WO2013002161A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2013002161A1
WO2013002161A1 PCT/JP2012/066109 JP2012066109W WO2013002161A1 WO 2013002161 A1 WO2013002161 A1 WO 2013002161A1 JP 2012066109 W JP2012066109 W JP 2012066109W WO 2013002161 A1 WO2013002161 A1 WO 2013002161A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
brine
refrigerant
pipe
container
Prior art date
Application number
PCT/JP2012/066109
Other languages
English (en)
French (fr)
Inventor
稔治 片岡
渡辺 昇
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to CA2826407A priority Critical patent/CA2826407A1/en
Priority to JP2013522834A priority patent/JP5809268B2/ja
Priority to KR1020137022132A priority patent/KR20140025337A/ko
Priority to EP12804134.0A priority patent/EP2728291A1/en
Priority to US14/126,601 priority patent/US20140116663A1/en
Publication of WO2013002161A1 publication Critical patent/WO2013002161A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Definitions

  • the present invention relates to a heat exchanger, and more particularly to a heat exchanger suitable for a heat exchanger for cooling a hydrogen gas provided in a facility for filling hydrogen gas into a fuel tank of a hydrogen automobile.
  • Hydrogen gas used as a fuel for hydrogen vehicles such as fuel cell vehicles has the property that the temperature rises due to the Joule-Thompson effect when adiabatic expansion occurs in various valves, flow meters, and other parts provided in the path through which hydrogen gas flows have. Accordingly, the temperature of the hydrogen gas rises due to the Joule-Thompson effect when passing through a valve or the like provided in the path for filling the hydrogen vehicle with the hydrogen gas from the hydrogen gas supply source, and the hydrogen gas is supplied to the fuel tank of the hydrogen vehicle. The temperature of the hydrogen gas also rises due to the compression heat for compressing and filling to a high pressure.
  • the cooling equipment for cooling the hydrogen gas is a system in which the brine is cooled and stored in a storage tank by heat exchange with the low-temperature refrigerant of the refrigerator, and the hydrogen gas is cooled by the low-temperature brine stored in the storage tank.
  • the brine is cooled and stored in a storage tank by heat exchange with the low-temperature refrigerant of the refrigerator, and the hydrogen gas is cooled by the low-temperature brine stored in the storage tank.
  • the present invention provides a heat exchanger that can efficiently perform heat exchange between a low-temperature refrigerant and brine and heat exchange between brine and hydrogen gas, and can reduce the size of cooling equipment and reduce equipment costs. It is aimed.
  • a heat exchanger for cooling hydrogen gas with brine cooled with a low-temperature refrigerant includes a vacuum-insulated container filled with brine, and a lid that closes the upper opening of the container.
  • a rotating shaft disposed in the axial direction of the container, a propeller provided on the rotating shaft, a spiral hydrogen gas cooling pipe disposed around the rotating shaft and the propeller, and the hydrogen gas cooling And a refrigerant pipe for cooling the brine arranged around the pipe.
  • the hydrogen gas cooling pipe includes a plurality of hydrogen gas cooling pipes arranged in upper and lower stages, and the refrigerant pipe has upper and lower ends on an annular upper manifold and an annular lower manifold.
  • the refrigerant flows from the lower end toward the upper end, the dry gas is supplied to the gas phase portion between the inner surface of the lid and the liquid level of the brine in the container, the container A drain for discharging the brine filled in the container is provided at the bottom of the container.
  • the container has a vertically long bottomed cylindrical shape, and the lower part of the container is supported by three or more support legs.
  • the axis can be vertical and self-supporting, and the low-temperature refrigerant is a low-temperature refrigerant of a refrigerator using a refrigeration cycle.
  • a heat exchanger for cooling hydrogen gas with brine cooled by a low-temperature refrigerant closes a vertically-bottomed cylindrical container having a double-walled structure with vacuum insulation and filled with brine and an upper opening of the container.
  • a gas cooling pipe and a hydrogen gas cooling pipe are arranged around the hydrogen gas cooling pipe, connected to an annular upper manifold and an annular lower manifold in upper and lower ends in communication, and supplied from a refrigerant introduction pipe communicating with the lower manifold.
  • a plurality of brine cooling refrigerant pipes for discharging the refrigerant from the refrigerant outlet pipe communicating with the upper manifold, and the rotating shaft, the hydrogen gas cooling pipe, the plurality of brine cooling refrigerant pipes and the container are flat. Sight, front From the inside about an axis of rotation, the propeller, the hydrogen gas cooling tube, is characterized by being arranged concentrically in the order of the plurality of the brine cooling refrigerant tube and the container.
  • the low-temperature refrigerant is preferably a low-temperature refrigerant of a refrigerator using a refrigeration cycle.
  • heat exchange for cooling the brine by the low-temperature refrigerant in the low-temperature cycle and heat exchange for cooling the hydrogen gas by the cooled brine can be performed in one container.
