WO2013005485A1 - 内視鏡鉗子 - Google Patents

内視鏡鉗子 Download PDF

Info

Publication number
WO2013005485A1
WO2013005485A1 PCT/JP2012/062994 JP2012062994W WO2013005485A1 WO 2013005485 A1 WO2013005485 A1 WO 2013005485A1 JP 2012062994 W JP2012062994 W JP 2012062994W WO 2013005485 A1 WO2013005485 A1 WO 2013005485A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade electrode
movable blade
coaxial cable
electrode
fixed
Prior art date
Application number
PCT/JP2012/062994
Other languages
English (en)
French (fr)
Inventor
保坂誠
阿部和男
上村英一
Original Assignee
山科精器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山科精器株式会社 filed Critical 山科精器株式会社
Priority to US14/127,402 priority Critical patent/US9173699B2/en
Priority to EP12807309.5A priority patent/EP2716247B1/en
Publication of WO2013005485A1 publication Critical patent/WO2013005485A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • A61B18/1447Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod wherein sliding surfaces cause opening/closing of the end effectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2902Details of shaft characterized by features of the actuating rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade
    • A61B2018/1415Blade multiple blades

Definitions

  • the present invention relates to an endoscopic forceps.
  • a rotary first electrode and a fixed second electrode arranged to face the first electrode are provided.
  • the first electrode is rotated about the rotation axis, the first electrode and the second electrode
  • a living tissue is sandwiched between the electrodes, the first electrode and the second electrode are opposed in parallel, and a microwave is supplied to the first electrode and the second electrode to Solidify
  • the medical treatment is characterized in that the first electrode is rotated around the rotation axis, the first electrode and the second electrode are brought into contact with each other from the tip, and the living tissue is cut by shearing.
  • a treatment tool is known (Patent Document 1).
  • an object of the present invention is to provide a forceps that is not complicated in structure and can be reduced in diameter to be applicable to an endoscope.
  • the feature of the endoscope forceps of the present invention is an endoscope forceps in which a movable blade electrode and a fixed blade electrode form a pair of electrodes,
  • a fixed blade electrode fixed to the coated conduit is arranged to be in electrical contact with the outer conductor of the coaxial cable in the coated conduit;
  • the force point of the movable blade electrode is connected to the central conductor of the coaxial cable,
  • the fulcrum of the movable blade electrode is provided on the movable blade electrode, and this is rotatably connected to an electrical insulator or coated conduit fixed to the fixed blade electrode, or the fulcrum of the movable blade electrode is fixed to the movable blade electrode.
  • the electrical insulator which is rotatably connected to the coated conduit or fixed blade electrode, By sliding the coaxial cable with respect to the coated conduit, the parallel motion applied to the coaxial cable is transmitted to the movable blade electrode as a rotational motion around the fulcrum via the force point of the movable blade electrode, and the movable blade electrode While opening and closing the fixed blade electrode,
  • the gist is that a high frequency can be applied between the movable blade electrode and the fixed blade electrode via the outer conductor and the center conductor of the coaxial cable.
  • the fixed blade electrode is fixed to the coated conduit and forms a pair of electrodes together with the movable blade electrode.
  • Both the fixed blade electrode and the movable blade electrode may be made of metal or ceramic as long as they function as electrodes, and these may be surface-protected (metal plating, coating with fluororesin, etc.).
  • the coated conduit is configured such that a coaxial cable is inserted and the coaxial cable can slide relative to the coated conduit. That is, the coated conduit is configured to guide the movable blade electrode and the fixed blade electrode to the affected part and to push and pull the coaxial cable within the coated conduit. Further, the coated conduit may be flexible or rigid, part of which may be flexible, and the other part may be rigid. The coated conduit may be an electrical insulator or a conductor, but is preferably an electrical insulator from the viewpoint of handling.
  • the cross section perpendicular to the central axis of the coated conduit is preferably circular. That is, the coated conduit is preferably a cylindrical tube.
  • the maximum length of the cross section perpendicular to the central axis of the coated conduit is preferably 2 to 4 mm, more preferably 2.5 to 3.5 mm.
  • the diameter of the cross section perpendicular to the central axis of the coated conduit is preferably 2 to 4 mm, more preferably 2.5 to 3.5 mm.
  • the fixed blade electrode is in contact with the outer conductor of the coaxial cable in the covered conduit, and even when the coaxial cable is slid, the fixed blade electrode and the outer conductor of the coaxial cable are kept in electrical contact by sliding. Is arranged.
  • the force point of the movable blade electrode is connected to the central conductor of the coaxial cable, and the movement by sliding the coaxial cable with respect to the coated conduit is transmitted to this force point.
  • the central conductor of the coaxial cable and the movable blade electrode are also electrically connected.
  • the fulcrum of the movable blade electrode is provided on the movable blade electrode and is configured to be rotatably connected to an electrical insulator or a covered conduit fixed to the fixed blade electrode, or the fulcrum of the movable blade electrode is It is provided in an electrical insulator fixed to the electrode, and is configured to be rotatably connected to a coated conduit or a fixed blade electrode.
