WO2013001225A1 - Composant de connexion muni d'inserts creux - Google Patents

Composant de connexion muni d'inserts creux Download PDF

Info

Publication number
WO2013001225A1
WO2013001225A1 PCT/FR2012/051460 FR2012051460W WO2013001225A1 WO 2013001225 A1 WO2013001225 A1 WO 2013001225A1 FR 2012051460 W FR2012051460 W FR 2012051460W WO 2013001225 A1 WO2013001225 A1 WO 2013001225A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
metal
inserts
face
Prior art date
Application number
PCT/FR2012/051460
Other languages
English (en)
Inventor
François Marion
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP12734993.4A priority Critical patent/EP2727144B1/fr
Publication of WO2013001225A1 publication Critical patent/WO2013001225A1/fr
Priority to US14/088,698 priority patent/US20140075747A1/en
Priority to US15/132,711 priority patent/US10002842B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/11444Manufacturing methods by blanket deposition of the material of the bump connector in gaseous form
    • H01L2224/11452Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • H01L2224/1161Physical or chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • H01L2224/1161Physical or chemical etching
    • H01L2224/11614Physical or chemical etching by chemical means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11827Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13011Shape comprising apertures or cavities, e.g. hollow bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13118Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13172Vanadium [V] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/1318Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13563Only on parts of the surface of the core, i.e. partial coating
    • H01L2224/13566Both on and outside the bonding interface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • H01L2224/13582Two-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/13687Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81095Temperature settings
    • H01L2224/81099Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81208Compression bonding applying unidirectional static pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8134Bonding interfaces of the bump connector
    • H01L2224/81355Bonding interfaces of the bump connector having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the invention relates to the field of the connection of two components according to the technique of hybridization face-to-face, better known by the Anglo-Saxon expression "flip chip", and more particularly the connection of two components.
  • the invention thus finds particular application in assemblies known as “chip on chip”, “chip on wafer” and “wafer on wafer”.
  • FIGS. 1 and 2 schematically illustrate the "flip-chip” hybridization of a first and a second microelectronic component 10, 12.
  • the first component 10 comprises on one of its faces 14, a set of inserts 16 electrically conductive, intended to penetrate into respective electrically conductive pads 18, the pads 18 being arranged on the face 20 of the second component 12.
  • each insert 16 is also in contact with a connection pad 22 formed in the thickness of the first component 10, this pad 22 forming an interface with, for example, an electronic circuit 24.
  • each pad 18 is in contact with a connection pad 26 formed in the thickness of the second component 12, the pad 26 forming the interface for example with an electronic circuit 28.
  • the electronic components 10 and 12 are aligned so as to present each insert 16 in front of a stud 18, and an appropriate pressure, illustrated by the arrows, is for example exerted on the first component which is movable ( Figure 1).
  • Interconnections 30 between the first and the second microelectronic components 10, 12 are thus realized (FIG. 2).
  • the interconnections 30 mechanically secure the two components 10, 12, while creating electrical connections therebetween.
  • the first component 10 is a detection matrix consisting of a plurality of sensitive detection elements, in particular electromagnetic radiation
  • the second component 12 is a circuit for reading said sensitive elements.
  • the interconnections 30 thus realize the electrical connection of the read circuit with each of the sensitive elements of the first component 10.
  • a solution used to avoid the insertion of oxidized inserts is to manufacture inserts 16 each consisting of a central core of metal having a hardness greater than that of the studs 18, and to cover this core, before its oxidation, with a layer of noble metal, and therefore non-oxidizable, like gold or platinum.
  • the core and the noble metal layer are thus inserted together in a stud 18 without the appearance of oxide likely to affect the quality of the electrical connection.
  • FIG. 1 An example of a low-cost manufacturing process of hollow cylindrical inserts 16 covered with a noble metal layer is described below in relation to the schematic figures in section 3 to 10.
  • the process starts with the deposition of a layer sacrificial 40 having a thickness e on the face 14 of the component 10, for example a resin layer of the polyimide type, followed by photolithography to produce circular holes 42 in the sacrificial layer 40 to the face 14 of the component 10 ( Figure 3).
  • the thickness e corresponds to the desired height for the core of the inserts and the diameter of the circular holes 42 corresponds to the outer diameter of the core.
  • a hard metal layer or multilayer 44 for example titanium nitride or a titanium nitride-based alloy, of a thickness corresponding to the thickness of the metal. inserts core 16.
  • the deposit is for example a chemical vapor deposition, or deposit "CVD" (for the acronym “Chemical Vapor Deposition”) made at a temperature compatible with the microelectronic elements of the component 10, especially a temperature below 425 ° C for a component 10 implementing a CMOS technology ( Figure 4).
  • a withdrawal of the portion of the hard metal layer 44 deposited between the holes 42 is then performed, for example using a "damascene” etch or "gap wire” well known per se.
  • a fluid resin layer 46 is deposited full plate and thus fills the holes 42 and planarize the assembly obtained in the previous step ( Figure 5).
  • the resin layer 46 is then etched uniformly, for example by mechanical or mechanochemical polishing, until it reaches the metal layer surface 46.
  • the holes 42 remain filled with resin 46 to protect the metal. covering them in the subsequent steps ( Figure 6).
  • An etching of the metal 44 arranged between the holes 42 is then implemented in a manner known per se (FIG. 7).
  • the process is then continued by the removal of the resin 46 included in the holes 42, for example using a deletion based on a plasma O 2 followed by removal of the sacrificial layer 40, for example by means of a deletion based on a plasma 0 2 ( Figure 8).
  • the webs 50 of the inserts 16 are thus made.
  • a noble metal layer 52 is then deposited in full plate, such as a layer of gold or platinum, for example by means of a CVD deposit (FIG. 9), and then the layer portion 52 arranged between the cores 50 is removed, for example by means of the conventional photolithography technique (Figure 10).
  • this method has a number of disadvantages.
  • the process proves to be of "low cost” and allows a high manufacturing yield, it implements complex and numerous steps. Then, this type of process involves a difficulty, if not an impossibility, of reducing the interconnection pitches, that is to say the minimum space between two inserts / pads interconnections, if low-cost manufacturing techniques of the layer of noble metal covering the metal cores of the inserts are used.
  • the low-cost manufacturing techniques consist in making a full-plate deposit of a noble metal layer on the face of the component comprising the inserts, then in then etching the noble metal layer present between the inserts.
  • the only low-cost etching technique of the state of the art applicable to noble metals such as gold and platinum is a chemical etching in the liquid phase that does not currently allow the etching of surfaces of dimensions. less than 10 micrometers, or even 15 micrometers. Only an etching by ionic machining today makes it possible to engrave interconnection steps of less than 10 micrometers. However, this technique has a very low efficiency especially because of the cleaning required between each deposit, and is therefore expensive.
  • the noble metal layer 52 is not completely withdrawn between the inserts 16 because of the precision of the liquid-phase etching used. It thus remains a noble metal ring 54 around each insert 16.
  • the width LJ_ is mainly fixed by the maximum current intended to cross the interconnection 30 formed of an insert 16 inserted into a stud 18 and is therefore substantially independent of the manufacturing process of the inserts 16.
  • a minimum width LJ_ for example in the imagers, is 3 micrometers.
  • the width GJ_ depends on the precision of the photolithography used to make the openings 42 in the sacrificial layer 40. Using the current etching techniques, the minimum achievable width GJ_ is about 1 micrometer.
  • the widths G2_ depend on the precision of the photolithography used to remove the noble metal layer 52 between the inserts 16. Using the current engravings, the minimum achievable width G2 is about 1 micrometer.
  • the width LA also represents the distance separating two adjacent interconnecting conductor elements. It is estimated that a minimum width LA of about 3 micrometers is appropriate to avoid any risk of short circuit between the interconnections.
  • noble metals for example gold or platinum
  • etching chemistries are very aggressive for circuits, especially image sensors.
  • the minimum feasible interconnection step P is currently about 10 micrometers, ie a surface density of interconnections equal to about 10 4 interconnections / mm 2 .
  • the object of the present invention is to provide inserts for reducing the interconnection pitch and which can be achieved with the usual manufacturing techniques, as well as a low cost method of manufacturing such inserts, and in particular a method also allowing the embodiment of a hybridization of microcomponents at ambient temperature
  • the subject of the invention is a method for producing an electromechanical connection component provided on a connection face with conductive inserts intended to be inserted at ambient temperature. in respective ductile conductive pads provided on one face of another connection component for face-to-face hybridization.
  • the process comprises for each insert:
  • a hollow metal core consisting of a bottom disposed on the connection face and a side wall projecting from said bottom, defining an inner surface of ⁇ insert, at least a portion of said inner surface being non-oxidized ;
  • the metal layer consists of a stainless metal, in particular a noble metal, or the production of the metal layer comprises:
  • ambient temperature is meant here a temperature which is distant from the melting temperature of the material constituting the first layer and the pads, for example temperatures of the order of 300 ° K, for which there is therefore not observed a important softening of this first layer and pads in which are intended to be inserted inserts.
  • the "cold” or “room temperature” hybridization of the invention is thus distinguished from “thermo-compression” type hybridizations during which both a pressure and a heating are exerted, the heating being intended to soften or melt the pads to facilitate insertion of the inserts.
  • noble metals and more generally non-oxidizable metals, have a lower electrical resistivity than hard metals used to make the central core.
  • the current preferentially borrows the layer of noble metal rather than the central core.
  • the outer portion 62 of the noble metal layer 52 can be considered as a dead arm achieving negligible electrical conduction and its elimination does not cause a significant degradation of the electrical conduction of an interconnection 30.
  • the metal layer being made of a stainless metal, in particular a noble metal, such as gold or platinum, this therefore makes it possible to define a non-oxidized surface interfaced with the pad when the insert is inserted into the stud.
  • interconnections end up being constituted by a complex multilayer formed of the material of the inserts, the noble metal and the material of the pads, which makes the interconnections very sensitive to solid / solid type diffusion, to the creation of holes of the type Kirkendall, and holes at the interfaces of the zones made of different metals;
  • gold is a very doping material for silicon usually present in electronic components. All manufacturing steps using gold must therefore be performed in manufacturing areas different from those where silicon is exposed.
  • the second multilayer variant allows hybridization "flip chip” by inserting metal inserts in metal pads providing an electrical connection without the use of noble metals.
  • the different regions of an insert undergo a deformation. Having a plasticity greater than that of the core, the first sub-layer will therefore undergo a greater deformation than the latter during penetration into a stud.
  • the second sub-layer has a plasticity lower than that of the first sub-layer, this second sub-layer can not deform as much as the first sub-layer without breaking. Not being able to conform to the deformation undergone by the first underlayer, the second sublayer is "cracking".
