WO2013002321A1 - Organic semiconductor device and method for manufacturing organic semiconductor device - Google Patents

Organic semiconductor device and method for manufacturing organic semiconductor device Download PDF

Info

Publication number
WO2013002321A1
WO2013002321A1 PCT/JP2012/066521 JP2012066521W WO2013002321A1 WO 2013002321 A1 WO2013002321 A1 WO 2013002321A1 JP 2012066521 W JP2012066521 W JP 2012066521W WO 2013002321 A1 WO2013002321 A1 WO 2013002321A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
organic
openings
bank
semiconductor material
Prior art date
Application number
PCT/JP2012/066521
Other languages
French (fr)
Japanese (ja)
Inventor
中馬 隆
Original Assignee
パイオニア株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 三菱化学株式会社 filed Critical パイオニア株式会社
Publication of WO2013002321A1 publication Critical patent/WO2013002321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Definitions

  • the present invention relates to an organic semiconductor device including an organic semiconductor element such as an organic transistor and a method for manufacturing the organic semiconductor device.
  • Organic transistors are expected to open up unique uses such as electronic paper and flexible displays because they have the characteristics that they can be processed at low temperature and can be formed by printing.
  • An ink jet method is known as a method for forming a coating type organic semiconductor material.
  • a bank having a plurality of openings is formed on a substrate, a droplet of an organic semiconductor material is ejected from a nozzle head of an inkjet coating apparatus toward the opening of the bank, and an organic semiconductor is formed in the opening. This is a technique for forming a layer.
  • Patent Document 1 when the distance in the channel length direction between organic transistors in a pixel is a, and the distance in the channel length direction between organic transistors between adjacent pixels is b (a ⁇ b), b is It is described that organic transistors are arranged so as to be an integral multiple of a. According to such an arrangement of organic transistors, when an organic semiconductor material is supplied to a predetermined position on a substrate by scanning a nozzle head in which a large number of ejection openings are regularly arranged in one direction, an ejection operation is performed. Since the number of wasteful discharge ports that are not used can be minimized, production efficiency can be improved.
  • FIG. 1A is a plan view showing the configuration of the pixel 100 constituting the organic EL display panel
  • FIG. 1B is a cross-sectional view taken along line 1b-1b in FIG. 1A.
  • 1A and 1B show a nozzle head 200 for supplying an organic semiconductor material.
  • the pixel 100 includes a bank 111 having a plurality of openings provided on a substrate 110, an organic electroluminescence element (hereinafter referred to as an organic EL element) OLED and a plurality of organic transistors formed in the openings of the bank 111. Tr1 to Tr5.
  • the organic transistors Tr1 to Tr5 are formed by supplying a liquid organic semiconductor material into each opening of the bank 111.
  • the organic semiconductor material is supplied by disposing the nozzle head 200 of the ink jet coating apparatus above the substrate 110 and discharging droplets of the organic semiconductor material from the discharge ports 201a and 201b.
  • the nozzle head 200 is scanned along the arrangement direction of the organic transistors indicated by arrows in FIG. 1A, and an organic semiconductor material is supplied into each opening of the bank 111.
  • the nozzle head 200 has discharge ports 201a and 201b arranged at a distance corresponding to the distance between two openings adjacent to each other in the left-right direction in FIG. These are simultaneously discharged from the discharge ports 201a and 201b.
  • the organic transistors Tr1 and Tr5 are relatively large in size, and the organic transistors Tr2, Tr3, Tr4 are relatively small in size.
  • the size of the organic transistor is determined according to the magnitude of the operating current, for example.
  • the number of organic transistors is different between the first column and the second column. That is, two organic transistors Tr1 and Tr2 are arranged in the first column, and three organic transistors Tr3, Tr4, and Tr5 are arranged in the second column.
  • Such operation in the nozzle head not only complicates the discharge control, but also causes a discharge stop period of the organic semiconductor material at any of the discharge ports, so the state of the organic semiconductor material inside the nozzle head changes, When the nozzle head is clogged, for example, the organic semiconductor material is not discharged properly when the discharge is restarted thereafter.
  • the present invention has been made in view of the above points, and in the case of forming an organic semiconductor layer by an inkjet method, an organic semiconductor device and an organic semiconductor device capable of simplifying discharge control of an organic semiconductor material can be achieved.
  • An object is to provide a manufacturing method.
  • An organic semiconductor device of the present invention is provided on a substrate having a plurality of openings formed in a plurality of rows on the substrate and arranged in such a manner that the numbers in each row are equal to each other, and inside each of the plurality of openings.
  • the organic semiconductor layer comprises a plurality of organic semiconductor elements and at least one dummy element that does not function as an organic semiconductor element.
  • the organic semiconductor device manufacturing method of the present invention includes a step of forming a bank having a plurality of openings formed on a substrate so as to form a plurality of rows and the numbers in each row are equal to each other, and the plurality of openings. Supplying a liquid organic semiconductor material to the inside of each of the sections; and drying the organic semiconductor material to form an organic semiconductor layer inside each of the plurality of openings.
  • the layer is characterized by constituting a plurality of organic semiconductor elements and at least one dummy element that does not function as an organic semiconductor element.
  • FIG. 1A is a plan view illustrating the structure of the pixels constituting the organic EL display panel.
  • FIG. 1B is a cross-sectional view taken along line 1b-1b in FIG.
  • FIG. 2A is a plan view showing the structure of the pixels constituting the organic EL display panel which is an embodiment of the present invention.
  • FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 3A to 3C are cross-sectional views for each process step in the manufacturing process of the organic EL display panel according to the embodiment of the present invention.
  • FIGS. 4A to 4C are cross-sectional views for each process step in the manufacturing process of the organic EL display panel according to the embodiment of the present invention. It is a top view which shows operation
  • FIG. 2A is a plan view showing a schematic configuration of a pixel 1 constituting an organic EL display panel which is a kind of organic semiconductor device according to an embodiment of the present invention, and FIG. It is sectional drawing along the 2b-2b line
  • the organic EL display panel is composed of a plurality of pixels arranged in a matrix.
  • the pixel 1 includes a bank 20 having a plurality of openings 21a to 21f and 22 provided on the substrate 30, organic transistors Tr1 to Tr5 formed in the openings 21a to 21e of the bank 20, and openings of the bank 20.
  • the dummy element D1 provided in the part 21f and the organic EL element OLED provided in the opening 22 of the bank 20 are included.
  • the substrate 30 is made of a light-transmitting plate material or film material made of glass or plastic.
  • the bank 20 is a partition that separates the organic transistors Tr1 to Tr5, the dummy element D1, and the organic EL element OLED.
  • the bank 20 has openings 21 a to 21 f formed in the drive circuit formation region 10 and an opening 22 formed in the light emitting region 11.
  • the organic transistors Tr1 to Tr5 are provided in the openings 21a to 21e, the dummy element D1 is provided in the opening 21f, and the organic EL element OLED is provided in the opening 22.
  • the bank openings form a plurality of columns and the numbers of the bank openings in each column are equal to each other.
  • the openings 21a to 21f of the bank 20 are arranged in two rows in the drive circuit formation region 10 so that the number of openings in each row is three. It is arranged. That is, the openings 21a, 21b, and 21c are arranged in the first row, and the openings 21d, 21e, and 21f are arranged in the second row.
  • the direction in which the openings 21a, 21b, 21c are arranged or the direction in which the openings 21d, 21e, 21f are arranged is referred to as a first direction, and the direction orthogonal to the first direction is referred to as a second direction. To do.
  • the openings 21a to 21f are formed in the same shape and the same size. In addition, the openings 21a to 21f are aligned so that the ends are aligned with other openings adjacent in the second direction. In the present embodiment, the number of bank openings in the drive circuit formation region 10 is six, but there is no particular limitation.
  • the organic transistors Tr1 to Tr5 constitute a drive circuit that drives the organic EL element OLED by a so-called active matrix system, and a drive transistor that supplies a drive current to the organic EL element OLED, a switching transistor that turns on or off the drive transistor, or these It functions as one of correction transistors that correct the operation of the transistor.
  • the organic transistors Tr1 to Tr5 have a so-called bottom contact structure and are formed on the insulating film 32, a gate electrode 31 formed on the substrate 30, an insulating film 32 that covers the gate electrode 31 and functions as a gate insulating film.
  • the drain electrode 33-1 and the source electrode 33-2, and the organic semiconductor layer 34 in contact with the drain electrode 33-1, the source electrode 33-2, and the gate insulating film 32 in the opening of the bank 20.
  • the surface of the organic semiconductor layer 34 is covered with an overcoat layer 35 made of an insulator.
  • the organic transistors Tr1 to Tr5 are composed of organic semiconductor layers having the same shape and the same size regardless of their functions.
  • the dummy element D1 is composed of an organic semiconductor layer 34 provided in the opening 21f of the bank 20.
  • the dummy element D1 does not include the gate electrode 31, the drain electrode 33-1 and the source electrode 33-2 that the organic transistors Tr1 to Tr5 have. That is, the dummy element D1 is not electrically connected to any of the organic transistors Tr1 to Tr5, the power supply path is cut off, and does not function as an organic transistor that is an active element.
  • the dummy element D1 includes an organic semiconductor layer 34 having the same shape and size as the organic transistors Tr1 to Tr5.
  • the dummy element D1 is provided in the opening where the organic transistor is not formed when the number of openings in the bank 20 is larger than the number of organic transistors in the drive circuit formation region 10. That is, the openings in the bank 20 are formed so that the number of openings in each column is equal to each other regardless of the number of organic transistors required in the pixel 1.
  • the total number of may be larger than the number of organic transistors. In this embodiment, the number of organic transistors is five for a total of six openings 20a to 20f.
  • the dummy element D1 is provided in the opening 20f where the organic transistor is not formed.
  • the number of dummy elements D1 is one, but the present invention is not limited to this.
  • the dummy element D1 is arranged in the opening 20f. However, the arrangement of the dummy element D1 can be arbitrarily selected.
  • the organic EL element OLED is formed by laminating an anode 40, an organic functional layer 41, and a cathode 42 in the opening 22 of the bank 20 provided in the light emitting region 11.
