WO2012176943A1 - 전력 공급 시스템 및 방법 - Google Patents

전력 공급 시스템 및 방법 Download PDF

Info

Publication number
WO2012176943A1
WO2012176943A1 PCT/KR2011/004549 KR2011004549W WO2012176943A1 WO 2012176943 A1 WO2012176943 A1 WO 2012176943A1 KR 2011004549 W KR2011004549 W KR 2011004549W WO 2012176943 A1 WO2012176943 A1 WO 2012176943A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
driving
driving motor
charged
battery
Prior art date
Application number
PCT/KR2011/004549
Other languages
English (en)
French (fr)
Inventor
조동호
서인수
이흥열
이준호
양학진
윤대훈
박영규
김철현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to PCT/KR2011/004549 priority Critical patent/WO2012176943A1/ko
Publication of WO2012176943A1 publication Critical patent/WO2012176943A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electric vehicle power supply system and method of a non-contact magnetic induction charging method, and more particularly, to a non-contact magnetic induction charging method for supplying a drive motor and a battery by converting an unstable DC voltage received by a regulator into a constant voltage An electric vehicle power supply system and method.
  • An electric vehicle refers to a vehicle that operates by using electricity as a power source, and includes a battery that can be charged as a power source in the vehicle itself, and operates by using electric power supplied from the mounted battery.
  • the electric vehicle is largely composed of an electric motor driven by electricity to drive the electric vehicle, and a battery supplying electricity to the electric motor.
  • the plug-in charging method refers to a method of supplying and charging power to a battery once through a plug-in charging device of an electric vehicle and operating the electric vehicle by using the same.
  • the plug-in charging method takes a long time to charge the battery for an electric vehicle, and the distance driven by charging once is limited. Normally, charging of an electric vehicle takes about 1 to 8 hours, and it is difficult to manage the vehicle safely during such a long charging time.
  • the electric vehicle has to be frequently charged in order to secure the intended travel distance, so the installation of the charging station and the charging system are very important issues in the operation of the electric vehicle.
  • the charging should be performed while being not affected by the external environment such as rain or snow during charging. Furthermore, when the charging system of an electric vehicle is shaped like a current gas station, it cannot meet the demand for charging.
  • An object of the present invention is to convert the unstable DC voltage received by the regulator to a constant voltage to supply the drive motor and the battery, to drive the electric vehicle stably and to supply electric vehicle power of the non-contact magnetic induction charging method to extend the life of the battery To provide a system.
  • Another object of the present invention is to provide an electric vehicle power supply method of a non-contact magnetic induction charging method for supplying power to the drive motor of the electric vehicle using the power supply system.
  • an electric vehicle power supply system of a non-contact magnetic induction charging method is a system for supplying power to a driving motor for driving an electric vehicle, which is embedded in a road.
  • the regulator converts the AC voltage collected by the current collecting module from the feeder line to the DC voltage, and is charged with the DC voltage received from the regulator, and when the voltage greater than the driving voltage is required in the driving motor, And a DC-DC converter for converting the charged voltage received from the super capacitor into the driving voltage and supplying the charged voltage to the driving motor.
  • the system may further include a battery that is charged by receiving surplus power from the DC-DC converter when surplus power is generated in the driving motor.
  • the system includes a first diode disposed between the regulator and the supercapacitor, a second diode disposed between the supercapacitor and the DC-DC converter, and the DC-DC converter. And a third diode disposed between the battery and the fourth diode disposed between the battery and the driving motor, wherein the first to fourth diodes block the supplied current from flowing in the reverse direction. .
  • the battery when the current collecting module fails to collect AC voltage from the feed line, the battery supplies a part of the voltage charged therein to the driving motor. The battery supplies the rest of the charged voltage to the super capacitor to charge the super capacitor.
  • the electric vehicle power supply method of the non-contact magnetic induction charging method in order to achieve the above objects of the present invention, first collects the AC voltage from the feeder line embedded in the road, Convert AC voltage to DC voltage. Then, the super capacitor is charged using the DC voltage. Subsequently, it is determined whether a voltage greater than a driving voltage is required in the driving motor. As a result of the determination, when a voltage greater than a driving voltage is required in the driving motor, the super capacitor supplies a voltage charged therein to the driving motor, and when the driving motor does not need a voltage larger than the driving voltage.
  • the supercapacitor supplies a voltage charged therein to the DC-DC converter.
  • the DC-DC converter converts the voltage received from the super capacitor into a driving voltage and supplies the driving voltage to the driving motor.
  • the DC-DC converter determines whether or not surplus power is generated in the drive motor, thereby generating excess power in the drive motor. When the surplus power is supplied to the battery to charge the battery, and if the surplus power does not occur in the drive motor, the drive voltage is supplied to the drive motor.
  • the super capacitor quickly supplies the voltage charged therein to the driving motor, thereby efficiently driving and driving the electric vehicle.
  • the battery can operate the driving motor using the internal charging voltage and charge the supercapacitor in an emergency where power is not supplied from the feeder line, thereby improving the efficiency of electric vehicle operation.
  • FIG. 1 is a configuration diagram illustrating an electric vehicle power supply system according to embodiments of the present invention.
  • FIG. 2 is a flowchart illustrating an electric vehicle power supply method according to embodiments of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • all terms used herein, including technical or scientific terms have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
  • FIG. 1 is a configuration diagram illustrating an electric vehicle power supply system according to embodiments of the present invention.
  • an electric vehicle power supply system (hereinafter referred to as “the present system”) of a non-contact magnetic induction charging method according to an embodiment of the present invention is a system for supplying power to a driving motor for driving an electric vehicle.
  • the system 1 includes a pickup module 20, a regulator 30, a super capacitor 40, a DC-DC converter 50, a driving motor 60, and a battery 70.
  • the pickup module 20 collects AC power in the form of a magnetic field from the feed line 10 embedded in the road.
  • the regulator 30 converts the AC voltage collected by the pickup module 20 into a DC voltage.
  • the regulator 30 converts an AC voltage to a DC voltage
  • the DC voltage is a high voltage having a rather unstable and relatively large magnitude.
  • the super capacitor 40 is disposed between the regulator 30 and the drive motor 60.
  • the super capacitor 40 is charged with the DC voltage received from the regulator 30.
  • the super capacitor 40 supplies the voltage charged therein to the driving motor 60.
  • the super capacitor 40 may be a capacitor having a relatively large capacity in order to supply a voltage larger than the driving voltage.
  • the super capacitor 40 may have a larger capacity than the battery 70.
  • the super capacitor 40 supplies a high voltage having a constant size to the driving motor 60, so that the driving motor 60 operates stably and extends its life. Can be.
  • the DC-DC converter 50 is disposed between the super capacitor 40 and the drive motor 60.
  • the DC-DC converter 50 converts the voltage received from the super capacitor 40 into a driving voltage and supplies it to the driving motor 60.
  • the supercapacitor 40 supplies a voltage to the DC-DC converter 50 when the driving motor 60 does not need a voltage larger than the driving voltage.
  • the driving voltage is a constant voltage having a constant magnitude, and has a magnitude relatively lower than the voltage supplied by the supercapacitor 40 to the driving motor 60.
  • the driving motor 60 can stably drive the electric vehicle by using a driving voltage of a predetermined magnitude supplied from the DC-DC converter 50.
  • the DC-DC converter 50 determines whether surplus power is generated in the driving motor 60. As a result, when surplus power is not generated in the driving motor 60, the DC-DC converter 50 supplies the driving voltage to the driving motor 60. That is, the DC-DC converter 50 continuously supplies the driving voltage of a predetermined magnitude to the driving motor 60.
  • the DC-DC converter 50 supplies surplus power to the battery 70.
  • the driving motor 60 consumes relatively little power such as driving or stopping an electric vehicle at a constant speed to generate surplus power
  • the DC-DC converter 50 may generate a surplus voltage. 70 to charge the battery 70.
  • the battery 70 is disposed in connection with the DC-DC converter 50. Accordingly, the battery 70 is charged when surplus power is generated in the driving motor 60. When the driving motor 60 requires more power than the driving voltage, the battery 70 supplies the voltage charged therein to the driving motor 60. At this time, the magnitude of the charging voltage supplied by the battery 70 may be set smaller than the magnitude of the charging voltage supplied by the super capacitor 40.
  • the supercapacitor 40 has a larger charging capacity than the battery 70.
  • the super capacitor 40 supplies the voltage charged therein to the driving motor 60.
  • the battery 70 supplies the voltage charged therein to the driving motor 60.
  • a reference value for selectively operating the battery 70 and the super capacitor 40 will be determined in advance by the user, but not by an absolute reference.
  • the battery 70 supplies the voltage charged therein to the driving motor 60, thereby Drive and energy efficiency can be improved.
  • the present system 1 includes a first diode disposed between the regulator 30 and the supercapacitor 70, a second diode disposed between the supercapacitor 70 and the DC-DC converter 50, DC. And a third diode disposed between the DC converter 50 and the battery 70, and a fourth diode disposed between the battery 70 and the driving motor 60. At this time, the first to fourth diodes block the supplied current from flowing in the reverse direction.
  • the battery 70 supplies some of the voltage charged therein to the driving motor 60, and among the voltages charged therein. The rest may be supplied to the super capacitor 70 to charge the super capacitor 70.
  • the supercapacitor 70 supplies the charged voltage to the driving motor 60. At this time, the super capacitor 70 is repeatedly charged and discharged (supplied) continuously by the battery 70.
  • the system 1 supplies a constant DC voltage to the drive motor 60 by using the supercapacitor 40 and the DC-DC converter 50 to supply the constant voltage to the drive motor 60.
  • Electric vehicle can be driven stably.
  • the super capacitor 40 quickly supplies the voltage charged therein to the driving motor 60. The energy efficiency can be greatly improved.
  • the DC-DC converter 50 supplies a constant voltage to the battery 70 to charge the battery 70, thereby extending the life of the battery 70.
  • FIG. 2 is a flowchart illustrating an electric vehicle power supply method according to embodiments of the present invention.
  • the pickup module first collects the AC voltage from the feeder line embedded in the road (S10), the regulator to collect the AC voltage The DC voltage is converted and supplied to the super capacitor (S20).
  • the supercapacitor is charged by the voltage supplied from the regulator (S30).
  • the supercapacitor has a relatively large charging capacity so that the driving motor can charge a voltage larger than the driving voltage which is generally operated.
  • the super capacitor supplies a voltage charged therein to the driving motor (S50). For example, when a voltage greater than a driving voltage is required, such as when an electric vehicle is rapidly accelerating or rapidly starting, a super capacitor can quickly supply a voltage charged therein to the driving motor.
  • the super capacitor supplies the voltage charged therein to the DC-DC converter (S60).
  • the DC-DC converter converts the transferred voltage into a driving voltage in which the driving motor generally operates (S70). At this time, the magnitude of the driving voltage will be smaller than the magnitude of the voltage supplied from the super capacitor.
  • the driving voltage is a DC voltage having a constant magnitude.
  • the DC-DC converter determines whether surplus power is generated in the driving motor (S80).
  • the DC-DC converter supplies a drive voltage to the drive motor (S90).
  • the DC-DC converter charges the battery by supplying surplus power to the battery (S100).
  • the DC-DC converter may communicate with a battery management system (BMS) that controls and manages the battery, and again supplies the surplus power to the battery after determining whether the surplus power is within the allowable charging voltage of the battery.
  • BMS battery management system
  • the unstable DC voltage to supply a constant voltage to the drive motor by using a stable DC voltage using a super capacitor and a DC-DC converter, it is possible to drive the drive motor and the electric vehicle stably.
  • the super capacitor can quickly supply the voltage charged therein to the driving motor, thereby greatly improving energy efficiency.
  • the DC-DC converter supplies the battery with a constant voltage to charge the battery, thereby extending the life of the battery.

Abstract

비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법은 전기 자동차를 구동하기 위한 구동모터에 전력을 공급하기 위한 것이다. 본 시스템 및 방법에 따르면, 도로에 매립된 급전선로로부터 집전 모듈이 집전한 AC 전압을 DC 전압으로 변환하는 레귤레이터, 레귤레이터로부터 전달받은 DC 전압으로 충전되며, 구동모터에서 구동전압보다 더 큰 전압이 필요한 경우에 구동모터로 내부에 충전된 전압을 공급하는 슈퍼 커패시터, 및 슈퍼 커패시터로부터 전달받은 충전된 전압을 구동전압으로 변환하여 구동모터로 공급하는 DC-DC 컨버터가 구비된다. 따라서 구동모터와 배터리에 불안정한 DC 전압을 공급하는 대신에 일정한 크기를 갖는 정전압을 공급함으로써, 전기자동차를 안정성 있게 구동할 수 있으며, 배터리의 수명을 연장시키고 충전 효율을 향상시킬 수 있다.

Description

전력 공급 시스템 및 방법
본 발명은 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법에 관한 것으로, 보다 상세하게는 레귤레이터로 전달받은 불안정한 DC 전압을 정전압으로 변환하여 구동모터와 배터리에 공급하기 위한 비접촉 자기 유도 충전방식의 전기자동차 전력 공급 시스템 및 방법에 관한 것이다.
경제 발전에 따라 자동차에 대한 수요가 폭발적인 증가세를 보이고 있고, 자동차 수요가 늘어남에 따라 자동차에서 배출되는 배기가스가 환경오염의 주요 원인이 되고 있다.
이에 자동차의 배출가스를 감소시키기 위한 요구가 이어지고 있으며, 배출가스를 줄일 수 있는 자동차의 연구 및 개발이 진행되고 있다. 더 나아가 배출가스를 발생하지 않는 전기 자동차의 상용화가 부분적으로 시도되고 있다.
전기차량은 전기를 전력공급원으로 하여 운행하는 차량을 의미하며, 차량 자체에 전력공급원으로 충전이 가능한 배터리를 탑재하고, 탑재된 배터리에서 공급되는 전력을 이용하여 운행하는 것을 말한다. 이에 전기자동차는 크게 전기에 의해 구동되어 전기 자동차를 운행시키기 위한 전기모터와, 그 전기 모터에 전기를 공급하는 배터리로 구성된다.
최근에는 배터리에 전기를 공급하고 충전하기 위하여 플러그인(PLUG-IN) 충전 방식이 주로 사용되고 개발되어 왔다. 상기 플러그인 방식은 전기자동차의 플러그인 충전 장치를 통하여 배터리에 전원을 1회적으로 공급 충전하고 이를 이용하여 전기자동차를 운행하는 방식을 말한다.
상기 플러그인 충전 방식은 전기자동차용 배터리의 충전시간이 오래 걸리며, 한번 충전에 의해 주행하는 거리가 제한적이다. 보통 전기 자동차의 충전은 1 ~ 8 시간 정도 소요되는데, 이와 같은 긴 충전 시간 동안 차량을 안전하게 관리하는 것도 어려운 문제점이 발생한다.
따라서 전기자동차는 목적한 이동거리를 확보하기위해서는 자주 충전을 해주어야만 하므로, 전기차량의 운행에 있어서 충전소의 설치 및 충전시스템은 아주 중요한 문제이다.
또한, 충전하는 동안에 비, 눈 등의 외부 환경에 영향을 받지 않는 상태에서 충전이 이루어져야 한다. 나아가, 전기 자동차의 충전 시스템을 현재의 주유소와 같은 형태로 만드는 경우에는 충전 수요를 감당할 수가 없다.
이와 같이, 전기 자동차의 상용화를 위해서는 그에 적합한 충전 시스템 및 전력 공급 시스템이 구축될 필요성이 대두되고 있다.
본 발명의 일 목적은 레귤레이터로 전달받은 불안정한 DC 전압을 정전압으로 변환하여 구동모터 및 배터리에 공급함으로써, 전기자동차를 안정적으로 구동하고 배터리의 수명을 연장시키기 위한 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템을 제공하는 것이다.
본 발명의 다른 목적은 상기 전력 공급 시스템을 이용하여 전기자동차의 구동모터에 전력을 공급하기 위한 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법을 제공하는 것이다.
상술한 본 발명의 일 목적들을 달성하기 위하여 본 발명의 실시예들에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템은 전기자동차를 구동하기 위한 구동모터에 전력을 공급하는 시스템으로서, 도로에 매립된 급전선로로부터 집전 모듈이 집전한 AC 전압을 DC 전압으로 변환하는 레귤레이터, 상기 레귤레이터로부터 전달받은 DC 전압으로 충전되며, 상기 구동모터에서 구동전압보다 더 큰 전압이 필요한 경우에 상기 구동모터로 내부에 충전된 전압을 공급하는 슈퍼 커패시터, 및 상기 슈퍼 커패시터로부터 전달받은 상기 충전된 전압을 상기 구동전압으로 변환하여 상기 구동모터로 공급하는 DC-DC 컨버터를 포함한다.
본 발명의 실시예들에 있어서, 본 시스템은 상기 구동모터에 잉여 전력이 발생하는 경우, 상기 DC-DC 컨버터로부터 잉여 전력을 공급받아 충전되는 배터리를 더 포함할 수 있다.
본 발명의 실시예들에 있어서, 본 시스템은 상기 레귤레이터와 상기 슈퍼 커패시터의 사이에 배치된 제1 다이오드, 상기 슈퍼 커패시터와 상기 DC-DC 컨버터의 사이에 배치된 제2 다이오드, 상기 DC-DC 컨버터와 상기 배터리의 사이에 배치된 제3 다이오드, 및 상기 배터리와 상기 구동모터의 사이에 배치된 제4 다이오드를 더 포함하고, 상기 제1 내지 제4 다이오드는 공급되는 전류가 역방향으로 흐르는 것을 차단한다.
본 발명의 실시예들에 있어서, 상기 집전모듈이 상기 급전선로로부터 AC 전압을 집전하지 못하는 경우, 상기 배터리가 내부에 충전된 전압 중 일부를 상기 구동모터에 공급한다. 그리고 상기 배터리가 상기 충전된 전압 중 나머지를 상기 슈퍼 커패시터에 공급하여 상기 슈퍼 커패시터를 충전시킨다.
상술한 본 발명의 다른 목적들을 달성하기 위하여 본 발명의 실시예들에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법에 따르면, 먼저 도로에 매립된 급전선로로부터 AC 전압을 집전하고, 상기 집전한 AC 전압을 DC 전압으로 변환한다. 그리고 상기 DC 전압을 이용하여 슈퍼 커패시터를 충전한다. 이어서, 상기 구동모터에서 구동전압보다 더 큰 전압이 필요한지 여부를 판단한다. 상기 판단 결과, 상기 구동모터에서 구동전압보다 더 큰 전압이 필요한 경우에는 상기 슈퍼 커패시터가 내부에 충전된 전압을 상기 구동모터에 공급하고, 상기 구동모터에서 구동전압보다 더 큰 전압이 필요하지 않은 경우에는 상기 슈퍼 커패시터는 상기 내부에 충전된 전압을 DC-DC 컨버터에 공급한다. 상기 DC-DC 컨버터는 상기 슈퍼 커패시터로부터 전달받은 전압을 구동전압으로 변환하여 상기 구동전압을 상기 구동모터에 공급한다.
본 발명의 실시예들에 있어서, 상기 DC-DC 컨버터가 상기 구동전압을 상기 구동모터에 공급하는 단계에서, 상기 구동모터에 잉여 전력이 발생하는지 여부를 판단하여, 상기 구동모터에 잉여 전력이 발생하는 경우에는 상기 잉여 전력을 배터리에 공급하여 상기 배터리를 충전하고, 상기 구동모터에 잉여 전력이 발생하지 않는 경우에는 상기 구동전압을 상기 구동모터에 공급한다.
이상에서 설명한 바와 같은 본 발명에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법에 따르면 다음과 같은 효과가 있다.
첫째, 레귤레이터에서 공급되는 불안정한 DC 전압을 일정한 크기를 갖는 정전압으로 변환하여 구동모터에 공급함으로써, 전기자동차를 안정적으로 구동시킬 수 있다.
둘째, 일정한 크기를 갖는 정전압을 이용하여 배터리를 충전함으로써, 배터리의 수명을 연장할 수 있다.
셋째, 전기자동차가 급가속, 급출발과 같이 상대적으로 큰 전력이 필요한 경우에 슈퍼 커패시터가 구동모터에 내부에 충전된 전압을 신속하게 공급함으로써, 전기자동차의 구동 및 운전을 효율적으로 할 수 있다.
넷째, 급전선로로부터 전원을 공급받지 못하는 비상시에 배터리가 내부의 충전 전압을 이용하여 구동모터를 동작시키고 슈퍼 커패시터를 충전함으로써, 전기자동차 운전의 효율성을 도모할 수 있다.
도 1은 본 발명의 실시예들에 따른 전기자동차 전력 공급 시스템을 설명하기 위한 구성도이다.
도 2는 본 발명의 실시예들에 따른 전기자동차 전력 공급 방법을 설명하기 위한 순서도이다.
첨부한 도면을 참조하여 본 발명의 실시예들에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나, 개략적인 구성을 이해하기 위하여 실제보다 축소하여 도시한 것이다.
또한, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 실시예들에 따른 전기자동차 전력 공급 시스템을 설명하기 위한 구성도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템(이하 '본 시스템'이라고 한다)은 전기자동차를 구동하기 위한 구동모터에 전력을 공급하는 시스템이다.
이에 본 시스템(1)은 픽업모듈(20), 레귤레이터(30), 슈퍼 커패시터(40), DC-DC 컨버터(50), 구동모터(60) 및 배터리(70)를 포함한다.
픽업모듈(20)은 도로에 매립된 급전선로(10)로부터 AC 전원을 자기장의 형태로 집전한다.
레귤레이터(30)는 픽업모듈(20)이 집전한 AC 전압을 DC 전압으로 변환한다.
한편, 레귤레이터(30)가 AC 전압을 DC 전압으로 변환하는 경우, 상기 DC 전압은 다소 불안정하고 상대적으로 큰 크기를 갖는 고전압이다.
슈퍼 커패시터(40)는 레귤레이터(30)와 구동모터(60)의 사이에 배치된다. 슈퍼 커패시터(40)는 레귤레이터(30)로부터 전달받은 DC 전압으로 충전된다. 본 발명의 실시예들에 있어서, 구동모터(60)에서 사전에 설정된 구동전압보다 더 큰 전압이 필요한 경우, 슈퍼 커패시터(40)는 내부에 충전된 전압을 구동모터(60)로 공급한다. 예를 들어, 급가속하거나 급출발하는 경우와 같이 정상적인 운행보다 상대적으로 더 많은 전력이 필요한 경우에는, 슈퍼 커패시터(40)가 내부에 충전된 전압을 구동모터(60)로 공급한다. 이에 슈퍼 커패시터(40)는 구동전압보다 더 큰 전압을 공급하기 위하여 상대적으로 큰 용량을 갖는 커패시터가 사용될 수 있다. 예를 들어, 슈퍼 커패시터(40)는 배터리(70)보다 더 큰 용량을 가질 수 있다.
이에 구동모터(60)에서 순간적으로 많은 전력이 필요한 경우에 슈퍼 커패시터(40)가 일정한 크기를 갖는 고전압을 구동모터(60)에 공급함으로써, 구동모터(60)는 안정적으로 동작하며 그 수명도 연장될 수 있다.
DC-DC 컨버터(50)는 슈퍼 커패시터(40)와 구동모터(60)의 사이에 배치된다.
본 발명의 실시예들에 있어서, DC-DC 컨버터(50)는 슈퍼 커패시터(40)로부터 전달받은 전압을 구동전압으로 변환하여 구동모터(60)로 공급한다. 여기서, 슈퍼 커패시터(40)는 구동모터(60)가 구동전압보다 더 큰 전압을 필요하지 않는 경우에 DC-DC 컨버터(50)로 전압을 공급한다. 이 때, 구동전압은 일정한 크기를 갖는 정전압이며, 슈퍼 커패시터(40)가 구동모터(60)로 공급하는 전압보다 상대적으로 낮은 크기를 가진다.
이에 구동모터(60)는 DC-DC 컨버터(50)로부터 공급받은 일정한 크기의 구동전압을 이용하여 전기자동차를 안정적으로 구동할 수 있다.
본 발명의 실시예들에 있어서, DC-DC 컨버터(50)는 구동모터(60)에 잉여 전력이 발생하는지 여부를 판단한다. 판단 결과, 구동모터(60)에 잉여 전력이 발생하지 않은 경우에는 DC-DC 컨버터(50)는 구동전압을 구동모터(60)로 공급한다. 즉, DC-DC 컨버터(50)는 일정한 크기의 구동전압을 구동모터(60)로 계속적으로 공급한다.
판단 결과, 구동모터(60)에 잉여 전력이 발생하는 경우에는 DC-DC 컨버터(50)는 잉여 전력을 배터리(70)로 공급한다. 이 때, 구동모터(60)는 정속도로 전기 자동차를 구동하거나 정지한 상태 등과 같이 전력을 상대적으로 적게 소모하여 잉여 전력이 발생하는 경우에, DC-DC 컨버터(50)는 발생한 잉여 전압을 배터리(70)에 공급하여 배터리(70)를 충전한다.
배터리(70)는 DC-DC 컨버터(50)와 연결되어 배치된다. 이에 배터리(70)는 구동모터(60)에 잉여 전력이 발생하는 경우에 충전된다. 그리고 구동모터(60)가 구동 전압보다 더 많은 전력을 필요로 하는 경우, 배터리(70)는 내부에 충전된 전압을 구동모터(60)로 공급한다. 이 때, 배터리(70)가 공급하는 충전 전압의 크기는 슈퍼 커패시터(40)가 공급하는 충전 전압의 크기보다 작게 설정될 수 있다.
본 발명의 실시예들에 있어서, 슈퍼 커패시터(40)는 배터리(70)보다 충전 용량이 더 크게 설정된다. 이에 구동모터(60)가 구동전압보다 상대적으로 큰 전력을 요하는 경우에는 슈퍼 커패시터(40)가 내부에 충전된 전압을 구동모터(60)에 공급한다. 그리고 구동모터(60)가 구동전압보다는 크나 상대적으로 작은 전력을 요하는 경우에는 배터리(70)가 내부에 충전된 전압을 구동모터(60)로 공급한다. 이 때, 배터리(70)와 슈퍼 커패시터(40)가 선택적으로 동작하기 위한 기준값은 사용자에 의하여 사전에 정하여지는 것이지 절대적인 기준에 의하여 정하여지는 것은 아니라고 할 것이다.
이에 구동모터(60)가 구동전압 이상의 전압이 필요하거나 급전선로(10)로부터 전압을 집전하지 못하는 경우, 배터리(70)가 내부에 충전된 전압을 구동모터(60)로 공급함으로써, 전기자동차의 구동 및 에너지의 효율을 향상시킬 수 있다.
한편, 본 시스템(1)은 레귤레이터(30)와 슈퍼 커패시터(70)의 사이에 배치된 제1 다이오드, 슈퍼 커패시터(70)와 DC-DC 컨버터(50)의 사이에 배치된 제2 다이오드, DC-DC 컨버터(50)와 배터리(70)의 사이에 배치된 제3 다이오드, 및 배터리(70)와 구동모터(60)의 사이에 배치된 제4 다이오드를 더 포함할 수 있다. 이 때, 상기 제1 내지 제4 다이오드는 공급되는 전류가 역방향으로 흐르는 것을 차단한다.
나아가, 픽업모듈(20)이 급전선로(10)로부터 AC 전압을 집전하지 못하는 경우, 배터리(70)가 내부에 충전된 전압 중 일부를 구동모터(60)에 공급하고, 내부에 충전된 전압 중 나머지를 슈퍼 커패시터(70)에 공급하여 슈퍼 커패시터(70)를 충전시킬 수 있다. 그리고 슈퍼 커패시터(70)는 충전된 전압을 구동모터(60)로 공급한다. 이 때, 슈퍼 커패시터(70)는 배터리(70)에 의하여 계속 반복적으로 충전되고 방전(공급)된다.
이와 같이, 본 시스템(1)은 불안정한 DC 전압을 슈퍼 커패시터(40) 및 DC-DC 컨버터(50)를 이용하여 안정된 DC 전압을 구동모터(60)로 정전압을 공급함으로써, 구동모터(60)와 전기자동차를 안정적으로 구동할 수 있다. 또한, 구동모터(60)가 급가속, 급출발과 같이 빠른 시간 내에 구동전압보다 더 많은 전압을 필요로 하는 경우, 슈퍼 커패시터(40)가 내부에 충전된 전압을 신속하게 구동모터(60)로 공급하여 에너지 효율을 크게 향상시킬 수 있다. 나아가, DC-DC 컨버터(50)가 배터리(70)에 정전압을 공급하여 충전함으로써, 배터리(70)의 수명을 연장시킬 수 있다.
도 2는 본 발명의 실시예들에 따른 전기자동차 전력 공급 방법을 설명하기 위한 순서도이다.
도 2를 참조하면, 본 발명의 실시예들에 따른 전기자동차 전력 공급 방법에 따르면, 먼저 픽업모듈이 도로에 매립된 급전선로로부터 AC 전압을 집전하고(S10), 레귤레이터가 상기 집전한 AC 전압을 DC 전압으로 변환하여 슈퍼 커패시터로 공급한다(S20).
이에 슈퍼 커패시터는 레귤레이터로부터 공급받은 전압에 의하여 충전된다(S30). 본 발명의 실시예들에 있어서, 슈퍼 커패시터는 구동모터가 일반적으로 동작하는 구동전압보다 더 큰 전압을 충전할 수 있도록 상대적으로 큰 충전 용량을 가진다.
본 발명의 실시예들에 있어서, 구동모터에서 구동전압보다 더 큰 전압이 필요한지 여부를 판단한다(S40).
구동모터에서 구동전압보다 더 큰 전압이 필요한지 여부의 판단 결과, 구동모터에서 구동전압보다 더 큰 전압이 필요한 경우에는 슈퍼 커패시터가 내부에 충전된 전압을 구동모터에 공급한다(S50). 예를 들어, 전기자동차가 급가속하거나 급 출발하는 경우와 같이 구동전압보다 더 큰 전압이 필요한 경우, 슈퍼 커패시터가 내부에 충전된 전압을 구동모터로 신속하게 공급할 수 있다.
구동모터에서 구동전압보다 더 큰 전압이 필요한지 여부의 판단 결과, 구동모터에서 구동전압보다 더 큰 전압이 필요하지 않는 경우에는 슈퍼 커패시터가 내부에 충전된 전압을 DC-DC 컨버터에 공급한다(S60).
그리고 DC-DC 컨버터는 전달된 전압을 구동모터가 일반적으로 동작하는 구동 전압으로 변환한다(S70). 이 때, 구동전압의 크기는 슈퍼 커패시터로부터 공급된 전압의 크기보다 작을 것이다. 또한, 구동전압은 일정한 크기를 갖는 DC 전압이다.
본 발명의 실시예들에 있어서, DC-DC 컨버터는 구동모터에 잉여 전력이 발생 하는지 여부를 판단한다(S80).
구동모터에 잉여 전력이 발생하는지 여부의 판단 결과, 구동모터에 잉여 전력이 발생하지 않는 경우에는 DC-DC 컨버터는 구동전압을 구동모터로 공급한다(S90).
한편, 구동모터에 잉여 전력이 발생하는지 여부의 판단 결과, 구동모터에 잉여 전력이 발생하는 경우에는, DC-DC 컨버터는 잉여 전력을 배터리에 공급함으로써, 배터리를 충전한다(S100). 이 때, DC-DC 컨버터는 배터리를 제어 관리하는 BMS(Battery Management System)와 통신하여 잉여 전력이 배터리의 충전 허용 전압의 이내인지 여부를 다시 판단한 이후에 배터리로 잉여 전력을 공급할 수 있다.
이와 같은 방법에 따르면, 불안정한 DC 전압을 슈퍼 커패시터 및 DC-DC 컨버터를 이용하여 안정된 DC 전압을 구동모터로 정전압을 공급함으로써, 구동모터와 전기자동차를 안정적으로 구동할 수 있다. 또한, 구동모터가 급가속, 급출발과 같이 빠른 시간 내에 구동전압보다 더 많은 전압을 필요로 하는 경우, 슈퍼 커패시터가 내부에 충전된 전압을 신속하게 구동모터로 공급하여 에너지 효율을 크게 향상시킬 수 있다. 나아가, DC-DC 컨버터가 배터리에 정전압을 공급하여 충전함으로써, 배터리의 수명을 연장시킬 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.__

Claims (6)

  1. 구동모터에 전력을 공급하는 시스템에 있어서,
    집전 모듈이 집전한 AC 전압을 DC 전압으로 변환하는 레귤레이터;
    상기 레귤레이터로부터 전달받은 DC 전압으로 충전되며, 상기 구동모터에서 구동전압보다 더 큰 전압이 필요한 경우에 상기 구동모터로 내부에 충전된 전압을 공급하는 슈퍼 커패시터; 및
    상기 슈퍼 커패시터로부터 전달받은 상기 충전된 전압을 상기 구동전압으로 변환하여 상기 구동모터로 공급하는 DC-DC 컨버터를 포함하는 전력 공급 시스템.
  2. 제1항에 있어서,
    상기 구동모터에 잉여 전력이 발생하는 경우, 상기 DC-DC 컨버터로부터 잉여 전력을 공급받아 충전되는 배터리를 더 포함하는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템.
  3. 제2항에 있어서,
    상기 레귤레이터와 상기 슈퍼 커패시터의 사이에 배치된 제1 다이오드, 상기 슈퍼 커패시터와 상기 DC-DC 컨버터의 사이에 배치된 제2 다이오드, 상기 DC-DC 컨버터와 상기 배터리의 사이에 배치된 제3 다이오드, 및 상기 배터리와 상기 구동모터의 사이에 배치된 제4 다이오드를 더 포함하고,
    상기 제1 내지 제4 다이오드는 공급되는 전류가 역방향으로 흐르는 것을 차단하는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템.
  4. 제2항에 있어서,
    상기 집전모듈이 상기 급전선로로부터 AC 전압을 집전하지 못하는 경우, 상기 배터리가 내부에 충전된 전압 중 일부를 상기 구동모터에 공급하고, 상기 충전된 전압 중 나머지를 상기 슈퍼 커패시터에 공급하여 상기 슈퍼 커패시터를 충전시키는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템.
  5. 구동모터에 전력을 공급하는 방법에 있어서,
    급전선로로부터 AC 전압을 집전하는 단계;
    상기 집전한 AC 전압을 DC 전압으로 변환하는 단계;
    상기 DC 전압을 이용하여 슈퍼 커패시터를 충전하는 단계;
    상기 구동모터에서 구동전압보다 더 큰 전압이 필요한지 여부를 판단하는 단계;
    상기 판단 결과, 상기 구동모터에서 구동전압보다 더 큰 전압이 필요한 경우에는 상기 슈퍼 커패시터가 내부에 충전된 전압을 상기 구동모터에 공급하는 단계;
    상기 판단 결과, 상기 구동모터에서 구동전압보다 더 큰 전압이 필요하지 않은 경우에는 상기 슈퍼 커패시터는 상기 내부에 충전된 전압을 DC-DC 컨버터에 공급하는 단계; 및
    상기 DC-DC 컨버터가 상기 슈퍼 커패시터로부터 전달받은 전압을 구동전압으로 변환하여 상기 구동전압을 상기 구동모터에 공급하는 단계를 포함하는 전력 공급 방법.
  6. 제5항에 있어서, 상기 DC-DC 컨버터가 상기 구동전압을 상기 구동모터에 공급하는 단계는
    상기 구동모터에 잉여 전력이 발생하는지 여부를 판단하는 단계;
    상기 판단 결과, 상기 구동모터에 잉여 전력이 발생하는 경우에는 상기 잉여 전력을 배터리에 공급하여 상기 배터리를 충전하는 단계; 및
    상기 판단 결과, 상기 구동모터에 잉여 전력이 발생하지 않는 경우에는 상기 구동전압을 상기 구동모터에 공급하는 단계를 포함하는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 방법.
PCT/KR2011/004549 2011-06-22 2011-06-22 전력 공급 시스템 및 방법 WO2012176943A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/004549 WO2012176943A1 (ko) 2011-06-22 2011-06-22 전력 공급 시스템 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/004549 WO2012176943A1 (ko) 2011-06-22 2011-06-22 전력 공급 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2012176943A1 true WO2012176943A1 (ko) 2012-12-27

Family

ID=47422757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004549 WO2012176943A1 (ko) 2011-06-22 2011-06-22 전력 공급 시스템 및 방법

Country Status (1)

Country Link
WO (1) WO2012176943A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707797A (zh) * 2019-11-11 2020-01-17 国网河南省电力公司南阳供电公司 一种混合储能装置的恒压输出系统
CN111490603A (zh) * 2020-04-21 2020-08-04 北京理工大学 一种用于轮毂电机驱动的无线电磁传动系统及方法
GB2584624A (en) * 2019-05-28 2020-12-16 Gupta Sanjay An apparatus and method for discharging the hybrid battery modules, and extending the range of the battery pack
CN117477803A (zh) * 2023-12-28 2024-01-30 中国人民解放军国防科技大学 逆变谐振恒功率无线充电系统和控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112104A (ja) * 1999-10-08 2001-04-20 Mitsubishi Electric Corp 移動体の非接触給電装置
KR20030006269A (ko) * 2001-07-12 2003-01-23 현대자동차주식회사 슈퍼 커패시터를 구비한 에너지 저장 시스템의 제어 방법
JP2006246700A (ja) * 2001-12-25 2006-09-14 Toshiba Corp 電力変換装置
JP2008017681A (ja) * 2006-07-10 2008-01-24 Toyota Motor Corp 車両の電力制御装置
KR20080040271A (ko) * 2006-11-02 2008-05-08 한국철도기술연구원 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112104A (ja) * 1999-10-08 2001-04-20 Mitsubishi Electric Corp 移動体の非接触給電装置
KR20030006269A (ko) * 2001-07-12 2003-01-23 현대자동차주식회사 슈퍼 커패시터를 구비한 에너지 저장 시스템의 제어 방법
JP2006246700A (ja) * 2001-12-25 2006-09-14 Toshiba Corp 電力変換装置
JP2008017681A (ja) * 2006-07-10 2008-01-24 Toyota Motor Corp 車両の電力制御装置
KR20080040271A (ko) * 2006-11-02 2008-05-08 한국철도기술연구원 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2584624A (en) * 2019-05-28 2020-12-16 Gupta Sanjay An apparatus and method for discharging the hybrid battery modules, and extending the range of the battery pack
GB2584624B (en) * 2019-05-28 2021-08-25 Gupta Sanjay An apparatus and method for discharging the hybrid battery modules, and extending the range of the battery pack
CN110707797A (zh) * 2019-11-11 2020-01-17 国网河南省电力公司南阳供电公司 一种混合储能装置的恒压输出系统
CN111490603A (zh) * 2020-04-21 2020-08-04 北京理工大学 一种用于轮毂电机驱动的无线电磁传动系统及方法
CN117477803A (zh) * 2023-12-28 2024-01-30 中国人民解放军国防科技大学 逆变谐振恒功率无线充电系统和控制方法
CN117477803B (zh) * 2023-12-28 2024-03-15 中国人民解放军国防科技大学 逆变谐振恒功率无线充电系统和控制方法

Similar Documents

Publication Publication Date Title
KR101305605B1 (ko) 전기자동차의 전원 공급 시스템
AU2015100502A4 (en) A compound power system for an electrical vehicle
KR101583340B1 (ko) 전기자동차의 배터리 제어장치 및 그 제어방법
KR101251243B1 (ko) 전기자동차의 전원 공급 시스템
US9475439B2 (en) Battery system for micro-hybrid vehicles comprising high-efficiency consumers
KR101755732B1 (ko) 차량의 배터리 충전시스템 및 충전방법
US9475456B2 (en) Battery system for micro-hybrid vehicles comprising high-efficiency consumers
JP2012080689A (ja) 電気自動車用電源装置
WO2012176943A1 (ko) 전력 공급 시스템 및 방법
WO2012176942A1 (ko) 전력 공급 시스템 및 방법
US20120004800A1 (en) Vehicle and Power Unit For It
KR101141694B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법
CN101826641A (zh) 一种光伏汽车充电控制方法及系统
RU2520180C2 (ru) Система электропитания транспортного средства
KR101219388B1 (ko) 차량용 태양전지 시스템
KR20140082227A (ko) 전기자동차의 ldc 제어장치 및 그 방법
KR20160126338A (ko) Ldc 출력 전압을 제어하는 시스템 및 방법
KR101187449B1 (ko) 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 방법
KR101134562B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법
KR20140084820A (ko) 전기 자동차 충전 장치 및 이를 구동하는 방법
CN201518424U (zh) 一种光伏汽车充电控制系统
KR20110041881A (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템
KR101146644B1 (ko) 비접촉 자기 유도 충전 방식의 전기자동차 전력 공급 시스템 및 방법
CN113874256B (zh) 用于具有高压电源的车辆的超级电容器模块及其控制方法
KR101104781B1 (ko) 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868204

Country of ref document: EP

Kind code of ref document: A1