  • the second sub-layer If the adhesion of the second sub-layer on the first sub-layer is weak, the second sub-layer "peels" by sliding on the first sub-layer during insertion and remains outside the stud, discovering then completely the first undercoat which is unoxidized and therefore good conductor of electricity. If the adhesion of the second sub-layer to the first sub-layer is strong, the second sub-layer also penetrates the stud while having cracks due to the plasticity differential with the first sub-layer. The cracks thus define as many unoxidized electrical "paths" to the first non-oxidized sub-layer, and therefore good conductors of electricity, thus ensuring good electrical conduction of the interconnection formed by Pinsert and the pad.
  • the adhesion of the second sub-layer to the first sub-layer is low so that the second sub-layer slides on the first sub-layer under the effect of shear applied to stacking the first and second sub-layers. In this way, during insertion of the insert into a stud, the second sub-layer peels and remains outside the stud.
  • the first sub-layer consists of an oxidizable metal
  • the second sub-layer is made by oxidizing the first sub-layer so as to create a native oxide layer of the metal of the first sub-layer.
  • native oxide layer is meant an oxide layer obtained by the natural oxidation of the metal when in contact with oxygen.
  • the native oxide layer has the dual property of being very brittle and very little adhering to the metal from which it is derived. Under the effect of the penetration of the insert in the pad, there is thus observed a phenomenon of "ice on mud", that is to say that the native oxide layer is cracked in the form of plates that slide on the first underlayer during insertion. The second sub-layer is therefore “peeled” and remains outside the pad.
  • the native oxide layer has the advantage of having a very thin thickness, of the order of a few nanometers, completely defined by the nature of the metal.
  • the thickness of the second sub-layer remains constant.
  • the electronic component provided with inserts can be stored under oxidizing conditions, such as air for example, without special precautions.
  • the first sub-layer not a noble metal, but more preferably, oxidizable metals are sought for it to form a native oxide layer.
  • the first underlayer is made of a metal selected from the group consisting of aluminum, tin, indium, lead, silver, copper, zinc and alloys based on these metals. These materials are advantageously very plastic, and can be implemented in inexpensive etching processes exploitable for low interconnection steps of less than 10 micrometers, or even 5 micrometers. More particularly, the first underlayer is made of aluminum which also has the advantage of being a material both ductile while maintaining a constant hardness for a wide temperature range because of its high melting temperature greater than 500 ° C.
  • the advantage of the implementation of a hollow insert lies in the reduction of the bearing surface of the insert on the pad, and thus to facilitate insertion, or even to allow a cold insertion at room temperature . Because of the reduced bearing surface, the surface pressure exerted on the surface of the first and second layers bearing on the pad is also increased, which facilitates the deformation of the first layer, and corollary the cracking of the second layer. This also increases the shearing effect and aids peeling of the second layer in the event of poor adhesion thereof to the first layer. Note that the cylinder is the form that optimizes these effects, hollow inserts thus advantageously of this form.
  • the first sub-layer has a ductility substantially equal to that of the pads, which facilitates the deformation undergone by the first underlayer during insertion, and thus also facilitates the cracking of the second underlayer
  • the method consists of:
  • the invention also relates to a method of hybridization of the face-to-face type of a microelectronic component obtained by a method of the aforementioned type with a microelectronic component having on one of its faces respective conductive pads of hardness less than the hardness of the metal core of the hollow inserts, comprising the insertion at room temperature of the inserts, provided with their second metal under layer, in the pads.
  • the interconnection pitch between the microcomponents is less than 10 micrometers.
  • the pressure exerted on a bearing surface of each insert during their insertion into the pads is greater than 1800 megaPascals, which allows effective peeling of the oxide layer.
  • ⁇ 3 to 10 are schematic sectional views illustrating a method of manufacturing inserts comprising an outer layer of noble metal
  • Fig. 11 is a sectional view of two adjacent inserts made according to the method of Figs. 3-10 and inserted into respective pads;
  • Figure 12 is a schematic sectional view of an insert of Figure 11 along the plane AA;
  • FIG. 13 is a schematic view of an insert produced by the method of Figures 3 to 10 and inserted in a pad, illustrating the electric currents in the insert;
  • FIGS. 14 to 18 are schematic sectional views illustrating a manufacturing process inserts according to the invention.
  • FIG. 19 is a sectional view according to a first embodiment of the invention, of two adjacent inserts manufactured according to the process of Figures 14 to 18 and inserted into respective pads;
  • FIG. 20 is a schematic sectional view of an insert of Figure 19 along plane BB;
  • FIG. 21 is a sectional view of an insert according to a second embodiment of the invention.
  • FIG. 22 is a diagrammatic sectional view of the insert of FIG. 3 along plane C-C;
  • FIG. 23 is a schematic sectional view illustrating the penetration of the insert of Figure 21 in a ductile pad DETAILED DISCLOSURE OF THE INVENTION
  • the inserts can take any shape, although the inserts with a reduced bearing surface, such as hollow cylinders, for example, are preferred to reduce the pressure necessary for their insertion into the pads. In the following, however, it will be described cylindrical inserts and hollow U-shaped section, this form constituting a preferred embodiment. However, it will be understood that the considerations relating to the constituent materials of the inserts and pads are independent of the form adopted for them.
  • the inserts can be full and / or triangular, square, and more generally polygonal, star-shaped, etc.
  • the method starts analogously to the manufacturing steps described in relation to FIGS. 3 and 4.
  • the metal 44 constituting the core 50 of the inserts has a hardness greater than that of the pads 18 to be able to be inserted therein.
  • the central core 50 preferably has a Young's modulus greater than 1.5 times the Young's modulus of the material of the studs 18.
  • the metal 44 constituting the central core 50 consists of a hard metal, such as titanium nitride (Ti), tungsten nitride (NiW), copper (Cu), vanadium (V), molybdenum (Mo), nickel (Ni), titanium tungstenate (TiW) ), WSi, or tungsten (W) for example, and the pads 18 are made of a ductile metal, for example aluminum, tin, indium, lead, silver , copper, zinc, or an alloy of these metals.
  • a hard metal such as titanium nitride (Ti), tungsten nitride (NiW), copper (Cu), vanadium (V), molybdenum (Mo), nickel (Ni), titanium tungstenate (TiW) ), WSi, or tungsten (W)
  • the pads 18 are made of a ductile metal, for example aluminum, tin, indium, lead, silver , copper, zinc, or an alloy of these metals
  • the method is followed by the full-plate deposition of a layer or a multilayer of metal 70 having the function of protecting the inner surface of the central core 50 of the oxidation inserts, and optionally having an electrical resistivity lower than the metal 44, the metal constituting the core 44 not being oxidized at this stage of the process.
  • the deposition is for example a chemical vapor deposition or CVD deposit produced at a temperature compatible with the microelectronic elements of the component 10, in particular a temperature below 425 ° C. for a component 10 implementing a CMOS technology (FIG. 14).
  • the layer 70 is preferably made of aluminum, this metal having the advantage of having a very high melting temperature greater than 500 ° C.
  • a withdrawal of the portion of the hard metal layer 44 deposited between the holes 42 is then performed, for example using a "damascene” etch or "gap wire” well known per se.
  • a "gap-wire" etching analogous to that described with reference to FIGS. 5 to 8 is implemented, comprising:
  • the method therefore comprises three manufacturing sequences, namely a first production sequence relating to the production of the openings 42 (FIG. 3), a second sequence relating to the deposition of the metals 44 and 70 (FIG. 14), and a third sequence relating to the withdrawal. sacrificial layer 40 (FIGS. 15 to 18).
  • Figures 19 and 20 are schematic sectional views illustrating inserts 72 manufactured according to the method just described. As illustrated, the inserts 72 consist of a central core 50, of which only the inner surface is covered with a metal protection layer against oxidation 70.
  • the metal layer 70 is made of a noble metal, such as gold or platinum, for example.
  • the metal layer 70 consists of a first metal sub-layer 80 formed on the core 50 of the insert 72, the underlayer 80 being itself covered by a protective underlayer 82.
  • the first metal sub-layer 80 in addition to its function of being electrically conductive and strongly adhering to the central core 50 of the insert 72 because of the metal-metal interface that it forms with the the core 50 has the function of being deformed, while remaining attached to the core 50, during the penetration of the insert into a stud 18. It has a plasticity greater than that of the core 50 for this purpose.
  • the underlayer 80 may thus consist of a ductile metal.
  • a ductile metal having a Young's modulus greater than 1.5 times that of the material of the core 50 has a suitable plasticity.
  • the underlayer 80 has a ductility substantially equal to that of the studs 18 so as to allow penetration of the hard core 50 without breaking and obtain relative deformations of the underlayer 80 and the stud 18 so substantially equal.
  • the underlayer 80 is thus advantageously made of aluminum, tin, indium, lead, silver, copper, zinc or an alloy of these metals.
  • the metal underlayer 80 is not oxidized.
  • the first protective function of the underlayer 82 is to protect the metal underlayer 80 from oxidation, and for the second function to release at least a portion of the metal underlayer 80 during insertion of the insert 72 in a stud 18 so as to create an electrical connection between the material of the stud 18 and the central core 50.
  • the protective underlayer 82 is chosen to crack under the effect of the deformation of the metal sub-layer 80.
  • the protective underlayer 82 thus has a plasticity lower than that of the metal sub-layer 80.
  • the protective sub-layer 82 is chosen so as to have a breaking point under very low deformation stresses, in other words it is very "brittle".
  • the protective underlayer 82 may be a protective film attached to the metal underlayer 80, for example a photosensitive epoxy resin or a polymer layer such as parylene for example, or a layer of hard metal or a layer hard and brittle insulator such as Si0 2 or SiN.
  • the protective underlayer 82 consists of the native oxide of the metal constituting the metal underlayer 80, which has the triple advantage:
  • this embodiment has the advantage that it is not necessary to take special measures to prevent oxidation of the inserts during storage, since the inserts 72 are intentionally allowed to oxidize.
  • the inserts 72 are preferably hollow cylinders with very small bearing surfaces S (FIG. 3 and 4), so as to be able to perform a cold insertion under ambient atmosphere, ie say at an ambient temperature much lower than the melting temperature of the pads 18, for example a temperature of about 300 ° K, and at atmospheric pressure.
  • very low bearing surfaces have the effect of increasing the stresses exerted on the various regions of the inserts and therefore in particular the deformation and shearing forces, which facilitates the cracking of the protective underlayer 82 as well as that its peeling in the case of a protective layer slightly adherent to the metal underlayer 80.
  • the pressure exerted on the bearing surface S during insertion of the insert comprising a first aluminum underlayer 80 coated with a native oxide layer 82 (alumina Al 2 O 3 ) in 18 aluminum studs is greater than 1800 mega Pascal.
  • the inventors in fact observed that for lower pressure values, the interconnections formed inserts 16 in the pads 18 have a significant electrical resistance, which means that the peel of the oxide layer 82 is not complete.
  • the inventors have, on the other hand, observed that for the above configuration of inserts and pads, pressures greater than 1800 megaPascal (MPa) produce good quality interconnections, ie having an electrical resistance close to that of the aluminum, which means that the oxide layer has been peeled almost completely.
  • MPa megaPascal
  • the global insertion force or equivalently the global insertion pressure, exerted on the circuits 10 and 12 to hybridize them, for example that exerted on the circuit 10 as illustrated by the arrows. in FIG. 1, and the bearing surface S of the hollow cylinders are thus chosen so as to obtain the said minimum pressure.
  • a hollow cylinder with a diameter equal to 4 ⁇ , with a wall thickness equal to 0.2 ⁇ has a bearing surface S equal to 2.512 ⁇ 2 .
  • the pressure exerted on its bearing surface S is equal to 1990 MPa.
  • the unitary insertion force experienced by each insert 16 is therefore deduced. Knowing the unitary insertion force, it is therefore possible to deduce a maximum support area to obtain at least the minimum pressure of 1800MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Multi-Conductor Connections (AREA)

