WO2013000740A1 - Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation - Google Patents
Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation Download PDFInfo
- Publication number
- WO2013000740A1 WO2013000740A1 PCT/EP2012/061477 EP2012061477W WO2013000740A1 WO 2013000740 A1 WO2013000740 A1 WO 2013000740A1 EP 2012061477 W EP2012061477 W EP 2012061477W WO 2013000740 A1 WO2013000740 A1 WO 2013000740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- warping
- order
- coefficients
- vector
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S5/00—Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/002—Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2205/00—Details of stereophonic arrangements covered by H04R5/00 but not provided for in any of its subgroups
- H04R2205/024—Positioning of loudspeaker enclosures for spatial sound reproduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/11—Positioning of individual sound objects, e.g. moving airplane, within a sound field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/11—Application of ambisonics in stereophonic audio systems
Definitions
- the invention relates to a method and to an apparatus for changing the relative positions of sound objects contained within a two-dimensional or a three-dimensional Higher-Order Ambisonics representation of an audio scene.
- HOA Higher-order Ambisonics
- the disadvantage is that sophisticated and error- prone scene decomposition is mandatory.
- the content of the HOA representation can be modified via linear transformation of HOA vectors.
- rotation, mirroring, and emphasis of front/back directions have been proposed. All of these known, transformation- based modification techniques keep fixed the relative po ⁇ sitioning of objects within a scene.
- space warping For manipulating or modifying a scene's contents, space warping has been proposed, including rotation and mirroring of HOA sound fields, and modifying the dominance of specific directions :
- a problem to be solved by the invention is to facilitate the change of relative positions of sound objects contained within a HOA-based audio scene, without the need for analys ⁇ ing the composition of the scene.
- This problem is solved by the method disclosed in claim 1.
- An apparatus that utilises this method is disclosed in claim 2.
- the invention uses space warping for modifying the spatial content and/or the reproduction of sound-field information that has been captured or produced as a higher-order Ambi ⁇ sonics representation.
- Spatial warping in HOA domain represents both, a multi-step approach or, more computationally efficient, a single-step linear matrix multiplication. Different warping characteristics are feasible for 2D and 3D sound fields.
- the warping is performed in space domain without performing scene analysis or decomposition.
- Input HOA coefficients with a given order are decoded to the weights or input signals of regularly positioned (virtual) loudspeakers.
- the inventive space warping processing has several advan ⁇ tages :
- the inventive method is suited for changing the relative positions of sound objects contained within a two-dimensional or a three-dimensional Higher-Order Ambison- ics HOA representation of an audio scene, wherein an input vector A; n with dimension 0[ n determines the coefficients of a Fourier series of the input signal and an output vector A out with dimension O out determines the coefficients of a Fourier series of the correspondingly changed output signal, said method including the steps :
- the inventive apparatus is suited for changing the relative positions of sound objects contained within a two-dimensional or a three-dimensional Higher-Order Ambison- ics HOA representation of an audio scene, wherein an input vector A; n with dimension 0[ n determines the coefficients of a Fourier series of the input signal and an output vector A out with dimension O out determines the coefficients of a Fourier series of the correspondingly changed output signal, said apparatus including:
- Fig. 1 principle of warping in space domain
- ATM CTM j n (kr) .
- N (N + l) 2 .
- the HOA 'signal' comprises a vector A of Ambisonics coeffi ⁇ cients for each time instant.
- a of Ambisonics coeffi ⁇ cients for each time instant.
- ⁇ 3D ( ⁇ , ⁇ ⁇ ⁇ , ⁇ , ⁇ , ⁇ 2 2 ,..; ⁇ / ) ' ⁇ . (3)
- HOA representations behaves in a linear way and therefore the HOA coefficients for multiple, separate sound objects can be summed up in order to derive the HOA coefficients of the resulting sound field.
- Plain encoding of multiple sound objects from several direc- tions can be accomplished straight-forwardly in vector alge ⁇ bra.
- the i-th column of ⁇ contains the mode vector according to the direc ⁇ tion ⁇ of the i-th sound object
- encoding of a HOA representation can be interpreted as a space-frequency transformation because the input signals (sound objects) are spatially distributed.
- the conditions for re ⁇ versibility are that the mode matrix ⁇ must be square (Ox 0) and invertible.
- the driver signals of real or virtual loud ⁇ speakers are derived that have to be applied in order to precisely play back the desired sound field as described by the input HOA coefficients.
- Such decoding depends on the number M and positions of loudspeakers.
- the three following important cases have to be distinguished (remark: these cases are simplified in the sense that they are defined via the 'number of loudspeakers', assuming that these are set up in a geometrically reasonable manner. More precisely, the definition should be done via the rank of the mode matrix of the targeted loudspeaker setup) .
- the mode matching decoding principle is applied, but other decoding principles can be utilised which may lead to different decoding rules for the three strigr ⁇ ios.
- the number of loudspeakers is higher than the number of HOA coefficients, i.e. M> 0.
- M the number of HOA coefficients
- no unique solution to the decoding problem exists, but a range of admissible solutions exist that are lo ⁇ cated in an M— O-dimensional sub-space of the M- dimensional space of all potential solutions.
- This solution delivers the loudspeaker signals with the minimal gross playback power s T s (see e.g. L.L.Scharf, "Statistical Signal Processing.
- the mathematical problem of decoding the sound field is un ⁇ derdetermined and no unique, precise solution exists.
- numerical optimisation has to be used for deter ⁇ mining loudspeaker signals that best possibly match the desired sound field. Regularisation can be applied in order to derive a stable solution, for example by the formula
- ⁇ ⁇ ⁇ ( ⁇ ⁇ ⁇ + AI) _1 A , (8) wherein I denotes the identity matrix and the scalar fac- tor ⁇ defines the amount of regularisation .
- ⁇ can be set to the average of the eigenvalues of ⁇ ⁇ ⁇ .
- the resulting beam patterns may be sub-optimal because in general the beam patterns obtained with this approach are overly directional, and a lot of sound information will be underrepresented .
- Fig. la The principle of the inventive space warping is illustrated in Fig. la.
- the warping is performed in space domain.
- ⁇ fore, first the input HOA coefficients A; n with order N; n and dimension 0[ n are decoded in step/stage 12 to the weights or input signals Sj n for regularly positioned (virtual) loud ⁇ speakers.
- a determined decoder i.e. one for which the number O warp of virtual loudspeakers is equal to or larger than the number of HOA coefficients 0[ n .
- the order or dimension of the vector A; n of HOA coefficients can easily be extended by add ⁇ ing in step/stage 11 zero coefficients for higher orders.
- the dimension of the target vector Sj n will be denoted by
- the positions of the virtual loudspeakers are modified in the 'warp' processing according to the desired warping characteristics. That warp processing is in step/stage 14 combined with encoding the target vector S jn (or s out , respectively) using mode matrix ⁇ 2 , resulting in vector Ao Ut of warped HOA coefficients with dimension O warp or, following a further processing step described below, with dimension O 0 ut -
- the aforementioned modification of the loudspeaker density can be countered by applying a gain function g((p) to the virtual loudspeaker output signals Sj n in weighting step/ stage 13, resulting in signal s out .
- any weight- ing function g((p) can be specified.
- One particular advanta ⁇ geous variant has been determined empirically to be propor ⁇ tional to the derivative of the warping function " ( ⁇ ) :
- weighting function can be used, e.g. in order to obtain an equal power per opening angle.
- step/stage 14 the weighted virtual loudspeaker signals are warped and encoded again with the mode matrix ⁇ 2 by performing ⁇ 2 ⁇ ⁇ 1; . ⁇ 2 comprises different mode vectors than ⁇ ⁇ according to the warping function ( ⁇ ) .
- the result is an 0 warp -dimension HOA representation of the warped sound field .
- this stripping operation can be described by a windowing operation: the encoded vector ⁇ 2 s out is multiplied with a window vector w which comprises zero coefficients for the highest orders that shall be removed, which multiplication can be considered as representing a further weighting.
- a rectangular window can be applied, however, more sophisticated windows can be used as described in section 3 of M.A. Poletti, "A
- Space warping has its maximum impact for sound objects on the equator, while it has the lowest impact to sound objects at the poles of the sphere.
- the angular distance c of two points A and B can be deter ⁇ mined by the cosine rule of spherical geometry, cf .
- the weighting function is the product of the two weighting functions in ⁇ -direction and in ⁇ -direction
- this sequence of operations can be replaced by multiplication of the input HOA coefficients with a single matrix in step/stage 16 as depicted in Fig. lb.
- the full O warp x O warp transformation matrix T is determined as
- T diag(w) ⁇ 2 diag(g) ⁇ 1 , ( 2 4 )
- diag( -) denotes a diagonal matrix which has the values of its vector argument as components of the main diagonal
- g is the weighting function
- w is the window vector for preparing the stripping described above, i.e., from the two functions of weighting for preparing the stripping and the coefficients-stripping itself carried out in step/stage 15
- window vector w in equation ( 2 4 ) serves only for the weighting .
- the two adaptions of orders within the multi-step approach i.e. the extension of the order preceding the decoder and the stripping of HOA coefficients after encoding, can also be integrated into the transformation matrix T by removing the corresponding columns and/or lines.
- a matrix of the size O out x 0[ n is derived which directly can be applied to the input HOA vectors.
- Rotations and mirroring of a sound field can be considered as 'simple' sub-categories of space warping.
- the special characteristic of these transforms is that the relative po ⁇ sition of sound objects with respect to each other is not modified. This means, a sound object that has been located e.g. 30° to the right of another sound object in the original sound scene will stay 30° to right of the same sound object in the rotated sound scene. For mirroring, only the sign changes but the angular distances remain the same.
- all warping matrices for rotation and/or mirroring operations have the special characteristics that only coefficients of the same order n are affecting each other. Therefore these warping matrices are very sparsely populated, and the output N out can be equal to the input or ⁇ der Nj n without loosing any spatial information.
- Fig. 2 illustrates an example of space warping in the two- dimensional (circular) case.
- the warping function has been chosen to ( ⁇ ) (27)
- the warping function is shown in Fig. 2a. This particular warping function " ( ⁇ ) has been selected because it guarantees a 2n:-periodic warping function while it allows to modify the amount of spatial distortion with a single parameter a.
- Fig. 2c depicts the 7x25 single-step transformation warping matrix T.
- the logarithmic absolute values of individual co ⁇ efficients of the matrix are indicated by the gray scale or shading types according to the attached gray scale or shad- ing bar.
- a very useful characteristic of this particular warping ma ⁇ trix is that large portions of it are zero. This allows to save a lot of computational power when implementing this op- eration, but it is not a general rule that certain portions of a single-step transformation matrix are zero.
- Fig. 2d and Fig. 2e illustrate the warping characteristics at the example of beam patterns produced by some plane waves. Both figures result from the same seven input plane waves at ⁇ positions 0 , 2/ 7 ⁇ , 4/ 7 ⁇ , 6/ 7 ⁇ , 8/ 7 ⁇ , 10/ 7 ⁇ and 12/ 7 ⁇ , all with identical amplitude of one, and show the seven angular amplitude distributions, i.e. the result vec ⁇ tor s of the following overdetermined, regular decoding operation
- HOA vector A is either the original or the warped variant of the set of plane waves.
- the numbers outside the circle represent the angle ⁇ .
- the number (e.g. 360) of vir ⁇ tual loudspeakers is considerably higher than the number of HOA parameters.
- Fig. 2e shows the amplitude distributions for the same sound objects, but after the warping operation has been performed.
- the beam patterns have become asymetric due to the large gradi ⁇ ent of the Fig. 2b weighting function g((p) for these angles.
- the warping steps introduced above are rather generic and very flexible. At least the following basic operations can be accomplished: rotation and/or mirroring along arbitrary axes and/or planes, spatial distortion with a continuous warping function, and weighting of specific directions (spa ⁇ tial beamforming) .
- the space warping transformation is not space-invariant. This means that the operation be ⁇ haves differently for sound objects that are originally lo ⁇ cated at different positions on the hemisphere. In mathe- matical terms, this property is the result of the non-line ⁇ arity of the warping function f(0), i.e. f(0 + a) ⁇ f(0) + a (30) for at least some arbitrary angles ⁇ £]0...2 ⁇ [ .
- the transformation matrix T cannot be simply reversed by mathematical inversion.
- T normally is not square. Even a square space warping matrix will not be reversible because information that is typically spread from lower-order coefficients to higher-order coeffi ⁇ cients will be lost (compare section How to set the HOA or ⁇ ders and the example in section Example) , and loosing infor ⁇ mation in an operation means that the operation cannot be reversed.
- the reverse warping transformation T rev can be designed via the reverse function rev (") of the warping function " ( ⁇ ) for which
- HOA orders An important aspect to be taken into account when designing a space warping transformation are HOA orders. While, normally, the order N; n of the input vectors A; n are predefined by external constraints, both the order N 0 ut °f the output vectors A out and the 'inner' order N war p of the actual non- linear warping operation can be assigned more or less arbitrarily. However, that both orders Ni n and N warp have to be chosen with care as explained below.
- the 'inner' order N warp defines the precision of the actual decoding, warping and encoding steps in the multi-step space warping processing described above.
- the order N warp defines the precision of the actual decoding, warping and encoding steps in the multi-step space warping processing described above.
- FIG. 3 shows an example of the full warping matrix for the same warping function as used for the example from Fig. 2.
- Figures 3a, 3c and 3e depict the warp ⁇ ing functions ⁇ ) , ⁇ 2 ( ⁇ ) and f 3 (0), respectively.
- Figures 3b, 3d and 3f depict the warping matrices T ⁇ dB), T 2 (dB) and
- FIG. 3d Another scenario is shown in Fig. 3d.
- the inner order has been specified to be equal to the output order, i.e.
- the output order has to be larger than the input order N; n in order to retain all information that is spread to coefficients of different orders.
- the actual required size depends as well on the characteristics of the warping function. As a rule of thumb, the less
- the warping function ( ⁇ ) the smaller the re ⁇ quired output order. It appears that in some cases the warping function can be low-pass filtered in order to limit the required output order N 0 ut ⁇
- the output HOA coefficients will be used for a processing or a device which are capable of han- dling a limited order only.
- the target may be a loudspeaker setup with limited number of speakers.
- the output order should be specified according to the capabilities of the target system.
- the reduction of the inner order N warp to the output order N out can be done by mere dropping of higher-order coeffi- cients. This corresponds to applying a rectangular window to the HOA output vectors.
- more sophisticated bandwidth reduction techniques can be applied like those discussed in the above-mentioned M.A. Poletti article or in the above-mentioned J. Daniel article. Thereby, even more information is likely to be lost than with rectangular windowing, but superior directivity patterns can be accom ⁇ plished .
- the invention can be used in different parts of an audio processing chain, e.g. recording, post production, transmission, playback.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Stereophonic System (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR112013032878-9A BR112013032878B1 (pt) | 2011-06-30 | 2012-06-15 | Método e aparelho para mudar as posições relativas de objetos de som contidos dentro de uma representação ambisônica de ordem superior |
| KR1020147002760A KR102012988B1 (ko) | 2011-06-30 | 2012-06-15 | 고차 앰비소닉스 표현 내에 포함된 사운드 오브젝트들의 상대적인 위치들을 변경하는 방법 및 장치 |
| AU2012278094A AU2012278094B2 (en) | 2011-06-30 | 2012-06-15 | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation |
| US14/130,074 US9338574B2 (en) | 2011-06-30 | 2012-06-15 | Method and apparatus for changing the relative positions of sound objects contained within a Higher-Order Ambisonics representation |
| JP2014517583A JP5921678B2 (ja) | 2011-06-30 | 2012-06-15 | 高次Ambisonics表現に含まれるサウンドオブジェクトの相対位置を変更する方法と装置 |
| CN201280032460.1A CN103635964B (zh) | 2011-06-30 | 2012-06-15 | 改变包含在高阶高保真度立体声响复制表示中声音对象相对位置的方法以及装置 |
| EP12729512.9A EP2727109B1 (en) | 2011-06-30 | 2012-06-15 | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation |
| DK12729512.9T DK2727109T3 (da) | 2011-06-30 | 2012-06-15 | Fremgangsmåde og apparat til ændring af de relative positioner af lydobjekter indeholdt i en højer-ordens-ambisonics-gengivelse |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP11305845.7 | 2011-06-30 | ||
| EP11305845A EP2541547A1 (en) | 2011-06-30 | 2011-06-30 | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013000740A1 true WO2013000740A1 (en) | 2013-01-03 |
Family
ID=46354265
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2012/061477 Ceased WO2013000740A1 (en) | 2011-06-30 | 2012-06-15 | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US9338574B2 (enExample) |
| EP (2) | EP2541547A1 (enExample) |
| JP (1) | JP5921678B2 (enExample) |
| KR (1) | KR102012988B1 (enExample) |
| CN (1) | CN103635964B (enExample) |
| AU (1) | AU2012278094B2 (enExample) |
| BR (1) | BR112013032878B1 (enExample) |
| DK (1) | DK2727109T3 (enExample) |
| HU (1) | HUE051678T2 (enExample) |
| TW (1) | TWI526088B (enExample) |
| WO (1) | WO2013000740A1 (enExample) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9288603B2 (en) | 2012-07-15 | 2016-03-15 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding |
| US9473870B2 (en) | 2012-07-16 | 2016-10-18 | Qualcomm Incorporated | Loudspeaker position compensation with 3D-audio hierarchical coding |
| JP2017507350A (ja) * | 2014-01-30 | 2017-03-16 | クアルコム,インコーポレイテッド | 環境高次アンビソニックス係数の遷移 |
| US9712939B2 (en) | 2013-07-30 | 2017-07-18 | Dolby Laboratories Licensing Corporation | Panning of audio objects to arbitrary speaker layouts |
| JP2017199013A (ja) * | 2013-05-29 | 2017-11-02 | クゥアルコム・インコーポレイテッドQualcomm I | 音場の分解された表現の圧縮 |
| US9813837B2 (en) | 2013-11-14 | 2017-11-07 | Dolby Laboratories Licensing Corporation | Screen-relative rendering of audio and encoding and decoding of audio for such rendering |
| JP2018025808A (ja) * | 2012-05-14 | 2018-02-15 | ドルビー・インターナショナル・アーベー | 高次アンビソニックス信号表現を圧縮又は圧縮解除するための方法又は装置 |
| CN108632736A (zh) * | 2013-10-23 | 2018-10-09 | 杜比国际公司 | 用于音频信号呈现的方法和装置 |
| JP2019113858A (ja) * | 2013-07-11 | 2019-07-11 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| CN111182443A (zh) * | 2014-01-08 | 2020-05-19 | 杜比国际公司 | 包括编码hoa表示的位流的解码方法和装置、以及介质 |
| US10770087B2 (en) | 2014-05-16 | 2020-09-08 | Qualcomm Incorporated | Selecting codebooks for coding vectors decomposed from higher-order ambisonic audio signals |
Families Citing this family (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2637427A1 (en) | 2012-03-06 | 2013-09-11 | Thomson Licensing | Method and apparatus for playback of a higher-order ambisonics audio signal |
| EP2898506B1 (en) * | 2012-09-21 | 2018-01-17 | Dolby Laboratories Licensing Corporation | Layered approach to spatial audio coding |
| EP2946468B1 (en) * | 2013-01-16 | 2016-12-21 | Thomson Licensing | Method for measuring hoa loudness level and device for measuring hoa loudness level |
| US9736609B2 (en) * | 2013-02-07 | 2017-08-15 | Qualcomm Incorporated | Determining renderers for spherical harmonic coefficients |
| EP2765791A1 (en) * | 2013-02-08 | 2014-08-13 | Thomson Licensing | Method and apparatus for determining directions of uncorrelated sound sources in a higher order ambisonics representation of a sound field |
| US10178489B2 (en) * | 2013-02-08 | 2019-01-08 | Qualcomm Incorporated | Signaling audio rendering information in a bitstream |
| US9609452B2 (en) | 2013-02-08 | 2017-03-28 | Qualcomm Incorporated | Obtaining sparseness information for higher order ambisonic audio renderers |
| US9883310B2 (en) | 2013-02-08 | 2018-01-30 | Qualcomm Incorporated | Obtaining symmetry information for higher order ambisonic audio renderers |
| US9959875B2 (en) | 2013-03-01 | 2018-05-01 | Qualcomm Incorporated | Specifying spherical harmonic and/or higher order ambisonics coefficients in bitstreams |
| US9466305B2 (en) | 2013-05-29 | 2016-10-11 | Qualcomm Incorporated | Performing positional analysis to code spherical harmonic coefficients |
| BR112015030103B1 (pt) * | 2013-05-29 | 2021-12-28 | Qualcomm Incorporated | Compressão de representações decomposta de campo sonoro |
| US9489955B2 (en) | 2014-01-30 | 2016-11-08 | Qualcomm Incorporated | Indicating frame parameter reusability for coding vectors |
| WO2015140292A1 (en) | 2014-03-21 | 2015-09-24 | Thomson Licensing | Method for compressing a higher order ambisonics (hoa) signal, method for decompressing a compressed hoa signal, apparatus for compressing a hoa signal, and apparatus for decompressing a compressed hoa signal |
| EP2922057A1 (en) | 2014-03-21 | 2015-09-23 | Thomson Licensing | Method for compressing a Higher Order Ambisonics (HOA) signal, method for decompressing a compressed HOA signal, apparatus for compressing a HOA signal, and apparatus for decompressing a compressed HOA signal |
| KR102005298B1 (ko) * | 2014-03-24 | 2019-07-30 | 돌비 인터네셔널 에이비 | 고차 앰비소닉스 신호에 동적 범위 압축을 적용하는 방법 및 디바이스 |
| US20170086005A1 (en) * | 2014-03-25 | 2017-03-23 | Intellectual Discovery Co., Ltd. | System and method for processing audio signal |
| US9620137B2 (en) | 2014-05-16 | 2017-04-11 | Qualcomm Incorporated | Determining between scalar and vector quantization in higher order ambisonic coefficients |
| US9852737B2 (en) * | 2014-05-16 | 2017-12-26 | Qualcomm Incorporated | Coding vectors decomposed from higher-order ambisonics audio signals |
| EP3860154B1 (en) * | 2014-06-27 | 2024-02-21 | Dolby International AB | Method for decoding a compressed hoa dataframe representation of a sound field. |
| CN113808598B (zh) * | 2014-06-27 | 2025-03-18 | 杜比国际公司 | 针对hoa数据帧表示的压缩确定表示非差分增益值所需的最小整数比特数的方法 |
| EP2960903A1 (en) | 2014-06-27 | 2015-12-30 | Thomson Licensing | Method and apparatus for determining for the compression of an HOA data frame representation a lowest integer number of bits required for representing non-differential gain values |
| CN107077852B (zh) * | 2014-06-27 | 2020-12-04 | 杜比国际公司 | 包括与hoa数据帧表示的特定数据帧的通道信号关联的非差分增益值的编码hoa数据帧表示 |
| US9747910B2 (en) | 2014-09-26 | 2017-08-29 | Qualcomm Incorporated | Switching between predictive and non-predictive quantization techniques in a higher order ambisonics (HOA) framework |
| US9940937B2 (en) | 2014-10-10 | 2018-04-10 | Qualcomm Incorporated | Screen related adaptation of HOA content |
| WO2016084592A1 (ja) | 2014-11-28 | 2016-06-02 | ソニー株式会社 | 送信装置、送信方法、受信装置および受信方法 |
| US10327067B2 (en) * | 2015-05-08 | 2019-06-18 | Samsung Electronics Co., Ltd. | Three-dimensional sound reproduction method and device |
| US10070094B2 (en) * | 2015-10-14 | 2018-09-04 | Qualcomm Incorporated | Screen related adaptation of higher order ambisonic (HOA) content |
| WO2017118551A1 (en) * | 2016-01-04 | 2017-07-13 | Harman Becker Automotive Systems Gmbh | Sound wave field generation |
| EP3188504B1 (en) | 2016-01-04 | 2020-07-29 | Harman Becker Automotive Systems GmbH | Multi-media reproduction for a multiplicity of recipients |
| EP3209036A1 (en) | 2016-02-19 | 2017-08-23 | Thomson Licensing | Method, computer readable storage medium, and apparatus for determining a target sound scene at a target position from two or more source sound scenes |
| US10210660B2 (en) * | 2016-04-06 | 2019-02-19 | Facebook, Inc. | Removing occlusion in camera views |
| CN114885274B (zh) * | 2016-09-14 | 2023-05-16 | 奇跃公司 | 空间化音频系统以及渲染空间化音频的方法 |
| MC200186B1 (fr) * | 2016-09-30 | 2017-10-18 | Coronal Encoding | Procédé de conversion, d'encodage stéréophonique, de décodage et de transcodage d'un signal audio tridimensionnel |
| US10721578B2 (en) | 2017-01-06 | 2020-07-21 | Microsoft Technology Licensing, Llc | Spatial audio warp compensator |
| US10405126B2 (en) * | 2017-06-30 | 2019-09-03 | Qualcomm Incorporated | Mixed-order ambisonics (MOA) audio data for computer-mediated reality systems |
| KR102652670B1 (ko) | 2017-07-14 | 2024-04-01 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 다중-층 묘사를 이용하여 증강된 음장 묘사 또는 수정된 음장 묘사를 생성하기 위한 개념 |
| AU2018298874C1 (en) | 2017-07-14 | 2023-10-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Concept for generating an enhanced sound field description or a modified sound field description using a multi-point sound field description |
| US12212949B2 (en) | 2022-01-13 | 2025-01-28 | Electronics And Telecommunications Research Institute | Method and apparatus for ambisonic signal reproduction in virtual reality space |
| KR20250057233A (ko) | 2023-10-20 | 2025-04-29 | 한상진 | 이동식 무선 자동 제습기 |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2073556B (en) | 1980-02-23 | 1984-02-22 | Nat Res Dev | Sound reproduction systems |
| US6694033B1 (en) * | 1997-06-17 | 2004-02-17 | British Telecommunications Public Limited Company | Reproduction of spatialized audio |
| JP2001084000A (ja) * | 1999-09-08 | 2001-03-30 | Roland Corp | 波形再生装置 |
| EP1480589A1 (en) | 2001-11-21 | 2004-12-01 | Aliphcom | Method and apparatus for removing noise from electronic signals |
| FR2836571B1 (fr) | 2002-02-28 | 2004-07-09 | Remy Henri Denis Bruno | Procede et dispositif de pilotage d'un ensemble de restitution d'un champ acoustique |
| FR2847376B1 (fr) | 2002-11-19 | 2005-02-04 | France Telecom | Procede de traitement de donnees sonores et dispositif d'acquisition sonore mettant en oeuvre ce procede |
| CA2511521C (en) | 2002-12-30 | 2012-02-07 | Angiotech International Ag | Drug delivery from rapid gelling polymer composition |
| CN1226718C (zh) * | 2003-03-04 | 2005-11-09 | 无敌科技股份有限公司 | 语音速度调整方法 |
| GB2410164A (en) * | 2004-01-16 | 2005-07-20 | Anthony John Andrews | Sound feature positioner |
| EP1779385B1 (en) * | 2004-07-09 | 2010-09-22 | Electronics and Telecommunications Research Institute | Method and apparatus for encoding and decoding multi-channel audio signal using virtual source location information |
| US20080153840A1 (en) | 2006-12-21 | 2008-06-26 | Luiz Belardinelli | Reduction of cardiovascular symptoms |
| JP5302190B2 (ja) * | 2007-05-24 | 2013-10-02 | パナソニック株式会社 | オーディオ復号装置、オーディオ復号方法、プログラム及び集積回路 |
| GB2467534B (en) * | 2009-02-04 | 2014-12-24 | Richard Furse | Sound system |
| JP2010252220A (ja) * | 2009-04-20 | 2010-11-04 | Nippon Hoso Kyokai <Nhk> | 3次元音響パンニング装置およびそのプログラム |
| EP2486561B1 (en) | 2009-10-07 | 2016-03-30 | The University Of Sydney | Reconstruction of a recorded sound field |
| EP2346028A1 (en) * | 2009-12-17 | 2011-07-20 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | An apparatus and a method for converting a first parametric spatial audio signal into a second parametric spatial audio signal |
| AU2011231565B2 (en) | 2010-03-26 | 2014-08-28 | Dolby International Ab | Method and device for decoding an audio soundfield representation for audio playback |
-
2011
- 2011-06-30 EP EP11305845A patent/EP2541547A1/en not_active Withdrawn
-
2012
- 2012-06-15 CN CN201280032460.1A patent/CN103635964B/zh active Active
- 2012-06-15 EP EP12729512.9A patent/EP2727109B1/en active Active
- 2012-06-15 JP JP2014517583A patent/JP5921678B2/ja active Active
- 2012-06-15 DK DK12729512.9T patent/DK2727109T3/da active
- 2012-06-15 HU HUE12729512A patent/HUE051678T2/hu unknown
- 2012-06-15 US US14/130,074 patent/US9338574B2/en active Active
- 2012-06-15 WO PCT/EP2012/061477 patent/WO2013000740A1/en not_active Ceased
- 2012-06-15 AU AU2012278094A patent/AU2012278094B2/en active Active
- 2012-06-15 BR BR112013032878-9A patent/BR112013032878B1/pt active IP Right Grant
- 2012-06-15 KR KR1020147002760A patent/KR102012988B1/ko active Active
- 2012-06-21 TW TW101122126A patent/TWI526088B/zh active
Non-Patent Citations (12)
| Title |
|---|
| "Eigenschaften von Allpass-Ketten und ihre Anwendung bei der nicht-äquidistanten spektralen Analyse und Syn- these", PHD THESIS, 1998 |
| BARTON/GERZON; J.DANIEL ARTICLES; M. NOISTERNIG; A. SONTACCHI; TH. MUSIL; R. HOLDRICH: "A 3D Ambisonic Based Binaural Sound Reproduction System", PROC. OF THE AES 24TH INTL. CONF. ON MULTICHANNEL AUDIO, BANFF, CANADA, 2003 |
| G.J. BARTON; M.A. GERZON: "Ambisonic Decoders for HDTV", AES CONVENTION, 1992 |
| H. POMBERGER; F. ZOTTER: "An Ambisonics Format for Flexible Playback Layouts", 1ST AMBISONICS SYMPOSIUM, GRAZ, AUSTRIA, 2009 |
| HANNES POMBERGER ET AL: "Warping of 3D Ambisonic Recordings", AMBISONICS SYMPOSIUM 2011, 2 June 2011 (2011-06-02) - 3 June 2011 (2011-06-03), Lexington, pages 1 - 8, XP055014360 * |
| I.N. BRONSTEIN; K.A. SEMENDJAJEW; G. MUSIOL; H. MUHLIG: "Taschenbuch der Mathematik", 2000, VERLAG HARRI DEUTSCH |
| J. DANIEL: "Representation de champs acoustiques, application a la transmission et a la reproduction de scenes sonores complexes dans un contexte multimedia", PHD THESIS, vol. 6, 2001 |
| L.L.SCHARF: "Statistical Signal Processing. Detection, Estimation, and Time Series Analysis", 1990, ADDISON-WESLEY PUBLISHING COMPANY |
| M. CHAPMAN; PH. COTTERELL: "Towards a Comprehensive Account of Valid Ambisonic Transformations", AMBISONICS SYMPOSIUM, 2009 |
| M.A. POLETTI: "A Unified Theory of Horizontal Holographic Sound Systems", JOURNAL OF THE AUDIO ENGINEERING SOCIETY, vol. 48, no. 12, 2000, pages 1155 - 1182, XP001177696 |
| MICHAEL CHAPMAN ET AL: "TOWARDS A COMPREHENSIVE ACCOUNT OF VALID AMBISONIC TRANSFORMATIONS", AMBISONICS SYMPOSIUM 2009, 25 June 2009 (2009-06-25), Graz, XP055014363 * |
| POLETTI ET AL: "Three-Dimensional Surround Sound Systems Based on Spherical Harmonics", JAES, AES, 60 EAST 42ND STREET, ROOM 2520 NEW YORK 10165-2520, USA, vol. 53, no. 11, 1 November 2005 (2005-11-01), pages 1004 - 1025, XP040507486 * |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018025808A (ja) * | 2012-05-14 | 2018-02-15 | ドルビー・インターナショナル・アーベー | 高次アンビソニックス信号表現を圧縮又は圧縮解除するための方法又は装置 |
| US10390164B2 (en) | 2012-05-14 | 2019-08-20 | Dolby Laboratories Licensing Corporation | Method and apparatus for compressing and decompressing a higher order ambisonics signal representation |
| US12245012B2 (en) | 2012-05-14 | 2025-03-04 | Dolby Laboratories Licensing Corporation | Method and apparatus for compressing and decompressing a higher order ambisonics signal representation |
| JP2019133175A (ja) * | 2012-05-14 | 2019-08-08 | ドルビー・インターナショナル・アーベー | 高次アンビソニックス信号表現を圧縮又は圧縮解除するための方法又は装置 |
| JP2020144384A (ja) * | 2012-05-14 | 2020-09-10 | ドルビー・インターナショナル・アーベー | 高次アンビソニックス信号表現を圧縮又は圧縮解除するための方法又は装置 |
| US11234091B2 (en) | 2012-05-14 | 2022-01-25 | Dolby Laboratories Licensing Corporation | Method and apparatus for compressing and decompressing a Higher Order Ambisonics signal representation |
| US11792591B2 (en) | 2012-05-14 | 2023-10-17 | Dolby Laboratories Licensing Corporation | Method and apparatus for compressing and decompressing a higher order Ambisonics signal representation |
| JP7090119B2 (ja) | 2012-05-14 | 2022-06-23 | ドルビー・インターナショナル・アーベー | 高次アンビソニックス信号表現を圧縮又は圧縮解除するための方法又は装置 |
| US9788133B2 (en) | 2012-07-15 | 2017-10-10 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding |
| US9288603B2 (en) | 2012-07-15 | 2016-03-15 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding |
| US9473870B2 (en) | 2012-07-16 | 2016-10-18 | Qualcomm Incorporated | Loudspeaker position compensation with 3D-audio hierarchical coding |
| US9883312B2 (en) | 2013-05-29 | 2018-01-30 | Qualcomm Incorporated | Transformed higher order ambisonics audio data |
| US9980074B2 (en) | 2013-05-29 | 2018-05-22 | Qualcomm Incorporated | Quantization step sizes for compression of spatial components of a sound field |
| JP2017199013A (ja) * | 2013-05-29 | 2017-11-02 | クゥアルコム・インコーポレイテッドQualcomm I | 音場の分解された表現の圧縮 |
| US11146903B2 (en) | 2013-05-29 | 2021-10-12 | Qualcomm Incorporated | Compression of decomposed representations of a sound field |
| US11962990B2 (en) | 2013-05-29 | 2024-04-16 | Qualcomm Incorporated | Reordering of foreground audio objects in the ambisonics domain |
| US10499176B2 (en) | 2013-05-29 | 2019-12-03 | Qualcomm Incorporated | Identifying codebooks to use when coding spatial components of a sound field |
| JP2021036333A (ja) * | 2013-07-11 | 2021-03-04 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| JP2024113161A (ja) * | 2013-07-11 | 2024-08-21 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| JP2022185105A (ja) * | 2013-07-11 | 2022-12-13 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| JP7772487B2 (ja) | 2013-07-11 | 2025-11-18 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| JP7158452B2 (ja) | 2013-07-11 | 2022-10-21 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| JP2019113858A (ja) * | 2013-07-11 | 2019-07-11 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| JP7504174B2 (ja) | 2013-07-11 | 2024-06-21 | ドルビー・インターナショナル・アーベー | Hoa信号の係数領域表現からこのhoa信号の混合した空間/係数領域表現を生成する方法および装置 |
| US9712939B2 (en) | 2013-07-30 | 2017-07-18 | Dolby Laboratories Licensing Corporation | Panning of audio objects to arbitrary speaker layouts |
| CN108632736B (zh) * | 2013-10-23 | 2021-06-01 | 杜比国际公司 | 用于音频信号呈现的方法和装置 |
| CN108632736A (zh) * | 2013-10-23 | 2018-10-09 | 杜比国际公司 | 用于音频信号呈现的方法和装置 |
| US12245014B2 (en) | 2013-10-23 | 2025-03-04 | Dolby Laboratories Licensing Corporation | Method for and apparatus for decoding/rendering an Ambisonics audio soundfield representation for audio playback using 2D setups |
| US11451918B2 (en) | 2013-10-23 | 2022-09-20 | Dolby Laboratories Licensing Corporation | Method for and apparatus for decoding/rendering an Ambisonics audio soundfield representation for audio playback using 2D setups |
| US10986455B2 (en) | 2013-10-23 | 2021-04-20 | Dolby Laboratories Licensing Corporation | Method for and apparatus for decoding/rendering an ambisonics audio soundfield representation for audio playback using 2D setups |
| US10694308B2 (en) | 2013-10-23 | 2020-06-23 | Dolby Laboratories Licensing Corporation | Method for and apparatus for decoding/rendering an ambisonics audio soundfield representation for audio playback using 2D setups |
| US11750996B2 (en) | 2013-10-23 | 2023-09-05 | Dolby Laboratories Licensing Corporation | Method for and apparatus for decoding/rendering an Ambisonics audio soundfield representation for audio playback using 2D setups |
| US11770667B2 (en) | 2013-10-23 | 2023-09-26 | Dolby Laboratories Licensing Corporation | Method for and apparatus for decoding/rendering an ambisonics audio soundfield representation for audio playback using 2D setups |
| US9813837B2 (en) | 2013-11-14 | 2017-11-07 | Dolby Laboratories Licensing Corporation | Screen-relative rendering of audio and encoding and decoding of audio for such rendering |
| CN111182443B (zh) * | 2014-01-08 | 2021-10-22 | 杜比国际公司 | 包括编码hoa表示的位流的解码方法和装置 |
| US11869523B2 (en) | 2014-01-08 | 2024-01-09 | Dolby Laboratories Licensing Corporation | Method and apparatus for decoding a bitstream including encoded higher order ambisonics representations |
| US11488614B2 (en) | 2014-01-08 | 2022-11-01 | Dolby Laboratories Licensing Corporation | Method and apparatus for decoding a bitstream including encoded Higher Order Ambisonics representations |
| US11211078B2 (en) | 2014-01-08 | 2021-12-28 | Dolby Laboratories Licensing Corporation | Method and apparatus for decoding a bitstream including encoded higher order ambisonics representations |
| US12277948B2 (en) | 2014-01-08 | 2025-04-15 | Dolby Laboratories Licensing Corporation | Method and apparatus for decoding a bitstream including encoded Higher Order Ambisonics representations |
| CN111182443A (zh) * | 2014-01-08 | 2020-05-19 | 杜比国际公司 | 包括编码hoa表示的位流的解码方法和装置、以及介质 |
| US9922656B2 (en) | 2014-01-30 | 2018-03-20 | Qualcomm Incorporated | Transitioning of ambient higher-order ambisonic coefficients |
| JP2017507350A (ja) * | 2014-01-30 | 2017-03-16 | クアルコム,インコーポレイテッド | 環境高次アンビソニックス係数の遷移 |
| US10770087B2 (en) | 2014-05-16 | 2020-09-08 | Qualcomm Incorporated | Selecting codebooks for coding vectors decomposed from higher-order ambisonic audio signals |
Also Published As
| Publication number | Publication date |
|---|---|
| US9338574B2 (en) | 2016-05-10 |
| JP2014523172A (ja) | 2014-09-08 |
| CN103635964B (zh) | 2016-05-04 |
| AU2012278094B2 (en) | 2017-07-27 |
| KR20140051927A (ko) | 2014-05-02 |
| BR112013032878B1 (pt) | 2021-04-13 |
| HUE051678T2 (hu) | 2021-03-29 |
| KR102012988B1 (ko) | 2019-08-21 |
| JP5921678B2 (ja) | 2016-05-24 |
| DK2727109T3 (da) | 2020-08-31 |
| EP2727109B1 (en) | 2020-08-05 |
| TW201301911A (zh) | 2013-01-01 |
| EP2727109A1 (en) | 2014-05-07 |
| EP2541547A1 (en) | 2013-01-02 |
| BR112013032878A2 (pt) | 2017-01-24 |
| US20140133660A1 (en) | 2014-05-15 |
| AU2012278094A1 (en) | 2014-01-16 |
| CN103635964A (zh) | 2014-03-12 |
| TWI526088B (zh) | 2016-03-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2727109A1 (en) | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation | |
| KR102481338B1 (ko) | 고차 앰비소닉 오디오 신호로부터 스테레오 라우드스피커 신호를 디코딩하기 위한 방법 및 장치 | |
| US10674301B2 (en) | Fast and memory efficient encoding of sound objects using spherical harmonic symmetries | |
| US9271081B2 (en) | Method and device for enhanced sound field reproduction of spatially encoded audio input signals | |
| US10313815B2 (en) | Apparatus and method for generating a plurality of parametric audio streams and apparatus and method for generating a plurality of loudspeaker signals | |
| JP7378575B2 (ja) | 空間変換領域における音場表現を処理するための装置、方法、またはコンピュータプログラム | |
| US10515645B2 (en) | Method and apparatus for transforming an HOA signal representation | |
| US20250095661A1 (en) | Method and apparatus for encoding and decoding an hoa representation | |
| AU2022427854A1 (en) | Apparatus, methods and computer programs for enabling rendering of spatial audio | |
| HK1197490B (en) | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation | |
| HK1197490A (en) | Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation | |
| Pulkki et al. | Spatial sound scene synthesis and manipulation for virtual reality and audio effects | |
| WO2019118521A1 (en) | Accoustic beamforming | |
| WO2025036543A1 (en) | Devices and methods for binaural audio rendering | |
| Lecomte | ambitools Documentation | |
| HK1248914B (en) | Method and apparatus for generating from an hoa signal representation a mezzanine hoa signal representation | |
| HK1248914A1 (en) | Method and apparatus for generating from an hoa signal representation a mezzanine hoa signal representation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201280032460.1 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12729512 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012729512 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2014517583 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14130074 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2012278094 Country of ref document: AU Date of ref document: 20120615 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20147002760 Country of ref document: KR Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013032878 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112013032878 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131219 |