  • Electrical insulators include engineering plastics ⁇ polyetheretherketone (PEEK), polyethersulfone (PES), polyamide (PA), polyamideimide (PAI), polyimide (PI), polyphenylene sulfide (PPS), and polybenzimidazole.
  • PEEK polyetheretherketone
  • PES polyethersulfone
  • PA polyamide
  • PAI polyamideimide
  • PI polyimide
  • PPS polyphenylene sulfide
  • polybenzimidazole polybenzimidazole
  • fluororesin ⁇ polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene Ethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, etc. ⁇ and ceramics ⁇ alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), etc. ⁇ Is included.
  • the endoscopic forceps of the present invention slides the coaxial cable with respect to the coated conduit, thereby causing the parallel movement (or push-pull movement) applied to the coaxial cable to the movable blade electrode via the force point of the movable blade electrode. It is transmitted as a rotational movement around the fulcrum, and the movable blade electrode and the fixed blade electrode can be opened and closed.
  • a parallel movement (or push-pull movement) to the coaxial cable by sliding the coaxial cable with respect to the coated conduit it can be achieved by opening and closing the handle similarly to a known forceps.
  • the endoscopic forceps is configured to be able to apply a high frequency between the movable blade electrode and the fixed blade electrode via the outer conductor and the center conductor of the coaxial cable.
  • a high frequency By applying a high frequency, a living tissue or the like between the movable blade electrode and the fixed blade electrode can be heated, and hemostasis, cutting, coagulation, and the like can be achieved.
  • the high frequency is preferably a radio wave having a frequency of about 300 KHz to 100 GHz, more preferably a microwave (a radio wave having a frequency of 13 MHz to 25 GHz), particularly preferably a microwave having a frequency of 900 MHz to 6 GHz, and most preferably a microwave having a frequency of 2.45 GHz. is there.
  • the gist of the feature of the endoscopic forceps device of the present invention is that it is composed of the above-described endoscopic forceps and a high-frequency transmitter.
  • the endoscope forceps and the high frequency transmitter are connected by a coaxial cable, and the high frequency generated by the high frequency transmitter is transmitted to the movable blade electrode and the fixed blade electrode through the coaxial cable.
  • the high-frequency transmitter is not limited as long as it can transmit the above-mentioned frequency, but its output is preferably about 10 to 200 W.
  • a coaxial cable (consisting of a central conductor, an electrical insulator, an external conductor, and a protective coating) can apply a high frequency to the movable blade electrode and the fixed blade electrode, and the movable blade electrode Therefore, the number of parts can be reduced and a simple structure can be achieved. Therefore, in the conventional medical treatment tool, the structure is complicated, the number of parts is large, and it was difficult to apply to the endoscope.
  • the endoscope forceps of the present invention can be reduced in diameter, Applicable to endoscopic surgery and laparoscopic surgery. In addition to these, it can be applied to general direct surgery (surgical operation, brain surgery, otolaryngology, etc.).
  • the endoscope forceps of the present invention is a forceps having at least one of a gripping function, a scissor function, and a coagulation function, and closing, hemostasis, cutting, coagulation, cancer tissue, etc. Hemostasis, excision, coagulation, etc. It can also be applied to cutting surgical instruments (such as sutures).
  • the endoscopic forceps device of the present invention includes the above-described endoscopic forceps and a high-frequency transmitter, the total number of parts can be reduced and a simple structure can be achieved. Therefore, the endoscopic forceps device of the present invention can be applied to endoscopic surgery and laparoscopic surgery. In addition to these, it can be applied to general direct surgery (surgical operation, brain surgery, otolaryngology, etc.).
  • FIG. 1 is a partial side view conceptually showing one aspect of the endoscopic forceps of the present invention ⁇ an example in which the movable blade electrode and the fixed blade electrode are of a gripping type, where the fulcrum of the movable blade electrode is provided on the movable blade electrode ⁇ . It is a figure (the right half is a partial sectional view).
  • FIG. 3 is a partial plan view conceptually showing an embodiment of the endoscopic forceps of the present invention ⁇ example in which the movable blade electrode and the fixed blade electrode are gripping type ⁇ (the right half is a partial transmission plan view).
  • FIG. 1 is a partial side view (right half is a partial cross-sectional view) conceptually showing one embodiment of the endoscopic forceps of the present invention ⁇ example in which the movable blade electrode and the fixed blade electrode are scissors type ⁇ .
  • FIG. 3 is a partial plan view (right half is a partial transmission plan view) conceptually showing one aspect of the endoscopic forceps of the present invention ⁇ example in which the movable blade electrode and the fixed blade electrode are scissors type ⁇ .
  • FIG. 1 conceptually illustrates one aspect of the endoscopic forceps of the present invention ⁇ an example in which a movable blade electrode and a fixed blade electrode are of a gripping type, where a fulcrum of the movable blade electrode is provided on the movable blade electrode ⁇ .
  • FIG. 3 is a partial side view (a right half is a partial cross-sectional view).
  • FIG. 2 is a partial plan view (right half is a partial transmission plan view) conceptually showing one mode of the endoscopic forceps (an example in which the movable blade electrode and the fixed blade electrode are gripping types).
  • the endoscopic forceps shown in FIGS. 1 and 2 are endoscopic forceps in which the distal ends of the movable blade electrode (1) and the fixed blade electrode (2) are gripping.
  • the gripping tip has a trapezoidal shape, but the tip is not limited to the trapezoidal shape, and is not limited to the hook shape, but a claw forceps, a retraction gripping forceps, a support hook forceps, a bagcock type forceps Further, the shape may be the same as or similar to the shape of the Dobeek-type forceps, the lymph node grasping forceps, or the like.
  • the fixed-blade electrode (2) is composed of a tip portion (animated shape) and a cylindrical base portion. Both of the base portions are connected and fixed so that a part of the covered conduit (3) (cylindrical tube) is covered.
  • the fixed blade electrode (2) is a slidable electric contact portion (11) and is in contact with the outer conductor (4) of the coaxial cable in the coated conduit (3), and when the coaxial cable is slid
  • the fixed blade electrode (2) and the outer conductor (4) of the coaxial cable are arranged so as to maintain electrical contact by sliding.
  • the force point (6) of the movable blade electrode (1) is connected to the central conductor (5) of the coaxial cable, and the movement by sliding the coaxial cable with respect to the coated conduit (3) is transmitted to this force point (6). Is configured to do.
  • the central conductor (5) of the coaxial cable and the movable blade electrode (1) are also electrically connected.
  • the fulcrum (7) of the movable blade electrode (1) is provided on the movable blade electrode (1), and this is rotatably connected to the electrical insulator (8) fixed to the base portion of the fixed blade electrode (2). It is configured.
  • the fulcrum (7) of the movable blade electrode (1) may be provided on the movable blade electrode (1), and this may be configured to be rotatably connected to the coated conduit (3).
  • the fulcrum (7) of the movable blade electrode (1) is provided on an electrical insulator (8) fixed to the movable blade electrode (1), which rotates with the covered conduit (3) or the fixed blade electrode (2). It may be configured to be connected (see FIG. 3).
  • the endoscopic forceps of the present invention slides the coaxial cable with respect to the coated conduit (3), thereby causing the parallel movement (or push-pull movement) applied to the coaxial cable to be applied to the force point (6) of the movable blade electrode (1).
  • a stopper (9) is provided around the external conductor (4), and sliding (parallel movement) is restricted by collision with the base portion of the fixed blade electrode (2).
  • the endoscope forceps according to the present invention in addition to the function as a forceps as in the conventional forceps, are connected to the movable blade electrode (1) via the outer conductor (4) and the center conductor (5) of the coaxial cable.
  • FIG. 4 is a partial side view (right half is a partial cross-sectional view) conceptually showing one aspect of the endoscopic forceps of the present invention (an example in which the movable blade electrode and the fixed blade electrode are scissors type).
  • FIG. 5 is a partial plan view (right half is a partial transmission plan view) conceptually showing one mode of the endoscopic forceps (an example in which the movable blade electrode and the fixed blade electrode are scissors type).
  • the endoscopic forceps shown in FIGS. 4 and 5 are endoscopic forceps in which the distal ends of the movable blade electrode (1) and the fixed blade electrode (2) are scissors type.
  • the tip portions of the movable blade electrode (1) and the fixed blade electrode (2) are not limited to the scissors type shown in FIGS.
  • the fixed blade electrode (2) is composed of a tip portion and a cylindrical base portion. Both of the base portions are connected and fixed so that a part of the covered conduit (3) (cylindrical tube) is covered.
  • the fixed blade electrode (2) is a slidable electric contact portion (11) and is in contact with the outer conductor (4) of the coaxial cable in the coated conduit (3), and when the coaxial cable is slid
  • the fixed blade electrode (2) and the outer conductor (4) of the coaxial cable are arranged so as to maintain electrical contact by sliding.
  • the force point (6) of the movable blade electrode (1) is connected to the central conductor (5) of the coaxial cable, and the kinetic energy generated by sliding the coaxial cable with respect to the coated conduit (3) is applied to the force point (6). Configured to communicate.
  • the central conductor (5) of the coaxial cable and the movable blade electrode (1) are also electrically connected.
  • the fulcrum (7) of the movable blade electrode (1) is provided on the movable blade electrode (1), and this is rotatably connected to the electrical insulator (8) fixed to the base portion of the fixed blade electrode (2). It is configured.
  • the fulcrum (7) of the movable blade electrode (1) may be provided on the movable blade electrode (1), and this may be configured to be rotatably connected to the coated conduit (3).
  • the fulcrum (7) of the movable blade electrode (1) is provided on an electric insulator (8) fixed to the movable blade electrode (1), which rotates with the covered conduit (3) or the fixed blade electrode (2). It may be configured to be connected.
  • the endoscopic forceps of the present invention slides the coaxial cable with respect to the coated conduit (3), thereby causing the parallel movement (or push-pull movement) applied to the coaxial cable to be applied to the force point (6) of the movable blade electrode (1).
  • a stopper (9) is provided around the external conductor (4), and sliding (parallel movement) is restricted by collision with the base portion of the fixed blade electrode (2).
  • the endoscope forceps according to the present invention in addition to the function as a forceps as in the conventional forceps, are connected to the movable blade electrode (1) via the outer conductor (4) and the center conductor (5) of the coaxial cable.