Abstract

Un composant de connexion électro-mécanique (10) muni sur une face de connexion d'inserts conducteurs (72) est destinés à être insérés dans des plots conducteurs respectifs (18) ménagés sur une face d'un autre composant de connexion (12) pour une hybridation du type face contre face. Chaque insert (72) du composant (10) comprend : une âme métallique creuse (50) constituée d'un fond disposé sur la face de connexion (14) et d'une paroi latérale faisant saillie dudit fond, définissant une surface interne de l'insert (72), au moins une portion de ladite surface interne étant non oxydée; et une couche métallique (70) recouvrant sensiblement uniquement la surface interne de l'âme métallique (50). Selon un mode de réa lisation, la couche métallique (70) comprende une première sous- couche (80) d'un métal oxydable et une seconde sous-couche (82) d'oxyd natif du métal consitutif de la première sous-couche (80).

Description

COMPOSANT DE CONNEXION MUNI D'INSERTS CREUX
DOMAINE DE L'INVENTION L'invention a trait au domaine de la connexion de deux composants selon la technique d'hybridation face contre face, mieux connue sous l'expression anglo-saxonne «flip chip», et plus particulièrement la connexion de deux composants électroniques par insertion à température ambiante du type métal d'inserts dans un métal constitutif de plots.
L'invention trouve ainsi particulièrement application dans les assemblages dits « puce sur puce », « puce sur wafer » et « wafer sur wafer ».
ETAT DE LA TECHNIQUE
Pour remplacer les hybridations « flip chip » par billes de soudure, il est connu de prévoir sur une face d'un premier composant électronique des inserts réalisés en un métal dur, par exemple en nitrure de titane, et sur une face d'un deuxième composant électronique des plots réalisé en un métal ductile, par exemple en argent, puis d'hybrider les deux composants en insérant à froid les inserts dans les plots, ce qui crée ainsi des interconnexions mécaniques et électriques entre les composants.
Les figures 1 et 2 illustrent de manière schématique, l'hybridation « flip-chip » d'un premier et d'un second composants microélectroniques 10, 12. Le premier composant 10 comporte sur l'une de ses faces 14, un ensemble d'inserts 16 électriquement conducteurs, destinés à pénétrer dans des plots 18 électriquement conducteurs respectifs, les plots 18 étant agencés sur la face 20 du second composant 12.
Le fond de chaque insert 16 est par ailleurs au contact d'une plage de connexion 22 formée dans l'épaisseur du premier composant 10, cette plage 22 faisant l'interface avec par exemple avec un circuit électronique 24. De manière analogue, chaque plot 18 est au contact d'une plage de connexion 26 formée dans l'épaisseur du second composant 12, la plage 26 faisant l'interface par exemple avec un circuit électronique 28. Pour réaliser l'hybridation, préférentiellement à froid, les composants électroniques 10 et 12 sont alignés de manière à présenter chaque insert 16 en face d'un plot 18, et une pression appropriée, illustrée par les flèches, est par exemple exercée sur le premier composant qui est mobile (figure 1). Les inserts 16, qui ont une dureté supérieure à celle des plots 18, pénètrent alors dans ceux-ci. Des interconnexions 30 entre le premier et les second composants microélectroniques 10, 12 sont ainsi réalisées (figure 2). Les interconnexions 30 solidarisent mécaniquement les deux composants 10, 12, tout en créant des connexions électriques entre ceux-ci.
A titre d'exemple, le premier composant 10 est une matrice de détection constituée d'une pluralité d'éléments sensibles de détection, notamment de rayonnement électromagnétique, et le second composant 12 est un circuit de lecture desdits éléments sensibles. Les interconnexions 30 réalisent ainsi la connexion électrique du circuit de lecture avec chacun des éléments sensibles du premier composant 10.
Toutefois, un problème récurrent dans ce type d'hybridation par insertion « métal dans métal » réside dans le fait que, sans opération particulière, la surface des inserts s'oxyde, ce qui crée des connexions électriques de mauvaise qualité entre les inserts et les plots dans lesquels ils sont enfichés. En effet, les métaux adaptés pour une insertion à froid, plus communément les métaux « durs », comme par exemple le nitrure de titane, sont oxydables.
Une solution utilisée pour éviter l'insertion d'inserts oxydés est de fabriquer des inserts 16 constitués chacun d'une âme centrale en métal présentant une dureté supérieure à celle des plots 18, et de recouvrir cette âme, avant son oxydation, d'une couche de métal noble, et donc non oxydable, comme de l'or ou du platine. L'âme et la couche de métal noble sont ainsi insérées ensemble dans un plot 18 sans qu'il y ait apparition d'oxyde susceptible d'affecter la qualité de la connexion électrique.
Un exemple de procédé de fabrication à bas coût d'inserts 16 cylindriques creux recouverts d'une couche de métal noble est décrit ci-dessous en relation avec les figures schématiques en coupe 3 à 10. Le procédé débute par le dépôt d'une couche sacrificielle 40 d'une épaisseur e sur la face 14 du composant 10, par exemple une couche de résine du type polyimide, suivi d'une photolithographie pour réaliser des trous circulaires 42 dans la couche sacrificielle 40 jusqu'à la face 14 du composant 10 (figure 3). L'épaisseur e correspond à la hauteur désirée pour l'âme des inserts et le diamètre des trous circulaires 42 correspond au diamètre extérieur de l'âme. Le procédé se poursuit par le dépôt pleine plaque d'une couche ou d'un multicouche de métal dur 44, par exemple du nitrure de titane ou un alliage à base de nitrure de titane, d'une épaisseur correspondant à l'épaisseur de l'âme des inserts 16. Le dépôt est par exemple un dépôt chimique en phase vapeur, ou dépôt « CVD » (pour l'acronyme anglo- saxon « Chemical Vapor Déposition ») réalisé à une température compatible avec les éléments microélectroniques du composant 10, notamment une température inférieure à 425°C pour un composant 10 mettant en œuvre une technologie CMOS (figure 4).
Un retrait de la portion de la couche de métal dur 44 déposée entre les trous 42 est alors effectué, par exemple à l'aide d'une gravure « damascène » ou de « gap fil » bien connu en soi.
Par exemple, selon la gravure « gap-fïl », une couche de résine fluide 46 est déposée pleine plaque et vient ainsi combler les trous 42 et planariser l'ensemble obtenu à l'étape précédente (figure 5). Une fois solidifiée, la couche de résine 46 est alors gravée uniformément, par exemple par un polissage mécanique ou mécanochimique, jusqu'à atteindre la surface de couche métallique 46. Les trous 42 restent quant à eux remplis de résine 46 afin de protéger le métal les recouvrant lors des étapes ultérieures (figure 6). Une gravure du métal 44 agencé entre les trous 42 est alors mise en œuvre de manière connue en soi (figure 7).
Le procédé se poursuit alors par le retrait de la résine 46 comprise dans les trous 42, par exemple à l'aide d'un délaquage à base d'un plasma 02 suivi du retrait de la couche sacrificielle 40, par exemple au moyen d'un délaquage à base d'un plasma 02 (figure 8). Les âmes 50 des inserts 16 sont ainsi réalisées.
Une couche 52 en métal noble est ensuite déposée pleine plaque, tel qu'une couche d'or ou de platine, par exemple au moyen d'un dépôt CVD (figure 9), puis la portion de couche 52 agencée entre les âmes 50 est ôtée, par exemple au moyen de la technique de photolithographie classique (figure 10).
Cependant, ce procédé présente un certain nombre d'inconvénients. Tout d'abord, même si le procédé s'avère de « bas coût » et permet un rendement de fabrication élevé, il met en œuvre des étapes complexes et nombreuses. Ensuite, ce type de procédé implique une difficulté, voire une impossibilité, de réduire les pas d'interconnexion, c'est-à-dire l'espace minimal entre deux interconnexions inserts/plots, si des techniques de fabrication à bas coût de la couche de métal noble recouvrant les âmes métalliques des inserts sont utilisées. En effet les techniques de fabrication à bas coût consistent à réaliser un dépôt pleine plaque d'une couche de métal noble sur la face du composant comportant les inserts, puis à graver ensuite la couche de métal noble présente entre les inserts. Or, la seule technique de gravure à bas coût de l'état de la technique applicable aux métaux nobles comme l'or et le platine est une gravure chimique en phase liquide qui ne permet pas à l'heure actuelle de graver des surfaces de dimensions inférieures à 10 micromètres, voire 15 micromètres. Seule une gravure par usinage ionique permet aujourd'hui de graver des pas d'interconnexion inférieurs à 10 micromètres. Cependant, cette technique présente un rendement très faible en raison notamment des nettoyages nécessaires entre chaque dépôt, et s'avère donc onéreuse.
Cette difficulté de réduction du pas d'interconnexion est illustrée aux figures schématiques en coupe 11 et 12.
Notamment, comme cela est visible sur la figure 11, la couche de métal noble 52 n'est pas entièrement retirée entre les inserts 16 en raison de la précision de la gravure en phase liquide utilisée. Il demeure ainsi une couronne de métal noble 54 autour de chaque insert 16.
En prenant l'hypothèse simplificatrice de plages de connexion cylindrique 22 alignées avec leurs inserts 16 respectifs, le pas d'interconnexion minimum P est égal à la somme de la largeur LJ_ de la plage de connexion 22, du double de la largeur GJ_ entre le diamètre externe de l'âme 50 d'un insert 16 et le bord de la plage de connexion 22, du double de la largeur G2 entre le diamètre externe de l'âme 50 et le bord de la couronne 54 entourant un insert 16, et de la largeur L4 séparant deux couronnes 54 d'inserts 16 adjacents, à savoir P = Ll + 2G1 + 2G2 + L4.
La largeur LJ_ est principalement fixée par le courant maximal destiné à traverser l'interconnexion 30 formée d'un insert 16 inséré dans un plot 18 et est donc sensiblement indépendante du procédé de fabrication des inserts 16. Une largeur LJ_ minimale, par exemple dans les imageurs, est de 3 micromètres. La largeur GJ_ dépend quant à elle de la précision de la photolithogravure utilisée pour réaliser les ouvertures 42 dans la couche sacrificielle 40. A l'aide des techniques de gravure actuelles, la largeur GJ_ minimale réalisable est d'environ 1 micromètre. Les largeurs G2_ dépend de la précision de la photolithogravure utilisée pour ôter la couche de métal noble 52 entre les inserts 16. A l'aide des gravures actuelles, la largeur G2 minimale réalisable est d'environ 1 micromètre.
Enfin, la largeur LA représente également la distance séparant deux éléments conducteurs d'interconnexion 30 adjacents. On estime qu'une largeur minimale LA d'environ 3 micromètres est appropriée pour éviter tout risque de court circuit entre les interconnexions.
En outre, les métaux nobles, par exemple l'or ou le platine, sont très réfléchissants, ce qui gêne la photolithogravure. Par ailleurs, les chimies de gravure sont très agressives pour les circuits, notamment les capteurs d'image.
Ainsi donc, le pas d'interconnexion P minimal réalisable est à l'heure actuelle d'environ 10 micromètres, soit une densité surfacique d'interconnexions égale à environ 104 interconnexions/mm2.
EXPOSE DE L'INVENTION
Le but de la présente invention est de proposer des inserts permettant de réduire le pas d'interconnexion et qui soient réalisables avec les techniques de fabrication usuelles, ainsi qu'un procédé bas coût de fabrication de tels inserts, et notamment un procédé permettant également la réalisation d'une hybridation de microcomposants à température ambiante A cet effet, l'invention a pour objet un procédé de réalisation d'un composant de connexion électro -mécanique muni sur une face de connexion d'inserts conducteurs destinés à être insérés à température ambiante dans des plots conducteurs ductiles respectifs ménagés sur une face d'un autre composant de connexion pour une hybridation du type face contre face. Selon l'invention :
■ le procédé comprend pour chaque insert :
o la réalisation d'une âme métallique creuse constituée d'un fond disposé sur la face de connexion et d'une paroi latérale faisant saillie dudit fond, définissant une surface interne de Γ insert, au moins une portion de ladite surface interne étant non oxydée; et
o la réalisation d'une couche métallique recouvrant sensiblement uniquement la surface interne de l'âme métallique et destinée à être au contact du plot associé à Γ insert ;
■ et la couche métallique est constituée d'un métal inoxydable, notamment un métal noble ou la réalisation de la couche métallique comporte :
o la réalisation d'une première sous-couche métallique non oxydée sur au moins une portion de sa surface, recouvrant au moins ladite portion non oxydée de la surface interne de l'âme, la première sous-couche ayant une plasticité supérieure à celle de l'âme ; et
o la réalisation d'une seconde sous-couche recouvrant au moins la première sous- couche sur sa portion non oxydée et ayant une plasticité inférieure à celle de la première sous-couche. Par « température ambiante », on entend ici une température éloignée de la température de fusion du matériau constitutif de la première couche et des plots, par exemple des températures de l'ordre de 300°K, pour lesquels on n'observe donc pas un ramollissement important de cette première couche et des plots dans lesquels sont destinés à être insérer les inserts. L'hybridation « à froid », ou « à température ambiante » de l'invention se distingue donc des hybridations de type « thermo-compression » au cours desquelles à la fois une pression et un chauffage sont exercés, le chauffage ayant pour but de ramollir ou fondre les plots afin de faciliter l'insertion des inserts.
En d'autres termes, il est choisi de ne pas recouvrir entièrement l'âme centrale métallique des inserts mais uniquement sa partie creuse, et donc de ne pas prendre de mesure particulière pour éviter l'oxydation de la surface externe de l'âme centrale. En évitant de recouvrir la surface externe de l'âme d'une couche de métal noble, on s'affranchit donc corolairement de la présence d'une couronne de métal noble autour des inserts. C'est en effet en cherchant à protéger l'intégralité de la surface oxydable de l'âme centrale en mettant en œuvre des procédés de fabrication bas coût, et notamment un dépôt pleine plaque, qu'une couche métallique indésirable est déposée entre les inserts, couche indésirable qu'il faut ensuite retirer à l'aide de gravure bas coût à la précision limitée. Ainsi des couronnes métalliques autour des inserts sont inévitablement réalisées, ce qui limite la minimisation du pas d'interconnexion.
Il est remarquable que la plus grande surface conductrice a jusqu'ici été recherchée pour un insert afin de maximiser la qualité de l'interconnexion électrique formée d'un insert et d'un plot. C'est notamment ce qui motive de recouvrir entièrement l'âme conductrice centrale d'une couche de métal noble afin que la totalité de la surface de l'âme ne soit pas oxydée. Cette motivation implique donc, dans le cadre d'un procédé de fabrication à bas coût, de dégager l'âme centrale des inserts de la couche sacrificielle dans laquelle elle est réalisée pour procéder à un dépôt pleine plaque, de manière à enrober totalement cette âme d'une couche de métal noble.
Toutefois, les inventeurs ont remarqué que cette démarche se fonde en fait sur un présupposé techniquement erroné, à savoir que la surface externe et la surface interne de l'âme définissent des chemins conducteurs d'électricité d'importances analogues.
En fait, les métaux nobles, et plus généralement les métaux non oxydables, ont une résistivité électrique inférieure à celle des métaux durs utilisés pour réaliser l'âme centrale. Ainsi donc, le courant emprunte préférentiellement la couche de métal noble plutôt que l'âme centrale.
En se référant à la figure schématique en coupe 13, lorsqu'un courant total ΙΊ circule dans une interconnexion 30, par exemple un courant injecté via la plage 26 du plot 18, ce courant total [M se décompose en un premier courant /^ circulant dans la portion interne 60 de la couche de métal noble 52 et en un second courant [ext circulant dans la portion externe 62 de la couche 52. Or, comme cela est visible, le courant externe [ext doit traverser deux fois l'âme centrale 50, qui est de résistivité supérieure à celle de la couche 52, pour atteindre la plage de connexion 22 de l'insert 16. En revanche, le courant interne tint ne traverse qu'une fois l'âme centrale au niveau du fond 64 de celle-ci. Des mesures montrent ainsi que le courant interne IM représente 90% du courant total ΙΊ et donc que le courant externe [ext ne représente que 10% de ce courant.
Aussi, la portion externe 62 de la couche de métal noble 52 peut être considérée comme un bras mort réalisant une conduction électrique négligeable et son élimination n' entraine pas une dégradation sensible de la conduction électrique d'une interconnexion 30. En outre, selon une première variante, la couche métallique étant constituée d'un métal inoxydable, notamment un métal noble, tel que de l'or ou du platine, ceci permet donc de définir une surface non-oxydée en interface avec le plot lorsque l'insert est inséré dans le plot.
Cependant, cette variante présente un certain nombre d'inconvénients, au rang desquels :
un coût élevé, d'une part, en raison du coût des métaux nobles et, d'autre part, en raison des étapes complexes et nombreuses à mettre en œuvre pour recouvrir uniquement les inserts d'une couche d'un tel métal ;
■ une impossibilité de réduire les pas d'interconnexion, comme précédemment décrit en raison de la précision limitée des gravures en phase liquide des métaux nobles ;
une inter-diffusion et une électro -migration du métal noble recouvrant les inserts.
Ainsi les interconnexions finissent par être constituées d'un multicouche complexe formé du matériau des inserts, du métal noble et du matériau des plots, ce qui rend les interconnexions très sensibles à la diffusion du type solide/solide, à la création de trous de type Kirkendall, et de trous aux interfaces des zones constituées de métaux différents ; et
une contamination croisée de l'or. En effet, l'or est un matériau très dopant pour le silicium usuellement présent dans les composants électroniques. Toutes les étapes de fabrication utilisant de l'or doivent donc être réalisées dans des zones de fabrication différentes de celles où du silicium est présent à nu.
La seconde variante multicouche permet une hybridation « flip chip » par insertion d'inserts métalliques dans des plots métalliques assurant une connexion électrique sans utilisation de métaux nobles.
Sous l'effet de l'insertion dans un plot, les différentes régions d'un insert subissent une déformation. Ayant une plasticité supérieure à celle de l'âme, la première sous-couche va donc subir une plus forte déformation que celle-ci lors de la pénétration dans un plot. Comme par ailleurs la seconde sous-couche a une plasticité inférieure à celle de la première sous-couche, cette seconde sous-couche ne peut se déformer autant que la première sous-couche sans casser. Ne pouvant se conformer à la déformation subie par la première sous-couche, la seconde sous-couche se « craquelle ». Si l'adhérence de la seconde sous-couche sur la première sous-couche est faible, la seconde sous-couche « pèle » en glissant sur la première sous-couche lors de l'insertion et demeure à l'extérieur du plot, découvrant alors entièrement la première sous-couche qui est non oxydée et donc bonne conductrice d'électricité. Si l'adhérence de la seconde sous-couche sur la première sous-couche est forte, la seconde sous-couche pénètre également dans le plot tout en présentant des craquelures en raison du différentiel de plasticité avec la première sous-couche. Les craquelures définissent ainsi autant de « chemins » électriques non oxydés vers la première sous- couche non oxydée, et donc bons conducteurs d'électricité, assurant ainsi une bonne conduction électrique de l'interconnexion formée de Pinsert et du plot.
Ce résultat est obtenu indépendamment de la nature oxydable de la première sous-couche qui est donc choisie avantageusement parmi des matériaux non nobles. Il n'est pas non plus nécessaire d'utiliser un flux désoxydant lors de l'insertion puisque les chemins électriques sont formés, et cela même si la seconde sous-couche est oxydée.
Selon un mode de réalisation, l'adhérence de la seconde sous-couche sur la première sous-couche est faible de manière à ce que la seconde sous-couche glisse sur la première sous-couche sous l'effet d'un cisaillement appliqué à l'empilement des première et seconde sous-couches. De cette manière, lors de l'insertion de l'insert dans un plot, la seconde sous-couche pèle et demeure à l'extérieur du plot.
Selon un mode de réalisation, la première sous-couche est constituée d'un métal oxydable, et la seconde sous-couche est réalisée en oxydant la première sous-couche de manière à créer une couche d'oxyde natif du métal de la première sous-couche ayant une plasticité inférieure à celle de la première sous-couche
Par « couche d'oxyde natif », on entend une couche d'oxyde obtenue par l'oxydation naturelle du métal lorsqu'il est au contact avec l'oxygène.
La couche d'oxyde natif présente la double propriété d'être très cassante et de très peu adhérer au métal dont elle est issu. Sous l'effet de la pénétration de l'insert dans le plot, on observe ainsi un phénomène de « ice on mud », c'est-à-dire que la couche d'oxyde natif se craquelle en forme de plaques qui glissent sur la première sous-couche lors de l'insertion. La seconde sous-couche est donc « pelée » et reste à l'extérieur du plot.
En outre, la couche d'oxyde natif a l'avantage de présenter une épaisseur très fine, de l'ordre de quelques nano mètres, complètement définie par la nature du métal. Ainsi quel que soit le temps d'exposition de la première sous-couche à l'oxygène, l'épaisseur de la seconde sous-couche reste constante. De plus, le composant électronique pourvu d'inserts peut donc être stocké dans des conditions oxydantes, comme l'air par exemple, sans précaution particulière.
Ainsi donc, non seulement, la première sous-couche n'est pas un métal noble mais en outre de manière privilégiée, on recherche pour celle-ci des métaux oxydables de manière à former une couche d'oxyde natif.
Avantageusement, la première sous-couche est réalisée en un métal choisi dans le groupe comprenant l'aluminium, l'étain, l'indium, le plomb, l'argent, le cuivre, le zinc et les alliages à base de ces métaux. Ces matériaux sont avantageusement très plastiques, et peuvent être mise en œuvre dans des processus de gravure bas coût exploitables pour des pas d'interconnexion faibles inférieurs à 10 micromètres, voire même 5 micromètres. Plus particulièrement, la première sous-couche est constituée d'aluminium qui présente également l'avantage d'être un matériau à la fois ductile tout en gardant une dureté constante pour une large plage de températures en raison de sa température de fusion élevée supérieure à 500°C.
L'avantage de la mise en œuvre d'un insert creux réside dans la réduction de la surface d'appui de l'insert sur le plot, et donc de faciliter l'insertion, voire même de permettre une insertion à froid à température ambiante. Du fait de la surface d'appui réduite, la pression surfacique exercée sur la surface des première et seconde couches en appui sur le plot est également augmentée, ce qui facilite la déformation de la première couche, et corollairement la craquelure de la seconde couche. Ceci augmente également l'effet de cisaillement et aide au pelage de la seconde couche en cas de faible adhérence de celle-ci sur la première couche. On remarque que le cylindre est la forme qui optimise ces effets, les inserts creux étant ainsi avantageusement de cette forme.
Selon une variante, la première sous-couche a une ductilité sensiblement égale à celle des plots, ce qui facilite la déformation subie par la première sous-couche lors de l'insertion, et donc facilite également le craquelage de la seconde sous-couche
Selon un mode de réalisation, le procédé consiste :
à déposer une couche sacrificielle sur la face de connexion du premier composant ;
à réaliser des ouvertures dans la couche sacrificielle au droit des emplacements souhaités pour les inserts ;
à déposer une première couche métallique au moins dans les ouvertures de manière à réaliser l'âme métallique pour chaque insert ; à déposer une seconde couche métallique au moins dans les ouvertures de manière à réaliser une couche métallique recouvrant l'âme de chaque insert ; et
à retirer la couche sacrificielle. Non seulement, ce procédé permet de fabriquer des inserts qui ne sont pas entourés de couronne de métal, mais en outre il permet de réduire le coût de fabrication. En effet, le coût est principalement inhérent au nombre de séquences de fabrication nécessitant un changement de matériel. Notamment, dans le procédé de fabrication décrit en relation avec les figures 3 à 10, on observe une première séquence de fabrication relative à la réalisation des ouvertures 42 (figure 3), une deuxième séquence relative au dépôt du métal constitutif de l'âme 50 des inserts 16 (figure 4), une troisième séquence relative au retrait de la couche sacrificielle 40 (figures 5 à 8), une quatrième séquence relative au dépôt de la couche de métal noble 52 (figure 9) et une cinquième séquence relative au retrait de la couche de métal 52 noble entre les inserts 16 (figure 10). Comme cela sera plus aisément compréhensible à la lecture de ce qui suit, le procédé selon l'invention comporte uniquement trois séquences de fabrication, ce qui représente une réduction importante du coût de fabrication.
L'invention a également pour objet un procédé d'hybridation de type face contre face d'un composant microélectronique obtenu selon un procédé du type précité avec un composant microélectronique ayant sur une de ses face des plots conducteurs respectifs de dureté inférieure à la dureté de l'âme métallique des inserts creux, comportant l'insertion à température ambiante des inserts, munis de leur seconde sous couche métallique, dans les plots.
Avantageusement, le pas d'interconnexion entre les microcomposants est inférieur à 10 micromètres.
Selon un mode de réalisation, la pression exercée sur une surface d'appui de chaque insert lors de leur insertion dans les plots est supérieure à 1800 mégaPascals, ce qui permettant un pelage efficace de la couche d'oxyde.
BRÈVE DESCRIPTION DES FIGURES L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et réalisée en relation avec les dessins annexés, dans lesquels des références identiques désignent des éléments identiques ou analogues, et dans lesquels : les figures 1 et 2 sont des vues schématiques en coupe de l'hybridation d'un premier et d'un second composants microélectroniques par insertion d'inserts dans des plots ;
les 3 à 10 sont des vues schématiques en coupe illustrant un procédé de fabrication d'inserts comportant une couche externe de métal noble ;
■ la figure 11 est une vue en coupe de deux inserts adjacents fabriqués selon le procédé des figures 3 à 10 et insérés dans des plots respectifs ;
la figure 12 est une vue schématique en coupe d'un insert de la figure 11 selon le plan A-A ;
la figure 13 est une vue schématique d'un insert fabriqué selon le procédé des figures 3 à 10 et inséré dans un plot, illustrant les courants électriques dans l'insert ;
les figures 14 à 18 sont des vues schématiques en coupe illustrant un procédé de fabrication d'inserts selon l'invention ;
la figure 19 est une vue en coupe selon une première variante de réalisation de l'invention, de deux inserts adjacents fabriqués selon le procédé des figures 14 à 18 et insérés dans des plots respectifs ;
la figure 20 est une vue schématique en coupe d'un insert de la figure 19 selon le plan B-B ;
la figure 21 est une vue en coupe d'un insert selon une seconde variante de réalisation de l'invention ;
■ la figure 22 est une vue schématique en coupe de l'insert de la figure 3 selon le plan C-C ;
la figure 23 est une vue schématique en coupe illustrant la pénétration de l'insert de la figure 21 dans un plot ductile DESCRIPTION DÉTAILLÉE DE L 'INVENTION
Il va à présent être décrit en relation avec les figures 14 à 18 un procédé de fabrication selon l'invention d'inserts pour une hybridation « flip-chip » d'un premier et d'un second composants microélectroniques analogue à celle décrite en relation avec les figures 1 et 2.
On notera que les inserts peuvent prendre n'importe quelle forme, bien que les inserts présentant une surface d'appui réduite, comme des cylindres creux par exemple, soient privilégiés pour diminuer la pression nécessaire à leur insertion dans les plots. Dans ce qui suit, il va cependant être décrit des inserts cylindriques et creux de section en forme de U, cette forme constituant un mode de réalisation privilégié. Cependant, on comprendra que les considérations portant sur les matériaux constitutifs des inserts et des plots sont indépendantes de la forme adoptée pour ceux-ci. Par exemple, les inserts peuvent être pleins et/ou de forme triangulaire, carrée, et de manière plus générale polygonale, en forme d'étoile, etc...
Le procédé débute de manière analogue aux étapes de fabrication décrites en relation avec les figures 3 et 4. Le métal 44 constitutif de l'âme 50 des inserts présente une dureté supérieure à celle des plots 18 pour pouvoir y être insérés. A cet effet, l'âme centrale 50 a de préférence un module d'Young supérieur à 1,5 fois le module de Young du matériau des plots 18. Avantageusement, le métal 44 constitutif de l'âme centrale 50 est constituée d'un métal dur, comme du nitrure de titane (Ti ), du nitrure de tungstène (NiW), du cuivre (Cu), du vanadium (V), du molybdène (Mo), du nickel (Ni), du tungstènate de titane (TiW), du WSi, ou du tungstène (W) par exemple, et les plots 18 sont constitués d'un métal ductile, par exemple de l'aluminium, de l'étain, de l'indium, du plomb, de l'argent, du cuivre, du zinc, ou un alliage de ces métaux.
Le procédé se poursuit par le dépôt pleine plaque d'une couche ou d'un multicouche de métal 70 ayant pour fonction de protéger la surface interne de l'âme central 50 des inserts de l'oxydation, et présentant optionnellement une résistivité électrique inférieure au métal 44, le métal 44 constitutif de l'âme n'étant pas oxydé à cette étape du procédé. Le dépôt est par exemple un dépôt chimique en phase vapeur ou dépôt CVD réalisé à une température compatible avec les éléments microélectroniques du composant 10, notamment une température inférieure à 425°C pour un composant 10 mettant en œuvre une technologie CMOS (figure 14).
La couche 70 est de préférence constituée d'aluminium, ce métal présentant l'avantage d'avoir une température de fusion très élevée supérieure à 500°C.
Un retrait de la portion de la couche de métal dur 44 déposée entre les trous 42 est alors effectué, par exemple à l'aide d'une gravure « damascène » ou de « gap fil » bien connue en soi.
Par exemple, une gravure « gap-fil » analogue à celle décrite en relation avec les figures 5 à 8 est mise en œuvre, comportant :
- le dépôt pleine plaque d'une couche de résine fluide 46 (figure 15),
la gravure uniforme de la couche 46 solidifiée jusqu'à atteindre la surface de la couche métallique 70 (figure 16), la gravure de l'empilement de couches métalliques 44, 70 agencé entre les trous 42 (figure 17), et
le retrait de la résine 46 comprise dans les trous 42, suivi du retrait de la couche sacrificielle 40 (figure 18).
Le procédé comporte donc trois séquences de fabrication, à savoir une première séquence de fabrication relative à la réalisation des ouvertures 42 (figure 3), une deuxième séquence relative au dépôt des métaux 44 et 70 (figure 14), une troisième séquence relative au retrait de la couche sacrificielle 40 (figures 15 à 18).
Les figures 19 et 20 sont des vues schématiques en coupe illustrant des inserts 72 fabriqués selon le procédé venant d'être décrit. Comme illustré, les inserts 72 sont constitués d'une âme centrale 50, dont uniquement la surface interne est recouverte d'une couche de protection métallique contre l'oxydation 70.
Toujours en prenant l'hypothèse simplificatrice de plages de connexion cylindrique 22 alignées avec leurs inserts 16 respectifs, le pas d'interconnexion P obtenu grâce à l'invention est égal à la somme de la largeur LJ_ de la plage de connexion 22, du double de la largeur GJ_ entre le diamètre externe de l'âme 50 d'un insert 16, et de la largeur L5_ séparant les diamètres externes des inserts 72 adjacents, à savoir P = Ll + 2G1 + L5.
En reprenant les exemples numériques décrits précédemment, à savoir une valeur minimale de LJ_ égale à 3 micromètres, une valeur minimale de GJ_ égale à 1 micromètre, et une valeur de L5_ égale à 3 micromètres, il est obtenue un pas d'interconnexion P minimum égale à 8 micromètres, soit une densité surfacique d'interconnexions égale à environ 1,625.104 interconnexions/mm2.
Selon une première variante, la couche de métal 70 est constituée d'un métal noble, comme de l'or ou du platine par exemple.
Selon une seconde variante, illustrée sur les figures schématiques en coupe 21 et 22, la couche de métal 70 est constituée d'une première sous-couche métallique 80 formée sur l'âme 50 de l'insert 72, la sous-couche 80 étant elle-même recouverte par une sous- couche de protection 82. La première sous-couche métallique 80, outre sa fonction d'être conductrice de l'électricité et d'adhérer fortement à l'âme centrale 50 de l'insert 72 en raison de l'interface métal-métal qu'elle forme avec l'âme 50, a pour fonction de se déformer, tout en restant accrochée à l'âme 50, lors de la pénétration de l'insert dans un plot 18. Elle présente à cet effet une plasticité supérieure à celle de l'âme 50. La sous-couche 80 peut ainsi être constituée d'un métal ductile. Notamment, un métal ductile ayant un module d'Young supérieur à 1,5 fois celui du matériau de l'âme 50 présente une plasticité appropriée. De préférence, la sous-couche 80 présente une ductilité sensiblement égale à celle des plots 18 de manière à permettre la pénétration de l'âme dure 50 sans se casser et obtenir des déformations relatives de la sous-couche 80 et du plot 18 de manière sensiblement égales. La sous-couche 80 est ainsi avantageusement constituée d'aluminium, d'étain, d'indium, de plomb, d'argent, de cuivre, de zinc ou d'un alliage de ces métaux. Par ailleurs, la sous- couche métallique 80 n'est pas oxydée.
La sous-couche de protection 82 a pour première fonction de protéger la sous-couche métallique 80 de l'oxydation, et pour seconde fonction de libérer au moins une portion de la sous-couche métallique 80 lors de l'insertion de l'insert 72 dans un plot 18 de manière à créer une connexion électrique entre le matériau du plot 18 et l'âme centrale 50. Pour ce faire, la sous-couche de protection 82 est choisie pour se craqueler sous l'effet de la déformation de la sous-couche métallique 80. La sous-couche de protection 82 présente ainsi une plasticité inférieure à celle de la sous-couche métallique 80.
De préférence, la sous-couche de protection 82 est choisie de manière à présenter un seuil de rupture sous des contraintes de déformation très bas, autrement dit est très « cassante ». La sous-couche de protection 82 peut être un film de protection rapporté sur la sous-couche métallique 80, comme par exemple une résine époxy photosensible ou une couche de polymère tel que du parylène par exemple, ou une couche de métal dur ou une couche d'isolant dur et cassant comme par exemple du Si02 ou du SiN.
De préférence, la sous-couche de protection 82 est constituée de l'oxyde natif du métal constitutif de la sous-couche métallique 80, ce qui présente le triple avantage :
de disposer d'une sous-couche de protection 82 très fine, de l'ordre de quelques nanomètres, d'être dure et cassante, et notamment de plasticité et de ductilités très inférieures à celles du métal 80 lui-même, et
d'adhérer très faiblement à la sous-couche métallique 80. De plus ce mode de réalisation présente l'avantage qu'il n'est pas besoin de prendre des mesures particulières pour éviter l'oxydation des inserts lors de leur stockage, puisqu'on laisse volontairement s'oxyder les inserts 72.
Comme illustré à la figure 22, lors de la pénétration de l'insert 72 dans le plot 18, une déformation, même faible de la sous-couche métallique 80, casse la couche d'oxyde 82 en plaques, et sous l'effet du cisaillement, les plaques d'oxyde natif glissent sur la sous- couche métallique 80 en demeurant en dehors du plot 18. La couche d'oxyde 82 est ainsi « pelée » lors de l'insertion en mettant à nue la sous-couche métallique 80, créant ainsi une connexion électrique de qualité, notamment sans oxyde.
Il a été décrit une âme centrale 50 non oxydée sur la totalité de sa surface interne. En variante, seule une portion de la surface interne de l'âme centrale 50 est non oxydée. L'âme centrale 50 est alors recouverte de la couche 70 au moins sur cette portion non oxydée. Dans la seconde variante, la sous-couche recouvre au moins cette portion non oxydée et la sous-couche de protection 82 recouvre au moins la portion de la sous-couche 80, recouvrant la partie non oxydée de l'âme 50, cette portion de la sous-couche 80 étant non oxydée.
Comme dit plus haut, les inserts 72 sont de préférence des cylindres creux ayant des surfaces d'appui S (figure 3 et 4) très faibles, de manière à pouvoir réaliser une insertion à froid, sous atmosphère ambiante, c'est-à-dire sous une température ambiante très inférieure à la température de fusion des plots 18, par exemple une température d'environ 300°K, et sous pression atmosphérique. Outre ceci, des surfaces d'appui très faible ont pour effet d'augmenter les contraintes exercées sur les différentes régions des inserts et donc notamment les forces de déformation et de cisaillement, ce qui facilite la craquelure des la sous-couche de protection 82 ainsi que son pelage dans le cas d'une couche de protection faiblement adhérente à la sous-couche métallique 80. On se reportera avantageusement au document FR 2 928 033 pour le calcul de la surface d'appui permettant une insertion à froid sous atmosphère ambiante. De manière avantageuse, la pression exercée sur la surface d'appui S lors de l'insertion d'insert comprenant une première sous-couche 80 en aluminium recouverte d'une couche d'oxyde natif 82 (alumine AI2O3) dans des plots 18 en aluminium est supérieure à 1800 mega Pascal. Les inventeurs en en effet observé que pour des valeurs de pression inférieures, les interconnexions formées des inserts 16 dans les plots 18 présentent une résistance électrique importante, ce qui signifie que le pelage de la couche d'oxyde 82 n'est pas complète. Les inventeurs ont par contre observé que pour la configuration d'inserts et de plots précédente des pressions supérieures à 1800 megaPascal (MPa) produisent des interconnexions de bonne qualité, c'est-à-dire présentant une résistance électrique proche de celle de l'aluminium, ce qui signifie que la couche d'oxyde a été pelée de manière quasi complète.
De manière avantageuse, la force d'insertion globale, ou de manière équivalente la pression d'insertion globale, exercée sur les circuits 10 et 12 pour hybrider ceux-ci, par exemple celle exercée sur le circuit 10 tel qu'illustrée par les flèches à la figure 1, et la surface d'appui S des cylindres creux sont donc choisies de manière à obtenir ladite pression minimale.
Par exemple, un cylindre creux d'un diamètre égal à 4μιη, avec une épaisseur de paroi égale à 0,2 μιη a une surface d'appui S égale à 2,512 μιη2. Lorsqu'un tel insert subit une force d'insertion de 5mN, la pression exercée sur sa surface d'appui S est égale à 1990 MPa.
Connaissant la force d'insertion globale et le nombre d'interconnexions entre les circuits 10 et 12, on en déduit donc la force d'insertion unitaire subit par chaque insert 16. Connaissant la force d'insertion unitaire, on est donc capable d'en déduire une aire maximale d'appui pour obtenir au moins la pression minimale de 1800MPa. Enfin, la surface d'appui S d'un cylindre creux étant donnée par la relation S = 2 x π x (R2 - x R2 , où R2 - Rx est l'épaisseur des parois des inserts 16 et 2 x R2 est le diamètre externe des inserts 16 (figure 4), on en déduit aisément des couples d'épaisseur et de diamètre. Le choix de valeur particulière pour l'épaisseur et le diamètre peut alors être réalisé selon d'autres considérations, notamment des considérations pourtant sur des épaisseurs atteignables en fonction du procédé de fabrication utilisé ou des considérations portant sur la robustesse mécanique des inserts.

Claims

REVENDICATIONS
Procédé de réalisation d'un composant de connexion électro-mécanique (10) muni sur une face de connexion (14) d'inserts conducteurs (72) destinés à être insérés à température ambiante dans des plots conducteurs ductiles respectifs (18) ménagés sur une face (20) d'un autre composant de connexion (12) pour une hybridation du type face contre face, caractérisé :
en ce le procédé comprend pour chaque insert (72) :
o la réalisation d'une âme métallique creuse (50) constituée d'un fond disposé sur la face de connexion (14) et d'une paroi latérale faisant saillie dudit fond, définissant une surface interne de l'insert (72), au moins une portion de ladite surface interne étant non oxydée; et
o la réalisation d'une couche métallique (70) recouvrant sensiblement uniquement la surface interne de l'âme métallique (50) et destinée à être au contact du plot associé à l'insert ;
et en ce que la couche métallique (70) est constituée d'un métal inoxydable, notamment un métal noble ou en ce que la réalisation de la couche métallique (70) comporte :
o la réalisation d'une première sous-couche métallique (80) non oxydée sur au moins une portion de sa surface, recouvrant au moins ladite portion non oxydée de la surface interne de l'âme (50), la première sous-couche (80) ayant une plasticité supérieure à celle de l'âme (50) ; et
o la réalisation d'une seconde sous-couche (82) recouvrant au moins la première sous-couche (80) sur sa portion non oxydée et ayant une plasticité inférieure à celle de la première sous-couche (80).
Procédé selon la revendication 1, caractérisé en ce que la première sous-couche (80) est constituée d'un métal oxydable, et en ce que seconde sous-couche (82) est réalisée en oxydant la première sous-couche (26) de manière à créer une couche d'oxyde natif du métal constitutif de la première sous-couche ayant une plasticité inférieure à celle de la première sous-couche (80).
3. Procédé selon la revendication 2, caractérisé en ce que la première sous-couche (80) est constituée d'aluminium, la seconde souche-couche (82) étant un oxyde d'aluminium.
4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que l'âme métallique creuse (50) est constituée d'un métal dur, notamment de nitrure de titane, de nitrure de tungstène, de cuivre, de vanadium, de molybdène, de nickel, de tungstènate de titane, de WSi, et/ou de tungstène.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'adhérence de la seconde sous-couche (82) sur la première sous-couche (80) est faible de manière à ce que la seconde sous-couche glisse sur la première sous- couche sous l'effet d'un cisaillement appliqué à l'empilement des première et seconde sous-couches.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la première sous-couche (80) a une ductilité sensiblement égale à celle des plots (18).
7. Procédé d'hybridation de type face contre face d'un composant microélectronique (10) obtenu selon un procédé conforme à l'une quelconque des revendications précédentes avec un composant microélectronique ayant sur une de ses faces (20) des plots conducteurs ductiles respectifs (18) de dureté inférieure à la dureté de l'âme métallique des inserts creux, comportant l'insertion à température ambiante des inserts (16), munis de leur seconde sous couche métallique (82), dans les plots (18).
8. Procédé selon la revendication 7, caractérisé en ce que le pas d'interconnexion entre les microcomposants est inférieur à 10 micromètres.
PCT/FR2012/051460 2011-06-30 2012-06-26 Composant de connexion muni d'inserts creux WO2013001225A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12734993.4A EP2727144B1 (fr) 2011-06-30 2012-06-26 Procédé d'hybridation d'un composant muni d'inserts creux
US14/088,698 US20140075747A1 (en) 2011-06-30 2013-11-25 Connecting component equipped with hollow inserts
US15/132,711 US10002842B2 (en) 2011-06-30 2016-04-19 Method of producing a hybridized device including microelectronic components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1155916 2011-06-30
FR1155916A FR2977370B1 (fr) 2011-06-30 2011-06-30 Composant de connexion muni d'inserts creux

