WO2012176942A1 - 전력 공급 시스템 및 방법 - Google Patents

전력 공급 시스템 및 방법 Download PDF

Info

Publication number
WO2012176942A1
WO2012176942A1 PCT/KR2011/004548 KR2011004548W WO2012176942A1 WO 2012176942 A1 WO2012176942 A1 WO 2012176942A1 KR 2011004548 W KR2011004548 W KR 2011004548W WO 2012176942 A1 WO2012176942 A1 WO 2012176942A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
voltage
driving motor
charging
Prior art date
Application number
PCT/KR2011/004548
Other languages
English (en)
French (fr)
Inventor
조동호
서인수
이흥열
이준호
양학진
윤대훈
박영규
김철현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to PCT/KR2011/004548 priority Critical patent/WO2012176942A1/ko
Publication of WO2012176942A1 publication Critical patent/WO2012176942A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electric vehicle power supply system and method of a non-contact magnetic induction charging method, and more particularly, to a non-contact magnetic induction for supplying a driving motor, a battery and a super capacitor by converting the unstable DC voltage received by the regulator into a constant voltage It relates to an electric vehicle power supply system and method of the charging method.
  • An electric vehicle refers to a vehicle that operates by using electricity as a power source, and includes a battery that can be charged as a power source in the vehicle itself, and operates by using electric power supplied from the mounted battery.
  • the electric vehicle is largely composed of an electric motor driven by electricity to drive the electric vehicle, and a battery supplying electricity to the electric motor.
  • the plug-in charging method refers to a method of supplying and charging power to a battery once through a plug-in charging device of an electric vehicle and operating the electric vehicle by using the same.
  • the plug-in charging method takes a long time to charge the battery for an electric vehicle, and the distance driven by charging once is limited. Normally, charging of an electric vehicle takes about 1 to 8 hours, and it is difficult to manage the vehicle safely during such a long charging time.
  • the electric vehicle has to be frequently charged in order to secure the intended travel distance, so the installation of the charging station and the charging system are very important issues in the operation of the electric vehicle.
  • the charging should be performed while being not affected by the external environment such as rain or snow during charging. Furthermore, when the charging system of an electric vehicle is shaped like a current gas station, it cannot meet the demand for charging.
  • An object of the present invention is to convert the unstable DC voltage received by the regulator into a constant voltage and supply it to the driving motor and the battery, to drive the electric vehicle stably, to extend the life of the battery and to improve the charging efficiency non-contact magnetic induction charging method To provide the electric vehicle power supply system.
  • Another object of the present invention is to provide an electric vehicle power supply method of a non-contact magnetic induction charging method for supplying power to the drive motor of the electric vehicle using the power supply system.
  • an electric vehicle power supply system of a non-contact magnetic induction charging method is a system for supplying power to a driving motor for driving an electric vehicle, and is embedded in a road.
  • 2 is disposed between the supercapacitor for supplying charging power and the regulator and the driving motor to convert a DC voltage received from the regulator into a constant voltage, and to distribute the constant voltage to the driving motor, the battery and the supercapacitor. It includes a DC-DC converter.
  • the DC-DC converter is a receiver for receiving the DC voltage from the regulator, a converter for converting the received DC voltage to a constant voltage having a predetermined magnitude, surplus power to the drive motor Power distribution unit for controlling to distribute the constant voltage to the driving motor, the battery and the supercapacitor according to whether or not there is an occurrence, and applying the constant voltage to the driving motor, the battery and the supercapacitor under control of the power distribution unit. And a supply for dispensing.
  • the power distribution unit controls to supply the constant voltage to the drive motor when no surplus power is generated in the drive motor, and when the surplus power is generated in the drive motor, Control to supply the surplus power to the super capacitor.
  • the surplus power when the surplus power is generated in the driving motor, the surplus power is supplied to the supercapacitor when the surplus power exceeds the charge allowable voltage of the battery. If the surplus power does not exceed the charge allowance voltage of the battery, the surplus power is controlled to be supplied to the battery.
  • the electric vehicle power supply method of the non-contact magnetic induction charging method in order to achieve the above objects of the present invention, first collects the AC voltage from the feeder line embedded in the road, Convert AC voltage to DC voltage. The DC voltage is converted into a constant voltage having a constant magnitude. Subsequently, it is determined whether surplus power is generated in the drive motor. As a result of the determination, when surplus power is not generated in the drive motor, the constant voltage is supplied to the drive motor, and when surplus power is generated in the drive motor, the surplus power is supplied to the battery and the super capacitor.
  • At least one of the battery and the super capacitor is the drive motor Supplies additional charging power.
  • the battery drives the first charging power.
  • the super capacitor supplies the second charging power having a larger magnitude per unit time than the first charging power to the driving motor.
  • the surplus power in the step of supplying the surplus power to the battery and the super capacitor, if the surplus power exceeds the charge allowable voltage of the battery and supplies the surplus power to the super capacitor When the surplus power does not exceed the charge allowance voltage of the battery, the surplus power is supplied to the battery.
  • the supercapacitor supplies charging power to the driving motor, thereby efficiently driving and driving the electric vehicle.
  • the battery and the super capacitor selectively supply the charging power to the driving motor under a certain condition, thereby improving the efficiency of driving the electric vehicle and the stability of the driving motor.
  • FIG. 1 is a configuration diagram illustrating an electric vehicle power supply system according to embodiments of the present invention.
  • FIG. 2 is a diagram illustrating the DC-DC converter illustrated in FIG. 1 in detail.
  • FIG. 3 is a flowchart illustrating an electric vehicle power supply method according to embodiments of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • all terms used herein, including technical or scientific terms have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
  • FIG. 1 is a configuration diagram illustrating an electric vehicle power supply system according to embodiments of the present invention.
  • 2 is a configuration diagram for describing in detail the DC-DC converter shown in FIG. 1.
  • an electric vehicle power supply system (hereinafter referred to as “the present system”) of a non-contact magnetic induction charging method according to an embodiment of the present invention is a system for supplying power to a driving motor for driving an electric vehicle.
  • the system 1 includes a pickup module 20, a regulator 30, a DC-DC converter 40, a driving motor 50, a battery 60, and a super capacitor 70.
  • the pickup module 20 collects AC power in the form of a magnetic field from the feed line 10 embedded in the road.
  • the regulator 30 converts AC power collected by the pickup module 20 into DC power.
  • the regulator 30 converts an AC voltage to a DC voltage
  • the DC voltage is a high voltage having a rather unstable and relatively large magnitude.
  • the DC-DC converter 40 is disposed between the regulator 30 and the drive motor 50.
  • the DC-DC converter 40 converts the DC voltage converted by the regulator 30 into a constant voltage.
  • the DC-DC converter 40 converts the unstable DC voltage into a constant voltage having a predetermined magnitude and supplies the same to the driving motor 50.
  • the driving motor 50 may stably drive the electric vehicle by using the constant voltage supplied from the DC-DC converter 40.
  • the DC-DC converter 40 may supply a voltage corresponding to the surplus power to the battery 60 and the super capacitor 70.
  • the DC-DC converter 40 continuously supplies a constant voltage of a constant magnitude to the driving motor 50.
  • the driving motor 50 consumes relatively little power such as driving or stopping the electric vehicle at a constant speed to generate surplus power
  • the DC-DC converter 40 generates surplus power from the battery 60.
  • the super capacitor 70 to charge the battery 60 and the super capacitor 70.
  • the DC-DC converter 40 includes a receiver 41, a converter 42, a power distributor 43, and a supply 44.
  • the receiver 41 receives a DC voltage from the regulator 30.
  • the converter 42 converts the received DC voltage into a constant voltage having a predetermined magnitude.
  • the magnitude of the constant voltage is as large as necessary for the driving motor 50 to drive the electric vehicle.
  • the power distributor 43 controls to distribute the constant voltage to at least one of the driving motor 50, the battery 60, and the super capacitor 70 according to whether the surplus power is generated in the driving motor 50.
  • the power distributor 43 controls to supply a constant voltage to the drive motor 50 when surplus power does not occur in the drive motor 50. That is, when driving the electric vehicle normally, the power distribution unit 43 supplies a constant voltage to the drive motor 50 through the drive control unit 55.
  • the power distributor 43 controls to supply surplus power to the battery 60 and the super capacitor 70.
  • the power distributor 43 may convert the surplus voltage into a supercapacitor when the surplus voltage exceeds the charge allowable voltage of the battery 60. Controlling to supply to 70, and when the surplus voltage does not exceed the charge allowable voltage of the battery 60, and controls to supply the surplus voltage to the battery 60.
  • the supply unit 44 distributes the constant voltage and surplus power to the driving motor 50, the battery 60, and the super capacitor 70 under the control of the power distribution unit 43.
  • the battery 60 additionally supplies the first charging power to the driving motor 50.
  • the battery 60 additionally supplies a voltage charged therein to the driving motor 50.
  • the power to be supplied is defined as first charging power.
  • the super capacitor 70 additionally supplies the second charging power to the driving motor 50.
  • the super capacitor 70 additionally supplies the voltage charged therein to the driving motor 50.
  • the power to be supplied is defined as a second charging power.
  • the magnitude per unit time of the second charging power is greater than the magnitude per unit time of the first charging power. Therefore, when the driving motor 50 requires a relatively larger charging power, the super capacitor 70 additionally supplies the second charging power to the driving motor 50. When the driving motor 50 requires a relatively smaller charging power, the battery 60 additionally supplies the first charging power to the driving motor 50.
  • the reference value for selectively operating the battery 70 and the super capacitor 40 is predetermined by the user, but is determined by the absolute reference.
  • the system 1 can stably drive the driving motor 50 and the electric vehicle by supplying a constant voltage to the driving motor 50 using the DC-DC converter 40.
  • the DC-DC converter 40 supplies surplus power to the battery 60 and the supercapacitor 70 to charge the battery 60 and the supercapacitor 70, thereby providing the battery 60 and the supercapacitor 70. Can extend the life of the product.
  • FIG. 3 is a flowchart illustrating an electric vehicle power supply method according to embodiments of the present invention.
  • the pickup module first collects the AC voltage from the feeder line embedded in the road (S10), the regulator to collect the AC voltage Convert to DC voltage (S20).
  • the DC-DC converter converts the relatively unstable DC voltage into a constant voltage having a constant size (S30).
  • the DC-DC converter determines whether surplus power is generated in the driving motor (S40).
  • the DC-DC converter supplies a constant voltage to the driving motor (S60).
  • the DC-DC converter supplies a constant voltage to the driving motor and the battery and the super capacitor additionally supply charging power to the driving motor (S70).
  • the battery additionally supplies the first charging power to the driving motor.
  • the super capacitor additionally supplies a second charging power having a larger size per unit time than the first charging power to the driving motor.
  • the DC-DC converter charges the battery by supplying surplus power to the battery (S90).
  • the C-DC converter supplies surplus power to the super capacitor, thereby charging the super capacitor (S100).
  • the DC-DC converter supplies a constant voltage to the drive motor, thereby stably driving the drive motor and the electric vehicle.
  • the DC-DC converter supplies and charges surplus power to the battery and the super capacitor, the life of the battery and the super capacitor can be extended.

Abstract

비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법은 전기자동차를 구동하기 위한 구동모터에 전력을 공급하기 위한 것이다. 본 시스템은 도로에 매립된 급전선로로부터 집전 모듈이 집전한 AC 전압을 DC 전압으로 변환하는 레귤레이터, 구동모터로 제1 충전전력을 공급하는 배터리, 구동모터로 제1 충전전력보다 단위 시간당 더 큰 크기를 갖는 제2 충전전력을 공급하는 슈퍼 커패시터, 및 레귤레이터와 구동모터의 사이에 배치되어 레귤레이터로부터 전달받은 DC 전압을 정전압으로 변환하며, 구동모터와 배터리 및 슈퍼 커패시터에 정전압을 분배하는 DC-DC 컨버터를 포함한다. 따라서 구동모터, 배터리에 불안정한 DC 전압을 공급하는 대신에 일정한 크기를 갖는 정전압을 공급함으로써, 전기자동차를 안정성 있게 구동할 수 있으며, 배터리의 수명을 연장시키고 충전 효율을 향상시킬 수 있다.

Description

전력 공급 시스템 및 방법
본 발명은 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법에 관한 것으로, 보다 상세하게는 레귤레이터로 전달받은 불안정한 DC 전압을 정전압으로 변환하여 구동모터, 배터리 및 슈퍼 커패시터에 공급하기 위한 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법에 관한 것이다.
경제 발전에 따라 자동차에 대한 수요가 폭발적인 증가세를 보이고 있고, 자동차 수요가 늘어남에 따라 자동차에서 배출되는 배기가스가 환경오염의 주요 원인이 되고 있다.
이에 자동차의 배출가스를 감소시키기 위한 요구가 이어지고 있으며, 배출가스를 줄일 수 있는 자동차의 연구 및 개발이 진행되고 있다. 더 나아가 배출가스를 발생하지 않는 전기 자동차의 상용화가 부분적으로 시도되고 있다.
전기차량은 전기를 전력공급원으로 하여 운행하는 차량을 의미하며, 차량 자체에 전력공급원으로 충전이 가능한 배터리를 탑재하고, 탑재된 배터리에서 공급되는 전력을 이용하여 운행하는 것을 말한다. 이에 전기자동차는 크게 전기에 의해 구동되어 전기 자동차를 운행시키기 위한 전기모터와, 그 전기 모터에 전기를 공급하는 배터리로 구성된다.
최근에는 배터리에 전기를 공급하고 충전하기 위하여 플러그인(PLUG-IN) 충전 방식이 주로 사용되고 개발되어 왔다. 상기 플러그인 방식은 전기자동차의 플러그인 충전 장치를 통하여 배터리에 전원을 1회적으로 공급 충전하고 이를 이용하여 전기자동차를 운행하는 방식을 말한다.
상기 플러그인 충전 방식은 전기자동차용 배터리의 충전시간이 오래 걸리며, 한번 충전에 의해 주행하는 거리가 제한적이다. 보통 전기 자동차의 충전은 1 ~ 8 시간 정도 소요되는데, 이와 같은 긴 충전 시간 동안 차량을 안전하게 관리하는 것도 어려운 문제점이 발생한다.
따라서 전기자동차는 목적한 이동거리를 확보하기위해서는 자주 충전을 해주어야만 하므로, 전기차량의 운행에 있어서 충전소의 설치 및 충전시스템은 아주 중요한 문제이다.
또한, 충전하는 동안에 비, 눈 등의 외부 환경에 영향을 받지 않는 상태에서 충전이 이루어져야 한다. 나아가, 전기 자동차의 충전 시스템을 현재의 주유소와 같은 형태로 만드는 경우에는 충전 수요를 감당할 수가 없다.
이와 같이, 전기 자동차의 상용화를 위해서는 그에 적합한 충전 시스템 및 전력 공급 시스템이 구축될 필요성이 대두되고 있다.
본 발명의 일 목적은 레귤레이터로 전달받은 불안정한 DC 전압을 정전압으로 변환하여 구동모터와 배터리에 공급함으로써, 전기자동차를 안정적으로 구동하고 배터리의 수명을 연장시키며 충전 효율을 향상시키기 위한 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템을 제공하는 것이다.
본 발명의 다른 목적은 상기 전력 공급 시스템을 이용하여 전기자동차의 구동모터에 전력을 공급하기 위한 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법을 제공하는 것이다.
상술한 본 발명의 일 목적들을 달성하기 위하여 본 발명의 실시예들에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템은 전기자동차를 구동하기 위한 구동모터에 전력을 공급하는 시스템으로서, 도로에 매립된 급전선로로부터 집전 모듈이 집전한 AC 전압을 DC 전압으로 변환하는 레귤레이터, 상기 구동모터로 제1 충전전력을 공급하는 배터리, 상기 구동모터로 상기 제1 충전전력보다 단위 시간당 더 큰 크기를 갖는 제2 충전전력을 공급하는 슈퍼 커패시터, 및 상기 레귤레이터와 상기 구동모터의 사이에 배치되어 상기 레귤레이터로부터 전달받은 DC 전압을 정전압으로 변환하며, 상기 구동모터, 상기 배터리 및 상기 슈퍼 커패시터에 상기 정전압을 분배하는 DC-DC 컨버터를 포함한다.
본 발명의 실시예들에 있어서, 상기 DC-DC 컨버터는 상기 레귤레이터로부터 상기 DC 전압을 전달받기 위한 수신부, 상기 전달받은 DC 전압을 일정한 크기를 갖는 정전압으로 변환하는 변환부, 상기 구동모터에 잉여 전력이 발생하는지 여부에 따라 상기 구동모터와 상기 배터리 및 상기 슈퍼 커패시터에 상기 정전압을 분배하도록 제어하는 전력 분배부, 및 상기 전력 분배부의 제어에 따라 상기 구동모터와 상기 배터리 및 상기 슈퍼 커패시터에 상기 정전압을 분배하는 공급부를 포함한다.
본 발명의 실시예들에 있어서, 상기 전력 분배부는 상기 구동모터에 잉여 전력이 발생하지 않는 경우에는 상기 구동모터에 상기 정전압을 공급하도록 제어하며, 상기 구동모터에 잉여 전력이 발생하는 경우 상기 배터리와 슈퍼 커패시터에 상기 잉여 전력을 공급하도록 제어한다.
본 발명의 실시예들에 있어서, 상기 전력 분배부는 상기 구동모터에 잉여 전력이 발생하는 경우에, 상기 잉여 전력이 상기 배터리의 충전 허용 전압을 초과하는 경우에는 상기 잉여 전력을 상기 슈퍼 커패시터에 공급하도록 제어하고, 상기 잉여 전력이 상기 배터리의 충전 허용 전압을 초과하지 않는 경우에는 상기 잉여전력을 상기 배터리에 공급하도록 제어한다.
상술한 본 발명의 다른 목적들을 달성하기 위하여 본 발명의 실시예들에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법에 따르면, 먼저 도로에 매립된 급전선로로부터 AC 전압을 집전하고, 상기 집전한 AC 전압을 DC 전압으로 변환한다. 그리고 상기 DC 전압을 일정한 크기를 갖는 정전압으로 변환한다. 이어서, 상기 구동모터에 잉여 전력이 발생하는지 여부를 판단한다. 상기 판단 결과, 상기 구동모터에 잉여 전력이 발생하지 않는 경우에는 상기 정전압을 상기 구동모터에 공급하고, 상기 구동모터에 잉여 전력이 발생하는 경우 상기 잉여 전력을 배터리와 슈퍼 커패시터에 공급한다.
본 발명의 실시예들에 있어서, 상기 정전압을 상기 구동모터에 공급하는 단계에서, 상기 구동모터가 상기 전기자동차를 구동하기 위한 전력이 부족한 경우, 상기 배터리와 상기 슈퍼 커패시터 중 적어도 하나가 상기 구동모터로 충전전력을 추가적으로 공급한다.
예를 들어, 상기 충전전력을 상기 구동모터에 추가적으로 공급하는 단계에서, 사전에 설정된 값을 기준으로 상기 구동모터가 상대적으로 큰 충전전력이 필요하지 않은 경우에는 상기 배터리가 제1 충전전력을 상기 구동모터에 공급하고, 상기 구동모터가 상대적으로 큰 충전전력이 필요한 경우에는 상기 슈퍼 커패시터가 상기 제1 충전전력보다 단위 시간당 더 큰 크기를 갖는 제2 충전전력을 상기 구동모터에 공급한다.
본 발명의 실시예들에 있어서, 상기 잉여 전력을 상기 배터리와 상기 슈퍼 커패시터에 공급하는 단계에서, 상기 잉여 전력이 상기 배터리의 충전 허용 전압을 초과하는 경우에는 상기 잉여 전력을 상기 슈퍼 커패시터에 공급하고, 상기 잉여 전력이 상기 배터리의 충전 허용 전압을 초과하지 않는 경우에는 상기 잉여 전력을 상기 배터리에 공급한다.
이상에서 설명한 바와 같은 본 발명에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법에 따르면 다음과 같은 효과가 있다.
첫째, 레귤레이터에서 공급되는 불안정한 DC 전압을 일정한 크기를 갖는 정전압으로 변환하여 구동모터에 공급함으로써, 전기자동차를 안정적으로 구동시킬 수 있다.
둘째, 일정한 크기를 갖는 정전압을 이용하여 배터리를 충전함으로써, 배터리의 수명을 연장할 수 있다.
셋째, 전기자동차가 급가속, 급출발과 같이 상대적으로 큰 전력이 필요한 경우에 슈퍼 커패시터가 구동모터에 충전전력을 공급함으로써, 전기자동차의 구동 및 운전을 효율적으로 할 수 있다.
넷째, 일정한 조건 하에서 배터리와 슈퍼 커패시터가 구동모터에 선택적으로 충전전력을 공급함으로써, 전기자동차의 운전의 효율성 및 구동모터의 안정성의 향상을 도모할 수 있다.
도 1은 본 발명의 실시예들에 따른 전기자동차 전력 공급 시스템을 설명하기 위한 구성도이다.
도 2는 도 1에 도시된 DC-DC 컨버터를 구체적으로 설명하기 위한 구성도이다.
도 3은 본 발명의 실시예들에 따른 전기자동차 전력 공급 방법을 설명하기 위한 순서도이다.
첨부한 도면을 참조하여 본 발명의 실시예들에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나, 개략적인 구성을 이해하기 위하여 실제보다 축소하여 도시한 것이다.
또한, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 실시예들에 따른 전기자동차 전력 공급 시스템을 설명하기 위한 구성도이다. 그리고 도 2는 도 1에 도시된 DC-DC 컨버터를 구체적으로 설명하기 위한 구성도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템(이하 '본 시스템'이라고 한다)은 전기자동차를 구동하기 위한 구동모터에 전력을 공급하는 시스템이다.
이에 본 시스템(1)은 픽업모듈(20), 레귤레이터(30), DC-DC 컨버터(40), 구동모터(50), 배터리(60) 및 슈퍼 커패시터(70)를 포함한다.
픽업모듈(20)은 도로에 매립된 급전선로(10)로부터 AC 전원을 자기장의 형태로 집전한다.
레귤레이터(30)는 픽업모듈(20)이 집전한 AC 전원을 DC 전원으로 변환한다. 한편, 레귤레이터(30)는 AC 전압을 DC 전압으로 변환할 때, 상기 DC 전압은 다소 불안정하고 상대적으로 큰 크기를 갖는 고전압이다.
DC-DC 컨버터(40)는 레귤레이터(30)와 구동모터(50)의 사이에 배치된다. 본 발명의 실시예들에 있어서, DC-DC 컨버터(40)는 레귤레이터(30)가 변환한 DC 전압을 정전압으로 변환한다. 그리고 DC-DC 컨버터(40)는 불안정한 DC 전압을 일정한 크기를 갖는 정전압으로 변환하여 구동모터(50)로 공급한다.
이에 구동모터(50)는 DC-DC 컨버터(40)로부터 공급받은 정전압을 이용하여 전기자동차를 안정적으로 구동할 수 있다.
또한, DC-DC 컨버터(40)는 구동모터(50)에 잉여 전력이 발생하는 경우, 잉여 전력에 대응하는 만큼의 전압을 배터리(60)와 슈퍼 커패시터(70)에 공급할 수 있다. 예를 들어, DC-DC 컨버터(40)는 일정한 크기의 정전압을 구동모터(50)로 계속적으로 공급한다. 이 때, 구동모터(50)는 정속도로 전기자동차를 구동하거나 정지한 상태 등과 같이 전력을 상대적으로 적게 소모하여 잉여 전력이 발생하는 경우에, DC-DC 컨버터(40)는 잉여 전력을 배터리(60) 또는 슈퍼 커패시터(70)에 공급하여 배터리(60) 및 슈퍼 커패시터(70)를 충전한다.
도 2를 참조하면, DC-DC 컨버터(40)는 수신부(41), 변환부(42), 전력 분배부(43) 및 공급부(44)를 포함한다.
수신부(41)는 레귤레이터(30)로부터 DC 전압을 전달받는다.
변환부(42)는 상기 전달받은 DC 전압을 일정한 크기를 갖는 정전압으로 변환
한다. 이 때, 정전압의 크기는 구동모터(50)가 전기자동차의 구동에 필요한 만큼의
전압으로서, 사전에 설정된 크기로 정해질 것이다.
전력 분배부(43)는 구동모터(50)에 잉여 전력이 발생하는지 여부에 따라 구동모터(50)와 배터리(60) 및 슈퍼 커패시터(70) 중 적어도 어느 하나에 정전압을 분배하도록 제어한다. 예를 들어, 전력 분배부(43)는 구동모터(50)에 잉여 전력이 발생하지 않는 경우에는 구동모터(50)에 정전압을 공급하도록 제어한다. 즉, 전기자동차를 정상적으로 구동하는 경우, 전력 분배부(43)는 정전압을 구동제어부(55)를 통하여 구동모터(50)에 공급한다.
한편, 구동모터(50)에 잉여 전력이 발생하는 경우, 전력 분배부(43)는 배터리(60)와 슈퍼 커패시터(70)에 잉여 전력을 공급하도록 제어한다.
본 발명의 실시예들에 있어서, 구동모터(50)에 잉여 전력이 발생하는 경우, 전력 분배부(43)는 잉여 전압이 배터리(60)의 충전 허용 전압을 초과하는 경우에는 잉여 전압을 슈퍼 커패시터(70)에 공급하도록 제어하고, 잉여 전압이 배터리(60)의 충전 허용 전압을 초과하지 않는 경우에는 잉여 전압을 배터리(60)에 공급하도록 제어한다.
공급부(44)는 전력 분배부(43)의 제어에 따라 구동모터(50)와 배터리(60) 및 슈퍼 커패시터(70)에 정전압과 잉여 전력을 분배한다.
다시 도 1을 참조하면, 배터리(60)는 구동모터(50)로 제1 충전전력을 추가적으로 공급한다. 예를 들어, 구동모터(50)가 전기자동차를 구동에 더 많은 전력이 필요한 경우, 배터리(60)는 내부에 충전된 전압을 추가적으로 구동모터(50)에 공급한다. 이 때, 공급하는 전력을 제1 충전전력이라 정의한다.
슈퍼 커패시터(70)는 구동모터(50)로 제2 충전전력을 추가적으로 공급한다. 예를 들어, 구동모터(50)가 전기자동차를 구동에 더 많은 전력이 필요한 경우, 슈퍼 커패시터(70)는 내부에 충전된 전압을 추가적으로 구동모터(50)에 공급한다. 이때, 공급하는 전력을 제2 충전전력이라 정의한다.
본 발명의 실시예들에 있어서, 제2 충전전력의 단위 시간당 크기가 제1 충전 전력의 단위 시간당 크기보다 더 크다. 따라서 구동모터(50)가 상대적으로 더 큰 충전전력을 요하는 경우에는 슈퍼 커패시터(70)가 제2 충전전력을 구동모터(50)에 추가적으로 공급한다. 그리고 구동모터(50)가 상대적으로 더 작은 충전전력을 요하는 경우에는 배터리(60)가 제1 충전전력을 구동모터(50)에 추가적으로 공급한다.
이 때, 배터리(70)와 슈퍼 커패시터(40)가 선택적으로 동작하기 위한 기준값은 사용자에 의하여 사전에 정하여지는 것이지 절대적인 기준에 의하여 정하여지는 것은
아니라고 할 것이다.
이와 같이, 본 시스템(1)은 DC-DC 컨버터(40)를 이용하여 구동모터(50)로 정전압을 공급함으로써, 구동모터(50)와 전기자동차를 안정적으로 구동할 수 있다. 또한, DC-DC 컨버터(40)가 배터리(60)와 슈퍼 커패시터(70)에 잉여 전력을 공급하여 배터리(60)와 슈퍼 커패시터(70)를 충전함으로써, 배터리(60)와 슈퍼 커패시터(70)의 수명을 연장시킬 수 있다.
도 3은 본 발명의 실시예들에 따른 전기자동차 전력 공급 방법을 설명하기 위한 순서도이다.
도 3을 참조하면, 본 발명의 실시예들에 따른 전기자동차 전력 공급 방법에 따르면, 먼저 픽업모듈이 도로에 매립된 급전선로로부터 AC 전압을 집전하고(S10), 레귤레이터가 상기 집전한 AC 전압을 DC 전압으로 변환한다(S20).
이어서, DC-DC 컨버터가 상대적으로 불안정한 DC 전압을 일정한 크기를 갖는 정전압으로 변환한다(S30).
그리고 DC-DC 컨버터는 구동모터에 잉여 전력이 발생하는지 여부를 판단한다(S40).
구동모터에 잉여 전력이 발생하는지 여부의 판단 결과, 구동모터에 잉여 전력이 발생하지 않는 경우에는 구동모터에 전력이 부족한지 여부를 다시 판단한다(S50).
구동모터에 전력이 부족한지 여부의 판단 결과, 구동모터에 전력이 부족하지 않는 경우에는 DC-DC 컨버터는 정전압을 구동모터로 공급한다(S60).
만일 구동모터에 전력이 부족한지 여부의 판단 결과, 구동모터에 전력이 부족한 경우에는, DC-DC 컨버터가 정전압을 구동모터로 공급하고 배터리와 슈퍼 커패시터가 충전전력을 구동모터에 추가적으로 공급한다(S70). 이 때, 사전에 설정된 값을 기준으로 구동모터가 상대적으로 큰 충전전력이 필요하지 않는 경우에는 배터리가 제1 충전전력을 구동모터에 추가적으로 공급한다. 그리고 구동모터가 상대적으로 큰 충전전력이 필요한 경우에는 슈퍼 커패시터가 제1 충전전력보다 단위 시간당 큰 크기를 갖는 제2 충전전력을 구동모터에 추가적으로 공급한다.
한편, 구동모터에 잉여 전력이 발생하는지 여부의 판단 결과, 구동모터에 잉여 전력이 발생하는 경우에는, 잉여 전력이 배터리의 충전 허용 전압의 이내인지 여부를 다시 판단한다(S80).
판단 결과, 잉여 전력이 배터리의 충전 허용 전압의 이내인 경우, DC-DC 컨버터는 잉여 전력을 배터리에 공급함으로써, 배터리를 충전한다(S90).
판단 결과, 잉여 전력이 배터리의 충전 허용 전압의 이내가 아닌 경우, C-DC 컨버터는 잉여 전력을 슈퍼 커패시터에 공급함으로써, 슈퍼 커패시터를 충전한다(S100).
이와 같은 방법에 따르면, DC-DC 컨버터가 구동모터로 정전압을 공급함으로써, 구동모터와 전기자동차를 안정적으로 구동할 수 있다. 또한, DC-DC 컨버터가 배터리와 슈퍼 커패시터에 잉여 전력을 공급하여 충전함으로써, 배터리와 슈퍼 커패시터의 수명이 연장될 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (9)

  1. 구동모터에 전력을 공급하는 시스템에 있어서,
    집전 모듈이 집전한 AC 전압을 DC 전압으로 변환하는 레귤레이터;
    상기 구동모터로 제1 충전전력을 공급하는 배터리; 및
    상기 레귤레이터와 상기 구동모터의 사이에 배치되어 상기 레귤레이터로부터 전달받은 DC 전압을 정전압으로 변환하며, 상기 구동모터 및 상기 배터리에 상기 정전압을 분배하는 DC-DC 컨버터를 포함하는 전력 공급 시스템.
  2. 제1항에 있어서, 상기 DC-DC 컨버터는
    상기 레귤레이터로부터 상기 DC 전압을 전달받기 위한 수신부;
    상기 전달받은 DC 전압을 일정한 크기를 갖는 정전압으로 변환하는 변환부;
    상기 구동모터에 잉여 전력이 발생하는지 여부에 따라 상기 구동모터와 상기 배터리 및 상기 슈퍼 커패시터에 상기 정전압을 분배하도록 제어하는 전력 분배부; 및
    상기 전력 분배부의 제어에 따라 상기 구동모터와 상기 배터리 및 상기 슈퍼 커패시터에 상기 정전압을 분배하는 공급부를 포함하는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템.
  3. 제2항에 있어서, 상기 전력 분배부는
    상기 구동모터에 잉여 전력이 발생하지 않는 경우에는 상기 구동모터에 상기
    정전압을 공급하도록 제어하며,
    상기 구동모터에 잉여 전력이 발생하는 경우 상기 배터리와 슈퍼 커패시터에
    상기 잉여 전력을 공급하도록 제어하는 것을 특징으로 하는 비접촉 자기 유도 충전
    방식의 전기자동차 전력 공급 시스템.
  4. 제3항에 있어서, 상기 전력 분배부는
    상기 구동모터에 잉여 전력이 발생하는 경우에, 상기 잉여 전력이 상기 배터
    리의 충전 허용 전압을 초과하는 경우에는 상기 잉여 전력을 상기 슈퍼 커패시터에
    공급하도록 제어하고,
    상기 잉여 전력이 상기 배터리의 충전 허용 전압을 초과하지 않는 경우에는
    상기 잉여 전력을 상기 배터리에 공급하도록 제어하는 것을 특징으로 하는 비접촉
    자기 유도 충전 방식의 전기자동차 전력 공급 시스템.
  5. 구동모터에 전력을 공급하는 방법에 있어서,
    급전선로로부터 AC 전압을 집전하는 단계;
    상기 집전한 AC 전압을 DC 전압으로 변환하는 단계;
    상기 DC 전압을 일정한 크기를 갖는 정전압으로 변환하는 단계;
    상기 구동모터에 잉여 전력이 발생하는지 여부를 판단하는 단계;
    상기 판단 결과, 상기 구동모터에 잉여 전력이 발생하지 않는 경우에는 상기 정전압을 상기 구동모터에 공급하는 단계; 및
    상기 판단 결과, 상기 구동모터에 잉여 전력이 발생하는 경우 상기 잉여 전력을 배터리에 공급하는 단계를 포함하는 전력 공급 방법.
  6. 제5항에 있어서, 상기 정전압을 상기 구동모터에 공급하는 단계는
    상기 구동모터가 상기 정전압을 이용하여 상기 전기자동차를 구동하기 위한 전력이 부족한지 여부를 판단하는 단계;
    상기 판단 결과, 상기 구동모터에 전력이 부족하지 않은 경우에는 상기 정전압을 상기 구동모터에 공급하는 단계; 및
    상기 판단 결과, 상기 구동모터에 전력이 부족한 경우에는 상기 배터리와 상기 슈퍼 커패시터 중 적어도 하나가 충전전력을 상기 구동모터에 추가적으로 공급하는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법.
  7. 제6항에 있어서, 상기 충전전력을 상기 구동모터에 공급하는 단계는
    사전에 설정된 값을 기준으로 상기 구동모터가 상대적으로 큰 충전전력이 필요하지 않은 경우에는 상기 배터리가 제1 충전전력을 상기 구동모터에 공급하는 단계; 및
    상기 구동모터가 상대적으로 큰 충전전력이 필요한 경우에는 상기 슈퍼 커패시터가 상기 제1 충전전력보다 단위 시간당 더 큰 크기를 갖는 제2 충전전력을 상기 구동모터에 공급하는 단계로 이루어진 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법.
  8. 제5항에 있어서, 상기 잉여 전력을 상기 배터리와 상기 슈퍼 커패시터에 공급하는 단계는
    상기 잉여 전력이 상기 배터리의 충전 허용 전압을 초과하는 경우에는 상기 잉여 전력을 상기 슈퍼 커패시터에 공급하는 단계; 및
    상기 잉여 전력이 상기 배터리의 충전 허용 전압을 초과하지 않는 경우에는 상기 잉여 전력을 상기 배터리에 공급하는 단계를 포함하는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법.
  9. 제1항에 있어서,
    상기 구동모터로 상기 제1 충전전력보다 단위 시간당 더 큰 크기를 갖는 제2 충전전력을 공급하는 슈퍼 커패시터를 더 포함하고,
    상기 DC-DC 컨버터는
    상기 정전압을 상기 슈퍼 커패시터에 상기 정전압을 분배하는 것을 특징으로 하는 전력 공급 시스템.
PCT/KR2011/004548 2011-06-22 2011-06-22 전력 공급 시스템 및 방법 WO2012176942A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/004548 WO2012176942A1 (ko) 2011-06-22 2011-06-22 전력 공급 시스템 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/004548 WO2012176942A1 (ko) 2011-06-22 2011-06-22 전력 공급 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2012176942A1 true WO2012176942A1 (ko) 2012-12-27

Family

ID=47422756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004548 WO2012176942A1 (ko) 2011-06-22 2011-06-22 전력 공급 시스템 및 방법

Country Status (1)

Country Link
WO (1) WO2012176942A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170151887A1 (en) * 2015-11-28 2017-06-01 Honda Motor Co., Ltd. Power supply system, transportation device, and power transmission method
CN106936312A (zh) * 2015-12-29 2017-07-07 重庆宁来科贸有限公司 一种备用精准的电源方案
CN109866622A (zh) * 2019-03-26 2019-06-11 西安电子科技大学芜湖研究院 一种基于快充电池的高效率能量回收系统
US10819132B2 (en) 2017-08-04 2020-10-27 Deltran Operations Usa, Inc. Device with battery charger system and engine start system formed from high frequency transformers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006269A (ko) * 2001-07-12 2003-01-23 현대자동차주식회사 슈퍼 커패시터를 구비한 에너지 저장 시스템의 제어 방법
JP2006246700A (ja) * 2001-12-25 2006-09-14 Toshiba Corp 電力変換装置
JP2008017681A (ja) * 2006-07-10 2008-01-24 Toyota Motor Corp 車両の電力制御装置
KR20080040271A (ko) * 2006-11-02 2008-05-08 한국철도기술연구원 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006269A (ko) * 2001-07-12 2003-01-23 현대자동차주식회사 슈퍼 커패시터를 구비한 에너지 저장 시스템의 제어 방법
JP2006246700A (ja) * 2001-12-25 2006-09-14 Toshiba Corp 電力変換装置
JP2008017681A (ja) * 2006-07-10 2008-01-24 Toyota Motor Corp 車両の電力制御装置
KR20080040271A (ko) * 2006-11-02 2008-05-08 한국철도기술연구원 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170151887A1 (en) * 2015-11-28 2017-06-01 Honda Motor Co., Ltd. Power supply system, transportation device, and power transmission method
US10538167B2 (en) * 2015-11-28 2020-01-21 Honda Motor Co., Ltd. Power supply system, transportation device, and power transmission method
CN106936312A (zh) * 2015-12-29 2017-07-07 重庆宁来科贸有限公司 一种备用精准的电源方案
CN106936312B (zh) * 2015-12-29 2019-03-15 重庆宁来科贸有限公司 一种备用的电源方法
US10819132B2 (en) 2017-08-04 2020-10-27 Deltran Operations Usa, Inc. Device with battery charger system and engine start system formed from high frequency transformers
CN109866622A (zh) * 2019-03-26 2019-06-11 西安电子科技大学芜湖研究院 一种基于快充电池的高效率能量回收系统
CN109866622B (zh) * 2019-03-26 2021-06-04 西安电子科技大学芜湖研究院 一种基于快充电池的高效率能量回收系统

Similar Documents

Publication Publication Date Title
JP6459085B2 (ja) 充電設備及びエネルギーマネジメント方法
KR101583340B1 (ko) 전기자동차의 배터리 제어장치 및 그 제어방법
AU2015100502A4 (en) A compound power system for an electrical vehicle
KR20180130476A (ko) 고전압 충전 부스터 및 직류 충전 필라에서 직류 견인 배터리를 충전하기 위한 방법 그리고 상응하는 전기 차량
US20150306973A1 (en) Battery charging system for electric vehicle
KR101795080B1 (ko) 차량의 배터리 충전시스템 및 충전방법
KR101755732B1 (ko) 차량의 배터리 충전시스템 및 충전방법
US20090250999A1 (en) Micro-hybrid device for motor vehicle
WO2011128750A3 (en) Power supply system and vehicle equipped with power supply system
WO2012176942A1 (ko) 전력 공급 시스템 및 방법
US8836271B2 (en) Method and system for charging transportation vehicle without contact wire
WO2012176943A1 (ko) 전력 공급 시스템 및 방법
KR20110041876A (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템
EP1800378B1 (en) Vehicle and power unit for it
CN102468519A (zh) 延长插电式混合动力车电池寿命的装置与方法
KR101219388B1 (ko) 차량용 태양전지 시스템
KR101141694B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법
KR20140082227A (ko) 전기자동차의 ldc 제어장치 및 그 방법
KR101134562B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법
KR101175358B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템
KR101018438B1 (ko) 전기자동차용 고전압과 저전압의 분리 제어 시스템
KR20160126338A (ko) Ldc 출력 전압을 제어하는 시스템 및 방법
KR101187449B1 (ko) 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 방법
CN102582461A (zh) 一种增程式c+b动力系统
KR101146644B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868146

Country of ref document: EP

Kind code of ref document: A1