  • the piping and the pump can be omitted, and the cooling equipment can be downsized and the equipment cost can be reduced.
  • the low-temperature refrigerant of the refrigerator is used as the cold heat source, the running cost can be reduced as compared with those using liquefied gas as the cold heat source.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • the heat exchanger 11 includes a vertically insulated cylindrical container 12 having a double-walled structure that is vacuum-insulated and filled with brine, and a disk-shaped lid 13 that closes the upper opening of the container 12.
  • a rotating shaft 14 that passes through the center of the lid 13 and is disposed in the axial direction of the container 12, an axial flow type propeller 15 that is provided above and below the rotating shaft 14, and the rotating shaft 14 and the propeller.
  • the spiral first hydrogen gas cooling pipe 16 and the second hydrogen gas cooling pipe 17 are arranged in two upper and lower stages around the periphery of the first hydrogen gas cooling pipe 16 and the second hydrogen gas cooling pipe 17.
  • a plurality of brine cooling refrigerant pipes 18 arranged in the axial direction.
  • Each of the plurality of brine cooling refrigerant pipes 18 is arranged at a position below the annular upper manifold 19 and the second hydrogen gas cooling pipe 17 disposed above the first hydrogen gas cooling pipe 16.
  • the upper and lower ends are connected in communication with the annular lower manifold 20 provided.
  • the refrigerant pipe 18 for cooling the brine corresponds to an evaporator in the refrigeration cycle, and cools the brine around the refrigerant pipe 18 by the cold heat generated when the decompressed liquid refrigerant evaporates.
  • the container 12 is provided with three or more support legs 21 at the lower part of the container, and is formed so that it can stand on its own axis.
  • a drain 22 is provided at the bottom of the container 12 for discharging the brine filled in the container 12 during maintenance.
  • the lid 13 is detachably fixed to a flange 12a provided on the upper outer edge of the container 12 by a fastener 23 made of a large number of bolts and nuts.
  • a speed reducer 25 with a cover that reduces the rotational speed of the drive shaft 24 that is rotationally driven by an air motor (not shown) and transmits it to the rotary shaft 14 is installed. Is operated to rotate the propeller 15 via the drive shaft 24, the speed reducer 25, and the rotary shaft 14.
  • the brine in the container 12 rises on the inner peripheral side of the first hydrogen gas cooling pipe 16 and the second hydrogen gas cooling pipe 17 by the rotation of the propeller, and the refrigerant from above the first hydrogen gas cooling pipe 16.
  • the pipe 18 descends outside and circulates from below the second hydrogen gas cooling pipe 17 to the inner peripheral side of the second hydrogen gas cooling pipe 17.
  • the lid 13 is provided with a first hydrogen gas introduction pipe 16a and a second hydrogen gas introduction for supplying hydrogen gas from a hydrogen gas supply source to the first hydrogen gas cooling pipe 16 and the second hydrogen gas cooling pipe 17, respectively.
  • a second hydrogen gas outlet pipe 17b is installed.
  • the hydrogen gas cooling pipes 16 and 17 are connected to the first hydrogen gas lead-out pipes 16b and the second hydrogen gas lead-out pipes 17b by a joining structure that does not require a joint by butt welding.
  • the first hydrogen gas introduction pipe 16a is disposed in the axial direction along the outside of the first hydrogen gas cooling pipe 16, and communicates with the lower end of the first hydrogen gas cooling pipe 16.
  • the 1 hydrogen gas outlet pipe 16 b communicates with the upper end of the first hydrogen gas cooling pipe 16.
  • the second hydrogen gas introduction pipe 17 a is disposed in the axial direction along the outside of the first hydrogen gas cooling pipe 16 and the second hydrogen gas cooling pipe 17, and is provided at the lower end of the second hydrogen gas cooling pipe 17.
  • the second hydrogen gas lead-out pipe 17b communicates with the upper end of the second hydrogen gas cooling pipe 17 and is disposed in the axial direction along the outside of the first hydrogen gas lead-out pipe 16b.
  • a refrigerant introduction pipe 20 a for introducing a low-temperature refrigerant for cooling the brine from the lower manifold 20 to each of the brine cooling refrigerant pipes 18, and a refrigerant outlet pipe 19 a that is led out from the upper manifold 19. And are installed.
  • the refrigerant introduction pipe 20a is on the inner peripheral side of the refrigerant pipe 18, and the first hydrogen gas introduction pipe 16a, the second hydrogen gas introduction pipe 17a, the first hydrogen gas outlet pipe 16b, and the second hydrogen gas outlet. It is arrange
  • a liquefied gas such as liquefied nitrogen can be used, but the running cost is reduced by using a chlorofluorocarbon of a refrigerator (not shown) using a refrigeration cycle. Can be preferred.
  • the first and second hydrogen gas cooling pipes 16 and 17, the upper manifold 19 and the lower manifold 20, and the plurality of brine cooling refrigerant pipes 18 are arranged on the axis of the container 12 in a plan view.