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/088,698 Continuation US20140075747A1 (en) 2011-06-30 2013-11-25 Connecting component equipped with hollow inserts

Publications (1)

Publication Number Publication Date
WO2013001225A1 true WO2013001225A1 (fr) 2013-01-03

Family

ID=46508109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051460 WO2013001225A1 (fr) 2011-06-30 2012-06-26 Composant de connexion muni d'inserts creux

Country Status (4)

Country Link
US (2) US20140075747A1 (fr)
EP (1) EP2727144B1 (fr)
FR (1) FR2977370B1 (fr)
WO (1) WO2013001225A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512929A (ja) * 2013-03-22 2016-05-09 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 相互接続部材をプレコーティングすることを含むフリップチップ組立方法
WO2017089676A1 (fr) 2015-11-26 2017-06-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dalle lumineuse et procédé de fabrication d'une telle dalle lumineuse
WO2018033689A1 (fr) * 2016-08-18 2018-02-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de connection intercomposants à densité optimisée
FR3105877A1 (fr) * 2019-12-30 2021-07-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de connexion autoalignée d’une structure à un support, dispositif obtenu à partir d’un tel procédé, et les structure et support mis en œuvre par un tel procédé
EP3979317A4 (fr) * 2019-05-31 2023-06-28 BOE Technology Group Co., Ltd. Fond de panier d'affichage et son procédé de fabrication, et dispositif d'affichage
US11929358B2 (en) 2019-05-31 2024-03-12 Boe Technology Group Co., Ltd. Display backplate and method for manufacturing same, display panel and method for manufacturing same, and display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018628A1 (fr) 2014-03-11 2015-09-18 Commissariat Energie Atomique Procede d'hybridation par collage de deux elements microelectroniques
JP7525878B2 (ja) 2020-06-17 2024-07-31 東北マイクロテック株式会社 積層型半導体装置及びこれに用いる搭載部品、基体及びバンプ接続体
FR3119047A1 (fr) 2021-01-21 2022-07-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Structure de micro-insert a armature en silicium
FR3119048A1 (fr) 2021-01-21 2022-07-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Interconnexion avec ame

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410446A (ja) * 1990-04-26 1992-01-14 Nec Corp バンプ電極結合の形成方法
FR2928033A1 (fr) 2008-02-22 2009-08-28 Commissariat Energie Atomique Composant de connexion muni d'inserts creux.
FR2936359A1 (fr) * 2008-09-25 2010-03-26 Commissariat Energie Atomique Connexion par emboitement de deux inserts soudes.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557452B1 (en) * 2000-06-08 2009-07-07 Micron Technology, Inc. Reinforced, self-aligning conductive structures for semiconductor device components and methods for fabricating same
US7015590B2 (en) * 2003-01-10 2006-03-21 Samsung Electronics Co., Ltd. Reinforced solder bump structure and method for forming a reinforced solder bump
KR100576156B1 (ko) * 2003-10-22 2006-05-03 삼성전자주식회사 댐이 형성된 반도체 장치 및 그 반도체 장치의 실장 구조
US20050151273A1 (en) * 2003-12-30 2005-07-14 Arnold Richard W. Semiconductor chip package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410446A (ja) * 1990-04-26 1992-01-14 Nec Corp バンプ電極結合の形成方法
FR2928033A1 (fr) 2008-02-22 2009-08-28 Commissariat Energie Atomique Composant de connexion muni d'inserts creux.
FR2936359A1 (fr) * 2008-09-25 2010-03-26 Commissariat Energie Atomique Connexion par emboitement de deux inserts soudes.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512929A (ja) * 2013-03-22 2016-05-09 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 相互接続部材をプレコーティングすることを含むフリップチップ組立方法
WO2017089676A1 (fr) 2015-11-26 2017-06-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dalle lumineuse et procédé de fabrication d'une telle dalle lumineuse
US10685945B2 (en) 2015-11-26 2020-06-16 Commissariat A L'energie Atomique Et Aux Energies Illuminated faceplate and method for producing such an illuminated faceplate
WO2018033689A1 (fr) * 2016-08-18 2018-02-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de connection intercomposants à densité optimisée
FR3055166A1 (fr) * 2016-08-18 2018-02-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de connection intercomposants a densite optimisee
EP3979317A4 (fr) * 2019-05-31 2023-06-28 BOE Technology Group Co., Ltd. Fond de panier d'affichage et son procédé de fabrication, et dispositif d'affichage
US11929358B2 (en) 2019-05-31 2024-03-12 Boe Technology Group Co., Ltd. Display backplate and method for manufacturing same, display panel and method for manufacturing same, and display device
FR3105877A1 (fr) * 2019-12-30 2021-07-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de connexion autoalignée d’une structure à un support, dispositif obtenu à partir d’un tel procédé, et les structure et support mis en œuvre par un tel procédé
WO2021136906A1 (fr) * 2019-12-30 2021-07-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de connexion autoalignée d'une structure à un support, dispositif obtenu a partir d'un tel procédé, et les structures et supports mis en oeuvre par un tel procédé

Also Published As

Publication number Publication date
US10002842B2 (en) 2018-06-19
EP2727144B1 (fr) 2020-08-05
FR2977370A1 (fr) 2013-01-04
EP2727144A1 (fr) 2014-05-07
US20160233186A1 (en) 2016-08-11
US20140075747A1 (en) 2014-03-20
FR2977370B1 (fr) 2013-11-22

Similar Documents

Publication Publication Date Title
EP2727144B1 (fr) Procédé d'hybridation d'un composant muni d'inserts creux
EP2192612B1 (fr) Procédé pour empiler et interconnecter des circuits intégrés
EP2870654B1 (fr) Procédé d'assemblage et d'encapsulation de microbatteries au lithium et microbatteries ainsi obtenues
EP2175485B1 (fr) Connexion par emboitement de deux inserts soudés et sa méthode de fabrication
EP2053646A1 (fr) Procede d'interconnexion verticale au sein de modules electroniques 3D utilisant des vias
EP3118920B1 (fr) Batterie en couches minces autosupportée et procédé de fabrication d'une telle batterie
EP2618368A1 (fr) Composant de connexion muni d'inserts creux et son procédé de réalisation
EP1008176B1 (fr) Procede de fabrication d'un film conducteur anisotrope a inserts conducteurs
WO2021099713A1 (fr) Procede de fabrication d'une puce fonctionnelle adaptee pour etre assemblee a des elements filaires
EP2354083A1 (fr) Procede d'encapsulation d'un microcomposant par un capot renforce mecaniquement
EP2365741B1 (fr) Procede de metallisation de vias borgnes
WO2014147355A1 (fr) Procede d'assemblage flip chip comportant le pre-enrobage d'elements d'interconnexion
EP2610907A1 (fr) Dispositif electronique empile et procede de realisation d'un tel dispositif electronique
EP1719173A1 (fr) Dispositif microelectronique d'interconnexion a tiges conductrices localisees
EP3501042A1 (fr) Procédé de connection intercomposants à densité optimisée
EP3588595A1 (fr) Structure mim et procede de realisation d'une telle structure
EP2791969B1 (fr) Formation d'une connexion electrique du type via
WO2012120245A1 (fr) Composant de connexion muni d'inserts creux
EP2636064B1 (fr) Elements de connexion pour l'hybridation de circuits electroniques
EP3467856B1 (fr) Procédés de fabrication d'une traversée hermétique et isolante pour un boitier, notamment en titane, d'un dispositif électronique
FR3071492A1 (fr) Micro-dispositif comportant un element protege contre une gravure hf et forme d'un materiau comprenant un semi-conducteur et un metal
EP0443967B1 (fr) Procédé de lift-off mécanique d'une couche métallique sur un polymère
FR2970117A1 (fr) Procédé de fabrication d'une puce de circuit intégré a connexion par la face arrière
EP2884532B1 (fr) Procédé de fabrication d'un organe électriquement conducteur pour composant électronique présentant une extrémité munie d'une cavité
FR3050865A1 (fr) Procede de realisation d'interconnexions conductrices sur un substrat et interconnexions ainsi obtenues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012734993

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE