kolektorů a kolektorů s malou koncentrací záření současně 30 s rostoucím podílem difuzní složky ve slunečním záření klesá potřeba přesného sledování Slunce při zachování maximálního zisku kolektorů sluneční energie.The parallel arrangement of the solar cells according to the invention makes it possible to utilize the diffuse circolasolar component of the solar radiation, which is compensated in the out-of-order arrangement of the solar cells. The use of a diffuse component in sunlight, which reduces the accuracy of the Sun's tracking, is possible because flat panel collectors and collectors with a low radiation concentration concurrently with the increasing proportion of the diffuse component in sunlight reduce the need for accurate Sun tracking while maintaining maximum solar energy gain.

Při převažujícím přímém slunečním záření je přesnost sledování Slunce potřebná pro zachycení maximálního množství sluneční energie cca. ± 10°. Při převažujícím difuzním slunečním záření 35 je přesnost sledování Slunce potřebná pro zachycení maximálního množství sluneční energie cca.With prevailing direct solar radiation, the accuracy of the Sun's tracking is needed to capture the maximum amount of solar energy of approx. ± 10 °. With prevailing diffuse solar radiation 35, the accuracy of the Sun's tracking is needed to capture the maximum amount of solar energy of approx.

± 30°. V limitním případě při zatažené obloze a při výhradně difuzním slunečním záření není sledování Slunce potřebné.± 30 °. In a limiting case with cloudy skies and exclusively diffuse solar radiation, tracking the Sun is not necessary.

Využití cirkumsolámí difuzní složky slunečního záření pro sledování Slunce umožňuje zachytit 40 maximální množství sluneční energie při optimální ale ne maximální přesnosti sledování Slunce.The use of the circolasolar diffuse component of the sun's radiation to track the sun allows to capture the maximum amount of solar energy at optimal but not maximum accuracy of the sun's tracking.

Zařízení může používat fotovoltaické nebo termoelektrické nebo fotoelektrochemické sluneční články nebo kombinované sluneční články.The device may use photovoltaic or thermoelectric or photoelectrochemical solar cells or combined solar cells.

Upevnění elektromotoru do duté rotační osy zařízení zjednodušuje montáž a je kompaktnější než současné uspořádání s lineárními elektrickými pohony. Motor může být opatřen samosvomým převodem který chrání motor před poškozením vnějšími silami, například poryvy větru.Fixing the electric motor to the hollow rotary axis of the device simplifies assembly and is more compact than the current arrangement with linear electric drives. The motor may be provided with a self-locking transmission which protects the motor from damage by external forces such as gusts of wind.

Připojení elektromotoru přímo ke slunečním článkům, bez dalších elektronických obvodů 50 zvyšuje spolehlivost zařízení.Connecting the electric motor directly to the solar cells without additional electronic circuits 50 increases the reliability of the device.

Celkově má uspořádání podle vynálezu výrazně nižší výrobní náklady, jednodušší a kompaktnější konstrukci a vyšší účinnost než stávající zařízení pro orientaci plochých kolektorů slunečníOverall, the arrangement according to the invention has significantly lower production costs, simpler and more compact design and higher efficiency than existing solar collector orientation devices

-3CZ 283818 B6 energie a kolektorů s nízkou koncentrací záření a umožňuje včasnou ranní reorientaci těchto kolektorů.-3GB 283818 B6 low-radiation energy collectors and allows early morning reorientation of these collectors.

Přesnost sledování Slunce nového sledovače cca. ± 10° umožňuje u plochých kolektorů a kolektorů s malou koncentrací záření zachytit prakticky stejné množství sluneční energie jako při použití podstatně nákladnějších elektronických sledovačů s přesností sledování ± 0,1° které jsou určeny pro kolektory s vysokou koncentrací záření.Tracking accuracy of the new tracker approx. ± 10 ° allows flat solar collectors and collectors with a low radiation concentration to capture virtually the same amount of solar energy as when using much more costly electronic tracers with a ± 0.1 ° tracking accuracy for high-intensity collectors.

Přehled obrázkůOverview of pictures

Na výkresech jsou schematicky znázorněny příklady provedení zařízení podle vynálezu. Obr. 1 ukazuje zařízení se svislou rotační osou opatřené jedním panelem slunečních článků. Zařízení pro orientaci kolektorů slunečního záření s vodorovnou rotační osou opatřené dvěma rovnoběžnými panely solárních článků je znázorněno na obr. 2 ve výchozí poloze při východu slunce, na obr. 3 v aktivní poloze po východu slunce a na obr. 4 v poloze před západem Slunce. Obr. 5 ukazuje zařízení pro orientaci kolektorů podle vynálezu s polární osou rotace a na obr. 6 je zařízení pro orientaci kolektorů podle vynálezu s vodorovnou osou rotace a se slunečními články umístěnými v pouzdře. Zařízení opatřené dvěma panely solárních článků různých parametrů je znázorněno na obr. 7 kde tečkované šipky znázorňují izotropní difuzní záření, spojité šipky znázorňují cirkumsolámí difuzní záření a čárkované šipky znázorňují přímé sluneční záření. Úplné schéma zapojení elektromotoru a slunečních článků ukazuje obr. 8.The drawings show schematically exemplary embodiments of the device according to the invention. Giant. 1 shows a vertical rotational axis device provided with one solar cell panel. The horizontal rotary axis solar collector orientation device provided with two parallel solar cell panels is shown in FIG. 2 in the starting position at sunrise, in FIG. 3 in the active position after sunrise and in FIG. 4 in the position before sunset. Giant. 5 shows a collector orientation device according to the invention with a polar axis of rotation, and FIG. 6 shows a collector orientation device according to the invention with a horizontal axis of rotation and with solar cells arranged in a housing. An apparatus equipped with two solar cell panels of different parameters is shown in Fig. 7 where the dotted arrows show isotropic diffuse radiation, the continuous arrows show circolasoidal diffuse radiation, and the dashed arrows show direct sunlight. A complete wiring diagram of the electric motor and solar cells is shown in Figure 8.

Příklady provedení vynálezuDETAILED DESCRIPTION OF THE INVENTION

Příklad 1Example 1

Na obr. 1 zařízení pro orientaci kolektorů sluneční energie 7 zahrnuje jeden sluneční článek 1 pro přeměnu sluneční energie na energií elektrickou připevněný ke svislé rotační ose 4 zařízení přičemž rovina článku 1 je od roviny kolmé ke kolektorům 7 sluneční energie a rovnoběžné s rotační osou 4 zařízení odchýlena o cca. 20 úhlových stupňů k východu a sluneční článek 1 je přímo připojený k elektromotoru 3 spojenému s rotační osou 4 zařízení pro orientaci zařízení, který je umístěn v duté rotační ose 4 zařízení.In Fig. 1, the device for orienting solar energy collectors 7 comprises one solar cell 1 for converting solar energy into electrical energy attached to the vertical rotational axis 4 of the device wherein the plane of the cell 1 is from a plane perpendicular to the solar energy collectors 7 and parallel to the rotational axis 4 of the device. deviated by approx. 20 degrees to the east and the solar cell 1 is directly connected to an electric motor 3 connected to the rotational axis 4 of the device orientation device, which is located in the hollow rotational axis 4 of the device.

Funkce zařízení je následující.The function of the device is as follows.

Ráno je zařízení orientováno k východu. Při pohybu Slunce po obloze od východu k západu dochází k zvětšování úhlu β pod kterým sluneční záření dopadá na sluneční články 1. Současně roste výkon slunečních článků 1 připojených k motoru 3 až do okamžiku kdy je výkon slunečních článků 1 větší než výkon potřebný pro orientaci kolektorů 7 sluneční energie. V tomto okamžiku začne motor 3 otáčet kolektory 7 sluneční energie a sluneční články 1 směrem k východu. Úhel β pod kterým sluneční záření dopadá na sluneční články se začne zmenšovat až do okamžiku kdy je výkon slunečních článků 1 menší než výkon potřebný pro orientaci kolektorů 7 sluneční energie. Zařízení využívá záporné zpětné vazby. Odpoledne zůstává zařízení s jedním panelem slunečních článků 1 orientováno přibližně k západu. Ráno následujícího dne musí být zařízení přesměrováno směrem k východu ručně.In the morning the facility is oriented to the east. As the Sun moves across the sky from east to west, the angle β below which solar radiation strikes the solar cells 1 increases. At the same time, the power of the solar cells 1 connected to the motor 3 increases until the power of the solar cells 1 is greater than the power required for collector orientation 7 solar energy. At this point, the motor 3 starts to rotate the solar energy collectors 7 and the solar cells 1 towards the exit. The angle β below which the solar radiation strikes the solar cells begins to decrease until the power of the solar cells 1 is less than the power required to orient the solar energy collectors 7. The device uses negative feedback. In the afternoon, the device with one solar cell panel 1 remains approximately westward. In the morning of the following day, the device must be redirected towards the exit manually.

Rozsah automatického natáčení kolektorů 7 slunečního záření v tomto příkladu je cca. 150°.The range of automatic rotation of solar collectors 7 in this example is approx. 150 °.

-4CZ 283818 B6-4GB 283818 B6

Příklad 2Example 2

Na obr. 2, obr. 3 a obr. 4 se zařízení pro orientaci kolektorů 7 sluneční energie skládá ze slunečního článku 1 a pomocného slunečního článku 2, které jsou antiparalelně zapojeny, jsou rovnoběžné a mají přibližně stejné parametry. Články 1 a 2 jsou připojeny k reverzibilnímu stejnosměrnému motoru 3, kteiý je umístěn v duté rotační ose 4 zařízení. Články 1 a 2 jsou připevněny k vodorovné rotační ose 4 zařízení, přičemž jejich rovina je odchýlena od roviny kolmé ke kolektorům 7 sluneční energie a rovnoběžné s rotační osou 4 zařízení o cca. 20° k východu.In Fig. 2, Fig. 3 and Fig. 4, the solar energy collector orientation device 7 consists of a solar cell 1 and an auxiliary solar cell 2, which are connected in parallel, are parallel and have approximately the same parameters. The links 1 and 2 are connected to a reversible DC motor 3 which is located in the hollow rotary axis 4 of the device. The cells 1 and 2 are attached to the horizontal rotational axis 4 of the device, their plane deviating from the plane perpendicular to the solar energy collectors 7 and parallel to the rotational axis 4 of the device by approx. 20 ° to the east.

Funkce zařízení je následující.The function of the device is as follows.

Před východem slunce je zařízení orientováno k západu. Po východu slunce dopadá sluneční záření pod velkým úhlem na pomocný sluneční článek 2 připojený k motoru 3. Motor napájený slunečním článkem 2 otáčí zařízení za Sluncem dokud se úhel β slunečních paprsků dopadajících na sluneční články 2 nezmenší tak že výkon slunečního článku 2 poklesne pod prahový výkon potřebný pro orientaci zařízení. Zařízení je orientováno přibližně k východu. Slunce postoupí na obloze o úhel 2β směrem k západu. V tomto úhlu kolektoiy 7 sluneční energie nesledují Slunce. Při dalším postupu směrem k západu dopadá sluneční záření pod velkým úhlem na sluneční článek 1 připojený k motoru 3. Motor 3 napájený slunečním článkem 1 otáčí zařízení k západu za Sluncem dokud se úhel β slunečních paprsků dopadajících na sluneční články 1 nezmenší tak, že výkon slunečního článku 1 poklesne pod prahový výkon potřebný pro orientaci zařízení. Obr. 3 ukazuje, že sluneční články 1 jsou v celém rozsahu sledování a v obou směrech vždy v dosahu slunečního záření.Before sunrise, the device is oriented to the west. After sunrise, solar radiation falls at a high angle on the auxiliary solar cell 2 connected to the engine 3. The solar-powered motor 2 rotates the device behind the Sun until the angle β of the sun rays incident on the solar cells 2 decreases so that the solar cell 2 power falls below the threshold power. necessary for device orientation. The facility is oriented approximately to the east. The sun advances in the sky at an angle of 2β to the west. At this angle the solar energy collectors 7 do not follow the Sun. In the further westward direction, solar radiation falls at a great angle on the solar cell 1 connected to the motor 3. The solar-powered motor 3 rotates the device westward beyond the sun until the angle β of the sun's rays incident on the solar cells 1 decreases so that of Article 1 drops below the threshold power required to orient the device. Giant. 3 shows that the solar cells 1 are in full range of solar radiation and in both directions.

Rozsah automatického natáčení kolektorů 7 slunečního záření je cca. 150°-2β.The range of automatic rotation of solar collectors 7 is approx. 150 ° -2β.

Příklad 3Example 3

Na obr. 5 se zařízení pro orientaci kolektorů 7 sluneční energie skládá ze slunečního článku 1 a pomocného slunečního článku 2, které jsou antiparalelně zapojeny, jsou rovnoběžné a mají přibližně stejné parametry. Články J a 2 jsou připojeny k reverzibilnímu stejnosměrnému motoru 3 pro pohon zařízení, který je umístěn v duté rotační ose 4 zařízení. Články 1 a 2 jsou připevněny k polární rotační ose 4 zařízení, přičemž jejich rovina je odchýlena od roviny kolmé ke kolektorům 7 sluneční energie a rovnoběžné s rotační osou 4 zařízení o cca 20° k východu.In Fig. 5 the solar energy collector orientation device 7 consists of a solar cell 1 and an auxiliary solar cell 2, which are connected in parallel, parallel and have approximately the same parameters. The links J and 2 are connected to a reversible DC motor 3 for driving the device, which is located in the hollow rotary axis 4 of the device. The cells 1 and 2 are attached to the polar rotational axis 4 of the device, their plane deviating from the plane perpendicular to the solar energy collectors 7 and parallel to the rotational axis 4 of the device about 20 ° to the east.

Funkce zařízení a rozsah automatického natáčení kolektorů 7 slunečního záření jsou stejné jako v příkladu 2.The function of the device and the range of automatic rotation of the solar collectors 7 are the same as in Example 2.

Příklad 4Example 4

Na obr. 6 se zařízení pro orientaci kolektorů sluneční energie skládá ze slunečních článků 1 a 2, které jsou vyrobeny na společném nosiči, jsou antiparalelně zapojeny, jsou rovnoběžné a jsou umístěny ve společném pouzdře 5 a mají přibližně stejné parametry. Články 1 a 2 jsou připojeny k reverzibilnímu stejnosměrnému motoru 3, který je upevněn v duté rotační ose 4 zařízení a je opatřen samosvomým převodem 6 pro pohon zařízení a jehož hřídel je spojen se statorem 8. Články 1 a 2 jsou připevněny k vodorovné rotační ose 4 zařízení, přičemž jejich rovina je odchýlena od roviny kolmé ke kolektorům 7 sluneční energie a rovnoběžné s rotační osou 4 zařízení o cca. 20° k východu.In Fig. 6, the solar energy collector orientation device consists of solar cells 1 and 2, which are made on a common carrier, are anti-parallel connected, parallel and located in a common housing 5 and have approximately the same parameters. The links 1 and 2 are connected to a reversible DC motor 3, which is mounted in the hollow rotary axis 4 of the device and is provided with a self-locking gear 6 for driving the device and whose shaft is connected to the stator 8. Links 1 and 2 are attached to the horizontal rotary axis 4 the plane of which deviates from the plane perpendicular to the solar energy collectors 7 and parallel to the rotational axis 4 of the device by approx. 20 ° to the east.

Funkce zařízení je následující.The function of the device is as follows.

-5CZ 283818 B6-5GB 283818 B6

Před východem slunce je zařízení orientováno k západu. Po východu slunce dopadá sluneční záření pod velkým úhlem na pomocný sluneční článek 2 připojený k motoru 3. Motor napájený slunečním článkem 2 otáčí zařízení za Sluncem odkud se úhel β slunečních paprsků dopadajících na sluneční články 2 nezmenší tak, že výkon slunečního článeku 2 poklesne pod prahový výkon potřebný pro orientaci zařízení. Zařízení je orientováno přibližně k východu. Slunce postoupí na obloze o úhel 2β směrem k západu. V tomto úhlu kolektory 7 sluneční energie nesledují Slunce. Při dalším postupu směrem k západu dopadá sluneční záření pod velkým úhlem na sluneční článek 1 připojený k motoru 3. Motor 3 napájený slunečním článkem 1 otáčí zařízení k západu za Sluncem dokud se úhel β slunečních paprsků dopadajících na sluneční články 1 nezmenší tak, že výkon slunečního článku 1 poklesne pod prahový výkon potřebný pro orientaci zařízení. Když je vnější kroutící moment, vyvolaný například větrem, působící na kolektory 7 sluneční energie větší než kroutící moment motoru 3, zablokuje samosvomý převod 6 rotační osu 4 zařízení.Before sunrise, the device is oriented to the west. After sunrise, solar radiation falls at a large angle on the solar auxiliary cell 2 connected to the motor 3. The solar-powered motor 2 rotates the device behind the Sun from where the angle β of the solar beams incident on the solar cells 2 does not decrease so that the solar power 2 falls below the threshold the power needed to orient the device. The facility is oriented approximately to the east. The sun advances in the sky at an angle of 2β to the west. At this angle the solar energy collectors 7 do not follow the Sun. In the further westward direction, solar radiation falls at a great angle on the solar cell 1 connected to the motor 3. The solar-powered motor 3 rotates the device westward beyond the sun until the angle β of the sun's rays incident on the solar cells 1 decreases so that of Article 1 drops below the threshold power required to orient the device. When the external torque caused, for example, by the wind, acting on the solar energy collectors 7 is greater than the torque of the motor 3, the self-locking transmission 6 blocks the rotational axis 4 of the device.

Příklad 5Example 5

Na obr. 7 se zařízení pro orientaci kolektorů 7 slunečního záření skládá ze slunečního článku 1 a pomocného slunečního článku 2, které jsou antiparalelně zapojeny a mají pouze přibližně stejné elektrické parametry a jsou pouze přibližně rovnoběžné a rovinné a nejsou umístěny ve společném pouzdře. Schéma na obr. 8 ukazuje, že články 1 a 2 jsou připojeny přímo k reverzibilnímu stejnosměrnému elektromotoru 3. Lineární reverzibilní stejnosměrný motor 3 je spojen jedním koncem se statorem 8 a druhým koncem s rotační osou 4 zařízení. Články 1 a 2 jsou připevněny k rotační ose 4 zařízení, přičemž jejich rovina je odchýlena od roviny kolmé ke kolektorům 7 sluneční energie a rovnoběžné s rotační osou 4 zařízení o úhel β cca. 20° k východu.In Fig. 7, the solar collector orientation device 7 consists of a solar cell 1 and an auxiliary solar cell 2, which are anti-parallel connected and have only approximately the same electrical parameters and are only approximately parallel and planar and are not housed in a common housing. The diagram in Fig. 8 shows that the cells 1 and 2 are connected directly to the reversible DC motor 3. The linear reversible DC motor 3 is connected one end to the stator 8 and the other end to the rotary axis 4 of the device. Cells 1 and 2 are attached to the rotary axis 4 of the device, their plane deviating from a plane perpendicular to the solar energy collectors 7 and parallel to the rotational axis 4 of the device by an angle β of approx. 20 ° to the east.

Funkce zařízení a rozsah automatického natáčení kolektorů 7 slunečního záření jsou stejné jako v příkladu 2.The function of the device and the range of automatic rotation of the solar collectors 7 are the same as in Example 2.

Předcházející popis uspořádání zařízení pro orientaci kolektorů slunečního záření ukazuje pouze některé příklady zařízení a nepředstavuje všechny existující varianty zařízení možné podle vynálezu. U popsaného záření je možné, mimo jiné, obměňovat umístění slunečních článků připevněných přímo nebo nepřímo k rotační ose zařízení.The foregoing description of the arrangement of the device for orienting solar collectors shows only some examples of the device and does not represent all existing variants of the device possible according to the invention. In the described radiation, it is possible, inter alia, to vary the location of the solar cells attached directly or indirectly to the rotational axis of the device.

Průmyslová využitelnostIndustrial applicability

Zařízení pro orientaci kolektorů slunečního záření podle vynálezu je použitelné všude, kde se využívá sluneční energie, například k ohřevu vody, k přeměně na elektrickou energii apod.The solar collector orientation device according to the invention is applicable wherever solar energy is used, for example to heat water, to convert to electric energy and the like.

Claims (10)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. Zařízení pro orientaci kolektorů sluneční energie připevněných k rotační ose zařízení, které je otočně spojeno se statorem, zahrnující sluneční článek připevněný k rotační ose zařízení, vyznačující se tím, že alespoň jeden sluneční článek (1), pro přeměnu sluneční energie na energii elektrickou, je připevněný k rotační ose (4) zařízení tak, že rovina článku (1) je od roviny kolmé ke kolektorům (7) sluneční energie a rovnoběžné s rotační osou (4) zařízení odchýlena o 0,1 až 45 úhlových stupňů k východu a sluneční článek (1) je připojený k elektroAn apparatus for orienting solar energy collectors attached to a rotational axis of a device that is rotatably coupled to a stator, comprising a solar cell attached to a rotational axis of the device, characterized in that at least one solar cell (1) for converting solar energy into electrical energy is attached to the rotational axis (4) of the device such that the plane of the cell (1) is deviated from the plane perpendicular to the solar energy collectors (7) and parallel to the rotational axis (4) of the device by 0.1 to 45 degrees to the exit; the solar cell (1) is connected to the electro -6CZ 283818 B6 motoru (3), spojenému s rotační osou (4) zařízení, pro orientaci rotační osy (4) zařízení pokud je výkon článku (1) větší, než výkon potřebný pro orientaci rotační osy (4) zařízení.A motor (3) coupled to a rotational axis (4) of the apparatus for orienting the rotational axis (4) of the apparatus when the cell power (1) is greater than the power required to orient the rotational axis (4) of the apparatus. 2. Zařízení podle nároku 1, vyznačující se tím, že má alespoň dva antiparalelně zapojené sluneční články (1, 2), které jsou přibližně rovinné, přibližně stejných parametrů a navzájem přibližně rovnoběžné a elektromotor (3), který je reverzibilní.Apparatus according to claim 1, characterized in that it has at least two solar cells (1, 2) which are connected in parallel and which are approximately planar, approximately of the same parameters and approximately parallel to each other, and an electric motor (3) which is reversible. 3. Zařízení podle nároku 2, vyznačující se tím, že antiparalelně zapojené sluneční články (1,2) jsou umístěny ve společném pouzdře (5).Apparatus according to claim 2, characterized in that the solar cells (1,2) which are connected in parallel are placed in a common housing (5). 4. Zařízení podle nároku 2, vyznačující se tím, že antíparalelní sluneční články (1, 2) jsou na společném nosiči a jsou umístěny ve společném pouzdře (5).Apparatus according to claim 2, characterized in that the anti-parallel solar cells (1, 2) are on a common carrier and are housed in a common housing (5). 5. Zařízení podle nároku laž4, vyznačující se tím, že elektromotor (3) je upevněn v rotační ose (4) zařízení a je opatřen samosvomým převodem (6), jehož hřídel je připevněn ke statoru (8).Device according to claim 1 to 4, characterized in that the electric motor (3) is mounted in the rotational axis (4) of the device and is provided with a self-locking gear (6), the shaft of which is fixed to the stator (8). 6. Zařízení podle nároku 1 až 5, jsou fotovoltaické.The device according to claims 1 to 5, are photovoltaic. vyznačující tím, že sluneční články (1,2)characterized in that the solar cells (1,2) 7. Zařízení podle nároku 1 až 5, jsou fotoelektrochemické.The device according to claims 1 to 5, being photoelectrochemical. vyznačující se tím, že sluneční články (1,2)characterized in that the solar cells (1,2) 8. Zařízení podle nároku 1 až 5, vyznačující od roviny kolmé ke kolektorům (7) sluneční energie odchýlena o 5 až 30 úhlových stupňů k východu.Device according to claims 1 to 5, characterized by a deviation of 5 to 30 angular degrees to the east from a plane perpendicular to the solar energy collectors (7). se tím, že rovina článků (1, 2) je a rovnoběžné s rotační osou (4) zařízeníThe method according to claim 1, characterized in that the plane of the links (1, 2) is parallel to the rotational axis (4) of the device 9. Zařízení podle nároku laž5, vyznačující se tím, že sluneční články (1,2) jsou kombinované fotovoltaické a fotoelektrochemické.Apparatus according to claims 1 to 5, characterized in that the solar cells (1, 2) are combined photovoltaic and photoelectrochemical. 10. Zařízení podle nároku 1 až 9, vyznačující se tím, že sluneční články (1, 2) jsou připojeny přímo k elektromotoru (3).Device according to claims 1 to 9, characterized in that the solar cells (1, 2) are connected directly to the electric motor (3).
CZ963653A 1996-12-12 1996-12-12 Apparatus for orientation of solar energy collectors CZ283818B6 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CZ963653A CZ283818B6 (en) 1996-12-12 1996-12-12 Apparatus for orientation of solar energy collectors
PCT/CZ1997/000042 WO1998026303A1 (en) 1996-12-12 1997-12-08 An apparatus for orientation of solar radiation collectors
US09/319,721 US6089224A (en) 1996-12-12 1997-12-08 Apparatus for orientation of solar radiation collectors
EP97945725A EP0944843B1 (en) 1996-12-12 1997-12-08 An apparatus for orientation of solar radiation collectors
AU51152/98A AU730831B2 (en) 1996-12-12 1997-12-08 An apparatus for orientation of solar radiation collectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ963653A CZ283818B6 (en) 1996-12-12 1996-12-12 Apparatus for orientation of solar energy collectors

Publications (2)

Publication Number Publication Date
CZ365396A3 CZ365396A3 (en) 1998-06-17
CZ283818B6 true CZ283818B6 (en) 1998-06-17

Family

ID=5467058

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ963653A CZ283818B6 (en) 1996-12-12 1996-12-12 Apparatus for orientation of solar energy collectors

Country Status (5)

Country Link
US (1) US6089224A (en)
EP (1) EP0944843B1 (en)
AU (1) AU730831B2 (en)
CZ (1) CZ283818B6 (en)
WO (1) WO1998026303A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563040B2 (en) 2001-10-11 2003-05-13 Pinnacle West Capital Corporation Structure for supporting a photovoltaic module in a solar energy collection system
US7622666B2 (en) * 2005-06-16 2009-11-24 Soliant Energy Inc. Photovoltaic concentrator modules and systems having a heat dissipating element located within a volume in which light rays converge from an optical concentrating element towards a photovoltaic receiver
US7252083B2 (en) * 2005-07-18 2007-08-07 Arizona Public Service Company Structure for supporting energy conversion modules and solar energy collection system
US20070102037A1 (en) * 2005-10-04 2007-05-10 Irwin Philip C Self-powered systems and methods using auxiliary solar cells
JP2009524245A (en) * 2006-01-17 2009-06-25 ソリアント エナジー,インコーポレイティド Concentrating solar panel and related systems and methods
CN101375112A (en) * 2006-01-17 2009-02-25 索利安特能源公司 A hybrid primary optical component for optical concentrators
ES2330143T3 (en) * 2006-05-05 2009-12-04 Rahmi Oguz Capan HYPERBOLIC SOLAR COLLECTOR FIELD SYSTEM.
US20080135096A1 (en) * 2006-09-30 2008-06-12 Johnson Richard L Optical concentrators having one or more line foci and related methods
US20080128586A1 (en) * 2006-10-13 2008-06-05 Johnson Richard L Sun sensor assembly and related method of using
WO2008096019A1 (en) 2007-02-09 2008-08-14 Ingeteam Energy, S.A. Device for conversion of direct current into alternating current and for control of the maximum power for solar panels
WO2008112180A2 (en) * 2007-03-11 2008-09-18 Soliant Energy, Inc. Heat transfer and wiring considerations for a photo voltaic receiver for solar concentrator applications
US7647924B2 (en) * 2007-03-29 2010-01-19 Arizona Public Service Company System for supporting energy conversion modules
WO2008124642A2 (en) 2007-04-04 2008-10-16 Thompson Technology Industries, Inc. Adjustable tilt slar panel support system
US8318131B2 (en) 2008-01-07 2012-11-27 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
CN102089887B (en) * 2008-05-16 2014-12-31 昂科公司 Solar systems that include one or more shade-tolerant wiring schemes
ITRM20080476A1 (en) * 2008-09-03 2010-03-04 Antonino Zambuto SYSTEM TO OPTIMIZE THE CAPACITY OF SOLAR RAYS
US20110203776A1 (en) * 2009-02-17 2011-08-25 Mcalister Technologies, Llc Thermal transfer device and associated systems and methods
US8441361B2 (en) 2010-02-13 2013-05-14 Mcallister Technologies, Llc Methods and apparatuses for detection of properties of fluid conveyance systems
US20100294265A1 (en) * 2009-05-20 2010-11-25 Zomeworks Dual axis support for high wind solar panels
EP2504863B1 (en) * 2009-11-24 2021-01-13 Guy Pizzarello Low profile solar tracking systems & methods
WO2011085557A1 (en) * 2010-01-15 2011-07-21 苏州恒阳新能源科技有限公司 Light signal sensor
US8455806B2 (en) * 2010-01-18 2013-06-04 Sunpower Corporation Photovoltaic assembly for use in diffuse weather conditions and related methods
CA2789691A1 (en) * 2010-02-13 2011-08-18 Mcalister Technologies, Llc Chemical reactors with re-radiating surfaces and associated systems and methods
KR101297906B1 (en) * 2010-02-13 2013-08-22 맥알리스터 테크놀로지즈 엘엘씨 Reactor vessels with pressure and heat transfer features for producing hydrogen­based fuels and structural elements,and associated systems and methods
KR101344204B1 (en) * 2010-02-13 2013-12-20 맥알리스터 테크놀로지즈 엘엘씨 Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
EP2534095A2 (en) * 2010-02-13 2012-12-19 McAlister Technologies, LLC Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US7884308B1 (en) 2010-02-22 2011-02-08 Mejia Manuel J Solar-powered sun tracker
US8407950B2 (en) 2011-01-21 2013-04-02 First Solar, Inc. Photovoltaic module support system
US20130000632A1 (en) * 2011-06-29 2013-01-03 Advanced Technology & Research Corp. (ATR) Sun tracking solar power collection system
WO2013025650A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
EP2742207A4 (en) 2011-08-12 2016-06-29 Mcalister Technologies Llc Systems and methods for extracting and processing gases from submerged sources
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
WO2013025655A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
WO2013128236A1 (en) * 2012-02-29 2013-09-06 Matalon Energy Sources Ltd. Self-powered light-seeking apparatus and photovoltaic cells with light concentrating means
CN105402902B (en) * 2012-09-07 2017-09-08 广东桑辉能源有限公司 Multipurpose plate type solar device preparation method and its product
WO2014160301A1 (en) 2013-03-14 2014-10-02 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
WO2014145882A1 (en) 2013-03-15 2014-09-18 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9079489B2 (en) 2013-05-29 2015-07-14 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
CN104819578A (en) * 2015-04-21 2015-08-05 中国十七冶集团有限公司 Riveting apparatus for solar energy collection mirror support

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967249A (en) * 1959-01-27 1961-01-03 Hoffman Electronics Corp Servomechanism for tracking a heat source
US3493765A (en) * 1967-01-05 1970-02-03 Trw Inc Spacecraft attitude detector utilizing solar sensors and summation of predetermined signals derived therefrom
US4027651A (en) * 1976-02-17 1977-06-07 Robbins Jr Roland W Solar-energy-powered sun tracker
US4082947A (en) * 1976-03-25 1978-04-04 The George L. Haywood Co. Solar collector and drive circuitry control means
US4031385A (en) * 1976-04-05 1977-06-21 Desert Sunshine Exposure Tests, Inc. Solar tracking device
GB1566797A (en) * 1976-10-27 1980-05-08 Nat Res Dev Solar radiation tracking device
FR2403525A1 (en) * 1977-09-16 1979-04-13 Leonard Jean Solar energy collector construction - has photoelectric cells controlling tilting and slewing actuators on vertical and horizontal planes
US4223214A (en) * 1978-01-09 1980-09-16 American Solar Systems, Inc. Solar tracking device
US4290411A (en) * 1978-06-05 1981-09-22 Russell George F Solar energy collector sun-tracking apparatus and method
US4447718A (en) * 1980-07-07 1984-05-08 Kei Mori Apparatus for collecting and concentrating solar light energy
US4328417A (en) * 1980-07-21 1982-05-04 Roger Himes Solar tracking mechanism
CH657443A5 (en) * 1982-06-16 1986-08-29 Atlantis Energie Ag DEVICE FOR AUTOMATICALLY ADJUSTING SUN RADIATION CONCENTRATED BY A REFLECTOR.
DE3303000C2 (en) * 1983-01-29 1985-01-10 Pöhlmann, Erich, Ing. (grad.), 8650 Kulmbach Device for tracking a solar collector according to the position of the sun
US4649899A (en) * 1985-07-24 1987-03-17 Moore Roy A Solar tracker
SU1474397A1 (en) * 1987-08-26 1989-04-23 Предприятие П/Я В-8670 Tracking sensor for solar power plant
WO1993013396A1 (en) * 1991-12-31 1993-07-08 Wattsun Corporation Method and apparatus for tracker control
DE4306656A1 (en) * 1993-03-03 1993-12-16 Georg Linckelmann Automatic sun tracking appts. - has solar panels set at angles on block and with opposite polarities to generate control voltage characteristic

Also Published As

Publication number Publication date
EP0944843A1 (en) 1999-09-29
EP0944843B1 (en) 2005-04-27
CZ365396A3 (en) 1998-06-17
US6089224A (en) 2000-07-18
AU5115298A (en) 1998-07-03
AU730831B2 (en) 2001-03-15
WO1998026303A1 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
CZ283818B6 (en) Apparatus for orientation of solar energy collectors
CA2794602C (en) High efficiency counterbalanced dual axis solar tracking array frame system
US4317031A (en) Central focus solar energy system
CA2731583C (en) Solar-powered sun tracker
US20130118099A1 (en) High efficiency conterbalanced dual axis solar tracking array frame system
EP0155666A2 (en) Solar tracking mechanisms
JP2003324210A (en) Panel division type, sun-beam tracking solar panel system
WO2009155530A1 (en) Solar concentrator system
US20120125404A1 (en) Modular system for concentration of solar radiation
US20150040964A1 (en) Self-powered light-seeking apparatus and photovoltaic cells with light concentrating means
RU2280918C1 (en) Solar power plant
JP2001291890A (en) Photovoltaic generating device
CN110737286B (en) Flat single-axis tracking support with adjustable inclination angle in north-south direction of photovoltaic module
JP2004146760A (en) Differential voltage driven sun tracking solar electric power plant
Parveen et al. IoT based solar tracking system for efficient power generation
GB2365116A (en) A hybrid photovoltaic/thermal system
KR100959952B1 (en) Solar tracking device a large area of single-axis
RU2459156C1 (en) Solar power plant
US20120132254A1 (en) Solar tracker device
KR200423036Y1 (en) solar power plant having solar tracking apparatus
KR100767704B1 (en) A solar power generating system having solar tracker
JP2001290537A (en) Solar power generating device
CZ9901513A3 (en) Device for positioning double-sided collectors of solar energy
RU2230395C1 (en) Solar electric power station
CZ398297A3 (en) Apparatus for positioning double-sided collectors of solar energy

Legal Events

Date Code Title Description
IF00 In force as of 2000-06-30 in czech republic
MM4A Patent lapsed due to non-payment of fee

Effective date: 20021212