Abstract

本発明の目的は、複雑な構造ではなく、内視鏡に適用できる程に細径化できる鉗子の提供 本発明は、可動刃電極と固定刃電極とが一対の電極を形成してなる内視鏡鉗子であって、 被覆導管に固定された固定刃電極が被覆導管内の同軸ケーブルの外部電導体と電気接触できるように配置され、 可動刃電極の力点が同軸ケーブルの中心電導体と連結され、可動刃電極の支点が、可動刃電極に設けられ、これが固定刃電極に固定された電気絶縁体若しくは被覆導管と回転可能に接続され、 同軸ケーブルを被覆導管に対してスライドさせることにより、同軸ケーブルに加えられた平行動を、可動刃電極の力点を介して、可動刃電極に支点を中心とする回転動として伝え、可動刃電極と固定刃電極とを開閉させると共に、 同軸ケーブルの外部電導体及び中心電導体を介して、可動刃電極と固定刃電極との間に高周波を印加できるように構成したことを特徴とする内視鏡鉗子を用いる。

Description

内視鏡鉗子
 本発明は、内視鏡鉗子に関する。
 従来、内視鏡鉗子として、回転自在の第1の電極と、前記第1の電極に対向して配置された固定の第2の電極とを備え、前記第1の電極の回動軸を前記第1の電極と前記第2の電極との間の中心線に対して外側に設け、前記第1の電極を前記回動軸を中心に回動させ、前記第1の電極と前記第2の電極との間で生体組織を挟持し、前記第1の電極と前記第2の電極とを平行に対向させ、前記第1の電極と前記第2の電極にマイクロ波を供給して生体組織を凝固させ、
更に、前記第1の電極を前記回動軸を中心に回転させ、前記第1の電極と前記第2の電極とをその先端から接触させ、剪断により生体組織を切断することを特徴とする医療用処置具が知られている(特許文献1)。
特開2007-282666号公報
 しかし、従来の医療用処置具では、構造が複雑であり、部品数が多く、内視鏡に適用することは困難であるという問題がある。
 すなわち、本発明の目的は、複雑な構造ではなく、内視鏡に適用できる程に細径化できる鉗子を提供することである。
 本発明の内視鏡鉗子の特徴は、可動刃電極と固定刃電極とが一対の電極を形成してなる内視鏡鉗子であって、
被覆導管に固定された固定刃電極が被覆導管内の同軸ケーブルの外部電導体と電気接触できるように配置され、
可動刃電極の力点が同軸ケーブルの中心電導体と連結され、
可動刃電極の支点が、可動刃電極に設けられ、これが固定刃電極に固定された電気絶縁体若しくは被覆導管と回転可能に接続されるか、又は可動刃電極の支点が、可動刃電極に固定された電気絶縁体に設けられ、これが被覆導管若しくは固定刃電極と回転可能に接続され、
同軸ケーブルを被覆導管に対してスライドさせることにより、同軸ケーブルに加えられた平行動を、可動刃電極の力点を介して、可動刃電極に支点を中心とする回転動として伝え、可動刃電極と固定刃電極とを開閉させると共に、
同軸ケーブルの外部電導体及び中心電導体を介して、可動刃電極と固定刃電極との間に高周波を印加できるように構成した点を要旨とする。
 固定刃電極は、被覆導管に固定され、可動刃電極と共に一対の電極を形成している。固定刃電極及び可動刃電極共に、電極として働けば、金属製であっても、セラミック製であってもよく、これらが表面保護(金属メッキやフッ素樹脂等によるコーティング等)されていてもよい。
 被覆導管は、同軸ケーブルが内挿され、同軸ケーブルが被覆導管に対してスライドできるように構成されている。すなわち、被覆導管は、可動刃電極と固定刃電極とを患部へ導くと共に、被覆導管内で同軸ケーブルを押引動できるように構成されている。また、被覆導管は、フレキシブルでもよいし、リジットでもよく、一部がフレキシブルで、他の部分がリジットでもよい。また、被覆導管は、電気絶縁体であっても、電導体であってもよいが、取り扱い性の観点から、電気絶縁体であることが好ましい。
 被覆導管の中心軸に垂直な断面は、円形が好ましい。すなわち、被覆導管は円柱管であることが好ましい。
 被覆導管の中心軸に垂直な断面の最大長は、2~4mmであることが好ましく、さらに好ましくは2.5~3.5mmである。被覆導管が円柱管の場合、被覆導管の中心軸に垂直な断面の直径は、2~4mmであることが好ましく、さらに好ましくは2.5~3.5mmである。
 固定刃電極は、被覆導管内の同軸ケーブルの外部電導体と接触しており、同軸ケーブルをスライドさせた際も、固定刃電極と同軸ケーブルの外部電導体とがしゅう動により電気接触を保つように配置されている。
 可動刃電極の力点は、同軸ケーブルの中心電導体と連結され、同軸ケーブルを被覆導管に対してスライドさせることによる運動がこの力点に伝達するように構成されている。なお、同軸ケーブルの中心電導体と可動刃電極とは、電気的にも接続されている。
 可動刃電極の支点は、可動刃電極に設けられ、これが固定刃電極に固定された電気絶縁体若しくは被覆導管と回転可能に接続されて構成されているか、又は可動刃電極の支点が、可動刃電極に固定された電気絶縁体に設けられ、これが被覆導管若しくは固定刃電極と回転可能に接続されて構成されている。
 電気絶縁体としては、エンジニアリングプラスチック{ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルフォン(PES)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリフェニレンサルファイド(PPS)及びポリベンゾイミダゾール(PBI)等}、フッ素樹脂{ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体及びエチレン・クロロトリフルオロエチレン共重合体等}及びセラミックス{アルミナ (Al)、ジルコニア(ZrO)、炭化ケイ素 (SiC)及び窒化ケイ素(Si)等}が含まれる。
 本発明の内視鏡鉗子は、同軸ケーブルを被覆導管に対してスライドさせることにより、同軸ケーブルに加えられた平行動(または押引動)を、可動刃電極の力点を介して、可動刃電極に支点を中心とする回転動として伝え、可動刃電極と固定刃電極とを開閉させることができる。なお、同軸ケーブルを被覆導管に対してスライドさせることにより、同軸ケーブルに平行動(または押引動)を加える方法としては、公知の鉗子と同様にハンドルの開閉によって達成できる。
 内視鏡鉗子は、同軸ケーブルの外部電導体及び中心電導体を介して、可動刃電極と固定刃電極との間に高周波を印加できるように構成されている。高周波を印加することにより、可動刃電極と固定刃電極との間にある生体組織等を加熱することができ、止血、切断、凝固等が達成できる。
 高周波としては、周波数300KHz~100GHz程度の電波が好ましく、さらに好ましくはマイクロ波(周波数13MHz~25GHzの電波)、特に好ましくは周波数900MHz~6GHzのマイクロ波、最も好ましくは周波数2.45GHzのマイクロ波である。
 本発明の内視鏡鉗子装置の特徴は、上記の内視鏡鉗子と、高周波発信器とから構成される点を要旨とする。
 上記の内視鏡鉗子と、高周波発信器とは、同軸ケーブルでつながっており、この同軸ケーブルを介して、高周波発信器により発生させた高周波を可動刃電極及び固定刃電極に送信する。
 高周波発信器は、上記の周波数を発信でき装置であれば制限ないが、その出力が10~200W程度が好ましい。
 本発明の内視鏡鉗子では、同軸ケーブル(中心電導体、電気絶縁体、外部電導体及び保護被覆から構成される)が、可動刃電極及び固定刃電極に高周波を印加できると共に、可動刃電極に回転動を伝えることができるため、全体の部品数を少なくでき、単純な構造とすることができる。
 したがって、従来の医療用処置具では、構造が複雑であり、部品数が多く、内視鏡に適用することは困難であったが、本発明の内視鏡鉗子は、細径化できるため、内視鏡手術や腹腔鏡手術に適用できる。これらの他に、一般の直視下手術(外科手術、脳外科、耳鼻科等)にも適用できる。
 本発明の内視鏡鉗子は、把持機能、剪刀機能及び凝固機能の少なくとも一つの機能を持つ鉗子であって、管組織(血管、胆管等)の閉鎖、止血、切断、凝固や、癌組織等の止血、切除、凝固等ができる。また、術具(縫合糸等)の切断にも適用できる。
 本発明の内視鏡鉗子装置は、上記の内視鏡鉗子と、高周波発信器とから構成されるため、全体の部品数を少なくでき、単純な構造とすることができる。
 したがって、本発明の内視鏡鉗子装置は、内視鏡鏡手術や腹腔鏡手術に適用できる。これらの他に、一般の直視下手術(外科手術、脳外科、耳鼻科等)にも適用できる。
本発明の内視鏡鉗子の一態様{可動刃電極及び固定刃電極が把持型である例のうち、可動刃電極の支点が可動刃電極に設けられた例}を概念的に表した部分側面図(右半分は部分断面図)である。 本発明の内視鏡鉗子の一態様{可動刃電極及び固定刃電極が把持型である例}を概念的に表した部分平面図(右半分は部分透過平面図)である。 本発明の内視鏡鉗子の一態様{可動刃電極及び固定刃電極が把持型である例のうち、可動刃電極の支点が可動刃電極に固定された電気絶縁体に設けられた例}を概念的に表した部分側面図(右半分は部分断面図)である。 本発明の内視鏡鉗子の一態様{可動刃電極及び固定刃電極が剪刀型である例}を概念的に表した部分側面図(右半分は部分断面図)である。 本発明の内視鏡鉗子の一態様{可動刃電極及び固定刃電極が剪刀型である例}を概念的に表した部分平面図(右半分は部分透過平面図)である。
 以下、図面を用いて、本発明の内視鏡鉗子について、さらに詳細に説明する。なお、特記しない限り、最初に説明した事項は、後の図面の説明においても共通して適用できる。
<図1、2>
 図1は、本発明の内視鏡鉗子の一態様{可動刃電極及び固定刃電極が把持型である例のうち、可動刃電極の支点が可動刃電極に設けられた例}を概念的に表した部分側面図(右半分は部分断面図)である。図2は、この内視鏡鉗子の一態様{可動刃電極及び固定刃電極が把持型である例}を概念的に表した部分平面図(右半分は部分透過平面図)である。
 図1、2で表した内視鏡鉗子は、可動刃電極(1)及び固定刃電極(2)の先端部が把持型である内視鏡鉗子である。図1、2では、把持型の先端部が、わにぐち形状のものを表しているが、わにぐち形状に限定されず、クロ-鉗子、リトラクション把持鉗子、支持鉤鉗子、バグコック型鉗子、ドベーキ型鉗子、リンパ節把持鉗子等の形状と同形状又は類似形状であってもよい。
 固定刃電極(2)は、先端部(わにぐち形状)と、円筒形のベース部とからなる。このベース部の一部に、被覆導管(3)(円柱管)の一部が被さるようにして、両者が接続固定されている。
 固定刃電極(2)は、しゅう動可能な電気接触部(11)で、被覆導管(3)内の同軸ケーブルの外部電導体(4)と接触しており、同軸ケーブルをスライドさせた際も、固定刃電極(2)と同軸ケーブルの外部電導体(4)とがしゅう動により電気接触を保つように配置されている。
 可動刃電極(1)の力点(6)は、同軸ケーブルの中心電導体(5)と連結され、同軸ケーブルを被覆導管(3)に対してスライドさせることによる運動がこの力点(6)に伝達するように構成されている。なお、同軸ケーブルの中心電導体(5)と可動刃電極(1)とは、電気的にも接続されている。
 可動刃電極(1)の支点(7)は、可動刃電極(1)に設けられ、これが固定刃電極(2)のベース部に固定された電気絶縁体(8)と回転可能に接続されて構成されている。
 可動刃電極(1)の支点(7)は、可動刃電極(1)に設けられ、これが被覆導管(3)と回転可能に接続されて構成されていてもよい。または、可動刃電極(1)の支点(7)は、可動刃電極(1)に固定された電気絶縁体(8)に設けられ、これが被覆導管(3)若しくは固定刃電極(2)と回転可能に接続されて構成されてもよい(図3参照)。
 本発明の内視鏡鉗子は、同軸ケーブルを被覆導管(3)に対してスライドさせることにより、同軸ケーブルに加えられた平行動(または押引動)を、可動刃電極(1)の力点(6)を介して、可動刃電極(1)に支点(7)を中心とする回転動として伝え、可動刃電極(1)と固定刃電極(2)とを開閉させることができる。なお、同軸ケーブルにストッパー(9)を設けて、スライド(平行動)できる範囲を制限してもよい。図1では、ストッパー(9)を外部電導体(4)の周囲に設け、固定刃電極(2)のベース部との衝突により、スライド(平行動)を制限している。
 本発明の内視鏡鉗子は、従来の鉗子と同様に鉗子としての働きの他に、同軸ケーブルの外部電導体(4)及び中心電導体(5)を介して、可動刃電極(1)と固定刃電極(2)との間に高周波を印加することにより、可動刃電極(1)と固定刃電極(2)との間にある生体組織等を加熱することができ、止血、切断、凝固等が達成できる。
<図4、5>
 図4は、本発明の内視鏡鉗子の一態様{可動刃電極及び固定刃電極が剪刀型である例}を概念的に表した部分側面図(右半分は部分断面図)である。図5は、この内視鏡鉗子の一態様{可動刃電極及び固定刃電極が剪刀型である例}を概念的に表した部分平面図(右半分は部分透過平面図)である。
 図4、5で表した内視鏡鉗子は、可動刃電極(1)及び固定刃電極(2)の先端部が剪刀型である内視鏡鉗子である。可動刃電極(1)及び固定刃電極(2)の先端部は、図4、5に示した剪刀型に限定されず、用途によって適宜変更できる。
 固定刃電極(2)は、先端部と、円筒形のベース部とからなる。このベース部の一部に、被覆導管(3)(円柱管)の一部が被さるようにして、両者が接続固定されている。
 固定刃電極(2)は、しゅう動可能な電気接触部(11)で、被覆導管(3)内の同軸ケーブルの外部電導体(4)と接触しており、同軸ケーブルをスライドさせた際も、固定刃電極(2)と同軸ケーブルの外部電導体(4)とがしゅう動により電気接触を保つように配置されている。
 可動刃電極(1)の力点(6)は、同軸ケーブルの中心電導体(5)と連結され、同軸ケーブルを被覆導管(3)に対してスライドさせることによる運動エネルギーがこの力点(6)に伝達するように構成されている。なお、同軸ケーブルの中心電導体(5)と可動刃電極(1)とは、電気的にも接続されている。
 可動刃電極(1)の支点(7)は、可動刃電極(1)に設けられ、これが固定刃電極(2)のベース部に固定された電気絶縁体(8)と回転可能に接続されて構成されている。
 可動刃電極(1)の支点(7)は、可動刃電極(1)に設けられ、これが被覆導管(3)と回転可能に接続されて構成されていてもよい。または、可動刃電極(1)の支点(7)は、可動刃電極(1)に固定された電気絶縁体(8)に設けられ、これが被覆導管(3)若しくは固定刃電極(2)と回転可能に接続されて構成されてもよい。
 本発明の内視鏡鉗子は、同軸ケーブルを被覆導管(3)に対してスライドさせることにより、同軸ケーブルに加えられた平行動(または押引動)を、可動刃電極(1)の力点(6)を介して、可動刃電極(1)に支点(7)を中心とする回転動として伝え、可動刃電極(1)と固定刃電極(2)とを開閉させることができる。なお、同軸ケーブルにストッパー(9)を設けて、スライド(平行動)できる範囲を制限してもよい。図4では、ストッパー(9)を外部電導体(4)の周囲に設け、固定刃電極(2)のベース部との衝突により、スライド(平行動)を制限している。
 本発明の内視鏡鉗子は、従来の鉗子と同様に鉗子としての働きの他に、同軸ケーブルの外部電導体(4)及び中心電導体(5)を介して、可動刃電極(1)と固定刃電極(2)との間に高周波を印加することにより、可動刃電極(1)と固定刃電極(2)との間にある生体組織等を加熱することができ、止血、切断、凝固等が達成できる。
 1 可動刃電極
 2 固定刃電極
 3 被覆導管
 4 外部電導体
 5 中心電導体
 6 可動刃電極の力点
 7 可動刃電極の支点
 8 電気絶縁体
 9 ストッパー
10 同軸ケーブルの保護被覆
11 しゅう動可能な電気接触部
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (4)

  1. 可動刃電極と固定刃電極とが一対の電極を形成してなる内視鏡鉗子であって、
    被覆導管に固定された固定刃電極が被覆導管内の同軸ケーブルの外部電導体と電気接触できるように配置され、
    可動刃電極の力点が同軸ケーブルの中心電導体と連結され、
    可動刃電極の支点が、可動刃電極に設けられ、これが固定刃電極に固定された電気絶縁体若しくは被覆導管と回転可能に接続されるか、又は可動刃電極の支点が、可動刃電極に固定された電気絶縁体に設けられ、これが被覆導管若しくは固定刃電極と回転可能に接続され、
    同軸ケーブルを被覆導管に対してスライドさせることにより、同軸ケーブルに加えられた平行動を、可動刃電極の力点を介して、可動刃電極に支点を中心とする回転動として伝え、可動刃電極と固定刃電極とを開閉させると共に、
    同軸ケーブルの外部電導体及び中心電導体を介して、可動刃電極と固定刃電極との間に高周波を印加できるように構成したことを特徴とする内視鏡鉗子。
  2. 被覆導管の中心軸に垂直な断面の直径が2~4mmである請求項1に記載の内視鏡鉗子。
  3. 高周波がマイクロ波である請求項1又は2に記載の内視鏡鉗子。
  4. 請求項1~3のいずれかに記載された内視鏡鉗子と、
    高周波発信器と
    から構成されることを特徴とする内視鏡鉗子装置。
PCT/JP2012/062994 2011-07-07 2012-05-22 内視鏡鉗子 WO2013005485A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/127,402 US9173699B2 (en) 2011-07-07 2012-05-22 Endoscopic forceps
EP12807309.5A EP2716247B1 (en) 2011-07-07 2012-05-22 Endoscopic forceps with a slidable coaxial cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011151308A JP5698084B2 (ja) 2011-07-07 2011-07-07 内視鏡鉗子
JP2011-151308 2011-07-07

Publications (1)

Publication Number Publication Date
WO2013005485A1 true WO2013005485A1 (ja) 2013-01-10

Family

ID=47436843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062994 WO2013005485A1 (ja) 2011-07-07 2012-05-22 内視鏡鉗子

Country Status (4)

Country Link
US (1) US9173699B2 (ja)
EP (1) EP2716247B1 (ja)
JP (1) JP5698084B2 (ja)
WO (1) WO2013005485A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
CN109965988A (zh) * 2013-08-15 2019-07-05 直观外科手术操作公司 具有单次使用的端部和集成的端部覆盖物的可重复使用的手术器械
GB201322844D0 (en) * 2013-12-23 2014-02-12 Creo Medical Ltd Electrosurgical device
WO2016009703A1 (ja) * 2014-07-15 2016-01-21 株式会社Jimro 医療用処置具及びその処置部
GB2567480A (en) * 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical resector tool
DE102018100168A1 (de) 2018-01-05 2019-07-11 Olympus Winter & Ibe Gmbh Endoskopische Zange
JP7286067B2 (ja) * 2019-03-29 2023-06-05 日本ゼオン株式会社 内視鏡用マイクロ波照射器具
JP7286068B2 (ja) * 2019-03-29 2023-06-05 日本ゼオン株式会社 内視鏡用マイクロ波照射器具
GB2602122A (en) * 2020-12-18 2022-06-22 Creo Medical Ltd Electrosurgical resector tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509623A (ja) * 1993-02-11 1996-10-15 シンバイオシス・コーポレイション 選択的両極性焼灼器を有する内視的生検鉗子装置
JP2003299670A (ja) * 2002-04-09 2003-10-21 Pentax Corp 内視鏡用嘴状処置具
JP2006518258A (ja) * 2003-02-20 2006-08-10 シャーウッド・サービシーズ・アクチェンゲゼルシャフト 容器シーラーおよびディバイダ、ならびにその製造方法
JP2007229294A (ja) * 2006-03-02 2007-09-13 Pentax Corp 内視鏡用バイポーラ型嘴状高周波処置具
JP2007282666A (ja) 2006-04-12 2007-11-01 Saney Seiko Inc 医療用処置具
JP2007319679A (ja) * 2006-05-30 2007-12-13 Pentax Corp 内視鏡用の高周波切開器具
JP2009119087A (ja) * 2007-11-16 2009-06-04 Hoya Corp 内視鏡用バイポーラ高周波処置具
JP2009142513A (ja) * 2007-12-17 2009-07-02 Hoya Corp 内視鏡用バイポーラ型高周波処置具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004559A (en) * 1932-11-22 1935-06-11 Wappler Frederick Charles Method and instrument for electrosurgical treatment of tissue
DE4138116A1 (de) * 1991-11-19 1993-06-03 Delma Elektro Med App Medizinisches hochfrequenz-koagulations-schneidinstrument
DE19608716C1 (de) * 1996-03-06 1997-04-17 Aesculap Ag Bipolares chirurgisches Faßinstrument
JP4035100B2 (ja) * 2003-06-09 2008-01-16 徹 谷 医療用処置具及びこれを備えた医療用処置装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509623A (ja) * 1993-02-11 1996-10-15 シンバイオシス・コーポレイション 選択的両極性焼灼器を有する内視的生検鉗子装置
JP2003299670A (ja) * 2002-04-09 2003-10-21 Pentax Corp 内視鏡用嘴状処置具
JP2006518258A (ja) * 2003-02-20 2006-08-10 シャーウッド・サービシーズ・アクチェンゲゼルシャフト 容器シーラーおよびディバイダ、ならびにその製造方法
JP2007229294A (ja) * 2006-03-02 2007-09-13 Pentax Corp 内視鏡用バイポーラ型嘴状高周波処置具
JP2007282666A (ja) 2006-04-12 2007-11-01 Saney Seiko Inc 医療用処置具
JP2007319679A (ja) * 2006-05-30 2007-12-13 Pentax Corp 内視鏡用の高周波切開器具
JP2009119087A (ja) * 2007-11-16 2009-06-04 Hoya Corp 内視鏡用バイポーラ高周波処置具
JP2009142513A (ja) * 2007-12-17 2009-07-02 Hoya Corp 内視鏡用バイポーラ型高周波処置具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716247A4

Also Published As

Publication number Publication date
US9173699B2 (en) 2015-11-03
US20140135756A1 (en) 2014-05-15
EP2716247A1 (en) 2014-04-09
EP2716247B1 (en) 2015-12-09
JP2013017542A (ja) 2013-01-31
EP2716247A4 (en) 2014-12-17
JP5698084B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5698084B2 (ja) 内視鏡鉗子
EP3033029B1 (en) Reusable surgical instrument with single-use tip and integrated tip cover
JP6648146B2 (ja) 医療用装置に用いられる高温材料
EP1987793B1 (en) Coagulation incision apparatus
CN107106198B (zh) 内窥镜用剪刀及内窥镜用高频处置器具
EP2082694B1 (en) Microwave endoscope forceps
CN110602999B (zh) 具有换能器滑动接头的超声外科器械
EP2974685A1 (en) Gap control via overmold teeth and hard stops
WO2011043340A1 (ja) 内視鏡用鋏
EP2554131A1 (en) Treatment tool for endoscope
KR20200053637A (ko) 양극 소작 기구
JP2008246222A (ja) エネルギー処置具
JP2013138844A (ja) 内視鏡用高周波焼灼切開鋏装置
US20130345702A1 (en) Instrument for Fusing and Severing Tissue
JP2019520913A (ja) クランプアーム撓み機構を備えた超音波外科用器具
JP6798100B2 (ja) 内視鏡用高周波処置具
JP2012075805A (ja) 内視鏡用高周波鋏
CN108697460B (zh) 钳式治疗器具
JP6294964B2 (ja) 医療用処置具
JP7286067B2 (ja) 内視鏡用マイクロ波照射器具
WO2016009704A1 (ja) 医療用処置具
JP2020163001A (ja) 内視鏡用マイクロ波照射器具
US20220280226A1 (en) Segmented surgical forceps
EP3289994A1 (en) Treatment instrument
JP7151142B2 (ja) 高周波処置具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14127402

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012807309

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE