WO2013004197A1 - 双界面智能卡、其生产方法及铣槽方法 - Google Patents

双界面智能卡、其生产方法及铣槽方法 Download PDF

Info

Publication number
WO2013004197A1
WO2013004197A1 PCT/CN2012/078319 CN2012078319W WO2013004197A1 WO 2013004197 A1 WO2013004197 A1 WO 2013004197A1 CN 2012078319 W CN2012078319 W CN 2012078319W WO 2013004197 A1 WO2013004197 A1 WO 2013004197A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
dual
layer
module
dual interface
Prior art date
Application number
PCT/CN2012/078319
Other languages
English (en)
French (fr)
Inventor
黄艳
王庆军
Original Assignee
上海蓝沛新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201110187452 external-priority patent/CN102231193B/zh
Priority claimed from CN 201110264484 external-priority patent/CN102328120B/zh
Priority claimed from CN 201110298075 external-priority patent/CN102360443B/zh
Application filed by 上海蓝沛新材料科技股份有限公司 filed Critical 上海蓝沛新材料科技股份有限公司
Publication of WO2013004197A1 publication Critical patent/WO2013004197A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07745Mounting details of integrated circuit chips
    • G06K19/07747Mounting details of integrated circuit chips at least one of the integrated circuit chips being mounted as a module
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07754Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna the connection being galvanic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07766Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
    • G06K19/07769Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the further communication means being a galvanic interface, e.g. hybrid or mixed smart cards having a contact and a non-contact interface

Definitions

  • the present invention relates to the field of information technology, and in particular, to a dual interface smart card, a method for producing the dual interface smart card, and a method for manufacturing a dual interface smart card. Background technique
  • Dual interface smart cards generally include the following:
  • the antenna layer is generally embedded on the antenna substrate by ultrasonic waves to form an antenna layer, and a small number of manufacturers attach the machine-made enameled wire coil to the antenna substrate by bonding, forming an antenna layer, see figure 1.
  • the two ends of the antenna must have suitable relative positions to accommodate the two pads of the dual interface module, one end of the antenna will travel from the outer ring across the inner ring to a suitable position from the other end of the antenna, and this structure is prone to short circuit. Therefore, the wound antenna must use an enameled wire to avoid short circuit of the antenna circuit. Such an antenna layer causes subsequent pad and solder structures to be difficult to form, and finally affects the stability and reliability of the dual interface smart card.
  • the dual interface smart card base is formed by punching a large sheet of semi-finished products formed by laminating the front printing layer and the lining layer, the antenna layer, the back printing layer and the lining layer in a precise alignment position.
  • the module pad is obtained by milling the slot at the dual interface module of the dual interface smart card card base, but in order to expose the ends of the antenna, the wire ends at both ends of the antenna must be manually picked out from the antenna substrate, and the antenna is Pull a certain length from the antenna substrate and trim the two antennas that are pulled out to the same length and make them vertical.
  • Solder solder the pad of the dual interface module, and paste the hot melt film outside the pad.
  • the pad of the dual interface module is soldered to the upright antenna of the dual interface smart card card by hand or automatic machine, and the soldered dual interface module is placed in the double interface smart card base milling slot and used After the hot pressing device melts the hot melt adhesive film on the dual interface module, the dual interface module is finally bonded with the dual interface smart card base, and finally the finished product of the dual interface smart card is obtained.
  • the current production process for producing dual interface smart cards generally includes the following:
  • the antenna layer is fabricated.
  • the copper enamel is buried in the antenna substrate by using ultrasonic waves to form an antenna layer. Since both ends of the antenna must have suitable relative positions to accommodate the two pads of the dual interface module, one end of the antenna will extend from the outer ring across the inner ring to a suitable position from the other end of the antenna, and this structure is likely to cause Short circuit, therefore, the wound antenna must use an enameled wire to avoid short circuit of the antenna circuit.
  • the laminated large semi-finished product is placed in a card puncher and punched into a standard dual interface kakaji.
  • the pads of the dual interface module are soldered, and the hot melt film is pasted outside the pads.
  • the pad of the dual interface module is soldered to the upright antenna of the dual interface card base by a thermostatic welding head, and the welded dual interface module is placed in the double interface Kaka base milling slot.
  • the dual interface module After the hot melt film on the dual interface module is melted using a hot press device, the dual interface module is finally bonded to the dual interface card base.
  • the present invention provides a dual interface smart card, and the dual interface smart card includes:
  • a dual interface card base the dual interface card base is stacked by combining a front surface film, a front printing layer, a front liner layer, a punching layer, the antenna layer and the backing layer, the back printed layer, and the back surface film Obtained after lamination; a module slot, the dual interface module is placed in a dual interface smart card card-milled module slot, and the two antenna pads are respectively overlapped with two module pad regions of the dual interface module, wherein the module slot includes a module back The glue groove and the module strip groove; the welding groove, the groove is swung in the front antenna pad area of the dual interface smart card base, and the two antenna pads are exposed to perform the solder connection between the module pad and the antenna pad;
  • the module pad is soldered to the antenna pad by heating and melting the solder between the antenna pad and the module pad.
  • the metal layer of the metal antenna has a thickness of between 0.001 and 0.04 mm.
  • the metal antenna is made of copper, aluminum or conductive silver paste.
  • the metal antenna is formed by etching, plating or printing.
  • a method for producing a dual interface smart card characterized in that the production method comprises the following steps:
  • the pick-up head places the dual interface module in the module backing groove of the double interface card base for hot pressing, and the molten solder connects the module pad and the antenna pad through the through hole, and melts The hot melt adhesive film bonds the dual interface module to the dual interface kaka base.
  • the through hole is one, and the through hole covers two antenna pad regions, or two, covering two antenna pad regions respectively.
  • the punched layer has a thickness of not more than 0.1 mm.
  • the module backing groove is milled on the double interface card base.
  • the depth of the backing groove of the milling module is from the front printing layer, and after milling to the punching layer, further down 0.01 to 0.03 mm.
  • the solder is a low temperature solder having a melting point of 120 ° C to 150 ° C.
  • the pick-up head temperature is between 140 ° C and 200 ° C.
  • the hot pressing time is no more than 1.5 seconds.
  • a milling method for producing a dual interface smart card characterized in that the milling method comprises the following steps:
  • the groove is milled at the front side of the dual interface card base, that is, at the position of the antenna pad, until the filling piece is exposed, and the filling piece is milled off by about half thickness.
  • the specific depth of the milling groove is the milling cutter from the double The front side of the interface Kaka base begins to retain at least the thickness of the filling sheet of 0.02 to 0.05 mm.
  • the length and width of the filling sheet are slightly smaller than the length and width of the through hole by 0.1 to 0.5 mm, and the thickness is equal to or slightly higher than the thickness of the punching layer by 0.01 to 0.03 mm.
  • the filler sheet is made of a plastic material, a resin material or a metal material, and has a property of not reacting with other double interface Kaka base materials at 15 CTC.
  • the fixing material is glue, tape or a film to fix the filling sheet in the through hole of the punching layer.
  • the penetration depth cannot be more than 0.03 mm.
  • the filler sheets are also separated from other dual interface card base materials by means of an automatic rotary brush.
  • the dual-interface smart card of the present invention connects the antenna and the copper pad of the dual interface module by soldering by using an etched copper, an etched aluminum, an electroplated copper or a conductive silver paste antenna, so that the double
  • the interface smart card can still ensure high reliability and yield, and does not require expensive ultrasonic winding equipment. Therefore, the cost of the dual-interface smart card is low.
  • Figure 1 is a schematic view of an ultrasonic wound lacquered antenna and an antenna pad
  • FIG. 2 is a schematic view of an ultra-thin antenna and an antenna pad
  • FIG. 3 is a schematic diagram of the completion of a dual interface card package according to an embodiment of the present invention.
  • 4 is a schematic diagram of a module slot of a dual interface module according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing the punching layer of the present invention.
  • FIG. 6 is a schematic view of a punching layer, an antenna layer, and a filling sheet according to an embodiment of the present invention
  • FIG. 7 is a schematic structural view of a dual interface card base after lamination according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a dual interface card base milling slot according to an embodiment of the present invention.
  • a dual interface smart card includes:
  • the dual interface module 30 is placed in a dual interface smart card card-milled module slot, and the two antenna pads 22 are overlapped with the two module pads 31 of the dual interface module 30, respectively.
  • the slot includes a module backing groove 32 and a module strip groove 33, first milling the small module strip slot 33, and further milling the larger module backing groove 32, just two exposed antenna pads 22;
  • the soldering groove 34 is slotted in the front antenna pad area of the dual interface smart card base to expose the two antenna pads 22 for soldering connection between the module pad 31 and the antenna pad 22;
  • the module pad 31 and the antenna pad 22 are soldered together by heating the solder between the antenna pad 22 and the module pad 31.
  • the metal layer of the metal antenna has a thickness of 0.001 to 0.04 mm, the metal antenna is made of polyester plastic, and has a thickness of 0.02 to 0.20 mm.
  • the metal antenna is made of copper, aluminum or conductive silver paste, and the metal antenna is made of metal antenna. The process is etching, plating or printing.
  • the invention also provides a method for producing a dual interface smart card, which comprises the following steps:
  • the metal layer of the metal antenna is less than 0.05 mm thick, and the carrier material is polyester plastic, and the thickness is 0.02 to 0.20 mm;
  • the front surface film 51, the front printing layer 52 and the front surface layer 55 are placed in this order from the top to the bottom of the punching layer 10, and the back surface film 54 and the back printing layer 53 are placed in order from the bottom to the top of the antenna layer 21.
  • the single dual interface module 30 is picked up, and the hot melt film on the back of the dual interface module 30 is melted and the module is placed before the dual interface module 30 is placed on the dual interface card base.
  • the solder on the pad 31 melts;
  • the pickup head places the dual interface module 30 in the module backing groove 32 which is milled on the dual interface card base for hot pressing, and the melted solder connects the module pad 31 and the antenna pad 22 through the through hole 11.
  • the melted hot melt adhesive film bonds the dual interface module 30 to the dual interface kaka base.
  • the through hole 11 may be one, and the through hole 11 covers the two antenna pad 22 regions, or two, respectively covering the two antenna pad 2 regions, as shown in FIG.
  • the punched layer 10 has a thickness of not more than 0.1 mm.
  • the module backing groove 32 is milled on the dual interface card base.
  • the depth of the milling module backing groove is from the front printing layer 52, after milling to the punching layer 10, and then down 0.01 to 0.03 mm.
  • the solder is a low temperature solder having a melting point of from 120 ° C to 150 ° C.
  • the pick-up head temperature is between 140 ° C and 200 ° C and the hot pressing time is no more than 1.5 seconds.
  • the invention also provides a milling method for producing a dual interface smart card, which comprises the following steps:
  • the filling hole 13 is filled in the through hole 11 of the punching layer 10, and the filling piece 13 is fixed by using the fixing material 14, wherein the punching layer 10 covers the antenna layer 21, the through hole 11 covering two antenna pad 22 regions of the antenna layer;
  • the groove is milled on the front side of the double interface card base, that is, the antenna pad position, until the filling piece 13 is exposed, and the filling piece 13 is milled off by about half thickness;
  • the remaining filler sheets 13 are drawn by vacuum evacuation until the antenna pads 22 are exposed.
  • the groove is milled on the front side of the dual interface card base, ie at the antenna pad position, until the filling piece 13 is exposed, and the filling piece is milled off by about half thickness.
  • the specific depth of the milling groove is the milling cutter from the double interface card. Starting from the front side of the substrate, at least the thickness of the filling sheet of 0.02 to 0.05 mm is retained.
  • the length and width of the filling sheet 13 are slightly smaller than the length and width of the through hole 11 by 0.1 to 0.5 mm, and the thickness is equal to or slightly larger than the thickness of the punching layer 10 by 0.01 to 0.03 mm. .
  • the filler sheet 13 is made of a plastic material, a resin material or a metal material, and has a property of not reacting or reacting with other double interface kaka base materials at 15 CTC.
  • the fixing material 14 is a glue, a tape or a film to fix the filling sheet 13 in the through hole 11 of the punching layer 10.
  • the penetration depth cannot be more than 0.03 mm.
  • the filler sheet 13 is also separated from the other dual interface Kaka base material by an automatic rotating brush when the remaining filler sheet is drawn by vacuum suction.
  • the antenna produced by the etch, electroplating and printing process of the present invention is formed by an antenna bridge 24 formed on the back surface of the antenna substrate and by a riveting process, so that the antenna coil becomes a loop having only one opening, and the outer ring antenna is realized (at the antenna)
  • the front side of the substrate does not need to directly cross the inner ring to form two pads with suitable positions.
  • the antenna substrate is polyethylene terephthalate (PET), as shown in Figure 2. Therefore, this antenna surface does not need to be coated with insulating varnish, which is very suitable for tin. Welding.
  • the dual interface smart card of the embodiment of the present invention forms a metal antenna by etching copper, etching aluminum, electroplating copper or conductive silver paste, is included in the antenna layer 21, and is bridged on the front or back of the antenna layer 21.
  • the structure eliminates the need to apply an insulating material to the copper antenna to prevent short circuit between the inner and outer rings of the antenna.
  • the formation of the solder structure becomes easier.
  • the two antenna pads of such an antenna can be easily made into a large area, which reduces the accuracy requirement of the position of the milling slot, and facilitates the binding and milling process, thereby improving the automation of production.
  • the dual interface smart card according to the implementation of the present invention is formed by the following soldering procedure: solder is soldered on the module pad 31 of the dual interface module 30, the solder height is only kept at 0.05 mm, and the excess solder is removed, leaving only the appropriate height.
  • the hot melt adhesive film is attached to the double One side of the module pad 31 of the interface module 30, but avoiding the area of the module pad 31; then applying an appropriate amount of solder paste on the antenna pad 22, placing the dual interface module 30 into the milled module slot;
  • the hot pressing device melts the hot melt adhesive on the back of the dual interface module 30 to bond the dual interface module 30 with the dual interface card base; on the back of the module pad 31, that is, the corresponding area on the front side of the dual interface module 30,
  • the horn or the laser is locally heated, and the module pad 31 and the antenna pad 22 are integrally connected by solder.
  • the dual interface smart card provided by the embodiment of the invention solves the structure and material of the current dual interface smart card, for example, the existing soldering phenomenon of the copper enameled wire antenna during soldering, and the use of the copper enameled wire antenna makes it only semi-automatic, half
  • a new dual-interface smart card proposed by the embodiment of the present invention is a manual operation mode, which results in the existing dual-interface smart card, which has low automation and high scrap rate, and low stability and reliability.
  • the antenna is connected to the copper pad of the dual interface module by soldering copper, etched aluminum, electroplated copper or conductive silver paste antenna, so that the dual interface smart card is fully automated and mass produced. In this case, high reliability and yield are still guaranteed, and expensive ultrasonic winding equipment is not required. Therefore, the cost of the dual interface smart card is low.
  • the punching layer includes a through hole, and the through hole is one, and the through hole covers two pad regions, or two, covering two pad regions respectively.
  • the antenna is fabricated by etching copper, etching aluminum, electroplating copper or conductive silver paste, and using the process of bridging the front side or the back side of the antenna layer 21, it is not necessary to apply an insulating material on the copper antenna to prevent the inside and outside of the antenna. Short circuit between the rings.
  • the soldering process of the dual interface module pad and the antenna pad the soldering will become easier.
  • the two pads of the copper antenna can be easily made into a large area, which reduces the precision of the position of the milling slot and facilitates the binding and milling process.
  • a rectangular hole is punched out on a preparation layer having a thickness of 0.05 to 0.1 mm.
  • the size of the hole should cover the two pad areas of the dual interface module, or the length and width of the module pad area can be adaptively magnified, for example, respectively, magnified 0.05 ⁇ 0.1mm.
  • the preparation layer subjected to the above treatment becomes a punched layer.
  • the punching layer 10 is covered on the side of the antenna layer 21 where the antenna is located, so that the through hole 11 in the punching layer 10 is placed on the antenna pad 22, and finally the two layers are firmly bound.
  • the dual interface Kaka base accurately aligns the front surface film 51, the front printing layer 52, the front liner 55, the punching layer 10, the antenna layer 21 and the backing layer 56, the back printed layer 53, and the back surface film 54.
  • a semi-finished product of a dual-interface smart card base is obtained, and the laminated large-size semi-finished product is put into a card punching machine and punched into a standard card (85.6 X 54 mm) to become a card base of the dual-interface smart card.
  • the slot is milled at the dual interface module of the dual interface card base.
  • the depth of the slot is the thickness of the dual interface module strip, and the through hole and antenna pad are exposed.
  • solder the solder on the pads of the dual interface module and then remove the excess solder, leaving only the appropriate height of 0.1mm, so that the solder and antenna layer on the module pad when the dual interface module is placed in the card slot of the milled slot Leave a proper gap between the copper antennas on the top. Install the hot melt film on the pad side of the dual interface module, but avoid the pad area.
  • the slot is formed in the slot of the dual interface module of the dual interface card base, and the module back groove 32 is further milled.
  • the depth of the slot is the thickness of the strip of the double interface module, which is just exposed. Hole 11, which also exposes the two antenna pads 22 of the antenna, as shown in FIG.
  • the single dual interface module 30 is picked up using a pick-up head with a heating device, and the hot melt film on the back of the dual interface module is melted before the dual interface module is placed on the dual interface card base.
  • the solder on the 31 melts.
  • the pick-up head places the dual interface module in the groove of the card base and keeps it for a certain time.
  • the molten solder connects the module pad of the dual interface module with the antenna pad through the through hole, and the back of the dual interface module The melted hot melt film bonds the module to the card base.
  • the pick-up head places the dual interface module 11 in the groove milled in the card base, presses and holds for a certain time, and the molten solder connects the pad 12 of the dual interface module with the antenna pad 23 through the through hole 41.
  • the hot melt adhesive film melted on the back of the dual interface module 11 bonds the module 11 to the card base.
  • the hot pressing time caused by the use of the hot head is not well controlled, and the deformation of the card caused by the transfer of excess heat to the back of the card base is affected.
  • it also avoids heating the pad from the front of the dual interface module to melt the solder on the pad. This causes indentation on the front side of the dual interface module, which affects the problem of future use.
  • the milling process cannot be completed at all. Since the thickness of the metal antenna is not more than 0.03 mm and the thickness of the electroplated copper antenna is even 0.01 mm, the milling operation cannot be completed whether it is a domestic or imported machine.
  • the manufacturing method comprises the following steps: First, using an etched, electroplated or printed antenna as an antenna layer; then stacking the other constituent materials of the card base in this order, and laminating, laminating The large sheet of semi-finished products is placed in a punching machine and punched into a standard dual-interface kaka base. Then, using a precision milling machine, the dual interface module slot is milled out to expose the antenna pad, and then the dual interface module is placed on the back pad.
  • the embodiment of the present invention proposes a method for milling a dual-interface smart card, which is embodied as follows:
  • a rectangular through hole 11 is punched out, which is sized to cover the two module pad regions of the dual interface module, or the length and width are adaptively enlarged with the module pad region. For example, they are each enlarged by 0.05 to 0.1 mm.
  • the preparation layer processed above becomes the punching layer 10;
  • the high temperature resistant PC material is punched to serve as the filling sheet 13; the length and width of the filling sheet 13 are both 0.5 mm smaller than the through hole; the thickness of the filling sheet is 0.12 mm;
  • the filler sheet is a material which is resistant to high temperatures, does not adhere or react with polyvinyl chloride or polyester plastic at high temperatures, and has a material which does not adhere or react with metals such as copper, aluminum or silver at high temperatures.
  • the glue should have a suitable viscosity to cure it. After that, it cannot penetrate into the gap between the filling sheet and the punching layer. If there is infiltration, the penetration depth cannot be more than 0.03 mm.
  • a tape or a film may be used to cover the filling sheet and the periphery of the through hole on one side of the punching layer, thereby fixing the filling sheet in the hole in the punching layer.
  • glue, tape, and film of the above-mentioned fixed filling sheet should be on the side of the filling piece away from the metal antenna.
  • the punching layer 10 with the filling sheet 13 is bound to the antenna layer 21; the metal antenna side and the filling sheet 13 are not provided One side of the glue is adjacent; the filling sheet 13 should cover the antenna pad 22;
  • a dual interface kaka base a front liner layer 55, a front side printing layer 52 and a front side surface film 51 are placed on the front side of the punching layer 10, and a backing layer 56, a back side printing layer 53 and a back side are placed on the back side of the antenna layer 21.
  • a surface film 54 is accurately aligned, lamination and punching are performed to obtain a dual interface kaka base.
  • the milling cutter 40 is used to mill the groove from the front surface of the dual interface card base until the filling piece 13 is milled to a thickness of about half, and the remaining filling piece 13 is sucked off using a vacuum nozzle to expose the filling. Antenna pad 22 under the sheet 13.
  • the milling machine can only mill the fixing material of the bonding filler sheet, such as glue, due to the filling sheet and other card bases.
  • the material does not stick, so the vacuum nozzle can draw away the remaining filler to expose the antenna pads under the filler. Therefore, the precision of the slot milling machine can meet the requirements of the milling slot as long as it is about 0.05mm, and the domestic milling machine can meet this requirement. From the results of the implementation, the use of this milling method, the product pass rate of the milling process is above 99.9%, and the machine efficiency is also improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

本发明提供一种双界面智能卡,通过采用蚀刻铜、蚀刻铝、电镀铜或导电银浆天线,用锡焊的方法将天线与双界面模块的铜焊盘连接在一起,使得该种双界面智能卡在全自动化、大批量的生产的情况下,仍能保证高的可靠性和成品率,并不需要昂贵的超声波绕线设备,本发明的双界面智能卡的生产方法及铣槽方法可以解决传统双界面智能卡生产率低、废品率较高的问题,因为没有手工加工工序,而使得可以全自动化、大批量的生产从而大幅提高生产率、焊接可靠性和成品率,并降低生产成本。

Description

双界面智能卡、 其生产方法及铣槽方法
技术领域
本发明涉及信息技术领域, 特别是涉及一种双界面智能卡、 该双界面智能卡的生产方法 及生产双界面智能卡的铣槽方法。 背景技术
目前双界面智能卡一般包括以下:
天线层, 一般是在天线基材上使用超声波将铜漆包线埋入, 形成天线层, 也有少量厂家 将机器绕制好的漆包线线圈使用粘结的方法粘在天线基材上, 形成天线层, 见图 1。
因为天线的两端必须具有合适的相对位置来适应双界面模块的两个焊盘, 所以天线的一 端会从外圈跨越内圈到达距离天线另外一端的合适位置处, 而这种结构容易造成短路, 因 此, 绕制的天线必须采用漆包线以避免天线电路的短路, 这样的天线层导致后续的焊盘和焊 接结构难以形成, 最后影响双界面智能卡使用时的稳定性和可靠性。
双界面智能卡卡基, 为将正面印刷层和衬层、 天线层、 背面印刷层和衬层精准对位后进 行层压形成的大张半成品放入冲卡机冲切而成。
模块焊盘, 通过在双界面智能卡卡基的双界面模块所在处进行铣槽得到, 但为露出天线 的两端线头, 必须使用手工将天线两端的线头从天线基材中挑出, 并将天线从天线基材中拉 出一定长度, 将拉出的两段天线修剪为相同长度并使其垂直向上。
焊锡, 对双界面模块的焊盘进行上锡处理, 焊盘以外的地方粘贴热熔胶膜。
通过手工或自动机器将双界面模块的焊盘与双界面智能卡卡基上直立的天线焊接在一 起, 并将焊接好的双界面模块摆放在双界面智能卡卡基铣好的槽内, 并使用热压设备将双界 面模块上的热熔胶膜融化后, 最后将双界面模块与双界面智能卡卡基粘结在一起, 最终得到 双界面智能卡的成品。
从上述双界面智能卡的结构及制作过程来看, 至少在几个方面存在问题:
需要对天线进行挑线头、 拉线、 立线、 剪线头等手工处理, 然后将带有直立线头的双界 面智能卡基往设备上摆放等, 致使该种双界面智能卡的废品率高, 质量难以保证;
另外, 因为要经历层压工序, 而这个工序需要在 130 150摄氏度进行, 并持续 20~40分 钟, 因此, 绕制天线的漆包线必须采用耐高温的绝缘漆, 而这会造成虚焊的比率较高, 从而 导致双界面智能卡的后续使用的稳定性和可能性很难保证, 且绕制漆包线需要昂贵的超声波 绕线设备, 因此成本也较高。 目前生产双界面智能卡的生产过程一般包括以下:
如图 1所示, 首先是天线层的制作, 一般是在天线基材上使用超声波将铜漆包线埋入, 形成天线层。 由于天线的两端必须具有合适的相对位置, 来适应双界面模块的两个焊盘, 所 以天线的一端会从外圈跨越内圈到达距离天线另外一端的合适位置处, 而这种结构容易造成 短路, 因此, 绕制的天线必须采用漆包线以避免天线电路的短路。
接下来将卡基的其它组成材料, 按照顺序依此叠加好, 并进行层压。
将层压后的大张半成品放入冲卡机, 冲切成标准的双界面卡卡基。
在双界面卡卡基的双界面模块所在处进行铣槽, 露出天线的两端线头, 使用手工将天线 两端的线头从天线基材中挑出, 并将天线从天线基材中拉出一定长度, 将拉出的两段天线修 剪为相同长度并使其垂直向上。
对双界面模块的焊盘进行上锡处理, 焊盘以外的地方粘贴热熔胶膜。
通过恒温焊头, 将双界面模块的焊盘与双界面卡卡基上直立的天线焊接在一起, 并将焊 接好的双界面模块摆放在双界面卡卡基铣好的槽内。
使用热压设备将双界面模块上的热熔胶膜融化后, 最终将双界面模块与双界面卡基粘结 在一起。
上述的生产过程中, 至少在几个方面存在问题:
多个步骤需要手工完成, 如挑线头、 拉线、 立线、 剪线头、 带有直立线头的双界面卡基 往设备上摆放等, 致使产量低、 质量难以保证, 另外这些操作难度大, 废品率高。
由于要经历层压工序, 这个工序需要在 130 150摄氏度进行, 持续 20~40分钟, 绕制天 线的漆包线必须采用耐高温的绝缘漆, 所以这种绝缘漆很难锡焊, 虚焊的比率较高, 给双界 面卡的后续使用带来很大隐患。 发明内容
鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种双界面智能卡、 其生产方法 及铣槽方法, 用于解决现有技术中的种种缺点。
为实现上述目的及其他相关目的, 本发明提供一种双界面智能卡, 所述双界面智能卡包 括:
具有金属天线的天线层, 所述天线层具有两个天线焊盘;
双界面卡卡基, 所述双界面卡卡基通过对正面表面膜、 正面印刷层、 正面衬层、 冲孔 层、 所述天线层和背面衬层、 背面印刷层、 背面表面膜进行叠合并层压后得到; 模块槽, 所述双界面模块放置于双界面智能卡卡基铣好的模块槽内, 并使两个天线焊盘 分别与双界面模块的两个模块焊盘区域重叠, 所述模块槽包括模块背胶槽和模块条带槽; 焊接槽, 在双界面智能卡卡基的正面天线焊盘区域进行铣槽, 露出两个天线焊盘, 以进 行模块焊盘与天线焊盘之间的锡焊连接;
其中, 通过加热融化天线焊盘和模块焊盘之间的焊锡, 将模块焊盘与天线焊盘焊接在一 起。
优选地, 所述金属天线的金属层厚度在 0.001〜0.04mm之间。
优选地, 所述金属天线的材质为铜、 铝或导电银浆。
优选地, 所述金属天线的制成工艺为蚀刻、 电镀或印刷。
一种双界面智能卡的生产方法, 其特征在于, 所述生产方法包括如下步骤:
A. 采用蚀刻铜、 蚀刻铝、 电镀铜或导电银浆工艺制作的具有金属天线的天线层;
B. 制作包含有通孔的冲孔层, 所述通孔覆盖天线层的两个天线焊盘区域;
C. 在所述冲孔层的正面从上到下依次放置正表面膜、 正面印刷层和正面衬层, 天线层 的背面从下到上依次放置背面表面膜、 背面印刷层、 背面衬层, 并通过层压得到双 界面卡卡基;
D. 在所述双界面卡卡基上铣模块背胶槽, 直到露出两个天线焊盘;
E. 在所述双界面模块背面的模块焊盘上准备好焊锡, 并在该面其余位置准备好热熔胶 膜;
F. 使用带有加热装置的拾取头, 将单个双界面模块拾取起来, 在将双界面模块放置到 双界面卡卡基上之前, 将双界面模块背面的热熔胶膜融化和模块焊盘上的焊锡融 化;
G. 拾取头将双界面模块放置于双界面卡卡基上铣好的模块背胶槽内进行热压, 融化的 焊锡通过所述通孔将模块焊盘与天线焊盘连接在一起, 融化的热熔胶膜将双界面模 块与双界面卡卡基粘结在一起。
优选地, 所述通孔为一个, 所述通孔覆盖两个天线焊盘区域, 或为两个, 分别覆盖两个 天线焊盘区域。
优选地, 所述冲孔层厚度不大于 0.1mm。
优选地, 在所述双界面卡卡基上铣模块背胶槽, 所述铣模块背胶槽的深度为从正面印刷 层开始, 铣到冲孔层之后, 再往下 0.01〜0.03mm。 优选地, 所述焊锡为熔点在 120°C〜150°C的低温焊锡。
优选地, 所述拾取头温度在 140°C〜200°C。
优选地, 所述热压的时间不大于 1.5秒。
一种生产双界面智能卡的铣槽方法, 其特征在于, 所述铣槽方法包括如下步骤:
A. 在冲孔层的通孔中填入填充片, 并使用固定料将所述填充片固定, 其中, 所述冲孔 层覆盖在天线层上, 所述通孔覆盖天线层的两个天线焊盘区域;
B. 在双界面卡卡基正面, 即天线焊盘位置处铣槽, 直到露出填充片, 并将所述填充片 铣掉约一半厚度;
C. 通过真空抽气抽取剩余的填充片直到露出天线焊盘。
优选地, 所述在双界面卡卡基正面, 即天线焊盘位置处铣槽, 直到露出填充片, 并将所 述填充片铣掉约一半厚度具体为: 铣槽的深度为铣刀从双界面卡卡基正面开始, 至少保留所 述填充片 0.02〜0.05mm的厚度。
优选地, 所述填充片的长度和宽度分别比通孔的长度和宽度均略小 0.1~0.5mm, 厚度与 冲孔层的厚度相等或略高于冲孔层的厚度 0.01~0.03mm。
优选地, 所述填充片的材质为塑料材质、 树脂材质或金属材质, 并具有 15CTC下不与其 它双界面卡卡基材料粘连、 反应的特性。
优选地, 所述固定料为胶水、 胶带或胶膜以将所述填充片固定在冲孔层的通孔内。 优选地, 若所述固定料固化后渗入填充片和冲孔层之间的缝隙, 则渗入深度不能多于 0.03mm。
优选地, 在通过真空吸气抽取剩余的填充片时, 还利用自动旋转刷, 将填充片与其它双 界面卡卡基材料分离。
如上所述, 本发明的双界面智能卡, 通过采用蚀刻铜、 蚀刻铝、 电镀铜或导电银浆天 线, 用锡焊的方法将天线与双界面模块的铜焊盘连接在一起, 使得该种双界面智能卡在全自 动化、 大批量的生产的情况下, 仍能保证高的可靠性和成品率, 并不需要昂贵的超声波绕线 设备, 因此, 该种双界面智能卡的成本较低。 附图说明
图 1为超声波绕制漆包天线及天线焊盘示意图;
图 2为超薄天线及天线焊盘示意图;
图 3为本发明实施例双界面卡封装完成示意图。 图 4为本发明实施例双界面模块的模块槽示意图。
图 5为本发明实施冲孔层示意图;
图 6为本发明实施例冲孔层、 天线层和填充片的示意图;
图 7为本发明实施例层压后的双界面卡卡基结构示意图;
图 8 为本发明实施例双界面卡卡基铣槽示意图; 图中标号说明
10 冲孔层 11 通孔
13 填充片 14 固定料
21 天线层 22 天线焊盘
23 天线跳线 24 天线过桥
30 双界面模块 31 模块焊盘
32 模块背胶槽 33 模块条带槽
34 焊接槽 40 铣刀
51 正面表面膜 52 正面印刷层
53 背面印刷层 54 背面表面膜
55 正面衬层 56 背面衬层 具体实施方式
以下由特定的具体实施例说明本发明的实施方式, 熟悉此技术的人士可由本说明书所揭 露的内容轻易地了解本发明的其他优点及功效。
请参阅图 1至图 8。 须知, 本说明书所附图式所绘示的结构、 比例、 大小等, 均仅用以 配合说明书所揭示的内容, 以供熟悉此技术的人士了解与阅读, 并非用以限定本发明可实施 的限定条件, 故不具技术上的实质意义, 任何结构的修饰、 比例关系的改变或大小的调整, 在不影响本发明所能产生的功效及所能达成的目的下, 均应仍落在本发明所揭示的技术内容 得能涵盖的范围内。 同时, 本说明书中所引用的如"上"、 "下"、 "左"、 "右"、 "中间 "及"一" 等的用语, 亦仅为便于叙述的明了, 而非用以限定本发明可实施的范围, 其相对关系的改变 或调整, 在无实质变更技术内容下, 当亦视为本发明可实施的范畴。
如图 3所示, 一种双界面智能卡, 该双界面智能卡包括:
具有金属天线的天线层 21, 所述天线层 21具有两个天线焊盘 22;
双界面卡卡基, 双界面卡卡基通过对正面表面膜 51、 正面印刷层 52、 正面衬层 55、 冲 孔层 10、 所述天线层 21和背面衬层 56、 背面印刷层 53、 背面表面膜 54进行叠合并层压后 得到;
模块槽, 所述双界面模块 30 放置于双界面智能卡卡基铣好的模块槽内, 并使两个天线 焊盘 22分别与双界面模块 30的两个模块焊盘 31区域重叠, 所述模块槽包括模块背胶槽 32 和模块条带槽 33, 先铣小点的模块条带槽 33, 再进一步铣大点的模块背胶槽 32, 正好两个 露出天线焊盘 22;
焊接槽 34, 在双界面智能卡卡基的正面天线焊盘区域进行铣槽, 露出两个天线焊盘 22, 以进行模块焊盘 31与天线焊盘 22之间的锡焊连接;
其中, 通过加热融化天线焊盘 22和模块焊盘 31之间的焊锡, 将模块焊盘 31与天线焊 盘 22焊接在一起。
其中, 金属天线的金属层厚度在 0.001〜0.04mm之间, 金属天线的承载材料为聚酯塑 料, 厚度为 0.02〜0.20mm, 金属天线的材质为铜、 铝或导电银浆, 金属天线的制成工艺为 蚀刻、 电镀或印刷。
本发明还提供一种双界面智能卡的生产方法, 其包括以下步骤:
A. 采用蚀刻铜、 蚀刻铝、 电镀铜或导电银浆工艺制作的具有金属天线的天线层 21, 金 属天线的金属层厚度小于 0.05mm, 承载材料为聚酯塑料, 厚度为 0.02〜0.20mm;
B . 制作包含有通孔的冲孔层 10, 通孔 11覆盖天线层的两个天线焊盘 22区域, 如图 5 和图 6所示;
C. 在冲孔层 10的正面从上到下依次放置正表面膜 51、 正面印刷层 52和正面衬层 55, 天线层 21的背面从下到上依次放置背面表面膜 54、 背面印刷层 53、 背面衬层 56, 并通过层压得到双界面卡卡基, 如图 7所示;
D. 在双界面卡卡基上铣模块背胶槽 32, 直到露出两个天线焊盘 22;
E. 在双界面模块 30背面的模块焊盘 31 上准备好焊锡, 并在该面其余位置准备好热熔 胶膜;
F. 使用带有加热装置的拾取头, 将单个双界面模块 30 拾取起来, 在将双界面模块 30 放置到双界面卡卡基上之前, 将双界面模块 30 背面的热熔胶膜融化和模块焊盘 31 上的焊锡融化;
G. 拾取头将双界面模块 30放置于双界面卡卡基上铣好的模块背胶槽 32 内进行热压, 融化的焊锡通过通孔 11将模块焊盘 31与天线焊盘 22连接在一起, 融化的热熔胶膜 将双界面模块 30与双界面卡卡基粘结在一起。 以上方法中, 通孔 11可为一个, 则通孔 11覆盖两个天线焊盘 22区域, 或为两个, 分 别覆盖两个天线焊盘 2区域, 如图 7所示。
优选地, 冲孔层 10厚度不大于 0.1mm。
优选地, 在双界面卡卡基上铣模块背胶槽 32, 铣模块背胶槽的深度为从正面印刷层 52 开始, 铣到冲孔层 10之后, 再往下 0.01〜0.03mm。
优选地, 焊锡为熔点在 120°C〜150°C的低温焊锡。
优选地, 拾取头温度在 140°C〜200°C, 热压的时间不大于 1.5秒。
本发明还提供了一种生产双界面智能卡的铣槽方法, 其包括以下步骤:
A. 如图 6所示, 在冲孔层 10的通孔 11中填入填充片 13, 并使用固定料 14将填充片 13固定, 其中, 冲孔层 10覆盖在天线层 21上, 通孔 11覆盖天线层的两个天线焊 盘 22区域;
B. 如图 8所示, 在双界面卡卡基正面, 即天线焊盘位置处铣槽, 直到露出填充片 13, 并将填充片 13铣掉约一半厚度;
C. 通过真空抽气抽取剩余的填充片 13直到露出天线焊盘 22。
优选地, 在双界面卡卡基正面, 即天线焊盘位置处铣槽, 直到露出填充片 13, 并将填 充片铣掉约一半厚度具体为: 铣槽的深度为铣刀从双界面卡卡基正面开始, 至少保留填充片 0.02〜0.05mm的厚度。
优选地, 填充片 13的长度和宽度分别比通孔 11的长度和宽度均略小 0.1~0.5mm, 厚度 与冲孔层 10的厚度相等或略高于冲孔层 10的厚度 0.01~0.03mm。
优选地, 填充片 13 的材质为塑料材质、 树脂材质或金属材质, 并具有 15CTC下不与其 它双界面卡卡基材料粘连、 反应的特性。
优选地, 固定料 14为胶水、 胶带或胶膜以将填充片 13固定在冲孔层 10的通孔 11内。 优选地, 若固定料固化后渗入填充片和冲孔层之间的缝隙, 则渗入深度不能多于 0.03mm。
优选地, 在通过真空吸气抽取剩余的填充片时, 还利用自动旋转刷, 将填充片 13 与其 它双界面卡卡基材料分离。
本发明使用蚀刻、 电镀和印刷工艺生产的天线, 是通过在天线基材背面形成的天线过桥 24 并通过铆接的工艺, 使天线线圈成为只有一个开口的回路, 实现了外圈天线 (在天线基 材正面) 不需要直接跨越内圈, 就能形成两个具有合适位置的焊盘, 天线基材为聚对苯二甲 酸乙二醇酯 (PET) , 如图 2所示。 因此, 这种天线表面不需要涂布绝缘漆, 非常适合于锡 焊。
如图 2所示, 本发明实施例的双界面智能卡, 采用蚀刻铜、 蚀刻铝、 电镀铜或导电银浆 形成金属天线, 包含于天线层 21中, 并利用在天线层 21正面或背面搭桥的结构, 就不需要 在铜天线上涂布绝缘物质来防止天线内、 外圈之间的短路现象。 这样, 在双界面模块的模块 焊盘 31与天线焊盘 22的锡焊结构中, 焊接结构的形成将会变的更加容易。 同时, 此类天线 的两个天线焊盘可以很方便的做成大面积, 减轻了铣槽位置的精度要求, 方便了装订和铣槽 工序, 从而提高了生产的自动化程度。
本发明实施所述的双界面智能卡通过以下焊接程序形成: 在双界面模块 30 的模块焊盘 31 上挂焊锡, 所述焊锡高度只保留 0.05mm, 再将多余的焊锡去除, 只保留适当的高度, 使 得双界面模块 30放入铣好槽的双界面卡卡基内时, 模块焊盘 31上的焊锡与天线层 21上的 铜天线之间保留适当缝隙, 并将热熔胶膜装到双界面模块 30的模块焊盘 31的一侧, 但是避 开模块焊盘 31区域; 然后在天线焊盘 22上涂布适量锡膏, 将双界面模块 30放入铣好的模 块槽内; 并使用热压装置, 融化双界面模块 30背面的热熔胶, 将双界面模块 30与双界面卡 卡基粘合在一起; 在模块焊盘 31的背面, 即双界面模块 30正面的相应区域, 使用焊头或激 光分别进行局部加热, 通过焊锡将模块焊盘 31与天线焊盘 22连接为一体。
本发明实施例提供的一种双界面智能卡, 解决现在双界面智能卡的结构和材质, 例如现 有的铜漆包线天线在锡焊时的虚焊现象, 以及使用铜漆包线天线使得只能半自动化、 半手工 的作业模式, 从而导致现有的双界面智能卡, 其自动化生产程度低和废品率高、 而稳定性和 可靠性却很低的问题, 本发明实施例提出的一种新的双界面智能卡, 通过采用蚀刻铜、 蚀刻 铝、 电镀铜或导电银浆天线, 用锡焊的方法将天线与双界面模块的铜焊盘连接在一起, 使得 该种双界面智能卡在全自动化、 大批量的生产的情况下, 仍能保证高的可靠性和成品率, 并 不需要昂贵的超声波绕线设备, 因此, 该种双界面智能卡的成本较低。
进一步优选地, 所述包含有通孔的冲孔层, 所述通孔为一个, 所述通孔覆盖两个焊盘区 域, 或为两个, 分别覆盖两个焊盘区域。
本发明实施例使用蚀刻铜、 蚀刻铝、 电镀铜或导电银浆制作天线, 并利用在天线层 21 正面或背面搭桥的工艺, 就不需要在铜天线上涂布绝缘物质来防止天线内、 外圈之间的短路 现象。 这样, 在双界面模块焊盘与天线焊盘进行锡焊工序中, 焊接将会变的更加容易。 同 时, 铜天线的两个焊盘可以很方便的做成大面积, 减轻了铣槽位置的精度要求, 方便了装订 和铣槽工序。
同时对于冲孔层的形成, 在一个厚度为 0.05~0.1毫米的备料层上, 冲出一个长方形孔, 孔的大小要能涵盖双界面模块的两个焊盘区域, 或长度和宽度与模块焊盘区域适应性地放 大, 例如均分别放大 0.05~0.1mm。 经过以上处理的备料层成为冲孔层。
将冲孔层 10覆盖在天线层 21天线所在的一面, 使冲孔层 10上的通孔 11套在天线焊盘 22上, 最后将两层装订牢固。
随后是双界面卡卡基通过将正面表面膜 51、 正面印刷层 52、 正面衬层 55、 冲孔层 10、 天线层 21和背面衬层 56、 背面印刷层 53、 背面表面膜 54精准对位后进行层压得到双界面 智能卡卡基的半成品, 将层压后的大张半成品放入冲卡机, 冲成标准卡 (85.6 X 54mm) 的 大小, 成为双界面智能卡的卡基。
在双界面卡基的双界面模块所在处进行铣槽, 铣槽的深度为双界面模块条带的厚度, 且 正好露出通孔和天线焊盘。
在双界面模块的焊盘上挂焊锡, 再将多余的焊锡去除, 只保留适当的高度 0.1mm, 使得 双界面模块放入铣好槽的卡基内时, 模块焊盘上的焊锡与天线层上的铜天线之间保留适当缝 隙。 将热熔胶膜装到双界面模块的焊盘一侧, 但是避开焊盘区域。
在双界面卡卡基的双界面模块所在处进行铣槽形成模块条带槽 33, 再进一步铣处模块 背胶槽 32, 铣槽的深度为双界面模块条带的厚度, 此时正好露出通孔 11, 此时亦露出天线 的两个天线焊盘 22, 如图 8所示。
使用带有加热装置的拾取头, 将单个双界面模块 30 拾取起来, 在将双界面模块放置到 双界面卡卡基上之前, 将双界面模块背面的热熔胶膜融化, 亦将模块焊盘 31 上的焊锡融 化。
拾取头将双界面模块放置于卡基上铣好的槽内, 并保持一定时间, 融化的焊锡通过所述 通孔将双界面模块的模块焊盘与天线焊盘连接在一起, 双界面模块背面融化的热熔胶膜将模 块与卡基粘结在一起。
至此, 双界面智能卡生产完成。
拾取头将双界面模块 11 放置于卡基上铣好的槽内, 压住并保持一定时间, 融化的焊锡 通过所述通孔 41将双界面模块的焊盘 12与天线焊盘 23连接在一起, 双界面模块 11背面融 化的热熔胶膜将模块 11 与卡基粘结在一起。 本发明实施例提供的一种生产双界面卡的方 法, 解决了现有使用超薄金属天线的双界面智能卡的制作方法导致的双界面卡外观效果差、 成本较高的问题, 避免了例如使用高精密的铣槽机, 导致的造价昂贵的问题; 另外, 也避免 了使用热压头导致的热压时间不好控制、 造成因多余热量传递到卡基背面而造成的卡基变 形、 影响外观的问题; 另外, 也避免了从双界面模块正面加热焊盘, 使焊盘上的焊锡融化, 造成双界面模块正面出现压痕, 从而影响以后的使用效果的问题。
由于传统的铣槽工艺对于双界面智能卡的生产效果较差, 尤其对于采用超薄天线替代超 声波绕制天线的双界面智能卡的生产方法, 甚至根本无法完成铣槽的工序。 因为金属天线的 厚度不大于 0.03mm, 电镀铜天线厚度甚至在 0.01mm, 所以不管是国产还是进口机器, 均无 法完成铣槽工作。
对于该种双界面智能卡, 其制作方法包括: 首先, 使用蚀刻、 电镀或印刷天线作为天线 层; 接下来将卡基的其它组成材料, 按照顺序依此叠加好, 并进行层压, 将层压后的大张半 成品放入冲卡机, 冲切成标准的双界面卡卡基; 然后使用精密铣槽机, 铣出双界面模块槽, 露出天线焊盘, 再将双界面模块背面焊盘上背焊锡, 该面其余位置背热熔胶膜; 接下来将 将双界面模块与卡基粘合在一起; 在双界面模块焊盘背面即双界面模块的正面的相应位置, 使用热压头或激光加热, 使双界面模块焊盘上的焊锡融化, 从而将模块焊盘和天线焊盘连接 为一体, 双界面卡的制作至此完成。 这种方法可以解决传统双界面智能卡生产率低、 废品率 较高的问题, 因为没有手工加工工序, 而使得可以全自动化、 大批量的生产从而大幅提高生 产率、 焊接可靠性和成品率, 并降低生产成本。 但传统的铣槽工序对该种双界面智能卡的生 产无法做到, 为此, 本发明实施例提出了一种生产双界面智能卡的铣槽方法, 该方法具体实 现如下:
在一个厚度为 0.1毫米的备料层上, 冲出一个长方形通孔 11, 孔的大小要能涵盖双界面 模块的两个模块焊盘区域, 或长度和宽度与模块焊盘区域适应性地放大, 例如均分别放大 0.05~0.1mm。 经过以上处理的备料层成为冲孔层 10;
按照通孔 11的尺寸, 冲切耐高温的 PC材料, 充当填充片 13; 填充片 13的长度和宽度 均比通孔小 0.5mm; 填充片厚度为 0.12mm;
优选地, 填充片为耐高温、 与聚氯乙烯、 聚酯塑料在高温下不会发生粘连或反应的材 质, 以及与铜、 铝、 银等金属在高温下不会发生粘连或反应的材质。
将填充片 13填入冲孔层 10上的通孔 11 内, 在两者的缝隙处, 点适量固定料 14如胶 水, 使两者粘结在一起; 胶水应具有合适的粘度, 使其固化后不能渗入填充片和冲孔层之间 的缝隙。 如果有渗入, 渗入深度不能多于 0.03mm。
实际处理中, 还可以使用胶带、 胶膜, 在冲孔层的某一侧覆盖填充片和通孔四周, 从而 将填充片固定在冲孔层上的孔内。
并且上述固定填充片的胶水、 胶带、 胶膜应在填充片远离金属天线的一侧。
将带有填充片 13的冲孔层 10与天线层 21装订在一起; 金属天线一侧与填充片 13不带 胶的一侧相邻; 填充片 13应涵盖天线焊盘 22;
随后是双界面卡卡基的形成: 在冲孔层 10 的正面放置正面衬层 55、 正面印刷层 52和 正面表面膜 51, 天线层 21的背面放置背面衬层 56、 背面印刷层 53和背面表面膜 54精准对 位后进行层压和冲卡, 得到双界面卡卡基。
如图 8所示, 利用铣刀 40从所述双界面卡卡基的正面铣槽, 直到填充片 13被铣掉一半 左右的厚度, 使用真空吸嘴将剩余的填充片 13吸掉, 露出填充片 13下面的天线焊盘 22。
本发明实施例采用的铣槽方法, 由于一般冲孔层和填充片的厚度为 0.1mm左右, 铣槽 机只要能将粘结填充片的固定料如胶水铣掉, 由于填充片与其他卡基材料不会粘连, 所以真 空吸嘴即可将剩余的填充片吸走, 从而露出填充片下面的天线焊盘。 所以铣槽机的精度只要 在 0.05mm左右既能满足铣槽的要求, 而国产铣槽机均能满足此要求。 从实施的结果看, 使 用此铣槽方法, 铣槽工序的产品合格率在 99.9%以上, 机器效率较以往也有所提高。
上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或改变。 因此, 举凡 所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等 效修饰或改变, 仍应由本发明的权利要求所涵盖。

Claims

权利要求书
1. 一种双界面智能卡, 其特征在于, 所述双界面智能卡包括:
具有金属天线的天线层, 所述天线层具有两个天线焊盘;
双界面卡卡基, 所述双界面卡卡基通过对正面表面膜、 正面印刷层、 正面衬层、 冲孔 层、 所述天线层和背面衬层、 背面印刷层、 背面表面膜进行叠合并层压后得到;
模块槽, 所述双界面模块放置于双界面智能卡卡基铣好的模块槽内, 并使两个天线焊盘 分别与双界面模块的两个模块焊盘区域重叠, 所述模块槽包括模块背胶槽和模块条带槽; 焊接槽, 在双界面智能卡卡基的正面天线焊盘区域进行铣槽, 露出两个天线焊盘, 以进 行模块焊盘与天线焊盘之间的锡焊连接;
其中, 通过加热融化天线焊盘和模块焊盘之间的焊锡, 将模块焊盘与天线焊盘焊接在一 起。
2. 根据权利要求 1 所述的双界面智能卡, 其特征在于, 所述金属天线的金属层厚度在 0.001〜0.04mm之间。
3. 根据权利要求 1 所述的双界面智能卡, 其特征在于, 所述金属天线的材质为铜、 铝或导 电银浆。
4. 根据权利要求 1 所述的双界面智能卡, 其特征在于, 所述金属天线的制成工艺为蚀刻、 电镀或印刷。
5. 一种双界面智能卡的生产方法, 其特征在于, 所述生产方法包括如下步骤:
A. 采用蚀刻铜、 蚀刻铝、 电镀铜或导电银浆工艺制作的具有金属天线的天线层;
B. 制作包含有通孔的冲孔层, 所述通孔覆盖天线层的两个天线焊盘区域;
C. 在所述冲孔层的正面从上到下依次放置正表面膜、 正面印刷层和正面衬层, 天线层 的背面从下到上依次放置背面表面膜、 背面印刷层、 背面衬层, 并通过层压得到双 界面卡卡基;
D. 在所述双界面卡卡基上铣模块背胶槽, 直到露出两个天线焊盘; E. 在所述双界面模块背面的模块焊盘上准备好焊锡, 并在该面其余位置准备好热熔胶 膜;
F. 使用带有加热装置的拾取头, 将单个双界面模块拾取起来, 在将双界面模块放置到 双界面卡卡基上之前, 将双界面模块背面的热熔胶膜融化和模块焊盘上的焊锡融 化;
G. 拾取头将双界面模块放置于双界面卡卡基上铣好的模块背胶槽内进行热压, 融化的 焊锡通过所述通孔将模块焊盘与天线焊盘连接在一起, 融化的热熔胶膜将双界面模 块与双界面卡卡基粘结在一起。
6. 根据权利要求 5所述的双界面智能卡的生产方法, 其特征在于, 所述通孔为一个, 所述 通孔覆盖两个天线焊盘区域, 或为两个, 分别覆盖两个天线焊盘区域。
7. 根据权利要求 5所述的双界面智能卡的生产方法, 其特征在于, 所述冲孔层厚度不大于 0.1mm。
8. 根据权利要求 5至 Ί任意一项所述的双界面智能卡的生产方法, 其特征在于, 在所述双 界面卡卡基上铣模块背胶槽, 所述铣模块背胶槽的深度为从正面印刷层开始, 铣到冲孔 层之后, 再往下 0.01〜0.03mm。
9. 根据权利要求 8所述的双界面智能卡的生产方法, 其特征在于, 所述焊锡为熔点在 120 °C〜150°C的低温焊锡。
10. 根据权利要求 9所述的双界面智能卡的生产方法, 其特征在于, 所述拾取头温度在 140 °C〜200°C。
11. 根据权利要求 5所述的双界面智能卡的生产方法, 其特征在于, 所述热压的时间不大于 1.5秒。
12. 一种生产双界面智能卡的铣槽方法, 其特征在于, 所述铣槽方法包括如下步骤:
A. 在冲孔层的通孔中填入填充片, 并使用固定料将所述填充片固定, 其中, 所述 冲孔层覆盖在天线层上, 所述通孔覆盖天线层的两个天线焊盘区域;
B. 在双界面卡卡基正面, 即天线焊盘位置处铣槽, 直到露出填充片, 并将所述填充片 铣掉约一半厚度;
C. 通过真空抽气抽取剩余的填充片直到露出天线焊盘。
13. 根据权利要求 12 所述的生产双界面智能卡的铣槽方法, 其特征在于, 所述在双界面卡 卡基正面, 即天线焊盘位置处铣槽, 直到露出填充片, 并将所述填充片铣掉约一半厚度 具体为: 铣槽的深度为铣刀从双界面卡卡基正面开始, 至少保留所述填充片 0.02〜 0.05mm的厚度。
14. 根据权利要求 13 所述的生产双界面智能卡的铣槽方法, 其特征在于, 所述填充片的长 度和宽度分别比通孔的长度和宽度均略小 0.1~0.5mm, 厚度与冲孔层的厚度相等或略高 于冲孔层的厚度 0.01~0.03mm。
15. 根据权利要求 14 所述的生产双界面智能卡的铣槽方法, 其特征在于, 所述填充片的材 质为塑料材质、 树脂材质或金属材质, 并具有 15CTC下不与其它双界面卡卡基材料粘 连、 反应的特性。
16. 根据权利要求 12 所述的生产双界面智能卡的铣槽方法, 其特征在于, 所述固定料为胶 水、 胶带或胶膜以将所述填充片固定在冲孔层的通孔内。
17. 根据权利要求 17 所述的生产双界面智能卡的铣槽方法, 其特征在于, 若所述固定料固 化后渗入填充片和冲孔层之间的缝隙, 则渗入深度不能多于 0.03mm。
18. 根据权利要求 12至 18任意一项所述的生产双界面智能卡的铣槽方法, 其特征在于, 在 通过真空吸气抽取剩余的填充片时, 还利用自动旋转刷, 将填充片与其它双界面卡卡基 材料分离。
PCT/CN2012/078319 2011-07-06 2012-07-06 双界面智能卡、其生产方法及铣槽方法 WO2013004197A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN 201110187452 CN102231193B (zh) 2011-07-06 2011-07-06 一种双界面智能卡
CN201110187452.1 2011-07-06
CN 201110264484 CN102328120B (zh) 2011-09-08 2011-09-08 一种生产ic智能卡的铣槽方法
CN201110264484.7 2011-09-08
CN 201110298075 CN102360443B (zh) 2011-09-28 2011-09-28 一种生产双界面卡的方法
CN201110298075.9 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013004197A1 true WO2013004197A1 (zh) 2013-01-10

Family

ID=47436527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078319 WO2013004197A1 (zh) 2011-07-06 2012-07-06 双界面智能卡、其生产方法及铣槽方法

Country Status (1)

Country Link
WO (1) WO2013004197A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350073A (zh) * 2008-08-20 2009-01-21 北京握奇数据系统有限公司 双界面智能卡的生产方法、双界面智能卡及其天线层
CN201302726Y (zh) * 2008-11-20 2009-09-02 北京握奇数据系统有限公司 一种双界面智能卡
CN102024175A (zh) * 2010-12-09 2011-04-20 武汉天喻信息产业股份有限公司 一种双界面智能卡及其制作方法
CN102054197A (zh) * 2010-12-23 2011-05-11 武汉天喻信息产业股份有限公司 一种双界面智能卡及其制作方法
CN102231193A (zh) * 2011-07-06 2011-11-02 黄艳 一种双界面智能卡
CN102328120A (zh) * 2011-09-08 2012-01-25 张开兰 一种生产ic智能卡的铣槽方法
CN102360443A (zh) * 2011-09-28 2012-02-22 张开兰 一种生产双界面卡的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350073A (zh) * 2008-08-20 2009-01-21 北京握奇数据系统有限公司 双界面智能卡的生产方法、双界面智能卡及其天线层
CN201302726Y (zh) * 2008-11-20 2009-09-02 北京握奇数据系统有限公司 一种双界面智能卡
CN102024175A (zh) * 2010-12-09 2011-04-20 武汉天喻信息产业股份有限公司 一种双界面智能卡及其制作方法
CN102054197A (zh) * 2010-12-23 2011-05-11 武汉天喻信息产业股份有限公司 一种双界面智能卡及其制作方法
CN102231193A (zh) * 2011-07-06 2011-11-02 黄艳 一种双界面智能卡
CN102328120A (zh) * 2011-09-08 2012-01-25 张开兰 一种生产ic智能卡的铣槽方法
CN102360443A (zh) * 2011-09-28 2012-02-22 张开兰 一种生产双界面卡的方法

Similar Documents

Publication Publication Date Title
CN102360443B (zh) 一种生产双界面卡的方法
CN102231193B (zh) 一种双界面智能卡
WO2012061964A1 (zh) 一种智能双界面卡及其焊接封装工艺
WO2013120240A1 (zh) 一种智能双界面卡焊接封装工艺
CN102073898A (zh) 一种双界面智能卡inlay的制造方法
CN102328120B (zh) 一种生产ic智能卡的铣槽方法
WO2023186132A1 (zh) 射频天线制作方法及射频天线
WO2013004197A1 (zh) 双界面智能卡、其生产方法及铣槽方法
CN110689105B (zh) 超薄rfid智能卡封装方法
JP6405158B2 (ja) 接触・非接触共用型icカード及びその製造方法
WO2014082401A1 (zh) 双界面智能卡及其制造方法
JP2000148949A (ja) 非接触icカードおよびその製造方法
JP2788099B2 (ja) 多層リードフレームの製造方法
CN212169293U (zh) 一种具有加热模组的ic模块拾取装置
US8900926B2 (en) Chip package method
JP2010198050A (ja) 非接触icシート、非接触icカード及び非接触icシートを備えた冊子体
JP2000155821A (ja) 非接触icカードおよびその製造方法
JP2003257770A (ja) 平面コイルの製造方法
CN211349400U (zh) 采用智能标签技术的射频卡
CN106670613B (zh) 一种双界面智能卡的焊接方法
CN217825478U (zh) 线路板及led线路板模组
JPH0464451B2 (zh)
JP7380254B2 (ja) 接触および非接触共用icカードおよび接触および非接触共用icカードの製造方法
JP5701712B2 (ja) Rfid用アンテナシート、rfid用インレット、非接触型icカード、及び非接触型icタグ
CN114361048A (zh) 金属裸线中料制备方法及金属裸线中料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14.03.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12807064

Country of ref document: EP

Kind code of ref document: A1