  • the first and second hydrogen gas cooling pipes 16 and 17 and the plurality of brine cooling refrigerant pipes 18 are arranged concentrically in this order from the inside, and the upper manifold 19 and the lower manifold 20 are connected to the rotating shaft 14. It is formed in a circular shape with a center.
  • a gas phase portion for coping with thermal expansion of the brine is provided between the inner surface of the lid 13 and the liquid level of the brine, and a dry phase for preventing alteration of the brine is provided in the gas phase portion.
  • a dry gas supply pipe 26 a that constantly supplies gas and a dry gas discharge pipe 26 b that exhausts the supplied dry gas are provided through the lid 14.
  • the brine in the container 12 is cooled in advance by rotating the propeller 15 through the drive shaft 24, the speed reducer 25, and the rotating shaft 14 with an air motor (not shown) and circulating the brine in the container 12. Cool to the set brine cooling temperature.
  • the refrigerator is stopped and the introduction of the low-temperature refrigerant into the refrigerant pipe 18 is stopped, the air motor is stopped and the circulation of the brine is also stopped, and the heat exchanger 11 is waited. State.
  • the refrigerator and the air motor are operated again to cool the brine to the brine cooling temperature.
  • the valves of the first hydrogen gas introduction pipe 16a and the second hydrogen gas introduction pipe 17a are opened, and the first hydrogen gas cooling pipe 16 and At the same time as supplying hydrogen gas from a hydrogen gas supply source to the lower end of the second hydrogen gas cooling pipe 17, the refrigerator and the air motor are operated to restart cooling of the brine and circulation of the brine.
  • the supplied hydrogen gas exchanges heat with the pre-cooled brine while ascending the first hydrogen gas cooling pipe 16 and the second hydrogen gas cooling pipe 17, and is cooled to a predetermined temperature to be cooled to the first hydrogen gas.
  • the fuel is led out to the lead-out pipe 16b and the second hydrogen gas lead-out pipe 17b, and is filled into the fuel tank through the filling pipe.
  • the helical hydrogen gas cooling pipes 16 and 17 and the refrigerant pipe 18 for cooling the brine are disposed in the container 12 filled with the brine, so that the conventional brine storage tank and brine circulation are provided. Therefore, it is possible to reduce the size of the hydrogen gas cooling facility by omitting the piping and the pump. Further, by providing a propeller 15 on the rotating shaft 14 arranged in the axial direction of the container 12 and circulating the brine in the container 12, heat exchange between the low-temperature refrigerant flowing in the refrigerant pipe 18 and the brine and the hydrogen gas cooling pipe 16 are performed. , 17 can effectively exchange heat between the hydrogen gas and the brine, and the heat exchange efficiency can be improved to reduce the size of the heat exchanger 11.
  • the rotating shaft 14 the first hydrogen gas introduction pipe 16a, the second hydrogen gas introduction pipe 17a, the first hydrogen gas lead-out pipe 16b, the second hydrogen gas lead-out pipe 17b, the refrigerant introduction pipe 20a, the refrigerant lead-out pipe 19a, and the dry gas Since all of the supply pipe 26 a and the dry gas discharge pipe 26 b are provided on the lid 13, it is not necessary to perform pipe connection processing on the peripheral wall of the container 12, and each pipe is joined and assembled at the lid 13 portion. Therefore, the heat exchanger 11 can be easily manufactured, and the manufacturing cost can be reduced. Furthermore, maintenance of the heat exchanger 11 can be easily performed by discharging the brine in the container 12 from the drain 22 and removing the lid 13, thereby reducing maintenance costs. In addition, by cooling the brine in advance and in a standby state, the hydrogen gas can be effectively cooled from the start of hydrogen gas filling.
  • fresh dry gas is always supplied to the gas phase portion, but it can be filled with dry gas in advance.
  • Nitrogen gas is optimal as the dry gas, but inert gas other than nitrogen or dry air can also be used.
  • the hydrogen gas cooling pipe has a two-stage configuration, but depending on conditions such as the height of the container, it can be arranged in three or more stages.
  • the coil diameter of the spiral in the hydrogen gas cooling pipe varies depending on the flow rate of hydrogen gas, the size of the pipe, etc., but in general, it is preferably in the range of 100 mm to 500 mm, and the gap between the spirals is preferably in the range of 5 mm to 32 mm. .
  • an air motor is employed for driving the drive shaft.
  • an electric motor can also be used, and the propeller differs depending on the length of the hydrogen gas cooling pipe. It is preferable to install one piece, but only one piece can be used.
  • an upper manifold and a lower manifold are provided and a plurality of straight tubular refrigerant tubes are arranged.
  • the refrigerant tubes are formed in the same spiral shape as the hydrogen gas cooling tubes, and each manifold is omitted. You can also.
  • finned pipes or pipes with spiral grooves formed on the inner surface as refrigerant pipes or hydrogen gas cooling pipes, it is possible to increase the heat transfer area and promote the heat transfer effect.
  • a pipe having a spiral groove formed on the inner surface turbulent flow of the fluid flowing in the pipe can be promoted, and heat transfer efficiency can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