  • the anode 40 is connected to the drain electrode 33-1 of the organic transistor that functions as a drive transistor.
  • the organic functional layer 41 has a laminated structure including, for example, a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer.
  • the organic EL display panel according to this example is a so-called bottom emission type, and light emitted from the light emitting layer is extracted from the substrate 30 side.
  • FIGS. 4A to 4C are cross-sectional views for each process step in the manufacturing process of the organic EL display panel according to this example.
  • a substrate 30 made of a light transmissive plate material such as glass or plastic or a film material is prepared. Before forming each element on the substrate 30, the substrate is cleaned with a cleaning liquid containing pure water, a surfactant, or the like to remove oils and fats attached to the surface of the substrate 30. Next, a Cr film having a thickness of about 100 nm is formed on the substrate 30 by sputtering or the like. Subsequently, a resist mask is formed on the Cr film by a known photolithography technique, and the Cr film is subjected to wet etching through the resist mask to pattern the Cr film. Thereby, the gate electrodes 31 of the organic transistors Tr1 to Tr5 are formed. A gate electrode is not formed at the formation position of the dummy element D1 (FIG. 3A).
  • the insulating film functions as a gate insulating film on the substrate 30 and insulates a lower electrode wiring including a gate electrode (not shown) from an upper electrode wiring including a drain electrode and a source electrode formed in a later step.
  • a film 32 is formed.
  • polysilazane can be used as the material of the insulating film 32.
  • Polysilazane is an inorganic polymer soluble in an organic solvent, and an organic solvent solution can be used as a coating solution.
  • the polysilazane is converted to high-purity silica (amorphous SiO 2 ) by heat treatment. Thereby, an insulating film 32 covering the gate electrode 31 is formed on the substrate 30 (FIG. 3B).
  • the drain electrode 33-1 and the source electrode 33-2 are formed.
  • the drain electrode 33-1 and the source electrode 33-2 have a channel part 33a on the gate electrode 31, and the insulating film 32 is exposed in the channel part 33a.
  • the drain electrode 33-1 and the source electrode 33-2 are not formed at the formation position of the dummy element D1.
  • a light-transmitting metal oxide conductor such as IZO (registered trademark) (Indium Zinc Oxide) or ITO (Indium Tin Oxide) is deposited on the insulating film 32 by patterning by etching.
  • IZO Indium Zinc Oxide
  • ITO Indium Tin Oxide
  • the bank 20 that separates the organic transistors Tr1 to Tr5, the dummy element D1, and the organic EL element OLED is formed.
  • a fluorinated photopolymer film having a thickness of about 1 ⁇ m is formed on the substrate 30 that has undergone the above steps by spin coating. Thereafter, an opening is formed in the fluorinated photopolymer film by a known photolithography technique.
  • a larger number of openings than the number of organic transistors required in a pixel form a plurality of rows, and the number of openings in each row is equal to each other.
  • openings 21a to 21c corresponding to the organic transistors Tr1 to Tr3 are arranged in the first row, and openings 21d corresponding to the organic transistors Tr4 and Tr5, 21e is arranged in the second column.
  • An opening 21f is additionally provided in the second row so that the numbers of openings in the first row and the second row are equal. As a result, the number of openings in the first row and the second row are both three.
  • a dummy element D1 that does not function as an organic transistor as an active element is formed in a later step.
  • the openings 21a to 21f are preferably formed in the same shape and the same size. Moreover, it is preferable that the two openings adjacent in the second direction are arranged so that the terminal positions of the openings are aligned with each other.
  • a drain electrode 33-1 and a source electrode 33-2 and an insulating film 32 exposed in the channel portion 33a extend at the bottom of the openings 21a to 21e for forming the organic transistor.
  • the opening 22 is provided at the formation position of the organic EL element OLED in the light emitting region 11.
  • the anode 41 of the organic EL element OLED extends at the bottom of the opening 22 (FIG. 4A).
  • an organic semiconductor material in which, for example, a tetrabenzoporphyrin derivative (tetrabenzoporphyrin) is dissolved in an ethyl benzoate solvent is applied into the openings 21a to 21f of the bank 20 by an ink jet method, and then this is baked to form the openings.
  • An organic semiconductor layer 34 is formed in 21a to 21f.
  • FIG. 5 is a plan view showing the operation of the nozzle head 200 of the ink jet coating apparatus.
  • the nozzle head 200 has discharge ports 201a and 201b for discharging droplets of an organic semiconductor material on the order of picoliters (pl).
  • the discharge ports 201a and 201b are arranged along the longitudinal direction of the nozzle head 200 with a separation distance corresponding to the interval between the bank openings adjacent to each other in the second direction.
  • the nozzle head 200 is positioned so that the longitudinal direction thereof is directed to the second direction, and the discharge ports 201a and 201b are positioned immediately above the adjacent openings 21a and 21d, respectively. Thereafter, the organic semiconductor material is simultaneously discharged from the discharge ports 201a and 201b, and a predetermined amount of the organic semiconductor material is supplied into the openings 21a and 21d (first step).
  • the nozzle head 200 moves along the first direction as indicated by an arrow in FIG.
  • the nozzle head 200 is positioned so that the discharge ports 201a and 201b are positioned immediately above the adjacent openings 21b and 21e, respectively.
  • the organic semiconductor material is simultaneously discharged from the discharge ports 201a and 201b, and a predetermined amount of the organic semiconductor material is supplied into the openings 21b and 21e (second step).
  • the nozzle head 200 is positioned so that the discharge ports 201a and 201b are positioned immediately above the adjacent openings 21c and 21f, respectively, and a predetermined amount of organic semiconductor material is supplied into the openings 21c and 21f. (Third step). After supplying an organic semiconductor material to each opening of the bank 20, the organic semiconductor material is baked and crystallized. As a result, the organic semiconductor layer 34 is formed in the openings 21 a to 21 f of the bank 20.
  • the discharge control of the organic semiconductor material in the nozzle head 200 can be simplified. That is, since the number of openings in the bank 20 is the same in each row, when the nozzle head 200 is positioned in the first to third steps, there is always an opening immediately below each of the discharge ports 201a and 201b. Will be. Accordingly, the organic semiconductor material can always be discharged from the discharge ports 201a and 201b at the same timing. In other words, complicated discharge control of supplying the organic semiconductor material from one discharge port and stopping the supply of the organic semiconductor material from the other discharge port becomes unnecessary.
  • the discharge stop period can be minimized at each discharge port. Accordingly, it is possible to avoid the problem that the organic semiconductor material cannot be properly discharged from the nozzle head due to clogging or the like when the discharge of the organic semiconductor material is resumed after the discharge stop period has elapsed.
  • the number of bank openings is adjusted to be equal in each column by providing an additional opening 20f. Yes.
  • the opening 20 f that is not originally required in terms of the function of the drive circuit functions as a container for the organic semiconductor material supplied from the nozzle head 200. If the opening 20f is not provided, since it is necessary to stop the supply of the organic semiconductor material from the discharge port 201a in Step 3 described above, the discharge control becomes complicated and the nozzle head is clogged. It tends to occur.
  • the organic semiconductor layer formed in the opening 20f does not need to be given a function as a transistor, and therefore power supply wirings such as a gate electrode, a drain electrode, and a source electrode are not connected. That is, the dummy element D1 that is separated from the organic transistors Tr1 to Tr5 and does not function as an organic transistor is formed in the opening 20f.
  • the openings 21a to 21f of the bank 20 are formed in the same shape and the same size, the amount of organic semiconductor material supplied to the openings 21a to 21f (the number of droplet shots) is the same. By doing so, the thickness of the organic semiconductor layer 34 formed in the openings 21a to 21f can be made equal. Thereby, the characteristics (for example, mobility) of the organic transistors Tr1 to Tr5 in the pixel can be made uniform. If the shape and size of the opening of the bank 20 are different from each other in the pixel, the thickness of the organic semiconductor layer is controlled by the amount of organic semiconductor material supplied (number of droplet shots). Thickness control is usually difficult and characteristic variations of organic transistors are likely to occur.
  • the nozzle head 200 may repeat the same ejection operation in each of the first to third steps.
  • an insulating film material in which polystyrene is dissolved in an ethyl benzoate solvent is formed on the organic semiconductor layer 34 by an ink jet method or the like, and is dried.
  • an overcoat layer 35 having a thickness of about 4 ⁇ m is formed in the openings 21a to 21f to cover the organic semiconductor layer 34 (FIG. 4B).
  • the organic functional layer 41 constituting the organic EL element OLED is formed on the substrate 30 that has undergone the above steps.
  • the organic functional layer 41 has a laminated structure including, for example, a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer.
  • the hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 20 nm
  • the hole transport layer is made of, for example, ⁇ -NPD (Bis [N- (1-naphthyl) -N-phenyl] benzidine) having a thickness of about 50 nm.
  • the light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 50 nm
  • the electron injection layer is made of, for example, lithium fluoride (LiF) having a thickness of about 0.5 nm.
  • the organic functional layer 41 is formed, for example, by repeating the film formation by a vacuum vapor deposition method and laminating the above layers.
  • the organic functional layer 41 is formed so as to cover the anode 40 in the opening 22 of the bank 20.
  • Al having a thickness of about 100 nm is deposited on the organic functional layer 41 by a vacuum evaporation method or the like to form the cathode 42 of the organic EL element OLED.
  • anode 40, the organic functional layer 41, and the cathode 42 are stacked in the opening 22 of the bank 20 to form the organic EL element OLED (FIG. 4C).
  • an organic EL display panel having the organic transistors Tr1 to Tr5, the dummy element D1, and the organic EL element OLED is completed.
  • the drive circuit formation region has a larger number of openings than the required number of organic transistors, and the number of openings in each column. Are set to be equal.
  • a dummy element that does not function as an organic transistor that is an active element is formed in the opening where the organic transistor is not formed.
  • the discharge stop period can be minimized at each discharge port, problems such as clogging in the nozzle head can be avoided.
  • the bank openings provided in the drive circuit formation region have the same shape and the same size, the simplest discharge control in which the discharge of the organic semiconductor material is repeated with the same number of shots in each step. It becomes possible to make the thickness of the organic semiconductor layer uniform.
  • the longitudinal direction of the nozzle head is arranged in the second direction and the nozzle head is scanned along the first direction.
  • the nozzle head 200 may be scanned along the second direction while the longitudinal direction of the nozzle head 200 is directed to the first direction.
  • the nozzle head 200 is provided with discharge ports 201a, 201b, and 201c along the longitudinal direction thereof, and the organic semiconductor material is simultaneously supplied to the three openings arranged along the first direction. Even in this case, the same effect as the above-described embodiment can be obtained.
  • the size of the opening of the bank provided in the drive circuit formation region 10 is all the same. However, as shown in FIG. 7, the size of the opening of the bank is different for each column. May be. Even in this case, the discharge control in the nozzle head can be simplified.
  • FIG. 8 (a) to 8 (d) are plan views showing variations in the arrangement of the organic transistors and dummy elements in the drive circuit formation region 10.
  • FIG. 8A to FIG. 8D the dummy elements are indicated by hatching.
  • four organic transistors Tr1 to Tr4 and two dummy elements D1 and D2 may be arranged in two rows in the drive circuit formation region 10.
  • three organic transistors Tr1 to Tr3 and three dummy elements D1 to D3 may be arranged in two rows in the drive circuit formation region 10.
  • FIG. 8C three organic transistors Tr1 to Tr3 and one dummy element D1 may be arranged in two rows in the drive circuit formation region 10.
  • two organic transistors Tr1 and Tr2 and two dummy elements D1 and D2 may be arranged in two rows in the drive circuit formation region 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

An organic semiconductor device in which a bank provided on a substrate has a plurality of opening portions that are arranged in a plurality of lines so that each line has the same number of opening portions. An organic semiconductor layer is provided within each one of the plurality of opening portions. The organic semiconductor layers constitute a plurality of organic semiconductor elements and at least one dummy element that does not function as an organic semiconductor element.

Description

有機半導体装置および有機半導体装置の製造方法Organic semiconductor device and method of manufacturing organic semiconductor device
 本発明は、有機トランジスタ等の有機半導体素子を含む有機半導体装置および有機半導体装置の製造方法に関する。 The present invention relates to an organic semiconductor device including an organic semiconductor element such as an organic transistor and a method for manufacturing the organic semiconductor device.
従来技術Conventional technology
 近年、有機半導体を使った有機トランジスタの開発が活発化している。有機トランジスタは、低温プロセスが可能、印刷による形成が可能といった特徴を有していることから電子ペーパやフレキシブルディスプレイ等のユニークな用途が拓けるものと期待されている。 In recent years, the development of organic transistors using organic semiconductors has become active. Organic transistors are expected to open up unique uses such as electronic paper and flexible displays because they have the characteristics that they can be processed at low temperature and can be formed by printing.
 特に、コスト削減の観点から真空装置を使用することなく有機半導体層の形成が可能となる塗布型の有機半導体材料の開発が進められている。塗布型の有機半導体材料の成膜方法として、インクジェット法が知られている。インクジェット法は、基板上に複数の開口部を有するバンクを形成しておき、インクジェット塗布装置のノズルヘッドからバンクの開口部に向けて有機半導体材料の液滴を吐出して、開口部内に有機半導体層を形成する手法である。 In particular, from the viewpoint of cost reduction, development of a coating-type organic semiconductor material that can form an organic semiconductor layer without using a vacuum apparatus is in progress. An ink jet method is known as a method for forming a coating type organic semiconductor material. In the inkjet method, a bank having a plurality of openings is formed on a substrate, a droplet of an organic semiconductor material is ejected from a nozzle head of an inkjet coating apparatus toward the opening of the bank, and an organic semiconductor is formed in the opening. This is a technique for forming a layer.
 特許文献1には、ピクセル内における有機トランジスタ同士のチャネル長方向の間隔をaとし、隣接するピクセル間における有機トランジスタ同士のチャネル長方向の間隔をb(a≦b)としたときに、bがaの整数倍となるように有機トランジスタを配置することが記載されている。このような有機トランジスタの配列によれば、多数の吐出口が規則的に配列されたノズルヘッドを一方向に走査させて基板上の所定の位置に有機半導体材料を供給する場合において、吐出動作をしない無駄な吐出口の数を最小限に抑えることができるので生産効率の向上を図ることが可能となる。 In Patent Document 1, when the distance in the channel length direction between organic transistors in a pixel is a, and the distance in the channel length direction between organic transistors between adjacent pixels is b (a ≦ b), b is It is described that organic transistors are arranged so as to be an integral multiple of a. According to such an arrangement of organic transistors, when an organic semiconductor material is supplied to a predetermined position on a substrate by scanning a nozzle head in which a large number of ejection openings are regularly arranged in one direction, an ejection operation is performed. Since the number of wasteful discharge ports that are not used can be minimized, production efficiency can be improved.
国際公開08/120351号パンフレットWO08 / 120351 pamphlet
 図1(a)は、有機EL表示パネルを構成するピクセル100の構成を示す平面図、図1(b)は図1(a)における1b-1b線に沿った断面図である。尚、図1(a)および図1(b)において、有機半導体材料を供給するためのノズルヘッド200が示されている。ピクセル100は、基板110上に設けられた複数の開口部を有するバンク111と、バンク111の開口部内に形成された有機エレクトロルミネッセンス素子(以下において、有機EL素子と称する)OLEDおよび複数の有機トランジスタTr1~Tr5と、を含んでいる。 FIG. 1A is a plan view showing the configuration of the pixel 100 constituting the organic EL display panel, and FIG. 1B is a cross-sectional view taken along line 1b-1b in FIG. 1A. 1A and 1B show a nozzle head 200 for supplying an organic semiconductor material. The pixel 100 includes a bank 111 having a plurality of openings provided on a substrate 110, an organic electroluminescence element (hereinafter referred to as an organic EL element) OLED and a plurality of organic transistors formed in the openings of the bank 111. Tr1 to Tr5.
 有機トランジスタTr1~Tr5は、バンク111の各開口部内に液状の有機半導体材料を供給することにより形成される。有機半導体材料の供給は、インクジェット塗布装置のノズルヘッド200を基板110の上方に配置して、吐出口201aおよび201bから有機半導体材料の液滴を吐出することで行われる。ノズルヘッド200は、例えば、図1(a)において矢印で示される有機トランジスタの配列方向に沿って走査され、バンク111の各開口部内に有機半導体材料が供給される。ノズルヘッド200は、図1(a)中左右方向において互いに隣り合う2つの開口部間の間隔に対応する離間距離をおいて配置された吐出口201aおよび201bを有しており、有機半導体材料は、これらの吐出口201aおよび201bから同時に吐出される。 The organic transistors Tr1 to Tr5 are formed by supplying a liquid organic semiconductor material into each opening of the bank 111. The organic semiconductor material is supplied by disposing the nozzle head 200 of the ink jet coating apparatus above the substrate 110 and discharging droplets of the organic semiconductor material from the discharge ports 201a and 201b. For example, the nozzle head 200 is scanned along the arrangement direction of the organic transistors indicated by arrows in FIG. 1A, and an organic semiconductor material is supplied into each opening of the bank 111. The nozzle head 200 has discharge ports 201a and 201b arranged at a distance corresponding to the distance between two openings adjacent to each other in the left-right direction in FIG. These are simultaneously discharged from the discharge ports 201a and 201b.
 ここで、図1(a)に示す例では、有機トランジスタTr1およびTr5は比較的サイズが大きく、有機トランジスタTr2、Tr3、Tr4は比較的サイズが小さい。有機トランジスタのサイズは、例えば動作電流の大きさに応じて定められる。また、ピクセル100内において第1列目と第2列目とで、有機トランジスタの数が異なっている。すなわち、第1列目に2つの有機トランジスタTr1、Tr2が配置され、第2列目に3つの有機トランジスタTr3、Tr4、Tr5が配置されている。 Here, in the example shown in FIG. 1A, the organic transistors Tr1 and Tr5 are relatively large in size, and the organic transistors Tr2, Tr3, Tr4 are relatively small in size. The size of the organic transistor is determined according to the magnitude of the operating current, for example. In the pixel 100, the number of organic transistors is different between the first column and the second column. That is, two organic transistors Tr1 and Tr2 are arranged in the first column, and three organic transistors Tr3, Tr4, and Tr5 are arranged in the second column.
 このような場合、ノズルヘッド200の吐出口201aおよび201bから吐出させる有機半導体材料の量や吐出タイミングを別々に制御する必要があり、ノズルヘッドにおける吐出制御が複雑になる。また、第1列目と第2列目とで有機トランジスタの数が異なると、一方の吐出口において有機半導体材料の吐出を一時的に停止させることが必要となる。すなわち、図1(a)に示す例においては、ノズルヘッド200は、有機トランジスタTr5の形成位置の上方に位置決めされた後、吐出口201aから有機半導体材料を吐出して、有機トランジスタTr5に対応するバンク開口部に有機半導体層を供給する一方、他方の吐出口201bからの有機半導体材料の供給を停止させる必要がある。ノズルヘッドにおけるこのような動作は、吐出制御が複雑になるだけでなく、吐出口のいずれかにおいて有機半導体材料の吐出停止期間が生じる故、ノズルヘッド内部における有機半導体材料の状態が変化して、ノズルヘッドに目詰まりが生じる等してその後に吐出を再開するときに有機半導体材料が適切に吐出されないといった不具合が起りやすくなる。 In such a case, it is necessary to separately control the amount and discharge timing of the organic semiconductor material discharged from the discharge ports 201a and 201b of the nozzle head 200, and the discharge control in the nozzle head becomes complicated. Further, if the number of organic transistors is different between the first row and the second row, it is necessary to temporarily stop the discharge of the organic semiconductor material at one discharge port. That is, in the example shown in FIG. 1A, after the nozzle head 200 is positioned above the formation position of the organic transistor Tr5, the organic semiconductor material is discharged from the discharge port 201a to correspond to the organic transistor Tr5. While supplying the organic semiconductor layer to the bank opening, it is necessary to stop the supply of the organic semiconductor material from the other discharge port 201b. Such operation in the nozzle head not only complicates the discharge control, but also causes a discharge stop period of the organic semiconductor material at any of the discharge ports, so the state of the organic semiconductor material inside the nozzle head changes, When the nozzle head is clogged, for example, the organic semiconductor material is not discharged properly when the discharge is restarted thereafter.
 本発明は、上記した点に鑑みてなされたものであり、インクジェット法によって有機半導体層を形成する場合において、有機半導体材料の吐出制御の簡略化を図ることができる有機半導体装置および有機半導体装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and in the case of forming an organic semiconductor layer by an inkjet method, an organic semiconductor device and an organic semiconductor device capable of simplifying discharge control of an organic semiconductor material can be achieved. An object is to provide a manufacturing method.
 本発明の有機半導体装置は、基板上において複数の列をなし且つ各列における数量が互いに等しくなるように配列された複数の開口部を有するバンクと、前記複数の開口部の各々の内側に設けられた有機半導体層と、を含み、前記有機半導体層は、複数の有機半導体素子と、有機半導体素子として機能しない少なくとも1つのダミー素子とを構成していることを特徴としている。 An organic semiconductor device of the present invention is provided on a substrate having a plurality of openings formed in a plurality of rows on the substrate and arranged in such a manner that the numbers in each row are equal to each other, and inside each of the plurality of openings. The organic semiconductor layer comprises a plurality of organic semiconductor elements and at least one dummy element that does not function as an organic semiconductor element.
 本発明の有機半導体装置の製造方法は、基板上において複数の列をなし且つ各列における数量が互いに等しくなるように配列された複数の開口部を有するバンクを形成する工程と、前記複数の開口部の各々の内側に液状の有機半導体材料を供給する工程と、前記有機半導体材料を乾燥させて前記複数の開口部の各々の内側に有機半導体層を形成する工程と、を含み、前記有機半導体層は、複数の有機半導体素子と、有機半導体素子として機能しない少なくとも1つのダミー素子とを構成していることを特徴としている。 The organic semiconductor device manufacturing method of the present invention includes a step of forming a bank having a plurality of openings formed on a substrate so as to form a plurality of rows and the numbers in each row are equal to each other, and the plurality of openings. Supplying a liquid organic semiconductor material to the inside of each of the sections; and drying the organic semiconductor material to form an organic semiconductor layer inside each of the plurality of openings. The layer is characterized by constituting a plurality of organic semiconductor elements and at least one dummy element that does not function as an organic semiconductor element.
図1(a)は有機EL表示パネルを構成するピクセルの構造を例示する平面図である。図1(b)は図1(a)における1b-1b線に沿った断面図である。FIG. 1A is a plan view illustrating the structure of the pixels constituting the organic EL display panel. FIG. 1B is a cross-sectional view taken along line 1b-1b in FIG. 図2(a)は、本発明の実施例である有機EL表示パネルを構成するピクセルの構造を示す平面図である。図2(b)は図2(a)における2b-2b線に沿った断面図である。FIG. 2A is a plan view showing the structure of the pixels constituting the organic EL display panel which is an embodiment of the present invention. FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 図3(a)~図3(c)は、本発明の実施例に係る有機EL表示パネルの製造工程におけるプロセスステップ毎の断面図である。3A to 3C are cross-sectional views for each process step in the manufacturing process of the organic EL display panel according to the embodiment of the present invention. 図4(a)~図4(c)は、本発明の実施例に係る有機EL表示パネルの製造工程におけるプロセスステップ毎の断面図である。FIGS. 4A to 4C are cross-sectional views for each process step in the manufacturing process of the organic EL display panel according to the embodiment of the present invention. ノズルヘッドの動作を示す平面図である。It is a top view which shows operation | movement of a nozzle head. ノズルヘッドの動作を示す平面図である。It is a top view which shows operation | movement of a nozzle head. 本発明の他の実施例に係る有機EL表示パネルを構成するピクセルの構造を示す平面図である。It is a top view which shows the structure of the pixel which comprises the organic electroluminescent display panel which concerns on the other Example of this invention. 本発明の実施例に係る有機トランジスタおよびダミー素子の配置のバリエーションを示す平面図である。It is a top view which shows the variation of arrangement | positioning of the organic transistor and dummy element which concern on the Example of this invention.
 以下、本発明の実施例について添付図面を参照しつつ説明する。尚、各図において実質的に同一または等価な構成要素、部分には同一の参照符を付している。図2(a)は、本発明の実施例に係る有機半導体装置の一種である有機EL表示パネルを構成するピクセル1の模式的な構成を示す平面図、図2(b)は、図2(a)における2b-2b線に沿った断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, substantially the same or equivalent components and parts are denoted by the same reference numerals. FIG. 2A is a plan view showing a schematic configuration of a pixel 1 constituting an organic EL display panel which is a kind of organic semiconductor device according to an embodiment of the present invention, and FIG. It is sectional drawing along the 2b-2b line | wire in a).
 有機EL表示パネルは、マトリックス状に配列された複数のピクセルにより構成される。ピクセル1は、基板30上に設けられた複数の開口部21a~21f、22を有するバンク20と、バンク20の開口部21a~21e内に形成された有機トランジスタTr1~Tr5と、バンク20の開口部21f内に設けられたダミー素子D1と、バンク20の開口部22内に設けられた有機EL素子OLEDと、を含んでいる。 The organic EL display panel is composed of a plurality of pixels arranged in a matrix. The pixel 1 includes a bank 20 having a plurality of openings 21a to 21f and 22 provided on the substrate 30, organic transistors Tr1 to Tr5 formed in the openings 21a to 21e of the bank 20, and openings of the bank 20. The dummy element D1 provided in the part 21f and the organic EL element OLED provided in the opening 22 of the bank 20 are included.
 基板30は、ガラスやプラスチック等からなる光透過性を有する板材またはフィルム材により構成されている。 The substrate 30 is made of a light-transmitting plate material or film material made of glass or plastic.
 バンク20は、有機トランジスタTr1~Tr5、ダミー素子D1および有機EL素子OLEDを隔てる隔壁である。バンク20は、駆動回路形成領域10内に形成された開口部21a~21fおよび発光領域11内に形成された開口部22を有している。有機トランジスタTr1~Tr5は開口部21a~21e内に設けられ、ダミー素子D1は開口部21f内に設けられ、有機EL素子OLEDは開口部22内に設けられている。 The bank 20 is a partition that separates the organic transistors Tr1 to Tr5, the dummy element D1, and the organic EL element OLED. The bank 20 has openings 21 a to 21 f formed in the drive circuit formation region 10 and an opening 22 formed in the light emitting region 11. The organic transistors Tr1 to Tr5 are provided in the openings 21a to 21e, the dummy element D1 is provided in the opening 21f, and the organic EL element OLED is provided in the opening 22.
 駆動回路形成領域10内には、ピクセル1内において必要とされる有機トランジスタの数量にかかわらず、バンクの開口部が、複数の列をなし且つ各列におけるバンクの開口部の数量が互いに等しくなるように配列される。図2(a)に示す例では、バンク20の開口部21a~21fは、駆動回路形成領域10内において2つの列をなして配列され、各列における開口部の数量がそれぞれ3つとなるように配列されている。すなわち、開口部21a、21b、21cは第1列目に配置され、開口部21d、21e、21fは第2列目に配置されている。尚、以下において、開口部21a、21b、21cが並ぶ方向または開口部21d、21e、21fが並ぶ方向を第1方向と称することとし、第1方向と直交する方向を第2方向と称することとする。 In the drive circuit formation region 10, regardless of the number of organic transistors required in the pixel 1, the bank openings form a plurality of columns and the numbers of the bank openings in each column are equal to each other. Are arranged as follows. In the example shown in FIG. 2A, the openings 21a to 21f of the bank 20 are arranged in two rows in the drive circuit formation region 10 so that the number of openings in each row is three. It is arranged. That is, the openings 21a, 21b, and 21c are arranged in the first row, and the openings 21d, 21e, and 21f are arranged in the second row. In the following, the direction in which the openings 21a, 21b, 21c are arranged or the direction in which the openings 21d, 21e, 21f are arranged is referred to as a first direction, and the direction orthogonal to the first direction is referred to as a second direction. To do.
 開口部21a~21fは、互いに同一形状および同一サイズで形成されている。また、開口部21a~21fは、それぞれ、第2方向において隣接する他の開口部と端部が揃うように整列している。尚、本実施例では、駆動回路形成領域10におけるバンクの開口部の数量を6つとしているが、特に限定されるものではない。 The openings 21a to 21f are formed in the same shape and the same size. In addition, the openings 21a to 21f are aligned so that the ends are aligned with other openings adjacent in the second direction. In the present embodiment, the number of bank openings in the drive circuit formation region 10 is six, but there is no particular limitation.
 有機トランジスタTr1~Tr5は、所謂アクティブマトリックス方式で有機EL素子OLEDを駆動する駆動回路を構成しており、有機EL素子OLEDに駆動電流を供給する駆動トランジスタ、駆動トランジスタをオンオフするスイッチングトランジスタ、またはこれらのトランジスタの動作を補正する補正トランジスタのいずれかとして機能する。有機トランジスタTr1~Tr5は、所謂ボトムコンタクト構造を有し、基板30上に形成されたゲート電極31と、ゲート電極31を覆いゲート絶縁膜として機能する絶縁膜32と、絶縁膜32上に形成されたドレイン電極33-1およびソース電極33-2と、バンク20の開口部内においてドレイン電極33-1、ソース電極33-2およびゲート絶縁膜32と接する有機半導体層34と、により構成される。有機半導体層34の表面は、絶縁体からなるオーバコート層35で覆われている。有機トランジスタTr1~Tr5は、その機能にかかわらず、互いに同一形状且つ同一サイズの有機半導体層により構成される。 The organic transistors Tr1 to Tr5 constitute a drive circuit that drives the organic EL element OLED by a so-called active matrix system, and a drive transistor that supplies a drive current to the organic EL element OLED, a switching transistor that turns on or off the drive transistor, or these It functions as one of correction transistors that correct the operation of the transistor. The organic transistors Tr1 to Tr5 have a so-called bottom contact structure and are formed on the insulating film 32, a gate electrode 31 formed on the substrate 30, an insulating film 32 that covers the gate electrode 31 and functions as a gate insulating film. The drain electrode 33-1 and the source electrode 33-2, and the organic semiconductor layer 34 in contact with the drain electrode 33-1, the source electrode 33-2, and the gate insulating film 32 in the opening of the bank 20. The surface of the organic semiconductor layer 34 is covered with an overcoat layer 35 made of an insulator. The organic transistors Tr1 to Tr5 are composed of organic semiconductor layers having the same shape and the same size regardless of their functions.
 ダミー素子D1は、バンク20の開口部21f内に設けられた有機半導体層34により構成される。ダミー素子D1は、有機トランジスタTr1~Tr5が有するゲート電極31、ドレイン電極33-1およびソース電極33-2を有していない。すなわち、ダミー素子D1は、有機トランジスタTr1~Tr5のいずれにも電気的に接続されておらず、電力供給経路は遮断されており、能動素子である有機トランジスタとして機能しないようになっている。また、ダミー素子D1は、有機トランジスタTr1~Tr5と同一形状且つ同一サイズの有機半導体層34を有する。 The dummy element D1 is composed of an organic semiconductor layer 34 provided in the opening 21f of the bank 20. The dummy element D1 does not include the gate electrode 31, the drain electrode 33-1 and the source electrode 33-2 that the organic transistors Tr1 to Tr5 have. That is, the dummy element D1 is not electrically connected to any of the organic transistors Tr1 to Tr5, the power supply path is cut off, and does not function as an organic transistor that is an active element. The dummy element D1 includes an organic semiconductor layer 34 having the same shape and size as the organic transistors Tr1 to Tr5.
 ダミー素子D1は、駆動回路形成領域10内において、バンク20の開口部の数量が有機トランジスタの数よりも多い場合に、有機トランジスタを形成しない開口部内に設けられる。すなわち、バンク20の開口部は、ピクセル1内において必要とされる有機トランジスタの数量にかかわらず、各列において開口部の数量が互いに等しくなるように形成されることから、ピクセル1内における開口部の総数は、有機トランジスタの数量よりも多くなる場合がある。本実施例においては、合計6つの開口部20a~20fに対して有機トランジスタの数量は5つである。この場合、有機トランジスタを形成しない開口部20fにダミー素子D1が設けられる。尚、本実施例ではダミー素子D1の数量を1つとしているが、これに限定されるものではない。また、本実施例では、ダミー素子D1を開口部20f内に配置することとしたが、ダミー素子D1の配置は任意に選択することが可能である。 The dummy element D1 is provided in the opening where the organic transistor is not formed when the number of openings in the bank 20 is larger than the number of organic transistors in the drive circuit formation region 10. That is, the openings in the bank 20 are formed so that the number of openings in each column is equal to each other regardless of the number of organic transistors required in the pixel 1. The total number of may be larger than the number of organic transistors. In this embodiment, the number of organic transistors is five for a total of six openings 20a to 20f. In this case, the dummy element D1 is provided in the opening 20f where the organic transistor is not formed. In the present embodiment, the number of dummy elements D1 is one, but the present invention is not limited to this. In this embodiment, the dummy element D1 is arranged in the opening 20f. However, the arrangement of the dummy element D1 can be arbitrarily selected.
 有機EL素子OLEDは、発光領域11内に設けられたバンク20の開口部22内において陽極40、有機機能層41、陰極42を積層することにより形成される。陽極40は、駆動トランジスタとして機能する有機トランジスタのドレイン電極33-1に接続される。有機機能層41は、例えばホール注入層、ホール輸送層、発光層、電子注入層からなる積層構造を有している。本実施例に係る有機EL表示パネルは、所謂ボトムエミッション型であり、発光層から発せられた光は、基板30側から取り出される。 The organic EL element OLED is formed by laminating an anode 40, an organic functional layer 41, and a cathode 42 in the opening 22 of the bank 20 provided in the light emitting region 11. The anode 40 is connected to the drain electrode 33-1 of the organic transistor that functions as a drive transistor. The organic functional layer 41 has a laminated structure including, for example, a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer. The organic EL display panel according to this example is a so-called bottom emission type, and light emitted from the light emitting layer is extracted from the substrate 30 side.
 次に、上記した構成を有する有機EL表示パネルの製造方法について説明する。図3(a)~(c)および図4(a)~(c)は、本実施例に係る有機EL表示パネルの製造工程におけるプロセスステップ毎の断面図である。 Next, a method for manufacturing an organic EL display panel having the above-described configuration will be described. 3A to 3C and FIGS. 4A to 4C are cross-sectional views for each process step in the manufacturing process of the organic EL display panel according to this example.
 はじめに、ガラスやプラスチック等の光透過性板材またはフィルム材からなる基板30を用意する。基板30上に各素子を形成する前に純水や界面活性剤等を含む洗浄液で洗浄し、基板30の表面に付着した油脂等を除去する。次に、スパッタ法などにより基板30上に厚さ約100nmのCr膜を形成する。続いて、Cr膜上に公知のフォトリソグラフィ技術によってレジストマスクを形成し、このレジストマスクを介してCr膜をウェットエッチングしてCr膜のパターニングを行う。これにより、有機トランジスタTr1~Tr5のゲート電極31が形成される。ダミー素子D1の形成位置には、ゲート電極は形成されていない(図3(a))。 First, a substrate 30 made of a light transmissive plate material such as glass or plastic or a film material is prepared. Before forming each element on the substrate 30, the substrate is cleaned with a cleaning liquid containing pure water, a surfactant, or the like to remove oils and fats attached to the surface of the substrate 30. Next, a Cr film having a thickness of about 100 nm is formed on the substrate 30 by sputtering or the like. Subsequently, a resist mask is formed on the Cr film by a known photolithography technique, and the Cr film is subjected to wet etching through the resist mask to pattern the Cr film. Thereby, the gate electrodes 31 of the organic transistors Tr1 to Tr5 are formed. A gate electrode is not formed at the formation position of the dummy element D1 (FIG. 3A).
 次に、基板30上にゲート絶縁膜として機能するとともに、図示されていないゲート電極を含む下部電極配線と後の工程にて形成されるドレイン電極およびソース電極を含む上部電極配線とを絶縁する絶縁膜32を形成する。絶縁膜32の材料として例えばポリシラザンを用いることができる。ポリシラザンは、有機溶剤に可溶な無機ポリマーであり、有機溶媒溶液を塗布液として用いることができる。ポリシラザンをスピンコート法により基板30上に成膜した後、熱処理によってポリシラザンを高純度シリカ(アモルファスSiO)に転化させる。これにより、基板30上にゲート電極31を覆う絶縁膜32が形成される(図3(b))。 Next, the insulating film functions as a gate insulating film on the substrate 30 and insulates a lower electrode wiring including a gate electrode (not shown) from an upper electrode wiring including a drain electrode and a source electrode formed in a later step. A film 32 is formed. For example, polysilazane can be used as the material of the insulating film 32. Polysilazane is an inorganic polymer soluble in an organic solvent, and an organic solvent solution can be used as a coating solution. After polysilazane is deposited on the substrate 30 by spin coating, the polysilazane is converted to high-purity silica (amorphous SiO 2 ) by heat treatment. Thereby, an insulating film 32 covering the gate electrode 31 is formed on the substrate 30 (FIG. 3B).
 次に、スパッタ法などにより絶縁膜32上にCr(厚さ5nm)およびAu(厚さ100nm)を順次堆積して導体膜を形成する。続いて、この導体膜をレジストマスク(図示せず)を介してウェットエッチングすることにより導体膜にパターニングを施す。これにより、ドレイン電極33-1およびソース電極33-2が形成される。ドレイン電極33-1およびソース電極33-2は、ゲート電極31上においてチャネル部33aを有し、チャネル部33aにおいて絶縁膜32が露出している。ダミー素子D1の形成位置には、ドレイン電極33-1およびソース電極33-2は形成されていない。 Next, Cr (thickness 5 nm) and Au (thickness 100 nm) are sequentially deposited on the insulating film 32 by sputtering or the like to form a conductor film. Subsequently, the conductor film is subjected to patterning by wet etching through a resist mask (not shown). Thereby, the drain electrode 33-1 and the source electrode 33-2 are formed. The drain electrode 33-1 and the source electrode 33-2 have a channel part 33a on the gate electrode 31, and the insulating film 32 is exposed in the channel part 33a. The drain electrode 33-1 and the source electrode 33-2 are not formed at the formation position of the dummy element D1.
 次に、スパッタ法などによりIZO(登録商標)(Indium Zinc Oxide)またはITO(Indium Tin Oxide)等の光透過性を有する金属酸化物導電体を絶縁膜32上に堆積させ、エッチングによってこれをパターニングして有機EL素子OLEDの陽極40を形成する。陽極40は、絶縁膜32上において有機EL素子OLEDの駆動トランジスタとして機能する有機トランジスタのドレイン電極33-1に接続される(図3(c))。 Next, a light-transmitting metal oxide conductor such as IZO (registered trademark) (Indium Zinc Oxide) or ITO (Indium Tin Oxide) is deposited on the insulating film 32 by patterning by etching. Thus, the anode 40 of the organic EL element OLED is formed. The anode 40 is connected to the drain electrode 33-1 of the organic transistor that functions as a driving transistor of the organic EL element OLED on the insulating film 32 (FIG. 3C).
 次に、有機トランジスタTr1~Tr5、ダミー素子D1および有機EL素子OLEDの各素子間を隔てるバンク20を形成する。上記各工程を経た基板30上に、スピンコート法により厚さ約1μmのフッ素化フォトポリマー膜を成膜する。その後、公知のフォトリソグラフィ技術によってフッ素化フォトポリマー膜に開口部を形成する。 Next, the bank 20 that separates the organic transistors Tr1 to Tr5, the dummy element D1, and the organic EL element OLED is formed. A fluorinated photopolymer film having a thickness of about 1 μm is formed on the substrate 30 that has undergone the above steps by spin coating. Thereafter, an opening is formed in the fluorinated photopolymer film by a known photolithography technique.
 駆動回路形成領域10には、ピクセル内において必要とされる有機トランジスタの数量よりも多くの開口部が複数の列をなし且つ各列における開口部の数量が互いに等しくなるように形成される。本実施例においては、図2(a)に示すように、有機トランジスタTr1~Tr3に対応する開口部21a~21cが第1列目に配列され、有機トランジスタTr4、Tr5に対応する開口部21d、21eが第2列目に配列される。第1列目と第2列目の開口部の数量が等しくなるように、第2列目に開口部21fが追加的に設けられる。これにより、第1列目と第2列目の開口部の数量がともに3つとなる。追加的に設けられた開口部21f内には後の工程において、能動素子である有機トランジスタとして機能しないダミー素子D1が形成される。開口部21a~21fは、互いに同一形状且つ同一サイズで形成されることが好ましい。また、第2方向において隣接する2つの開口部は、開口部の終端位置が互いに揃うように配置されることが好ましい。有機トランジスタを形成するための開口部21a~21eの底部にはドレイン電極33-1およびソース電極33-2と、チャネル部33aにおいて露出している絶縁膜32とが延在している。一方、開口部22は、発光領域11内において有機EL素子OLEDの形成位置に設けられる。開口部22の底部には有機EL素子OLEDの陽極41が延在している(図4(a))。 In the drive circuit formation region 10, a larger number of openings than the number of organic transistors required in a pixel form a plurality of rows, and the number of openings in each row is equal to each other. In the present embodiment, as shown in FIG. 2A, openings 21a to 21c corresponding to the organic transistors Tr1 to Tr3 are arranged in the first row, and openings 21d corresponding to the organic transistors Tr4 and Tr5, 21e is arranged in the second column. An opening 21f is additionally provided in the second row so that the numbers of openings in the first row and the second row are equal. As a result, the number of openings in the first row and the second row are both three. In the additional opening 21f, a dummy element D1 that does not function as an organic transistor as an active element is formed in a later step. The openings 21a to 21f are preferably formed in the same shape and the same size. Moreover, it is preferable that the two openings adjacent in the second direction are arranged so that the terminal positions of the openings are aligned with each other. A drain electrode 33-1 and a source electrode 33-2 and an insulating film 32 exposed in the channel portion 33a extend at the bottom of the openings 21a to 21e for forming the organic transistor. On the other hand, the opening 22 is provided at the formation position of the organic EL element OLED in the light emitting region 11. The anode 41 of the organic EL element OLED extends at the bottom of the opening 22 (FIG. 4A).
 次に、インクジェット法によりバンク20の開口部21a~21f内に例えばテトラベンゾポルフィリン誘導体(tetrabenzoporphyrin)を安息香酸エチル溶媒に溶かしてインク化した有機半導体材料を塗布した後、これを焼成して開口部21a~21f内に有機半導体層34を形成する。 Next, an organic semiconductor material in which, for example, a tetrabenzoporphyrin derivative (tetrabenzoporphyrin) is dissolved in an ethyl benzoate solvent is applied into the openings 21a to 21f of the bank 20 by an ink jet method, and then this is baked to form the openings. An organic semiconductor layer 34 is formed in 21a to 21f.
 ここで、図5は、インクジェット塗布装置のノズルヘッド200の動作を示す平面図である。ノズルヘッド200は、有機半導体材料の液滴をピコリットル(pl)のオーダで吐出する吐出口201a、201bを有している。吐出口201a、201bは、第2方向において互いに隣り合うバンク開口部間の間隔に対応する離間距離をおいてノズルヘッド200の長手方向に沿って配置されている。 Here, FIG. 5 is a plan view showing the operation of the nozzle head 200 of the ink jet coating apparatus. The nozzle head 200 has discharge ports 201a and 201b for discharging droplets of an organic semiconductor material on the order of picoliters (pl). The discharge ports 201a and 201b are arranged along the longitudinal direction of the nozzle head 200 with a separation distance corresponding to the interval between the bank openings adjacent to each other in the second direction.
 ノズルヘッド200は、その長手方向が、第2方向に向けられて、吐出口201aおよび201bが、それぞれ、互いに隣り合う開口部21aおよび21dの直上に位置するように位置決めされる。その後、吐出口201aおよび201bから有機半導体材料が同時に吐出され、開口部21aおよび21d内に所定量の有機半導体材料が供給される(第1ステップ)。 The nozzle head 200 is positioned so that the longitudinal direction thereof is directed to the second direction, and the discharge ports 201a and 201b are positioned immediately above the adjacent openings 21a and 21d, respectively. Thereafter, the organic semiconductor material is simultaneously discharged from the discharge ports 201a and 201b, and a predetermined amount of the organic semiconductor material is supplied into the openings 21a and 21d (first step).
 続いて、ノズルヘッド200は、図5において矢印で示されるように、第1方向に沿って移動する。ノズルヘッド200は、吐出口201aおよび201bが、それぞれ、互いに隣り合う開口部21bおよび21eの直上に位置するように位置決めされる。その後、吐出口201aおよび201bから有機半導体材料が同時に吐出され、開口部21bおよび21e内に所定量の有機半導体材料が供給される(第2ステップ)。 Subsequently, the nozzle head 200 moves along the first direction as indicated by an arrow in FIG. The nozzle head 200 is positioned so that the discharge ports 201a and 201b are positioned immediately above the adjacent openings 21b and 21e, respectively. Thereafter, the organic semiconductor material is simultaneously discharged from the discharge ports 201a and 201b, and a predetermined amount of the organic semiconductor material is supplied into the openings 21b and 21e (second step).
 続いて、ノズルヘッド200は、吐出口201aおよび201bが、それぞれ、互いに隣り合う開口部21cおよび21fの直上に位置するように位置決めされ、開口部21cおよび21f内に所定量の有機半導体材料が供給される(第3ステップ)。バンク20の各開口部に有機半導体材料を供給した後、有機半導体材料を焼成し、結晶化させる。これにより、バンク20の開口部21a~21f内に有機半導体層34が形成される。 Subsequently, the nozzle head 200 is positioned so that the discharge ports 201a and 201b are positioned immediately above the adjacent openings 21c and 21f, respectively, and a predetermined amount of organic semiconductor material is supplied into the openings 21c and 21f. (Third step). After supplying an organic semiconductor material to each opening of the bank 20, the organic semiconductor material is baked and crystallized. As a result, the organic semiconductor layer 34 is formed in the openings 21 a to 21 f of the bank 20.
 バンク20の開口部21a~21fは、各列における数量が等しくなるように配列されているので、ノズルヘッド200における有機半導体材料の吐出制御を簡略化することが可能となる。すなわち、各列においてバンク20の開口部の数量は等しいので、上記第1~第3ステップにおいてノズルヘッド200が位置決めされたときには、吐出口201aおよび201bの各々の直下には、常に開口部が存在することとなる。従って、吐出口201aおよび201bから常に同じタイミングで有機半導体材料を吐出させることができる。換言すれば、一方の吐出口から有機半導体材料を供給し、他方の吐出口からの有機半導体材料の供給を停止させるといった複雑な吐出制御が不要となる。また、吐出口201aと201bとを常に連動させることにより、各吐出口において吐出停止期間を最小限に抑えることができる。これにより、吐出停止期間の経過後に有機半導体材料の吐出を再開するときに、目詰まり等によってノズルヘッドから有機半導体材料が適切に吐出できないといった問題を回避することが可能となる。 Since the openings 21a to 21f of the bank 20 are arranged so that the numbers in each row are equal, the discharge control of the organic semiconductor material in the nozzle head 200 can be simplified. That is, since the number of openings in the bank 20 is the same in each row, when the nozzle head 200 is positioned in the first to third steps, there is always an opening immediately below each of the discharge ports 201a and 201b. Will be. Accordingly, the organic semiconductor material can always be discharged from the discharge ports 201a and 201b at the same timing. In other words, complicated discharge control of supplying the organic semiconductor material from one discharge port and stopping the supply of the organic semiconductor material from the other discharge port becomes unnecessary. In addition, by always interlocking the discharge ports 201a and 201b, the discharge stop period can be minimized at each discharge port. Accordingly, it is possible to avoid the problem that the organic semiconductor material cannot be properly discharged from the nozzle head due to clogging or the like when the discharge of the organic semiconductor material is resumed after the discharge stop period has elapsed.
 本実施例においては、有機トランジスタを形成するためのバンク開口部が5つであるので、追加的な開口部20fを設けることにより、バンク開口部の数量が各列において等しくなるように調整されている。駆動回路の機能上、本来的に必要とされない開口部20fは、ノズルヘッド200から供給される有機半導体材料の収容部として機能する。仮に開口部20fを設けないこととした場合には、上記のステップ3において、吐出口201aからの有機半導体材料の供給を停止させる必要が生じる故、吐出制御が複雑となり、ノズルヘッドの目詰まりが生じやすくなる。 In the present embodiment, since there are five bank openings for forming the organic transistor, the number of bank openings is adjusted to be equal in each column by providing an additional opening 20f. Yes. The opening 20 f that is not originally required in terms of the function of the drive circuit functions as a container for the organic semiconductor material supplied from the nozzle head 200. If the opening 20f is not provided, since it is necessary to stop the supply of the organic semiconductor material from the discharge port 201a in Step 3 described above, the discharge control becomes complicated and the nozzle head is clogged. It tends to occur.
 開口部20f内に形成された有機半導体層に対しては、トランジスタとしての機能を付与する必要はなく、従ってゲート電極、ドレイン電極およびソース電極等の電力供給配線が非接続となっている。つまり、開口部20f内には、有機トランジスタTr1~Tr5から分離され且つ有機トランジスタとして機能しないダミー素子D1が形成されることとなる。 The organic semiconductor layer formed in the opening 20f does not need to be given a function as a transistor, and therefore power supply wirings such as a gate electrode, a drain electrode, and a source electrode are not connected. That is, the dummy element D1 that is separated from the organic transistors Tr1 to Tr5 and does not function as an organic transistor is formed in the opening 20f.
 また、バンク20の開口部21a~21fは、互いに同一形状且つ同一サイズで形成されていることから、開口部21a~21f内に供給する有機半導体材料の量(液滴のショット数)を同一とすることにより、開口部21a~21f内に形成される有機半導体層34の厚さを等しくすることが可能となる。これにより、ピクセル内における有機トランジスタTr1~Tr5の特性(例えば移動度)を揃えることができる。仮にバンク20の開口部の形状およびサイズがピクセル内において互いに異なっている場合、有機半導体材料の供給量(液滴のショット数)によって有機半導体層の厚さを制御することとなるが、このような厚さ制御は通常困難であり、有機トランジスタの特性ばらつきが生じやすい。 Further, since the openings 21a to 21f of the bank 20 are formed in the same shape and the same size, the amount of organic semiconductor material supplied to the openings 21a to 21f (the number of droplet shots) is the same. By doing so, the thickness of the organic semiconductor layer 34 formed in the openings 21a to 21f can be made equal. Thereby, the characteristics (for example, mobility) of the organic transistors Tr1 to Tr5 in the pixel can be made uniform. If the shape and size of the opening of the bank 20 are different from each other in the pixel, the thickness of the organic semiconductor layer is controlled by the amount of organic semiconductor material supplied (number of droplet shots). Thickness control is usually difficult and characteristic variations of organic transistors are likely to occur.
 また、バンク20の開口部21a~21f内に供給する有機半導体材料の量(液滴のショット数)を互いに等しくすることによりノズルヘッド200における有機半導体材料の吐出制御をより簡略化することが可能となる。すなわち、この場合、ノズルヘッド200は、上記第1~第3ステップの各ステップにおいて、同一の吐出動作を繰り返せばよいこととなる。 Further, by making the amount of organic semiconductor material (number of droplet shots) supplied into the openings 21a to 21f of the bank 20 equal to each other, it is possible to further simplify the discharge control of the organic semiconductor material in the nozzle head 200. It becomes. That is, in this case, the nozzle head 200 may repeat the same ejection operation in each of the first to third steps.
 有機半導体層34を形成した後、例えばポリスチレンを安息香酸エチル溶媒に溶かした絶縁膜材料をインクジェット法などにより有機半導体層34上に成膜し、これを乾燥させる。これにより、開口部21a~21f内において有機半導体層34を覆う厚さ4μm程度のオーバコート層35が形成される(図4(b))。 After forming the organic semiconductor layer 34, for example, an insulating film material in which polystyrene is dissolved in an ethyl benzoate solvent is formed on the organic semiconductor layer 34 by an ink jet method or the like, and is dried. As a result, an overcoat layer 35 having a thickness of about 4 μm is formed in the openings 21a to 21f to cover the organic semiconductor layer 34 (FIG. 4B).
 次に、上記各工程を経た基板30上に有機EL素子OLEDを構成する有機機能層41を形成する。有機機能層41は、例えばホール注入層、ホール輸送層、発光層、電子注入層からなる積層構造を有する。ホール注入層は例えば厚さ20nm程度の銅フタロシアニン(CuPc)により構成され、ホール輸送層は例えば厚さ50nm程度のα-NPD(Bis[N-(1-naphthyl)-N-phenyl]benzidine)により構成され、発光層は例えば厚さ50nm程度のAlq3(tris-(8-hydroxyquinoline)aluminum)により構成され、電子注入層は例えば厚さ0.5nm程度のフッ化リチウム(LiF)により構成される。有機機能層41は、例えば真空蒸着法による成膜を繰り返して、上記各層を積層することにより形成される。また、有機機能層41は、バンク20の開口部22内において陽極40を覆うように形成される。最後に、真空蒸着法などにより有機機能層41上に厚さ100nm程度のAlを堆積させて有機EL素子OLEDの陰極42を形成する。このように、バンク20の開口部22内において陽極40、有機機能層41および陰極42が積層され、有機EL素子OLEDが形成される(図4(c))。以上の各工程を経ることにより、有機トランジスタTr1~Tr5、ダミー素子D1および有機EL素子OLEDを有する有機EL表示パネルが完成する。 Next, the organic functional layer 41 constituting the organic EL element OLED is formed on the substrate 30 that has undergone the above steps. The organic functional layer 41 has a laminated structure including, for example, a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer. The hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 20 nm, and the hole transport layer is made of, for example, α-NPD (Bis [N- (1-naphthyl) -N-phenyl] benzidine) having a thickness of about 50 nm. The light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 50 nm, and the electron injection layer is made of, for example, lithium fluoride (LiF) having a thickness of about 0.5 nm. The organic functional layer 41 is formed, for example, by repeating the film formation by a vacuum vapor deposition method and laminating the above layers. The organic functional layer 41 is formed so as to cover the anode 40 in the opening 22 of the bank 20. Finally, Al having a thickness of about 100 nm is deposited on the organic functional layer 41 by a vacuum evaporation method or the like to form the cathode 42 of the organic EL element OLED. In this manner, the anode 40, the organic functional layer 41, and the cathode 42 are stacked in the opening 22 of the bank 20 to form the organic EL element OLED (FIG. 4C). Through the above steps, an organic EL display panel having the organic transistors Tr1 to Tr5, the dummy element D1, and the organic EL element OLED is completed.
 このように、本実施例に係る有機EL表示パネルでは、駆動回路形成領域に、必要とされる有機トランジスタの数量よりも多くの開口部が、複数の列をなし且つ各列における開口部の数量が等しくなるように設けられる。そして、有機トランジスタを形成しない開口部内には、能動素子である有機トランジスタとして機能しないダミー素子が形成される。これにより、ノズルヘッドを第1方向に沿って順次移動させ、第2方向において互いに隣接する複数の開口部に同時に有機半導体材料を供給する場合に、ノズルヘッドに設けられた複数の吐出口から常に同じタイミングで有機半導体材料を吐出させることができるので、ノズルヘッドの吐出制御を簡略化することが可能となる。また、この場合、各吐出口において吐出停止期間を最小限に抑えることができるので、ノズルヘッドにおける目詰まり等の不具合を回避することができる。また、駆動回路形成領域に設けられるバンク開口部は、互いに同一形状且つ同一サイズを有しているので、各ステップにおいて、同一のショット数で有機半導体材料の吐出を繰り返すという最も単純な吐出制御で有機半導体層の厚さを均一とすることが可能となる。 As described above, in the organic EL display panel according to the present embodiment, the drive circuit formation region has a larger number of openings than the required number of organic transistors, and the number of openings in each column. Are set to be equal. A dummy element that does not function as an organic transistor that is an active element is formed in the opening where the organic transistor is not formed. Thus, when the organic semiconductor material is simultaneously supplied to the plurality of openings adjacent to each other in the second direction by sequentially moving the nozzle head along the first direction, the nozzle head is always provided from the plurality of discharge ports provided in the nozzle head. Since the organic semiconductor material can be discharged at the same timing, the discharge control of the nozzle head can be simplified. In this case, since the discharge stop period can be minimized at each discharge port, problems such as clogging in the nozzle head can be avoided. In addition, since the bank openings provided in the drive circuit formation region have the same shape and the same size, the simplest discharge control in which the discharge of the organic semiconductor material is repeated with the same number of shots in each step. It becomes possible to make the thickness of the organic semiconductor layer uniform.
 尚、上記の実施例では、ノズルヘッドの長手方向を第2方向に向けて配置して、ノズルヘッドを第1方向に沿って走査することとしたが、図6に示すように、ノズルヘッド200の長手方向を第1方向に向けて、ノズルヘッド200を第2方向に沿って走査することとしてもよい。ノズルヘッド200には、その長手方向に沿って吐出口201a、201b、201cが設けられ、第1方向に沿って配列された3つの開口部に対して同時に有機半導体材料が供給される。この場合においても上記した実施例と同様の効果を得ることができる。 In the above embodiment, the longitudinal direction of the nozzle head is arranged in the second direction and the nozzle head is scanned along the first direction. However, as shown in FIG. The nozzle head 200 may be scanned along the second direction while the longitudinal direction of the nozzle head 200 is directed to the first direction. The nozzle head 200 is provided with discharge ports 201a, 201b, and 201c along the longitudinal direction thereof, and the organic semiconductor material is simultaneously supplied to the three openings arranged along the first direction. Even in this case, the same effect as the above-described embodiment can be obtained.
 また、上記の実施例では、駆動回路形成領域10内に設けられるバンクの開口部のサイズをすべて同一としたが、図7に示すように、各列毎にバンクの開口部のサイズを異ならせてもよい。この場合においても、ノズルヘッドにおける吐出制御を簡略化することができる。 In the above embodiment, the size of the opening of the bank provided in the drive circuit formation region 10 is all the same. However, as shown in FIG. 7, the size of the opening of the bank is different for each column. May be. Even in this case, the discharge control in the nozzle head can be simplified.
 図8(a)~図8(d)は、駆動回路形成領域10内における有機トランジスタおよびダミー素子の配置のバリエーションを示す平面図である。図8(a)~図8(d)において、ダミー素子はハッチングで示されている。図8(a)に示すように、駆動回路形成領域10内に、4つの有機トランジスタTr1~Tr4と2つのダミー素子D1、D2とを2列に配列することとしてもよい。また、図8(b)に示すように、駆動回路形成領域10内に、3つの有機トランジスタTr1~Tr3と3つのダミー素子D1~D3とを2列に配列することとしてもよい。また、図8(c)に示すように、駆動回路形成領域10内に、3つの有機トランジスタTr1~Tr3と1つのダミー素子D1とを2列に配列することとしてもよい。また、図8(d)に示すように、駆動回路形成領域10内に、2つの有機トランジスタTr1、Tr2と2つのダミー素子D1、D2とを2列に配列することとしてもよい。 8 (a) to 8 (d) are plan views showing variations in the arrangement of the organic transistors and dummy elements in the drive circuit formation region 10. FIG. In FIG. 8A to FIG. 8D, the dummy elements are indicated by hatching. As shown in FIG. 8A, four organic transistors Tr1 to Tr4 and two dummy elements D1 and D2 may be arranged in two rows in the drive circuit formation region 10. Further, as shown in FIG. 8B, three organic transistors Tr1 to Tr3 and three dummy elements D1 to D3 may be arranged in two rows in the drive circuit formation region 10. Further, as shown in FIG. 8C, three organic transistors Tr1 to Tr3 and one dummy element D1 may be arranged in two rows in the drive circuit formation region 10. Further, as shown in FIG. 8D, two organic transistors Tr1 and Tr2 and two dummy elements D1 and D2 may be arranged in two rows in the drive circuit formation region 10.
 1 ピクセル
 20 バンク
 21a~21f、22 開口部
 30 基板
 31 ゲート電極
 32 絶縁膜
 33-1 ドレイン電極
 33-2 ソース配線
 33a チャネル部
 34 有機半導体層
 40 陽極
 41 有機機能層
 42 陰極
 100 ピクセル
 110 基板
 111 バンク
 200 ノズルヘッド
 201a、201b 吐出口
 Tr1~Tr5 有機トランジスタ
 OLED 有機EL素子
 D1~D3 ダミー素子
1 pixel 20 bank 21a to 21f, 22 opening 30 substrate 31 gate electrode 32 insulating film 33-1 drain electrode 33-2 source wiring 33a channel part 34 organic semiconductor layer 40 anode 41 organic functional layer 42 cathode 100 pixel 110 substrate 111 bank 200 Nozzle head 201a, 201b Discharge port Tr1-Tr5 Organic transistor OLED Organic EL element D1-D3 Dummy element

Claims (8)

  1.  基板上において複数の列をなし且つ各列における数量が互いに等しくなるように配列された複数の開口部を有するバンクと、
     前記複数の開口部の各々の内側に設けられた有機半導体層と、を含み、
     前記有機半導体層は、複数の有機半導体素子と、有機半導体素子として機能しない少なくとも1つのダミー素子とを構成していることを特徴とする有機半導体装置。
    A bank having a plurality of openings arranged in a plurality of rows on the substrate and arranged so that the quantities in each row are equal to each other;
    An organic semiconductor layer provided inside each of the plurality of openings,
    The organic semiconductor device comprises a plurality of organic semiconductor elements and at least one dummy element that does not function as an organic semiconductor element.
  2.  前記複数の開口部のうち同一列に属するものの形状および大きさは、互いに同一であることを特徴とする請求項1に記載の有機半導体装置。 The organic semiconductor device according to claim 1, wherein shapes and sizes of the plurality of openings belonging to the same row are the same.
  3.  前記複数の開口部は、互いに同一の形状および大きさを有することを特徴とする請求項1に記載の有機半導体装置。 The organic semiconductor device according to claim 1, wherein the plurality of openings have the same shape and size.
  4.  前記ダミー素子は、電力供給配線が非接続であることを特徴とする請求項1に記載の有機半導体装置。 The organic semiconductor device according to claim 1, wherein the dummy element has no power supply wiring connected thereto.
  5.  前記有機半導体素子に接続された有機エレクトロルミネッセンス素子を更に有することを特徴とする請求項1に記載の有機半導体装置。 The organic semiconductor device according to claim 1, further comprising an organic electroluminescence element connected to the organic semiconductor element.
  6.  基板上において複数の列をなし且つ各列における数量が互いに等しくなるように配列された複数の開口部を有するバンクを形成する工程と、
     前記複数の開口部の各々の内側に液状の有機半導体材料を供給する工程と、
     前記有機半導体材料を乾燥させて前記複数の開口部の各々の内側に有機半導体層を形成する工程と、を含み、
     前記有機半導体層は、複数の有機半導体素子と、有機半導体素子として機能しない少なくとも1つのダミー素子とを構成していることを特徴とする有機半導体装置の製造方法。
    Forming a bank having a plurality of openings arranged in a plurality of rows on the substrate and the numbers in each row being equal to each other;
    Supplying a liquid organic semiconductor material inside each of the plurality of openings;
    Drying the organic semiconductor material to form an organic semiconductor layer inside each of the plurality of openings, and
    The organic semiconductor layer comprises a plurality of organic semiconductor elements and at least one dummy element that does not function as an organic semiconductor element.
  7.  前記有機半導体素子を供給する工程において、前記有機半導体材料を吐出するノズルヘッドが、前記複数の開口部が並ぶ第1方向に沿って順次移動して前記第1方向と交差する第2方向において互いに隣接する複数の開口部内に同時に前記有機半導体材料を供給することを特徴とする請求項6に記載の製造方法。 In the step of supplying the organic semiconductor element, nozzle heads that discharge the organic semiconductor material sequentially move along a first direction in which the plurality of openings are arranged, and in a second direction intersecting the first direction. The manufacturing method according to claim 6, wherein the organic semiconductor material is simultaneously supplied into a plurality of adjacent openings.
  8.  前記複数の開口部は、互いに同一の形状および大きさを有することを特徴とする請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the plurality of openings have the same shape and size.
PCT/JP2012/066521 2011-06-30 2012-06-28 Organic semiconductor device and method for manufacturing organic semiconductor device WO2013002321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011145556A JP2014170761A (en) 2011-06-30 2011-06-30 Organic semiconductor device and method of manufacturing the same
JP2011-145556 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002321A1 true WO2013002321A1 (en) 2013-01-03

Family

ID=47424207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066521 WO2013002321A1 (en) 2011-06-30 2012-06-28 Organic semiconductor device and method for manufacturing organic semiconductor device

Country Status (2)

Country Link
JP (1) JP2014170761A (en)
WO (1) WO2013002321A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461098B2 (en) 2014-09-16 2016-10-04 Lg Display Co., Ltd. Organic light emitting display device
CN111403434A (en) * 2018-12-28 2020-07-10 乐金显示有限公司 Organic light emitting display device and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217113A1 (en) * 2016-06-15 2017-12-21 株式会社Joled Display device and electronic device
CN106505159B (en) * 2016-11-14 2018-07-10 深圳市华星光电技术有限公司 For printing the production method of the groove structure of OLED display device and OLED display device
CN110176477A (en) * 2019-05-20 2019-08-27 深圳市华星光电半导体显示技术有限公司 Organic light-emitting display device and preparation method thereof based on inkjet printing technology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200158A (en) * 2002-12-04 2004-07-15 Seiko Epson Corp Substrate for manufacturing organic el device, organic el device, method of manufacturing organic el device, and electronic device
JP2007088127A (en) * 2005-09-21 2007-04-05 Seiko Epson Corp Manufacturing method and substrate for organic semiconductor device
JP2007148333A (en) * 2005-10-24 2007-06-14 Ricoh Co Ltd Electrode forming method, active matrix driving circuit, manufacturing method for active matrix driving circuit, flat panel display, manufacturing method of flat panel display, and screen plate
WO2008120351A1 (en) * 2007-03-29 2008-10-09 Pioneer Corporation Organic el display and method for fabricating the same
JP2010073602A (en) * 2008-09-22 2010-04-02 Seiko Epson Corp Method of manufacturing organic el device
JP2010182442A (en) * 2009-02-03 2010-08-19 Panasonic Corp Method and apparatus for manufacturing device, device, and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200158A (en) * 2002-12-04 2004-07-15 Seiko Epson Corp Substrate for manufacturing organic el device, organic el device, method of manufacturing organic el device, and electronic device
JP2007088127A (en) * 2005-09-21 2007-04-05 Seiko Epson Corp Manufacturing method and substrate for organic semiconductor device
JP2007148333A (en) * 2005-10-24 2007-06-14 Ricoh Co Ltd Electrode forming method, active matrix driving circuit, manufacturing method for active matrix driving circuit, flat panel display, manufacturing method of flat panel display, and screen plate
WO2008120351A1 (en) * 2007-03-29 2008-10-09 Pioneer Corporation Organic el display and method for fabricating the same
JP2010073602A (en) * 2008-09-22 2010-04-02 Seiko Epson Corp Method of manufacturing organic el device
JP2010182442A (en) * 2009-02-03 2010-08-19 Panasonic Corp Method and apparatus for manufacturing device, device, and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461098B2 (en) 2014-09-16 2016-10-04 Lg Display Co., Ltd. Organic light emitting display device
CN111403434A (en) * 2018-12-28 2020-07-10 乐金显示有限公司 Organic light emitting display device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2014170761A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US9349987B2 (en) Method of manufacturing OLED display apparatus
KR101646799B1 (en) Ink for organic light emitting device, organic light emitting device manufacturing method, organic display panel, organic display apparatus, organic light emitting apparatus, ink, functional layer forming method, and organic light emitting device
JP4460643B2 (en) Organic EL display panel and manufacturing method thereof
KR100647325B1 (en) Organic light-emitting device of active matrix drive type and manufacturing method thereof
KR101661366B1 (en) Organic el display panel and manufacturing method thereof
US8508124B2 (en) Organic light-emitting diode display
US7449215B2 (en) Method of manufacturing display device
JP2005327674A (en) Organic electroluminescent display element, display device having the same, and manufacturing method thereof
JPWO2012001741A1 (en) Organic EL display panel and manufacturing method thereof
WO2013002321A1 (en) Organic semiconductor device and method for manufacturing organic semiconductor device
JP2009187898A (en) Organic el device and its manufacturing method
JP2004319119A (en) Display device and its manufacturing method
JP2008235033A (en) Display device and manufacturing method of display device
JP2019021569A (en) Organic EL display panel, organic EL display device, and manufacturing method
JP2006004743A (en) Display device and its manufacturing method
JP2010287634A (en) Transistor substrate having transistor, and method of manufacturing transistor substrate having transistor
JP2005284276A (en) Method of manufacturing display device
US9000454B2 (en) Electro-optic device and method for manufacturing the same
JP2015207527A (en) Method of forming functional layer of organic light emission device and method of manufacturing organic light emission device
JP4742317B2 (en) Display device and manufacturing method thereof
JP2009231122A (en) Organic electroluminescent device
JP5125686B2 (en) Method for manufacturing light emitting device
JP2008234932A (en) Display device
JP2019110115A (en) Organic el display panel, organic el display device, and manufacturing method thereof
JP4935599B2 (en) Manufacturing method of display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP