WO2013000237A1 - 一种矿用不锈钢液压立柱及其加工方法 - Google Patents

一种矿用不锈钢液压立柱及其加工方法 Download PDF

Info

Publication number
WO2013000237A1
WO2013000237A1 PCT/CN2011/082749 CN2011082749W WO2013000237A1 WO 2013000237 A1 WO2013000237 A1 WO 2013000237A1 CN 2011082749 W CN2011082749 W CN 2011082749W WO 2013000237 A1 WO2013000237 A1 WO 2013000237A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
laser
nickel
alloy powder
stainless steel
Prior art date
Application number
PCT/CN2011/082749
Other languages
English (en)
French (fr)
Inventor
李希勇
李伦实
周峰
杜柏奇
杨庆东
苏伦昌
澹台凡亮
董春春
Original Assignee
山东能源机械集团大族再制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东能源机械集团大族再制造有限公司 filed Critical 山东能源机械集团大族再制造有限公司
Publication of WO2013000237A1 publication Critical patent/WO2013000237A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • E21D15/50Component parts or details of props

Definitions

  • the invention relates to a mine supporting device and a processing method thereof, in particular to a mining stainless steel hydraulic column and a processing method thereof adapted to a mine with an excessive pH.
  • the mining hydraulic column is an important support component in the hydraulic support.
  • the surface plating method is usually used to achieve surface anti-rust and anti-corrosion.
  • the invention is to overcome the technical problem that the existing device is easy to corrode and has a short service life, and provides a mining stainless steel hydraulic column which is not easy to corrode and has a long service life and a processing method thereof.
  • the technical solution of the present invention includes the steps of forming a laser beam and a nickel-based alloy powder stream output from the powder feeder to form a spiral scan along the surface of the column of the column body.
  • the laser beam output by the laser head is focused by an integrating mirror to form a rectangular spot of 15-20 mm ⁇ 1.5-2.5 mm, the scanning linear velocity of the laser beam is set to 480-720 mm/min, and the output power of the laser outputting the laser beam is set to 7200 ⁇ 7400W.
  • the nickel-based alloy powder outputted from the powder feeder is set to contain ⁇ 0.15% C, 0.5 to 1.0% Si, 0.4 to 0.8% Mn, 17.5 to 19.5% Cr, 21 to 25% Ni, and the balance Fe.
  • a preferred technical solution of the present invention is to clamp the living column of the column body subjected to rust removal, leveling and texturing to a laser processing machine tool, so that the column of the column body is driven by the spindle C, and the column of the column body is driven.
  • a laser head for outputting a laser beam and a nickel-based alloy powder output nozzle are disposed on the axial center line, and the laser head and the powder feeder move on the X linear axis.
  • the rotation speed of the living column of the column body is set to 0.5 to 3 rpm
  • the moving speed of the laser head and the nickel-based alloy powder powder feeder is set to 0.05 to 0.5 mm/sec.
  • the overlap ratio of the laser cladding layer is set to 50 to 80%.
  • the mesh number of the nickel-based alloy powder is set to -120 to +270 mesh.
  • the output speed of the nickel-based alloy powder is set to 50 to 100 g/min, and the thickness of the laser cladding layer on the column of the column body is set to 0.4 to 0.7 mm.
  • the living column of the laser-clad column body is placed at 10 to 40 ° C for 3 to 6 hours, and then mechanically processed.
  • the invention has a layer of laser cladding layer disposed on the living column of the column body, thereby improving the corrosion resistance of the column of the column body, thereby prolonging the service life of the column.
  • nickel-based alloy powder set to a weight ratio containing ⁇ 0.15% C, 0.5 ⁇ 1.0% Si, 0.4 - 0.8% Mn, 17.5 ⁇ 19.5% Cr, 21 ⁇ 25% Ni and the balance Fe, laser melting
  • the coating quality is good, and the bonding force with the column body is large, and cracks and peeling do not occur.
  • the invention also provides a mining stainless steel hydraulic column, wherein the living column of the column body is provided with a laser cladding layer formed by a laser cladding method for a hydraulic support column.
  • a laser cladding layer having a thickness of 0.4 to 0.7 mm formed by laser cladding of a nickel-based alloy powder is disposed on a column of the column body.
  • Nickel-based alloy powder has low density and good fluidity, and combined with the matrix material by laser heating, it can form a laser cladding layer with good wear resistance, corrosion resistance, strong pressure resistance and red heat.
  • the present invention is a green production that can be remanufactured for recycling.
  • the traditional column column electroplating process has been eliminated, the pollution process has been eliminated, and it is in line with the national circular economy industrial policy.
  • the invention is easy to operate, and forms a high-performance coating with high hardness, no crack and metallurgical bonding with the substrate on the surface of the general metal material, which has good toughness of the column metal and high hardness and high chemical stability of the coating material. Combined with high wear resistance, it achieves the purpose of rust prevention, corrosion resistance and wear resistance.
  • FIG. 1 is a schematic view of a mining stainless steel hydraulic column of the present invention.
  • A The column of the column body 1 of the rust removing, leveling and texturing is clamped to the laser processing machine, and the column of the column body 1 is rotated by the spindle C at a speed of 0.5 rpm, in the column body 1
  • a laser head for outputting a laser beam and a nickel-based alloy powder output nozzle are disposed on the axial center line of the living column, and the laser head and the powder feeder move at a speed of 0.05 mm/sec on the X linear axis, and live on the column body 1
  • a laser cladding layer 2 having a thickness of 0.4 mm was formed on the pillar, and the overlap ratio of the adjacent laser cladding layer 2 was set to 50%.
  • the laser beam is focused by an integrating mirror to form a rectangular spot of 15 mm ⁇ 1.5 mm, the scanning linear velocity of the laser beam is set to 480 mm/min, and the output power of the laser outputting the laser beam is set to 7200 W.
  • the mesh number of the nickel-based alloy powder was set to -120 mesh, and the output speed of the nickel-based alloy powder was set to 50 g/min.
  • E. The column of the laser-clad column body 1 was placed at 10 ° C for 3 hours, and then mechanically processed.
  • the laser cladding layer 2 formed on the column of the column body 1 is a combination of austenite, Leysite and Torrox, which is subjected to a neutral salt spray test for 72 hours in the column body 1 There was no corrosion on the surface of the column. At the same time, after 10,000 tests by the National Quality Supervision and Inspection Center of China National Coal Mine Supporting Equipment, all technical indicators were higher than the design indicators.
  • a second embodiment of a laser cladding method for a mine hydraulic support column the steps of which are: A, clamping the living column of the column body 1 subjected to rust removal, leveling and texturing to a laser processing machine
  • the column of the column body 1 is rotated by a spindle C at a speed of 3 rpm, and a laser head and a nickel-based alloy powder output nozzle for outputting a laser beam are disposed on the axial center line of the column of the column body 1.
  • the laser head and the powder feeder move at a speed of 0.5 mm/sec on the X linear axis, and a laser cladding layer 2 having a thickness of 0.7 mm is formed on the column of the column body 1, and a laser cladding layer adjacent thereto is formed.
  • the overlap ratio of 2 is set to 80%.
  • the laser beam is focused by an integrating mirror to form a rectangular spot of 20 mm ⁇ 2.5 mm, the scanning linear velocity of the laser beam is set to 720 mm/min, and the output power of the laser outputting the laser beam is set to 7400 W.
  • the mesh number of the nickel-based alloy powder was set to +270 mesh, and the output speed of the nickel-based alloy powder was set to 100 g/min.
  • the nickel-based alloy powder is set to contain 0.15% C, 1.0% Si, 0.8% Mn, 19.5% Cr, 25% Ni, and the balance Fe by weight ratio.
  • E. The column of the laser-clad column body 1 was placed at 40 ° C for 6 hours, and then mechanically processed.
  • a third embodiment of a laser cladding method for a mining hydraulic support column the steps of which are: A. clamping the living column of the column body 1 subjected to rust removal, leveling and texturing to a laser processing machine The living column of the column body 1 is rotated by a spindle C at a speed of 1.65 rpm, and a laser head and a nickel-based alloy powder output nozzle for outputting a laser beam are disposed on the axial center line of the column of the column body 1.
  • the laser head and the powder feeder move at a speed of 0.25 mm/sec on the X linear axis, and a laser cladding layer 2 having a thickness of 0.55 mm is formed on the column of the column body 1 with a laser cladding layer adjacent thereto.
  • the lap ratio of 2 is set to 65%.
  • the laser beam is focused by an integrating mirror to form a rectangular spot of 17.5 mm ⁇ 2.0 mm.
  • the scanning linear velocity of the laser beam is set to 600 mm/min, and the output power of the laser outputting the laser beam is set to 7300 W.
  • the mesh number of the nickel-based alloy powder was set to +90 mesh, and the output speed of the nickel-based alloy powder was set to 75 g/min.
  • the nickel-based alloy powder is set to contain 0.11% C, 0.75% Si, 0.6% Mn, 18.5% Cr, 23% Ni, and the balance Fe by weight ratio.
  • E. The column of the laser-clad column body 1 was placed at 25 ° C for 4 hours, and then mechanically processed.
  • a laser cladding layer 2 having a thickness of 0.4 mm formed by laser cladding of a nickel-based alloy powder is disposed on a column of the column body 1.
  • a second embodiment of a mine hydraulic support column is provided with a laser cladding layer 2 having a thickness of 0.7 mm formed by laser cladding of a nickel-based alloy powder on a column of the column body 1.
  • a third embodiment of a mine hydraulic support column is provided with a laser cladding layer 2 having a thickness of 0.55 mm formed by laser cladding of a nickel-based alloy powder on a column of the column body 1.

Abstract

一种矿用液压立柱的激光熔覆方法,包括:使激光束和送粉器输出的镍基合金粉末流束沿立柱本体(1)的活柱的表面形成螺旋状扫描;激光束为15-20mmx1.5-2.5mm的矩形光斑,激光束的扫描线速度设置为480-720mm/min,输出功率设置为7200-7400w;送粉器中输出的镍基合金粉末设置为按重量比,含有≤0.15%C、0.5-1.0%Si、0.4-0.8%Mn、17.5-19.5%Cr、21-25%Ni和余量Fe。还提供了由所述方法加工制成的矿用液压立柱,在立柱本体(1)的活柱上设置有一层厚度为0.4-0.7mm的激光熔覆层(2)。

Description

一种矿用不锈钢液压立柱及其加工方法
技术领域
本发明涉及一种矿用支撑装置及其加工方法,尤其是一种适应于酸碱度超标的矿道中的矿用不锈钢液压立柱及其加工方法。
背景技术
目前,在矿业生产中,为了保证作业安全,需要在矿道中使用矿用液压支架进行支护,矿用液压立柱是液压支架中的一个重要的支撑部件。
在现有的矿用液压立柱中,为了延长立柱的使用寿命,减少立柱表面的腐蚀现象,通常使用表面镀烙方法,来实现表面防生锈、防腐蚀。
但是,由于镀烙层耐磨性差,其寿命为1-1.5年,同时镀烙层容易出现起皮、脱皮现象,使乳化液腐蚀立柱表面,影响液压支架的使用效果,大大地降低了矿用液压立柱的使用寿命。
发明内容
本发明就是为了克服现有装置易腐蚀、使用寿命短的技术问题,提供一种不易腐蚀、使用寿命长的矿用不锈钢液压立柱及其加工方法。
为此,本发明的技术方案包括以下步骤:使激光束和送粉器输出的镍基合金粉末流束沿立柱本体的活柱的表面形成螺旋状扫描。激光头输出的激光束经积分镜聚焦形成为15~20mm×1.5~2.5mm的矩形光斑,激光束的扫描线速度设置为480~720mm/min,输出激光束的激光器的输出功率设置为7200~7400W。送粉器中输出的镍基合金粉末设置为按重量比,含有≤0.15%C、0.5~1.0%Si、0.4~0.8%Mn、17.5~19.5%Cr、21~25%Ni和余量Fe。
本发明优选的技术方案是,把经过除锈、整平和毛化处理的立柱本体的活柱夹装到激光加工机床,使立柱本体的活柱在主轴C的带动下,在立柱本体的活柱的轴向中心线上设置有输出激光束的激光头和镍基合金粉末输出喷嘴,激光头和送粉器在X线性轴上移动。
本发明进一步优选的技术方案是,立柱本体的活柱的转动速度设置为0.5~3转/分钟,激光头和镍基合金粉末送粉器的移动速度设置为0.05~0.5毫米/秒,相邻之间的激光熔覆层的搭接率设置为50~80%。
本发明更进一步优选的技术方案是,镍基合金粉末的目数设置为-120~ +270目。
本发明再进一步优选的技术方案是,镍基合金粉末的输出速度设置为50~100g/min,立柱本体的活柱上的激光熔覆层厚度设置为0.4~0.7mm。
本发明再更进一步优选的技术方案是,还含有一下步骤,把经过激光熔覆的立柱本体的活柱在10~40℃中放置3~6小时后,再进行机械加工。
本发明由于在立柱本体的活柱上设置有一层激光熔覆层,提高了立柱本体的活柱的抗腐蚀性能,因此延长了立柱的使用寿命。同时由于采用了镍基合金粉末设置为按重量比,含有≤0.15%C、0.5~1.0%Si、0.4~0.8%Mn、17.5~19.5%Cr、21~25%Ni和余量Fe,激光熔覆层质量好,与立柱本体的结合力大,不会出现裂纹和起皮等现象。
本发明同时提供一种矿用不锈钢液压立柱,立柱本体的活柱上设置有一层经过用于矿用液压支架立柱的激光熔覆方法形成的激光熔覆层。
本发明优选的技术方案是,在立柱本体的活柱上设置有一层把镍基合金粉末经过激光熔覆形成的厚度为0.4~0.7mm的激光熔覆层。
本发明采用的技术方案具有以下优点:
1.由于设计了在立柱本体的活柱上设置有一层激光熔覆层,提高了立柱本体的活柱的抗腐蚀性能,因此延长了立柱的使用寿命。
2.镍基合金粉末颗粒密度小和流动性好,与基体材料通过激光受热结合可形成耐磨、耐蚀、抗强压和红热性好的强化激光熔覆层。
3.本发明是一种绿色生产,可再制造循环使用。取消了传统立柱活柱电镀工艺,消除了污染工序,符合国家循环经济产业政策。
4.本发明易于操作,在一般的金属材料表面形成一层硬度高、无裂纹且与基体呈冶金结合的高性能涂层,将立柱金属良好的坚韧性和涂层材料的高硬度、高化学稳定性和高耐磨性结合起来,达到防锈、防腐蚀和耐磨的目的。
附图说明
附图1为本发明的矿用不锈钢液压立柱的示意图。
具体实施方式
附图1为本发明的第一个实施例,结合附图1具体说明本实施例,用于矿用液压支架立柱的激光熔覆方法的第一个实施例,其步骤是:A、把经过除锈、整平和毛化处理的立柱本体1的活柱夹装到激光加工机床,使立柱本体1的活柱在主轴C的带动下,按照0.5转/分钟的速度转动,在立柱本体1的活柱的轴向中心线上设置有输出激光束的激光头和镍基合金粉末输出喷嘴,激光头和送粉器在X线性轴上按照0.05毫米/秒的速度移动,在立柱本体1的活柱上形成厚度为0.4mm的激光熔覆层2,相邻之间的激光熔覆层2的搭接率设置为50%。 B、激光束经积分镜聚焦形成15mm×1.5mm的矩形光斑,激光束的扫描线速度设置为480mm/min,输出激光束的激光器的输出功率设置为7200W。
C、镍基合金粉末的目数设置为-120目,镍基合金粉末的输出速度设置为50g/min。D、按重量比,镍基合金粉末设置为含有0.09%C、0.5%Si、0.4%Mn、17.5%Cr、21-25%Ni和余量Fe。E、把经过激光熔覆的立柱本体1的活柱在10℃中放置3小时后,再进行机械加工。
在立柱本体1的活柱上形成的激光熔覆层2,是一种奥氏体、莱氏体和托氏体的组合物,经过72小时的中性盐雾试验,在立柱本体1的活柱的表面上没有出现腐蚀现象,同时经过中国国家煤矿支护设备质量监督检验中心经过10000次的试验,各项技术指标均高于设计指标。
用于矿用液压支架立柱的激光熔覆方法的第二个实施例,其步骤是:A、把经过除锈、整平和毛化处理的立柱本体1的活柱夹装到激光加工机床,使立柱本体1的活柱在主轴C的带动下,按照3转/分钟的速度转动,在立柱本体1的活柱的轴向中心线上设置有输出激光束的激光头和镍基合金粉末输出喷嘴,激光头和送粉器在X线性轴上按照0.5毫米/秒的速度移动,在立柱本体1的活柱上形成厚度为0.7mm的激光熔覆层2,相邻之间的激光熔覆层2的搭接率设置为80%。B、激光束经积分镜聚焦形成20mm×2.5mm的矩形光斑,激光束的扫描线速度设置为720mm/min,输出激光束的激光器的输出功率设置为7400W。C、镍基合金粉末的目数设置为+270目,镍基合金粉末的输出速度设置为100g/min。D、按重量比,镍基合金粉末设置为含有0.15%C、1.0%Si、0.8%Mn、19.5%Cr、25%Ni和余量Fe。E、把经过激光熔覆的立柱本体1的活柱在40℃中放置6小时后,再进行机械加工。
用于矿用液压支架立柱的激光熔覆方法的第三个实施例,其步骤是:A、把经过除锈、整平和毛化处理的立柱本体1的活柱夹装到激光加工机床,使立柱本体1的活柱在主轴C的带动下,按照1.65转/分钟的速度转动,在立柱本体1的活柱的轴向中心线上设置有输出激光束的激光头和镍基合金粉末输出喷嘴,激光头和送粉器在X线性轴上按照0.25毫米/秒的速度移动,在立柱本体1的活柱上形成厚度为0.55mm的激光熔覆层2,相邻之间的激光熔覆层2的搭接率设置为65%。B、激光束经积分镜聚焦形成17.5mm×2.0mm的矩形光斑,激光束的扫描线速度设置为600mm/min,输出激光束的激光器的输出功率设置为7300W。C、镍基合金粉末的目数设置为+90目,镍基合金粉末的输出速度设置为75g/min。D、按重量比,镍基合金粉末设置为含有0.11%C、0.75%Si、0.6%Mn、18.5%Cr、23%Ni和余量Fe。E、把经过激光熔覆的立柱本体1的活柱在25℃中放置4小时后,再进行机械加工。
一种矿用液压支架立柱的第一个实施例,在立柱本体1的活柱上设置有一层把镍基合金粉末经过激光熔覆形成的厚度为0.4mm的激光熔覆层2。
一种矿用液压支架立柱的第二个实施例,在立柱本体1的活柱上设置有一层把镍基合金粉末经过激光熔覆形成的厚度为0.7mm的激光熔覆层2。
一种矿用液压支架立柱的第三个实施例,在立柱本体1的活柱上设置有一层把镍基合金粉末经过激光熔覆形成的厚度为0.55mm的激光熔覆层2。

Claims (8)

  1. 一种矿用不锈钢液压立柱的加工方法,其特征是该方法包括下述步骤:使激光束和送粉器输出的镍基合金粉末流束沿立柱本体的活柱的表面形成螺旋状扫描;激光束经积分镜聚焦形成为15~20mm×1.5~2.5mm的矩形光斑,激光束的扫描线速度设置为480~720mm/min,输出激光束的激光器的输出功率设置为7200~7400W;送粉器中输出的镍基合金粉末设置为按重量比,含有≤0.15%C、0.5-1.0%Si、0.4-0.8%Mn、17.5-19.5%Cr、21-25%Ni和余量Fe。
  2. 根据权利要求1所述的矿用不锈钢液压立柱的加工方法,其特征在于该方法还包括以下步骤:把经过除锈、整平和毛化处理的立柱本体的活柱夹装到激光加工机床,使立柱本体的活柱在主轴C的带动下,在立柱本体的活柱的轴向中心线上设置有输出激光束的激光头和镍基合金粉末输出喷嘴,激光头和送粉器在X线性轴上移动。
  3. 根据权利要求1所述的矿用不锈钢液压立柱的加工方法,其特征在于立柱本体的活柱的转动速度设置为0.5~3转/分钟,激光头和镍基合金粉末送粉器的移动速度设置为0.05~0.5毫米/秒,相邻之间的激光熔覆层的搭接率设置为50~80%。
  4. 根据权利要求1所述的矿用不锈钢液压立柱的加工方法,其特征在于镍基合金粉末的目数设置为-120~+270目。
  5. 根据权利要求1所述的矿用不锈钢液压立柱的加工方法,其特征在于镍基合金粉末的输出速度设置为50~100g/min,立柱本体的活柱上的激光熔覆层厚度设置为0.4~0.7mm。
  6. 根据权利要求1、2、3、4、5之一所述的矿用不锈钢液压立柱的加工方法,其特征该方法还包括如下步骤:把经过激光熔覆的立柱本体的活柱在10~40℃中放置3~6小时后,再进行机械加工。
  7. 一种按照权利要求1、2、3、4或5所制成的矿用不锈钢液压立柱,其特征是立柱本体的活柱上设置有激光熔覆层。
  8. 据权利要求7所述的矿用不锈钢液压立柱,其特征在于在立柱本体的活柱上设置有一层把镍基合金粉末经过激光熔覆形成的厚度为0.4~0.7mm的激光熔覆层。
PCT/CN2011/082749 2011-06-29 2011-11-23 一种矿用不锈钢液压立柱及其加工方法 WO2013000237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110178442.1 2011-06-29
CN 201110178442 CN102242361B (zh) 2011-06-29 2011-06-29 用于矿用液压支架立柱的激光熔覆方法

Publications (1)

Publication Number Publication Date
WO2013000237A1 true WO2013000237A1 (zh) 2013-01-03

Family

ID=44960596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082749 WO2013000237A1 (zh) 2011-06-29 2011-11-23 一种矿用不锈钢液压立柱及其加工方法

Country Status (2)

Country Link
CN (1) CN102242361B (zh)
WO (1) WO2013000237A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522628A (zh) * 2013-08-22 2014-01-22 健雄职业技术学院 抗多碰的镍基复合涂层及其涂覆方法
CN105887080A (zh) * 2016-05-02 2016-08-24 北京工业大学 一种事故容错核燃料包壳TiCrNiAlSi/ZrC涂层及制备方法
CN108165979A (zh) * 2017-12-22 2018-06-15 北京机科国创轻量化科学研究院有限公司 一种用于制造液压支架立柱的超高速率激光熔覆方法
WO2018151917A3 (en) * 2017-02-16 2018-09-27 Caterpillar Inc. Cladding structure and method
CN111575705A (zh) * 2020-06-28 2020-08-25 内蒙古科技大学 一种碳化钨增强镍基复合涂层的制备方法
CN114032545A (zh) * 2021-11-17 2022-02-11 北京北方车辆集团有限公司 一种薄壁减振器缸筒涂层制备方法
CN114160776A (zh) * 2021-12-30 2022-03-11 河南爱钢矿业科技有限公司 一种适应多种介质的全防护液压支架立柱的制造方法
CN114481120A (zh) * 2022-01-07 2022-05-13 营口裕隆光电科技有限公司 一种利用合金粉末激光熔覆修复煤矿支护液压推移杆方法
CN114657557A (zh) * 2022-03-31 2022-06-24 西安必盛激光科技有限公司 一种用于对锅炉管通水的工装及强化锅炉管的方法
CN115125531A (zh) * 2022-07-08 2022-09-30 天津辉锐激光科技有限公司 一种大型桶状工件的激光熔覆方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242361B (zh) * 2011-06-29 2013-08-21 山东能源机械集团大族再制造有限公司 用于矿用液压支架立柱的激光熔覆方法
CN102677043B (zh) * 2012-05-22 2014-10-01 山东能源机械集团大族再制造有限公司 一种液压支架的立柱及其制造方法
CN102676940A (zh) * 2012-05-22 2012-09-19 山东能源机械集团大族再制造有限公司 一种激光熔覆用合金粉末
CN102677045B (zh) * 2012-05-22 2014-10-01 山东能源机械集团大族再制造有限公司 一种激光熔覆方法
CN102677044B (zh) * 2012-05-22 2014-10-01 山东能源机械集团大族再制造有限公司 一种在液压支架的立柱的表面形成激光熔覆层的方法
CN102677048A (zh) * 2012-05-27 2012-09-19 丹阳市宏图机械制造有限公司 高速电机转子的激光修复工艺
CN102677049A (zh) * 2012-05-27 2012-09-19 丹阳市宏图机械制造有限公司 高碳合金轧辊表面的激光修复工艺
CN102677047A (zh) * 2012-05-27 2012-09-19 丹阳市宏图机械制造有限公司 铝箔轧辊裂纹的激光修复工艺
CN102777193B (zh) * 2012-07-31 2014-10-29 山东能源机械集团大族再制造有限公司 一种中空液压支架立柱及其包含该立柱的液压支架
CN103100826B (zh) * 2013-02-06 2016-02-10 王绥义 一种防腐型液压杆的制造方法及设备
CN106756988A (zh) * 2016-11-18 2017-05-31 甘肃兰煤机械制造有限公司 利用光纤激光强化修复矿山机械表面的方法
CN108265287A (zh) * 2017-12-22 2018-07-10 北京机科国创轻量化科学研究院有限公司 一种修复液压支架立柱的方法
CN108559996B (zh) * 2018-03-07 2019-10-29 河南省煤科院耐磨技术有限公司 一种液压支架活柱外表面激光熔覆修复方法
CN109023358A (zh) * 2018-10-16 2018-12-18 宁夏昀启昕机械再制造有限公司 一种矿山液压支架的激光熔覆修复方法及修复粉
CN110055525B (zh) * 2019-03-18 2020-11-03 西安科技大学 矿用液压支架立柱表面激光熔覆温度控制系统以及控制方法
CN113118622B (zh) * 2021-02-21 2022-08-12 陕西天元智能再制造股份有限公司 纯水液压缸立柱的强化处理方法及所述纯水液压缸立柱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532191A (en) * 1982-09-22 1985-07-30 Exxon Research And Engineering Co. MCrAlY cladding layers and method for making same
KR20020087648A (ko) * 2001-05-15 2002-11-23 한국원자력연구소 고에너지빔 클래딩으로 아마코르 엠 재료를 금속 표면에경질 코팅하는 방법
CN101875128A (zh) * 2010-07-02 2010-11-03 山东建能大族激光再制造技术有限公司 矿用液压支架立柱的激光熔覆方法
CN102021568A (zh) * 2010-07-06 2011-04-20 山东建能大族激光再制造技术有限公司 激光强化齿轮件的方法
CN102242361A (zh) * 2011-06-29 2011-11-16 山东能源机械集团大族再制造有限公司 用于矿用液压支架立柱的激光熔覆方法和矿用不锈钢液压立柱

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252297C (zh) * 2003-11-28 2006-04-19 清华大学 激光合成制备金属间化合物及其颗粒增强复合材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532191A (en) * 1982-09-22 1985-07-30 Exxon Research And Engineering Co. MCrAlY cladding layers and method for making same
KR20020087648A (ko) * 2001-05-15 2002-11-23 한국원자력연구소 고에너지빔 클래딩으로 아마코르 엠 재료를 금속 표면에경질 코팅하는 방법
CN101875128A (zh) * 2010-07-02 2010-11-03 山东建能大族激光再制造技术有限公司 矿用液压支架立柱的激光熔覆方法
CN102021568A (zh) * 2010-07-06 2011-04-20 山东建能大族激光再制造技术有限公司 激光强化齿轮件的方法
CN102242361A (zh) * 2011-06-29 2011-11-16 山东能源机械集团大族再制造有限公司 用于矿用液压支架立柱的激光熔覆方法和矿用不锈钢液压立柱

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522628A (zh) * 2013-08-22 2014-01-22 健雄职业技术学院 抗多碰的镍基复合涂层及其涂覆方法
CN105887080A (zh) * 2016-05-02 2016-08-24 北京工业大学 一种事故容错核燃料包壳TiCrNiAlSi/ZrC涂层及制备方法
WO2018151917A3 (en) * 2017-02-16 2018-09-27 Caterpillar Inc. Cladding structure and method
US10479155B2 (en) 2017-02-16 2019-11-19 Caterpillar Inc. Cladding structure and method
CN108165979A (zh) * 2017-12-22 2018-06-15 北京机科国创轻量化科学研究院有限公司 一种用于制造液压支架立柱的超高速率激光熔覆方法
CN111575705A (zh) * 2020-06-28 2020-08-25 内蒙古科技大学 一种碳化钨增强镍基复合涂层的制备方法
CN114032545A (zh) * 2021-11-17 2022-02-11 北京北方车辆集团有限公司 一种薄壁减振器缸筒涂层制备方法
CN114160776A (zh) * 2021-12-30 2022-03-11 河南爱钢矿业科技有限公司 一种适应多种介质的全防护液压支架立柱的制造方法
CN114160776B (zh) * 2021-12-30 2023-02-03 河南爱钢矿业科技有限公司 一种适应多种介质的全防护液压支架立柱的制造方法
CN114481120A (zh) * 2022-01-07 2022-05-13 营口裕隆光电科技有限公司 一种利用合金粉末激光熔覆修复煤矿支护液压推移杆方法
CN114657557A (zh) * 2022-03-31 2022-06-24 西安必盛激光科技有限公司 一种用于对锅炉管通水的工装及强化锅炉管的方法
CN115125531A (zh) * 2022-07-08 2022-09-30 天津辉锐激光科技有限公司 一种大型桶状工件的激光熔覆方法
CN115125531B (zh) * 2022-07-08 2024-03-22 天津辉锐激光科技有限公司 一种大型桶状工件的激光熔覆方法

Also Published As

Publication number Publication date
CN102242361B (zh) 2013-08-21
CN102242361A (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2013000237A1 (zh) 一种矿用不锈钢液压立柱及其加工方法
US5268045A (en) Method for providing metallurgically bonded thermally sprayed coatings
CN101954566B (zh) 冷却器中钛冷却管与散热片及钛管板的固定连接工艺
CN110835754A (zh) 一种碳钢表面高熵合金涂层的制备方法
CN103882324A (zh) 一种防腐耐磨涂层及其涂覆方法
CN110252833B (zh) 70公斤以下、70公斤及以上高强钢焊丝拉拔工艺及应用
CN110592580B (zh) 一种激光熔覆侧导板及其加工方法
CN106381488B (zh) 连铸结晶器足辊涂层的制备方法
CN104120424B (zh) 铁基激光熔覆粉末及熔覆层制备方法
CN113832461A (zh) 激光熔覆用镍基合金粉末、陶瓷颗粒增强复合粉末及应用
CN108165872A (zh) 一种专用于线棒材精轧机架的冷硬铸铁轧辊及其生产工艺
CN113913813A (zh) 一种用于修复铬钼合金的纳米强化Inconel718激光涂层性能的方法
CN111299902B (zh) 一种用于熔化极气体保护焊的高耐蚀性铝青铜焊丝
CN110052610B (zh) 一种铸铁轧辊的增材制造方法
CN109023356B (zh) Q235钢氩弧熔覆FeCoCrMoCBY合金涂层的研究
CN103695900A (zh) 制备耐磨耐腐蚀杆件的方法
AU2016101921A4 (en) A method for cladding an inner hold of an upright cylinder
CN113493913A (zh) 一种陶瓷颗粒强化高熵合金熔覆层的方法和应用
CN109530883A (zh) 一种不锈钢310s焊接工艺
WO2021103120A1 (zh) 一种高耐磨耐腐蚀等离子熔覆金属涂层及其制备方法
KR20150090887A (ko) 방전가공을 위한 와이어 전극
WO2017036054A1 (zh) 深海石油钻采设备用高性能钛连接密封环及加工方法
CN115058627A (zh) 高速列车制动盘激光熔覆Co基涂层制备方法
CN111621779B (zh) 用于修复飞机起落架内壁的梯度材料的激光复合处理方法
CN111549344A (zh) 一种用于激光熔覆的镍基合金粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868745

Country of ref document: EP

Kind code of ref document: A1