低温冷媒とブラインとの熱交換、ブラインと水素ガスとの熱交換を効率よく行うことができ、冷却設備の小型化や設備費の低減を図れる熱交換器であって、ブラインが充填される真空断熱された容器12と、該容器の上部開口を塞ぐ蓋13と、前記容器の軸線方向に配設した回転軸14と、該回転軸に設けられたプロペラ15と、前記回転軸及びプロペラの周囲に上下2段に配設された螺旋状の水素ガス冷却管16,17と、該水素ガス冷却管の周囲に配設されたブライン冷却用の冷媒管18とを備えている熱交換器。

Description

熱交換器
 本発明は、熱交換器に関し、より詳しくは、水素自動車の燃料タンク等へ水素ガスを充填する設備に設けられる水素ガス冷却用熱交換器に適した熱交換器に関する。
 燃料電池自動車のような水素自動車の燃料として用いられる水素ガスは、水素ガスが流れる経路に設けられている各種弁や流量計等の部分で断熱膨張すると、ジュールトムソン効果によって温度が上昇するという性質を有している。したがって、水素ガス供給源から水素自動車に水素ガスを充填する経路に設けられている弁等を通過する際のジュールトムソン効果により水素ガスの温度が上昇するとともに、水素ガスを水素自動車の燃料タンクに高圧に圧縮充填するための圧縮熱によっても水素ガスの温度が上昇する。
 このように水素ガスの温度が上昇すると、燃料タンクの使用上限温度である85℃を超える問題や、充填後の冷却に伴う圧力降下等の問題が発生するため、水素ガスが流れる経路に冷却設備を配置し、この冷却設備で水素ガスを冷却しながら水素自動車に水素を充填する装置や方法が各種提案されている。
 水素ガスを冷却するための冷却設備としては、冷凍機の低温冷媒との熱交換によりブラインを冷却して貯槽に貯留し、該貯槽に貯留した低温のブラインによって水素ガスを冷却する方式のものや(例えば、特許文献1参照。)、液化窒素のような液化ガスと水素ガスとを熱交換させて水素ガスを冷却するものが提案されている(例えば、特許文献2参照。)。
特開2008-164177号公報 特開2008-267496号公報
 しかし、特許文献1に記載された冷却設備では、冷凍サイクルの低温冷媒とブラインとを熱交換させる熱交換器、ブラインと水素ガスとを熱交換させる熱交換器、ブライン貯槽、ブライン循環用の配管及びポンプ等が必要であることから、設備が複雑になり、設置面積も大きく、設備費が高額なものとなっていた。また、特許文献2に記載された冷却設備では、熱交換器が1基で済むことから設備の小型化や簡略化を図ることは可能であるが、水素ガスとの熱交換によって消耗する液化ガスを常に補充する必要があるため、ランニングコストが大幅に上昇するという問題がある。
 そこで本発明は、低温冷媒とブラインとの熱交換、ブラインと水素ガスとの熱交換を効率よく行うことができ、冷却設備の小型化や設備費の低減を図れる熱交換器を提供することを目的としている。
 上記目的を達成するため、本発明に係る低温冷媒で冷却されたブラインで水素ガスを冷却する熱交換器は、ブラインが充填される真空断熱された容器と、該容器の上部開口を塞ぐ蓋と、前記容器の軸線方向に配設された回転軸と、該回転軸に設けられたプロペラと、前記回転軸及びプロペラの周囲に配設された螺旋状の水素ガス冷却管と、該水素ガス冷却管の周囲に配設されたブライン冷却用の冷媒管とを備えていることを特徴としている。
 また、上記熱交換器は、前記水素ガス冷却管が、複数の水素ガス冷却管を上下多段に配設していること、前記冷媒管は、環状の上部マニホールドと環状の下部マニホールドとに上下端を連通状態に接続して、下端から上端方向に冷媒を流通させること、前記蓋の内面と容器内のブラインの液面との間の気相部にドライガスが供給されていること、前記容器の底部には、容器内に充填されているブラインを排出するためのドレインが設けられていること、前記容器は、縦長有底円筒状を呈し、容器下部を3本以上の支持脚にて支持されて、軸線を垂直にして自立できること、前記低温冷媒は冷凍サイクルを用いた冷凍機の低温冷媒であることが好ましい。
 さらに、低温冷媒で冷却されたブラインで水素ガスを冷却する熱交換器は、ブラインが充填される真空断熱された二重壁構造の縦長有底円筒状の容器と、該容器の上部開口を塞ぐ蓋と、該蓋の中心を貫通して容器内に軸線方向に挿入される回転軸と、該回転軸に設けられたプロペラと、前記回転軸及びプロペラの周囲に配設された螺旋状の水素ガス冷却管と、該水素ガス冷却管の周囲に配設されて、環状の上部マニホールドと環状の下部マニホールドとに上下端を連通状態に接続して、下部マニホールドに連通する冷媒導入管から供給される冷媒を上部マニホールドに連通する冷媒導出管から排出する複数本のブライン冷却用の冷媒管とを備え、前記回転軸、前記水素ガス冷却管、前記複数のブライン冷却用冷媒管及び容器は、平面視、前記回転軸を中心にして内側から、前記プロペラ、前記水素ガス冷却管、複数のブライン冷却用冷媒管及び容器の順に同心円上に配置されていることを特徴としている。また、前記低温冷媒は冷凍サイクルを用いた冷凍機の低温冷媒であることが好ましい。
本発明によれば、低温サイクルの低温冷媒によってブラインを冷却する熱交換及び冷却されたブラインによって水素ガスを冷却する熱交換を1つの容器内で行うことができ、ブライン用の貯槽やブライン循環用の配管及びポンプを省略でき、冷却設備の小型化及び設備費の低減を図れる。また、冷凍機の低温冷媒を冷熱源とするので、液化ガスを冷熱源として使用するものに比べてランニングコストを低減することができる。
本発明の熱交換器の一形態例を示す断面正面図である。 図1の熱交換器の平面図である。 図1のIII-III断面図である。
 本形態例に係る熱交換器11は、ブラインが充填される真空断熱された二重壁構造の縦長有底円筒状の容器12と、該容器12の上部開口を塞ぐ円板状の蓋13と、該蓋13の中心を貫通して容器12の軸線方向に配置された回転軸14と、該回転軸14の上下に複数個設けられた軸流式のプロペラ15と、前記回転軸14及びプロペラ15の周囲に上下2段に配設された螺旋状の第1水素ガス冷却管16及び第2水素ガス冷却管17と、前記第1水素ガス冷却管16及び第2水素ガス冷却管17の周囲に軸線方向に配設された複数本のブライン冷却用の冷媒管18とを備えている。
 該複数本のブライン冷却用の冷媒管18のそれぞれは、前記第1水素ガス冷却管16の上方位置に配設された環状の上部マニホールド19と前記第2水素ガス冷却管17の下方位置に配設された環状の下部マニホールド20とに上下端を連通状態に接続している。このブライン冷却用の冷媒管18は、冷凍サイクルにおける蒸発器に相当するものであって、減圧された液冷媒が蒸発する際に発生する冷熱により、冷媒管18の周囲のブラインを冷却する。
 前記容器12は、容器下部に3本以上の支持脚21が設けられ、軸線を垂直にして自立できるように形成されている。また、容器12の底部には、容器12内に充填されているブラインをメンテナンス時等に排出するためのドレイン22が設けられている。
 前記蓋13は、前記容器12の上部外縁に設けられたフランジ12aに多数のボルト及びナットからなる締結具23にて着脱可能に固着されている。前記蓋13の外面中央部には、図示しないエアーモータにより回転駆動される駆動軸24の回転速度を減速して前記回転軸14に伝達するカバー付きの減速機25が設置されており、エアーモータを作動させることにより、前記駆動軸24、減速機25及び回転軸14を介して前記プロペラ15を回転させる。容器12内の前記ブラインは、このプロペラの回転により、前記第1水素ガス冷却管16及び第2水素ガス冷却管17の内周側を上昇し、第1水素ガス冷却管16の上方から前記冷媒管18の外側を下降して第2水素ガス冷却管17の下方から第2水素ガス冷却管17の内周側に循環する。
 前記蓋13には、水素ガス供給源からの水素ガスを、前記第1水素ガス冷却管16及び前記第2水素ガス冷却管17にそれぞれ供給する第1水素ガス導入管16a及び第2水素ガス導入管17aと、前記第1水素ガス冷却管16及び前記第2水素ガス冷却管17で冷却された水素ガスを導出して使用先、例えば自動車の燃料タンクへ送出する第1水素ガス導出管16b及び第2水素ガス導出管17bとが設置されている。各水素ガス冷却管16,17と各第1水素ガス導出管16b及び第2水素ガス導出管17bとは、突き合わせ溶接により継手を必要としない接合構造により接続されている。
 また、前記第1水素ガス導入管16aは、前記第1水素ガス冷却管16の外側に沿って軸線方向に配設され、前記第1水素ガス冷却管16の下端に連通しており、前記第1水素ガス導出管16bは、前記第1水素ガス冷却管16の上端に連通している。前記第2水素ガス導入管17aは、前記第1水素ガス冷却管16及び前記第2水素ガス冷却管17の外側に沿って軸線方向に配設され、前記第2水素ガス冷却管17の下端に連通している。また、前記第2水素ガス導出管17bは、前記第2水素ガス冷却管17の上端に連通して、前記第1水素ガス導出管16bの外側に沿って軸線方向に配設されている。
 さらに、前記蓋13を貫通して、ブライン冷却用の低温冷媒を、前記下部マニホールド20から各ブライン冷却用冷媒管18に導入する冷媒導入管20aと、前記上部マニホールド19から導出する冷媒導出管19aとが設置されている。前記冷媒導入管20aは、前記冷媒管18の内周側で、前記第1水素ガス導入管16a、前記第2水素ガス導入管17a、前記第1水素ガス導出管16b、前記第2水素ガス導出管17bの間に軸線方向に配設されている。
なお、ブライン冷却用の低温冷媒については、液化窒素のような液化ガスを用いることもできるが、冷凍サイクルを用いた冷凍機(図示せず)のフロン等を使用することでランニングコストを低減することができ、好ましい。
 前記第1・第2水素ガス冷却管16,17、上部マニホールド19及び下部マニホールド20、複数のブライン冷却用冷媒管18は、平面視で、容器12の軸線上に配置されている前記回転軸14を中心にして内側から、前記第1・第2水素ガス冷却管16,17、複数のブライン冷却用冷媒管18の順に同心円上に配置され、上部マニホールド19及び下部マニホールド20は、回転軸14を中心とした円形に形成されている。
 また、前記蓋13の内面とブラインの液面との間には、ブラインの熱膨張に対処するための気相部が設けられるとともに、この気相部に、ブラインの変質を防止するためのドライガスを常時供給するドライガス供給管26a及び供給されたドライガスを排気するドライガス排出管26bが前記蓋14を貫通して設けられている。
 次に、この熱交換器11を用いて水素ガスを自動車の燃料タンクに充填する使用例を説明する。まず、前記ドライガス供給管26a及びドライガス排出管26bの弁を開いて前記気相部をドライガスで満たした状態とし、前記冷媒導入管20a及び冷媒導出管19aの弁を開き、冷凍機の膨張弁(図示せず)で膨張した液冷媒あるいは該液冷媒が蒸発した低温のガス冷媒を冷媒管18に導入し、冷媒管18を介して低温サイクルの低温冷媒とブラインとを熱交換させることによりブラインを冷却するとともに、図示しないエアーモータで駆動軸24、減速機25、回転軸14を介してプロペラ15を回転させ、ブラインを容器12内で循環させることにより、容器12内のブラインをあらかじめ設定されたブライン冷却温度まで冷却する。ブラインの温度がブライン冷却温度に達したら、冷凍機を停止して冷媒管18への低温冷媒の導入を中断するとともに、エアーモータを停止してブラインの循環も中断し、熱交換器11を待機状態とする。この待機状態でブラインの温度があらかじめ設定された上限温度に上昇したときには、再び冷凍機及びエアーモータを作動させてブラインをブライン冷却温度に冷却する。
 あらかじめ圧縮された高圧の水素ガスを自動車の燃料タンクへ充填する際には、第1水素ガス導入管16a及び第2水素ガス導入管17aの弁をそれぞれ開き、前記第1水素ガス冷却管16及び前記第2水素ガス冷却管17の下端に水素ガス供給源からの水素ガスをそれぞれ供給すると同時に、冷凍機及びエアーモータを作動させてブラインの冷却及びブラインの循環を再開する。供給された水素ガスは、前記第1水素ガス冷却管16及び前記第2水素ガス冷却管17を上昇しながら、あらかじめ冷却されたブラインと熱交換を行い、所定温度に冷却されて第1水素ガス導出管16b及び第2水素ガス導出管17bに導出され、充填用配管を介して燃料タンクに充填される。
 このように、ブラインが充填された容器12内に、螺旋状の前記水素ガス冷却管16,17と、ブライン冷却用の前記冷媒管18とを配設したことにより、従来のブライン貯槽、ブライン循環用の配管及びポンプを省略して水素ガス冷却設備の小型化を図ることができる。また、容器12の軸線方向に配置した回転軸14にプロペラ15を設けてブラインを容器12内で循環させることにより、冷媒管18内を流れる低温冷媒とブラインとの熱交換及び水素ガス冷却管16,17内を流れる水素ガスとブラインとの熱交換を効果的に行うことができ、それぞれの熱交換効率を向上させて熱交換器11の小型化も図ることができる。
 また、回転軸14、第1水素ガス導入管16a、第2水素ガス導入管17a、第1水素ガス導出管16b、第2水素ガス導出管17b、冷媒導入管20a、冷媒導出管19a、ドライガス供給管26a及びドライガス排出管26bのすべてを蓋13に設けているので、容器12の周壁に配管接続用の加工を施す必要がなく、各配管の接合や組み立ても蓋13の部分で行うことができるので、熱交換器11の製作も容易に行うことができ、製造コストを低減することができる。さらに、熱交換器11のメンテナンスも、ドレイン22から容器12内のブラインを排出して蓋13を取り外すことにより容易に行うことができ、保守コストの低減も図れる。加えて、あらかじめブラインを冷却して待機状態としておくことにより、水素ガス充填開始時から水素ガスを効果的に冷却することができる。
 なお、上述の形態例では、前記気相部に常時新鮮なドライガスを供給しているが、予めドライガスで満たしておくこともできる。また、ドライガスとしては、窒素ガスが最適であるが、窒素以外の不活性ガスや乾燥空気も使用可能である。
 さらに、上述の形態例では水素ガス冷却管を上下2段構成としているが、容器の高さなどの条件によっては上下3段以上に配設することも可能であり、1段にすることもできる。水素ガス冷却管における螺旋のコイル径は、水素ガスの流量、管のサイズ等によって異なるが、一般的には、100mm~500mmの範囲が好ましく、螺旋の隙間間隔は、5mm~32mmの範囲が好ましい。
 また、上述の形態例によれば、前記駆動軸の駆動にエアーモータを採用しているが、電気モータを使用することも可能であり、プロペラは、水素ガス冷却管の長さによって異なり、複数個設置することが好ましいが、1個のみとすることもできる。
 さらに、上述の形態例では、上部マニホールド及び下部マニホールドを設けて直管状の冷媒管を複数本配置するようにしているが、冷媒管を水素ガス冷却管と同様の螺旋形状として各マニホールドを省略することもできる。
 また、冷媒管や水素ガス冷却管として、フィン付き管や内面に螺旋状の溝を形成した管を用いることにより、伝熱面積を大きくして伝熱効果を促進することがきる。また、内面に螺旋状の溝を形成した管を使用することにより、管内を流れる流体の乱流を促進することができ、伝熱効率を更に向上させることができる。
 11…熱交換器、12…容器、13…蓋、14…回転軸、15…プロペラ、16…第1水素ガス冷却管、16a…第1水素ガス導入管、16b…第1水素ガス導出管、17…第2水素ガス冷却管、17a…第2水素ガス導入管17a、17b…第2水素ガス導出管、18…冷媒管、19…上部マニホールド、20…下部マニホールド、21…支持脚、22…ドレイン管、23…締結具、24…駆動軸、25…減速機、26a…ドライガス供給管、26b…ドライガス排出管

Claims (9)

  1. 低温冷媒で冷却されたブラインで水素ガスを冷却する熱交換器において、該熱交換器は、ブラインが充填される真空断熱された容器と、該容器の上部開口を塞ぐ蓋と、前記容器の軸線方向に配設された回転軸と、該回転軸に設けられたプロペラと、前記回転軸及びプロペラの周囲に配設された螺旋状の水素ガス冷却管と、該水素ガス冷却管の周囲に配設されたブライン冷却用の冷媒管とを備えていることを特徴とする熱交換器。
  2. 前記水素ガス冷却管は、複数の水素ガス冷却管を上下多段に配設していることを特徴とする請求項1記載の熱交換器。
  3. 前記冷媒管は、環状の上部マニホールドと環状の下部マニホールドとに上下端を連通状態に接続して、下端から上端方向に冷媒を流通させることを特徴とする請求項1記載の熱交換器。
  4. 前記蓋の内面と容器内のブラインの液面との間の気相部にドライガスを供給することを特徴とする請求項1記載の熱交換器。
  5. 前記容器の底部には、容器内に充填されているブラインを排出するためのドレインが設けられていることを特徴とする請求項1記載の熱交換器。
  6. 前記容器は、縦長有底円筒状を呈し、容器下部を3本以上の支持脚にて支持されて、軸線を垂直にして自立できることを特徴とする請求項1記載の熱交換器。
  7. 前記低温冷媒は、冷凍サイクルを用いた冷凍機の低温冷媒であることを特徴とする請求項1記載の熱交換器。
  8. 低温冷媒で冷却されたブラインで水素ガスを冷却する熱交換器において、該熱交換器は、ブラインが充填される真空断熱された二重壁構造の縦長有底円筒状の容器と、該容器の上部開口を塞ぐ円盤状の蓋と、該蓋の中心を貫通して容器の軸線方向に配設された回転軸と、該回転軸に設けられたプロペラと、前記回転軸及びプロペラの周囲に配設された螺旋状の水素ガス冷却管と、該水素ガス冷却管の周囲に配設されて、環状の上部マニホールドと環状の下部マニホールドとに上下端を連通状態に接続して、下部マニホールドに連通する冷媒導入管から供給される冷媒を上部マニホールドに連通する冷媒導出管から排出する複数本のブライン冷却用の冷媒管とを備え、前記回転軸、前記水素ガス冷却管、前記複数のブライン冷却用冷媒管及び容器は、平面視、前記回転軸を中心にして内側から、前記プロペラ、前記水素ガス冷却管、複数のブライン冷却用冷媒管及び容器の順に同心円上に配置されていることを特徴とする熱交換器。
  9. 前記低温冷媒は、冷凍サイクルを用いた冷凍機の低温冷媒であることを特徴とする請求項8記載の熱交換器。
PCT/JP2012/066109 2011-06-28 2012-06-25 熱交換器 WO2013002161A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2826407A CA2826407A1 (en) 2011-06-28 2012-06-25 Heat exchanger
JP2013522834A JP5809268B2 (ja) 2011-06-28 2012-06-25 熱交換器
KR1020137022132A KR20140025337A (ko) 2011-06-28 2012-06-25 열교환기
EP12804134.0A EP2728291A1 (en) 2011-06-28 2012-06-25 Heat exchanger
US14/126,601 US20140116663A1 (en) 2011-06-28 2012-06-25 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-142831 2011-06-28
JP2011142831 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013002161A1 true WO2013002161A1 (ja) 2013-01-03

Family

ID=47424055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066109 WO2013002161A1 (ja) 2011-06-28 2012-06-25 熱交換器

Country Status (6)

Country Link
US (1) US20140116663A1 (ja)
EP (1) EP2728291A1 (ja)
JP (1) JP5809268B2 (ja)
KR (1) KR20140025337A (ja)
CA (1) CA2826407A1 (ja)
WO (1) WO2013002161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188738A (ja) * 2015-03-30 2016-11-04 大陽日酸株式会社 熱交換器
JP2017020667A (ja) * 2015-07-07 2017-01-26 大陽日酸株式会社 熱交換器
JP2018031483A (ja) * 2016-08-22 2018-03-01 オリオン機械株式会社 水素ガス冷却装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20130877A1 (it) * 2013-05-29 2014-11-30 Alfa Laval Olmi S P A Gruppo di alimentazione di una turbina di un impianto solare termodinamico e impianto solare termodinamico comprendente il gruppo stesso
JP6149203B1 (ja) * 2016-01-15 2017-06-21 オリオン機械株式会社 熱交換器および水素ガス冷却装置
JP6182803B1 (ja) * 2016-02-24 2017-08-23 オリオン機械株式会社 熱交換器および水素ガス冷却装置
JP6296306B2 (ja) * 2016-08-22 2018-03-20 オリオン機械株式会社 熱交換器および水素ガス冷却装置
CN111006523A (zh) * 2018-06-28 2020-04-14 蒋晓进 一种乳制品冷却装置以及冷却方法
JP6860861B2 (ja) * 2019-01-22 2021-04-21 株式会社タツノ 水素冷却システム
KR102411657B1 (ko) * 2020-08-24 2022-06-20 원철호 열교환기
CN112802638B (zh) * 2020-12-30 2021-10-01 松田电工(台山)有限公司 一种扁平漆包线烘焙炉
KR102317617B1 (ko) 2021-04-12 2021-10-26 주식회사 태진중공업 압축수소 열교환기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175790A (ja) * 1982-04-06 1983-10-15 Komatsu Seiren Kk 改良された熱交換装置
JPH01193590A (ja) * 1987-11-17 1989-08-03 Phillips Petroleum Co 熱交換装置及び方法
JP2001082885A (ja) * 1999-09-14 2001-03-30 Masao Uratani 熱交換器
JP2008164177A (ja) 2006-12-27 2008-07-17 Taiyo Nippon Sanso Corp 熱交換器
JP2008267496A (ja) 2007-04-20 2008-11-06 Taiyo Nippon Sanso Corp 水素ガス冷却装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638329A (en) * 1947-06-05 1953-05-12 Wegner Machinery Corp Apparatus for treating chocolate or the like
CA2038520C (en) * 1991-03-18 2002-01-22 Louis Cloutier Heat exchanger with fluid injectors
JPH06174353A (ja) * 1992-12-04 1994-06-24 Sanden Corp 凍結装置
US20010041210A1 (en) * 1995-03-08 2001-11-15 Michael Kauffeld Method and a refrigerating apparatus for making a slush ice
JP3680084B2 (ja) * 1996-08-30 2005-08-10 大嶺 文枝 泡盛の冷却熟成方法およびその冷却分離装置
US5878581A (en) * 1997-10-27 1999-03-09 Advanced Metallurgy Incorporated Closed multi-loop water-to-water heat exchanger system and method
JP4383698B2 (ja) * 2001-11-07 2009-12-16 関西電力株式会社 スラリー氷の製氷方法とその製氷装置
US20030127213A1 (en) * 2002-01-10 2003-07-10 Herman Lai Heat exchanging device having heat exchanging housing
JP2005083567A (ja) * 2003-09-11 2005-03-31 Taiyo Nippon Sanso Corp 燃料充てん装置および方法
JP4803573B2 (ja) * 2005-03-16 2011-10-26 株式会社日本製鋼所 熱授受装置
JP2011080495A (ja) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology 水素充填システムの水素用熱交換器
TW201115096A (en) * 2009-10-26 2011-05-01 Chung Hsin Elec & Mach Mfg Hygrogen storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175790A (ja) * 1982-04-06 1983-10-15 Komatsu Seiren Kk 改良された熱交換装置
JPH01193590A (ja) * 1987-11-17 1989-08-03 Phillips Petroleum Co 熱交換装置及び方法
JP2001082885A (ja) * 1999-09-14 2001-03-30 Masao Uratani 熱交換器
JP2008164177A (ja) 2006-12-27 2008-07-17 Taiyo Nippon Sanso Corp 熱交換器
JP2008267496A (ja) 2007-04-20 2008-11-06 Taiyo Nippon Sanso Corp 水素ガス冷却装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188738A (ja) * 2015-03-30 2016-11-04 大陽日酸株式会社 熱交換器
JP2017020667A (ja) * 2015-07-07 2017-01-26 大陽日酸株式会社 熱交換器
JP2018031483A (ja) * 2016-08-22 2018-03-01 オリオン機械株式会社 水素ガス冷却装置

Also Published As

Publication number Publication date
JPWO2013002161A1 (ja) 2015-02-23
US20140116663A1 (en) 2014-05-01
EP2728291A1 (en) 2014-05-07
JP5809268B2 (ja) 2015-11-10
CA2826407A1 (en) 2013-01-03
KR20140025337A (ko) 2014-03-04

Similar Documents

Publication Publication Date Title
JP5809268B2 (ja) 熱交換器
EP2988075B1 (en) Vertically arranged heat pump having two compressors and method of manufacturing the vertically arranged heat pump
JP2017514099A (ja) 熱交換器
CN111022916A (zh) 氢气加注换热一体机
CN103908791A (zh) 内置冷凝器的同腔两次相变减压蒸馏器
US9709305B2 (en) Liquefier for a heat pump and heat pump
CN201787782U (zh) 一种改进的制冰筒
CN110375190A (zh) 一种用于lng储罐的保温保冷装置
JP2011026959A (ja) ターボ圧縮機及び冷凍機
EP2263050B1 (en) Liquefier for a heat pump, heat pump, and method of manufacturing a liquefier
RU24272U1 (ru) Устройство для охлаждения жидкости
CN205137054U (zh) 低温介质贮罐
JP6901825B2 (ja) 飲料サーバ
KR20200088611A (ko) 초저온 액화가스용 판형 열교환장치
CN207985781U (zh) 制冷式液奶运输罐车
CN105667257A (zh) Lng冷藏车用冷能回收利用系统
CN106764402A (zh) 低温介质贮罐
CN113865397A (zh) 一种不完全冻结式冰蓄冷装置
CN108954951A (zh) 中央空调干式蒸发器
CN108954925A (zh) 中央空调扰流干式蒸发器
CN108954949A (zh) 中央空调蒸发器
CN108917231A (zh) 热泵空调双系统管壳干式换热器
CN108954927A (zh) 中央空调扰流管壳蒸发器
CN107367181A (zh) 高效罐壳式换热器
CN108954964A (zh) 热泵机组单系统干式蒸发器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522834

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012804134

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2826407

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137022132

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126601

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE