WO2012176626A1 - めっき処理装置、めっき処理方法および記憶媒体 - Google Patents

めっき処理装置、めっき処理方法および記憶媒体 Download PDF

Info

Publication number
WO2012176626A1
WO2012176626A1 PCT/JP2012/064706 JP2012064706W WO2012176626A1 WO 2012176626 A1 WO2012176626 A1 WO 2012176626A1 JP 2012064706 W JP2012064706 W JP 2012064706W WO 2012176626 A1 WO2012176626 A1 WO 2012176626A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating solution
plating
substrate
supply
tank
Prior art date
Application number
PCT/JP2012/064706
Other languages
English (en)
French (fr)
Inventor
裕一郎 稲富
崇 田中
黒田 修
岩下 光秋
祐介 齋藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US14/128,109 priority Critical patent/US20140120264A1/en
Priority to KR1020137033422A priority patent/KR101765572B1/ko
Publication of WO2012176626A1 publication Critical patent/WO2012176626A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1039Recovery of excess liquid or other fluent material; Controlling means therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/168Control of temperature, e.g. temperature of bath, substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1682Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1632Features specific for the apparatus, e.g. layout of cells and of its equipment, multiple cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product

Definitions

  • the present invention relates to a plating apparatus, a plating method, and a storage medium for supplying a plating solution to the surface of a substrate to perform a plating process.
  • wirings are formed on a substrate such as a semiconductor wafer or a liquid crystal substrate in order to form a circuit on the surface.
  • This wiring is made of a copper material having a low electrical resistance and high reliability instead of an aluminum material.
  • copper is more easily oxidized than aluminum, it is desirable to perform plating with a metal having high electromigration resistance in order to prevent oxidation of the copper wiring surface.
  • a plating solution containing metal ions of metal plated on the surface of copper wiring generally contains metal ions of metal to be plated and an ammonia component for complexing the metal ions.
  • the plating solution is collected and reused to some extent for cost reduction.
  • Patent Document 1 an inert gas is introduced into a plating solution storage tank to replace the inside of the tank, thereby preventing deterioration of the plating solution due to carbon dioxide in the atmosphere dissolved in the plating solution.
  • the present invention has been made in consideration of such points, and a plating apparatus, a plating method, and a memory capable of reusing a plating solution by maintaining the concentration of the ammonia component in the plating solution.
  • the purpose is to provide a medium.
  • the present invention provides a plating apparatus for performing a plating process by supplying a plating solution containing at least an ammonia component to a substrate, and a plating solution to the substrate accommodated in the substrate accommodating part and the substrate accommodated in the substrate accommodating part.
  • a plating solution supply mechanism for supplying a supply tank for storing a plating solution to be supplied to the substrate, a discharge nozzle for discharging the plating solution to the substrate, and a plating solution in the supply tank to the discharge nozzle
  • a plating solution supply mechanism having a plating solution supply pipe to supply; a plating solution discharge mechanism for discharging the plating solution after being supplied to the substrate from the substrate housing portion and sending the plating solution to the supply tank of the plating solution supply mechanism; Ammonia gas reservoir filled with ammonia gas and sealed, and supplying ammonia gas from the ammonia gas reservoir to the supply tank
  • a plating apparatus characterized by comprising an ammonia gas pipe.
  • the present invention relates to a plating method for performing plating by supplying a plating solution containing at least an ammonia component to a substrate, and a substrate mounting step for arranging the substrate in a substrate housing portion, and supplying the substrate through a discharge nozzle.
  • a plating treatment method comprising: a component adjustment step of adjusting a component of the plating solution; and a reuse step of supplying the plating solution with the adjusted component of the plating solution to the discharge nozzle.
  • the present invention relates to a storage medium storing a computer program for causing a plating apparatus to execute a plating method, wherein the plating method performs a plating process by supplying a plating solution containing at least an ammonia component to a substrate.
  • a method of placing a substrate in a substrate housing portion, a supply step of supplying a plating solution in a supply tank to the substrate via a discharge nozzle, and a plating solution after being supplied to the substrate A recovery step of recovering the substrate from the substrate container through a plating solution discharge mechanism, a component adjustment step of adjusting the components of the plating solution by exposing the recovered plating solution to ammonia gas, and adjusting the components of the plating solution.
  • a reuse step of supplying the plating solution to the discharge nozzle is supplying the plating solution to the discharge nozzle.
  • the ammonia gas storage unit since the ammonia gas storage unit is connected to the supply tank, it is possible to suppress the ammonia component in the plating solution stored in the supply tank from volatilizing outward. Furthermore, an ammonia component can be dissolved. For this reason, the density
  • FIG. 1 is a plan view showing a schematic configuration of a plating system according to the first embodiment of the present invention.
  • FIG. 2 is a side view showing the plating apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of the plating apparatus shown in FIG.
  • FIG. 4 is a view showing a liquid supply mechanism in the first embodiment of the present invention.
  • FIG. 5 is a schematic view showing a plating apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a view showing a liquid supply mechanism in the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a first heating mechanism in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a second heating mechanism in the first embodiment of the present invention.
  • FIG. 9 is a flowchart showing a plating method.
  • FIG. 10 is a view showing a plating solution recovery mechanism in the second embodiment of the present invention.
  • FIG. 11 is a flowchart showing in detail steps
  • the plating system 1 mounts a carrier 3 that accommodates a plurality of substrates 2 (here, 25 semiconductor wafers) (for example, 25 wafers), and carries in a predetermined number of substrates 2. And a substrate loading / unloading chamber 5 for unloading and a substrate processing chamber 6 for performing various processes such as plating and cleaning of the substrate 2.
  • the substrate carry-in / out chamber 5 and the substrate processing chamber 6 are provided adjacent to each other.
  • the substrate carry-in / out chamber 5 includes a carrier placement unit 4, a transfer chamber 9 that stores the transfer device 8, and a substrate transfer chamber 11 that stores a substrate transfer table 10.
  • the transfer chamber 9 and the substrate delivery chamber 11 are connected to each other via a delivery port 12.
  • the carrier placement unit 4 places a plurality of carriers 3 that accommodate a plurality of substrates 2 in a horizontal state.
  • the substrate 2 is transferred, and in the substrate transfer chamber 11, the substrate 2 is transferred to and from the substrate processing chamber 6.
  • a predetermined number of substrates 2 are transported by the transport device 8 between any one carrier 3 placed on the carrier platform 4 and the substrate delivery table 10.
  • the substrate processing chamber 6 is arranged in the front and back on one side and the other side of the substrate transfer unit 13 and extends in the front and back in the central portion, and supplies the plating solution to the substrate 2 to perform the plating process.
  • a plurality of plating processing apparatuses 20 are arranged in the front and back on one side and the other side of the substrate transfer unit 13 and extends in the front and back in the central portion, and supplies the plating solution to the substrate 2 to perform the plating process.
  • a plurality of plating processing apparatuses 20 is arranged in the front and back on one side and the other side of the substrate transfer unit 13 and extends in the front and back in the central portion, and supplies the plating solution to the substrate 2 to perform the plating process.
  • the substrate transport unit 13 includes a substrate transport device 14 configured to be movable in the front-rear direction.
  • the substrate transfer unit 13 communicates with the substrate transfer table 10 in the substrate transfer chamber 11 via the substrate transfer port 15.
  • the substrates 2 are transferred to the respective plating processing apparatuses 20 in a state where the substrates 2 are held horizontally one by one by the substrate transfer device 14 of the substrate transfer unit 13. Then, in each plating processing apparatus 20, the substrate 2 is subjected to cleaning processing and plating processing one by one.
  • Each plating apparatus 20 differs only in the plating solution used, and the other points have substantially the same configuration. Therefore, in the following description, the configuration of one plating processing apparatus 20 among the plurality of plating processing apparatuses 20 will be described.
  • FIG. 2 is a side view showing the plating apparatus 20
  • FIG. 3 is a plan view showing the plating apparatus 20.
  • the plating apparatus 20 includes a substrate rotation holding mechanism (substrate housing portion) 110 for rotating and holding the substrate 2 inside the casing 101, and a plating solution and a cleaning solution on the surface of the substrate 2.
  • Liquid supply mechanisms 30, 30 ⁇ / b> A, 90, 90 ⁇ / b> A that supply the liquid, a cup 105 that receives the plating liquid and the cleaning liquid scattered from the substrate 2, and discharge ports 124 and 129 that discharge the plating liquid and the cleaning liquid received by the cup 105.
  • liquid discharge mechanisms 120, 125, 130 for discharging the liquid collected at the discharge port, substrate rotation holding mechanism 110, liquid supply mechanisms 30, 30A, 90, 90A, cup 105, and liquid discharge mechanisms 120, 125 , 130 is controlled.
  • the substrate rotation holding mechanism 110 includes a hollow cylindrical rotation shaft 111 extending vertically in the casing 101, and a turntable 112 attached to the upper end portion of the rotation shaft 111. And a wafer chuck 113 that is provided on the outer peripheral portion of the upper surface of the turntable 112 and supports the substrate 2, and a rotation mechanism 162 that rotates the rotation shaft 111.
  • the rotation mechanism 162 is controlled by the control mechanism 160, and the rotation shaft 111 is rotationally driven by the rotation mechanism 162, whereby the substrate 2 supported by the wafer chuck 113 is rotated.
  • the liquid supply mechanisms 30, 30A, 90, and 90A for supplying a plating solution and a cleaning solution to the surface of the substrate 2 will be described with reference to FIGS.
  • the liquid supply mechanisms 30, 30 ⁇ / b> A, 90, and 90 ⁇ / b> A supply a plating liquid supply mechanism 30 that supplies a plating liquid for performing plating on the surface of the substrate 2, and supplies a cleaning processing liquid for post-cleaning to the surface of the substrate 2.
  • a processing liquid supply mechanism 90A for supplying a plating solution for performing pretreatment plating to the surface of substrate 2
  • the plating solution supply mechanism 30 supplies a plating solution containing an Ni component and an ammonia component for complexing metal ions, or a plating solution containing an ammonia component for complexing Co metal ions and metal ions. .
  • a plating solution containing Pd metal ions is supplied from the pretreatment plating solution supply mechanism 30A.
  • FIG. 5 is a schematic diagram showing only the plating solution supply mechanism 30 extracted.
  • the pretreatment plating solution supply mechanism 30A and the cleaning treatment solution supply mechanisms 90, 90A are omitted for convenience.
  • the plating solution supply mechanism 30 discharges the plating solution 35 to the substrate 2 and a sealed supply tank 31 that stores the plating solution 35 supplied to the substrate 2 at a predetermined temperature. And a plating solution supply pipe 33 for supplying the plating solution 35 in the supply tank 31 to the discharge nozzle 32. As shown in FIG. 4, an openable / closable valve 37 b is inserted in the plating solution supply pipe 33.
  • the “predetermined temperature” of the plating solution 35 supplied to the substrate 2 is a temperature equal to or higher than the plating temperature at which the self-reaction proceeds in the plating solution 35. It has become.
  • the plating temperature will be described later.
  • Various liquids are supplied to the supply tank 31 via a replenishing means 31a from a plurality of supply sources in which various components of the plating solution 35 such as Ni are stored.
  • liquids such as NiP metal salts containing Ni ions, reducing agents, additives, aqueous ammonia and pure water are supplied.
  • 4 and 5 show only the ammonia water supply unit 174A for replenishing the supply tank 31 with ammonia water and the pure water supply unit 174B for replenishing the supply tank 31 with pure water.
  • the supply tank 31 is provided with monitor means 57 for monitoring the characteristics of the plating solution 35.
  • This monitoring means 57 has the functions of an ammonia concentration meter, a pH meter, and a thermometer that measure the ammonia concentration of the plating solution 35.
  • the flow rate of various liquids supplied to the supply tank 31 by the control mechanism 160 based on the signal from the monitor means 57 is adjusted so that the components of the plating solution 35 stored in the supply tank 31 are appropriately adjusted. It has been adjusted.
  • the control mechanism 160 replenishes the supply tank 31 with ammonia water from the ammonia water supply unit 174A or replenishes the supply tank 31 with pure water from the pure water supply unit 174B based on the signal from the monitor unit 57.
  • the ammonia component and pH in the plating solution 35 stored in the supply tank 31 are adjusted.
  • the supply tank 31 of the plating solution supply mechanism 30 is a hermetically sealed type, and an ammonia gas storage unit 170 is connected to the supply tank 31 by a connecting pipe 176.
  • the ammonia gas storage unit 170 has a structure in which ammonia water is stored and can be sealed to change its volume, and is filled with ammonia gas.
  • the ammonia gas storage unit 170 supplies ammonia gas to the space above the surface of the plating solution 35 in the supply tank 31. Since the ammonia gas storage unit 170 has a structure capable of changing the volume, the ammonia gas storage unit 170 can maintain an equilibrium state with the pressure of the space on the surface of the plating solution 35. Even if the storage amount of the plating solution in the supply tank 31 changes and the volume of the space on the surface of the plating solution 35 changes, an appropriate amount of ammonia gas can be supplied following the change.
  • the plating solution 35 stored in the supply tank 31 can always be exposed to the ammonia gas, the concentration of the ammonia component in the plating solution can be maintained within a predetermined target concentration range, and the plating solution is deteriorated. Can be prevented. For this reason, the plating solution 35 recovered from the substrate accommodating portion 110 to the supply tank 31 of the plating solution supply mechanism 30 via the solution discharge mechanism 120 described later is supplied again from the discharge nozzle 32 to the substrate 2, and thus Thus, the plating solution 35 can be reused a plurality of times.
  • the discharge nozzle 32 is attached to the nozzle head 104.
  • the nozzle head 104 is attached to the tip of an arm 103.
  • the arm 103 can be extended in the vertical direction and is fixed to a support shaft 102 that is rotationally driven by a rotation mechanism 165.
  • the plating solution supply pipe 33 of the plating solution supply mechanism 30 is disposed inside the arm 103. With such a configuration, the plating solution can be discharged from a desired height to any location on the surface of the substrate 2 via the discharge nozzle 32.
  • a first heating mechanism 50 for heating the plating solution 35 to the first temperature is attached to at least one of the supply tank 31 and the plating solution supply pipe 33 of the plating solution supply mechanism 30.
  • a second heating mechanism 60 that heats the plating solution 35 to a second temperature higher than the first temperature is attached to the plating solution supply pipe 33 on the discharge nozzle 32 side of the first heating mechanism 50. The first heating mechanism 50 and the second heating mechanism 60 will be described in detail later.
  • a replenishment tank 172 is connected to the supply tank 31.
  • An unused plating solution 35 is stored in the replenishing tank 172, and the unused plating solution 35 is supplied into the supply tank 31 to replenish the plating solution consumed by the plating process.
  • the ammonia gas storage unit 170 is also connected to the replenishing tank 172, and the plating solution 35 stored in the replenishing tank 172 is always exposed to the ammonia gas. As a result, the concentration of the ammonia component in the plating solution 35 stored in the replenishing tank 172 is maintained within the target concentration range.
  • the pretreatment plating solution supply mechanism 30A As shown in FIG. 6, the pretreatment plating solution supply mechanism 30 ⁇ / b> A supplies a plating solution for performing pretreatment plating on the substrate 2.
  • the components for supplying the plating solution to the discharge nozzle 32 are different only in the plating solution 35A used, and the other components are the components in the plating solution supply mechanism 30. It is almost the same as the component.
  • the discharge nozzle 32 that discharges a plating solution containing Pd onto the surface of the substrate 2 is attached to the nozzle head 109.
  • the nozzle head 109 is attached to the tip of the arm 108, and the arm 108 can be extended in the vertical direction and is fixed to the support shaft 107 that is rotationally driven by the rotation mechanism 163. With such a configuration, the plating solution can be discharged from a desired height to any location on the surface of the substrate 2 via the discharge nozzle 32.
  • the same parts as those of the plating solution supply mechanism 30 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cleaning processing liquid supply mechanism 90 is used in the post-cleaning step of the substrate 2 and includes a nozzle 92 attached to the nozzle head 104 as shown in FIG.
  • the cleaning processing liquid supply mechanism 90 includes a tank 91 that stores the cleaning processing liquid 93 supplied to the substrate 2, and a supply pipe 94 that supplies the cleaning processing liquid 93 in the tank 91 to the nozzle 92. And a pump 96 and a valve 97a inserted in the supply pipe 94. As shown in FIG.
  • the supply pipe 94 and the nozzle 92 are shared with a rinse process liquid supply mechanism 95 that supplies a rinse process liquid such as pure water to the surface of the substrate 2. May be.
  • a rinse process liquid supply mechanism 95 that supplies a rinse process liquid such as pure water to the surface of the substrate 2.
  • the cleaning liquid supply mechanism 90A is used in a pre-cleaning step of the substrate 2 and includes a nozzle 92 attached to the nozzle head 109 as shown in FIG.
  • the components of the cleaning process liquid supply mechanism 90A differ only in the cleaning process liquid 93A used, and the other components are substantially the same as those of the cleaning process liquid supply mechanism 90. ing.
  • the cleaning processing liquid supply mechanism 90A shown in FIG. 6 the same parts as those in the cleaning processing liquid supply mechanism 90 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • liquid discharge mechanism 120, 125, and 130 for discharging the plating solution and the cleaning solution scattered from the substrate 2 will be described with reference to FIG.
  • a cup 105 that is driven up and down by an elevating mechanism 164 and has outlets 124, 129, and 134 is disposed in the casing 101.
  • the liquid discharge mechanisms 120, 125, and 130 discharge the liquid collected at the discharge ports 124, 129, and 134, respectively.
  • the treatment liquid supplied to the substrate 2 can be discharged by the liquid discharge mechanism 120, 125, 130 via the discharge ports 124, 129, 134 for each type.
  • the liquid discharge mechanism 120 is the plating liquid discharge mechanism 120 that discharges the plating liquid 35
  • the liquid discharge mechanism 125 is the plating liquid discharge mechanism 125 that discharges the plating liquid 35 ⁇ / b> A
  • the liquid discharge mechanism 130 Is a treatment liquid discharge mechanism 130 for discharging the cleaning treatment liquids 93, 93A and the rinse treatment liquid.
  • the plating solution discharge mechanisms 120 and 125 have recovery flow paths 122 and 127 and discard flow paths 123 and 128 that are switched by flow path switches 121 and 126, respectively.
  • the recovery channels 122 and 127 are channels for recovering and reusing the plating solution
  • the discard channels 123 and 128 are channels for discarding the plating solution.
  • the treatment liquid discharge mechanism 130 is provided with only the waste flow path 133.
  • a recovery channel 122 of a plating solution discharge mechanism 120 that discharges the plating solution 35 is connected to the outlet side of the substrate storage unit 110.
  • a cooling buffer 120 ⁇ / b> A for cooling the plating solution 35 is provided in the vicinity of the outlet side of the portion 110. Then, the plating solution 35 cooled by the cooling buffer 120A is returned to the supply tank 31 through the recovery flow path 122.
  • FIG. 7 shows a first heating mechanism 50 having a supply tank circulation heating means 51 for heating the plating solution 35 to a first temperature.
  • the first temperature is a predetermined temperature that is lower than the temperature (plating temperature) at which the deposition of metal ions due to self-reaction in the plating solution 35 proceeds and higher than room temperature.
  • the plating temperature is about 60 degrees, and in this case, the first temperature is set within a range of 40 to 60 degrees.
  • the supply tank circulation heating means 51 is attached to the supply tank circulation pipe 52 for circulating the plating solution 35 in the vicinity of the supply tank 31, and the supply tank circulation pipe 52. And a supply tank heater 53 for heating to a first temperature. As shown in FIG. 7, a pump 56 for circulating the plating solution 35 and a filter 55 are interposed in the supply tank circulation pipe 52. By providing such a supply tank circulation heating means 51, the plating solution 35 in the supply tank 31 can be heated to the first temperature while circulating in the vicinity of the supply tank 31. Further, as shown in FIG. 7, a plating solution supply pipe 33 is connected to the supply tank circulation pipe 52. In this case, when the valve 37 a shown in FIG.
  • the supply tank circulation pipe 52 is provided with monitoring means 57 for monitoring the characteristics of the plating solution 35, as shown by a one-dot chain line in FIG. May be.
  • the second heating mechanism 60 is for heating the plating solution 35 heated to the first temperature by the first heating mechanism 50 to the second temperature.
  • the second temperature is a predetermined temperature that is equal to or higher than the plating temperature described above.
  • the plating temperature is about 60 degrees as described above, and in this case, the second temperature is set within the range of 60 to 90 degrees.
  • the second heating mechanism 60 includes a second temperature medium supply unit 61 that heats a predetermined heat transfer medium to a second temperature or a temperature higher than the second temperature, and the first heating mechanism 50.
  • a temperature controller 62 attached to the plating solution supply pipe 33 on the discharge nozzle 32 side and configured to conduct heat of the heat transfer medium from the second temperature medium supply means 61 to the plating solution 35 in the plating solution supply pipe 33. is doing. Further, as shown in FIG. 8, even if a temperature holder 65 is further provided for holding the plating solution 35 provided at the arm 103 and passing through the plating solution supply pipe 33 located in the arm 103 at the second temperature. Good. In FIG.
  • the plating solution supply pipe located in the temperature controller 62 is denoted by reference numeral 33a, and the plating solution supply pipe located in the temperature holder 65 (in the arm 103) is shown. It is represented by reference numeral 33b.
  • the temperature controller 62 has a supply port 62a for introducing a heat transfer medium for temperature adjustment (for example, hot water) supplied from the second temperature medium supply means 61, and a discharge port 62b for discharging the heat transfer medium. ing.
  • the heat transfer medium supplied from the supply port 62 a contacts the plating solution supply pipe 33 a while flowing through the space 62 c inside the temperature controller 62. As a result, the plating solution 35 flowing through the plating solution supply pipe 33a is heated to the second temperature.
  • the heat transfer medium after being used for heating the plating solution 35 is discharged from the discharge port 62b.
  • the temperature holder 65 disposed between the temperature controller 62 and the discharge nozzle 32 is a plating heated to the second temperature by the temperature controller 62 until the plating solution 35 is discharged from the discharge nozzle 32. This is for maintaining the temperature of the liquid 35.
  • the temperature holder 65 includes a heat retaining pipe 65 c extending in contact with the plating solution supply pipe 33 b in the temperature holder 65 and a heat transfer medium supplied from the second temperature medium supply means 61. It has the supply port 65a introduced into the heat insulation pipe 65c, and the discharge port 65b which discharges
  • the heat retaining pipe 65c extends to the immediate vicinity of the discharge nozzle 32 along the plating solution supply pipe 33b, whereby the temperature of the plating solution 35 immediately before being discharged from the discharge nozzle 32 can be maintained at the second temperature. .
  • the heat retaining pipe 65 c may be opened inside the nozzle head 104 that houses the discharge nozzle 32 and may communicate with a space 65 d in the temperature retainer 65.
  • the temperature holder 65 includes the plating solution supply pipe 33b located at the center of the cross section, the heat retaining pipe 65c disposed in thermal contact with the outer periphery of the plating solution supply pipe 33b, and the outer periphery of the heat retaining pipe 65c. It has a triple structure (structure of triple piping) consisting of a space 65d located in the area.
  • the heat transfer medium supplied from the supply port 65 a keeps the plating solution 35 through the heat insulation pipe 65 c until reaching the nozzle head 104, and then is discharged from the discharge port 65 b through the space 65 d in the temperature holder 65.
  • the plating apparatus 20 further includes a back surface treatment liquid supply mechanism 145 that supplies a treatment liquid to the back surface of the substrate 2 and a back surface gas supply mechanism 150 that supplies gas to the back surface of the substrate 2. You may do it.
  • the plating processing system 1 including a plurality of plating processing apparatuses 20 configured as described above is driven and controlled by the control mechanism 160 according to various programs recorded in the storage medium 161 provided in the control mechanism 160, whereby the substrate 2 is controlled. Various processes are performed.
  • the storage medium 161 stores various setting data and various programs such as a plating processing program described later.
  • known media such as a computer-readable memory such as ROM and RAM, and a disk-shaped storage medium such as a hard disk, CD-ROM, DVD-ROM, and flexible disk can be used.
  • the plating processing system 1 and the plating processing apparatus 20 are driven and controlled to perform plating processing on the substrate 2 in accordance with the plating processing program recorded in the storage medium 161.
  • a plating solution containing Ni ions is used as the plating solution 35 for plating treatment
  • a plating solution containing Pd ions is used as the plating solution 35A for pretreatment plating.
  • Temperature control method for chemical reduction plating solution A process of adjusting the temperature of the plating solution 35 discharged onto the surface of the substrate 2 will be described. First, referring to FIG. 7, the temperature of the plating solution 35 discharged to the surface of the substrate 2 is heated to a first temperature lower than a predetermined temperature when the plating process is performed by being supplied to the substrate 2. 1 temperature adjustment process is demonstrated. First, the temperature of the supply tank heater 53 of the first heating mechanism 50 is raised to the first temperature or a temperature higher than the first temperature. Next, by using the pump 56, the plating solution 35 is heated to the first temperature while being circulated in the supply tank circulation pipe 52. At this time, the valve 37a is opened and the valve 37b is closed. Thereby, the temperature of the plating solution 35 stored in the supply tank 31 is controlled to the first temperature.
  • the temperature of the plating solution 35 is heated to a second temperature equal to or higher than a predetermined temperature when the plating process is performed by being supplied to the substrate 2.
  • the valve 37a is closed and the valve 37b is opened.
  • the plating solution 35 controlled to the first temperature is sent to the temperature regulator 62 of the second heating mechanism 60 through the plating solution supply pipe 33.
  • a heat transfer medium heated to a second temperature or a temperature higher than the second temperature is supplied from the second temperature medium supply means 61 to the temperature controller 62. For this reason, the plating solution 35 is heated to the second temperature while passing through the plating solution supply pipe 33 a inside the temperature controller 62.
  • the plating solution 35 heated to the second temperature is sent to the discharge nozzle 32 via the arm 103 as shown in FIG.
  • the arm 103 is provided with a temperature holder 65, and a heat transfer medium heated to the second temperature is supplied from the second temperature medium supply means 61 to the temperature holder 65. For this reason, the plating solution 35 is held at the second temperature until it reaches the discharge nozzle 32 through the plating solution supply pipe 33 b inside the temperature holder 65.
  • Pd plating is applied to the substrate 2 by displacement plating (pretreatment plating) using one plating apparatus 20 and then Ni plating is performed using the Ni plating solution prepared as described above.
  • a method of applying a chemical reduction plating (plating treatment) will be described with reference to FIG.
  • a substrate carrying-in process and a substrate receiving process are performed.
  • the cup 105 is lowered to a predetermined position, and then the loaded substrate 2 is supported by the wafer chuck 113, and then the discharge port 134 and the outer peripheral edge of the substrate 2 face each other.
  • the cup 105 is raised by the elevating mechanism 164 to the position.
  • a pre-cleaning process including a rinse process, a pre-clean process, and a subsequent rinse process is executed (S302).
  • the valve 97b of the rinsing process liquid supply mechanism 95A is opened, whereby the rinsing process liquid is supplied to the surface of the substrate 2 through the nozzle 92.
  • a pre-cleaning process is performed.
  • the valve 97b of the rinsing process liquid supply mechanism 95A is closed and the valve 97a of the cleaning process liquid supply mechanism 90A is opened, whereby the cleaning process liquid 93A is supplied to the surface of the substrate 2 via the nozzle 92.
  • the rinsing process liquid is supplied to the surface of the substrate 2 through the nozzle 92, and the rinsing process is performed.
  • the rinse treatment liquid and the cleaning treatment liquid 93A after the treatment are discarded through the discharge port 134 of the cup 105 and the waste flow path 133 of the treatment liquid discharge mechanism 130.
  • the valve 97b is closed.
  • Pd plating process Next, a Pd plating process is executed (execution of a pretreatment plating process) (S303). This Pd plating process is executed as a displacement plating process while the substrate 2 after the pre-cleaning process is not dried.
  • the cup 105 is lowered by the elevating mechanism 164 to a position where the discharge port 129 and the outer peripheral edge of the substrate 2 face each other.
  • the valve 37b of the plating solution supply mechanism 30A is opened, whereby the plating solution 35A containing Pd stored in the supply tank 31 is discharged onto the surface of the substrate 2 at a desired flow rate via the discharge nozzle 32. Is done.
  • Pd plating is performed on the surface of the substrate 2 by displacement plating.
  • the treated plating solution 35 ⁇ / b> A is discharged from the discharge port 129 of the cup 105.
  • the treated plating solution 35 ⁇ / b> A is recovered in the supply tank 31 via the recovery channel 127 or discarded via the discard channel 128.
  • the valve 37b is closed.
  • Ni plating process Thereafter, the Ni plating process is executed (execution of the plating process) (S305) in the same plating apparatus 20 where the above-described processes S302 to 304 are executed.
  • This Ni plating process is performed as a chemical reduction plating process.
  • the cup 105 is lowered by the elevating mechanism 164 to a position where the discharge port 124 and the outer peripheral edge of the substrate 2 face each other.
  • the plating solution 35 heated to the first temperature by the first heating mechanism 50 and heated to the second temperature by the second heating mechanism 60 is discharged from the discharge nozzle 32 at a desired flow rate.
  • Ni plating is applied to the surface of the substrate 2 by chemical reduction plating.
  • the treated plating solution 35 is discharged from the discharge port 124 of the cup 105.
  • the discharged plating solution 35 after processing is recovered in the supply tank 31 via the recovery channel 122 or discarded via the discard channel 123.
  • the treated plating solution 35 discharged from the discharge port 124 is smaller than the discharged flow rate. Further, since the ammonia component is easily volatilized from the plating solution 35 by being heated to the second temperature, a lot of the ammonia component is lost from the plating solution 35 in the plating apparatus 20.
  • the cup 105 is raised by the elevating mechanism 164 to a position where the discharge port 134 and the outer peripheral edge of the substrate 2 face each other. And the rinse process is performed with respect to the surface of the board
  • the valve 97b of the rinsing treatment liquid supply mechanism 95 is opened, whereby the rinsing treatment liquid is supplied to the surface of the substrate 2 via the nozzle 92.
  • a post-cleaning process is executed.
  • the valve 97b of the rinsing process liquid supply mechanism 95 is closed and the valve 97a of the cleaning process liquid supply mechanism 90 is opened, whereby the cleaning process liquid 93 is supplied to the surface of the substrate 2 via the nozzle 92.
  • the rinsing process liquid is supplied to the surface of the substrate 2 through the nozzle 92, and the rinsing process is performed.
  • the rinse treatment liquid and the cleaning treatment liquid 93 after the treatment are discarded through the discharge port 134 of the cup 105 and the disposal flow path 133 of the treatment liquid discharge mechanism 130.
  • the valve 97b is closed.
  • a drying process for drying the substrate 2 is performed (S307).
  • the turntable 112 when the turntable 112 is rotated, the liquid adhering to the substrate 2 is blown outward by centrifugal force, thereby drying the substrate 2. That is, the turntable 112 may have a function as a drying mechanism that dries the surface of the substrate 2.
  • the surface of the substrate 2 is first subjected to Pd plating by displacement plating, and then Ni plating by chemical reduction plating.
  • the Au plating treatment method is substantially the same as the above-described method for Pd plating treatment except that the plating solution and the cleaning solution are different, and thus detailed description thereof is omitted.
  • the flow path switch 121 is switched so that the treated plating solution discharged from the discharge port 124 of the cup 105 flows into the recovery flow path 122.
  • the plating solution that has flowed into the recovery flow path 122 flows into the cooling buffer 120A while maintaining a relatively high temperature close to the second temperature when the plating process is performed.
  • the plating solution is cooled to a temperature lower than the plating temperature by the cooling mechanism provided in the cooling buffer 120A. Thereby, precipitation of metal ions due to self-reaction in the plating solution is suppressed, and deterioration of the plating solution can be prevented. Further, since the volatilization of the ammonia component can be suppressed, it is possible to prevent the ammonia component from being lost from the plating solution 35 downstream from the cooling buffer 120A.
  • the plating solution cooled by the cooling buffer 120 ⁇ / b> A is returned to the supply tank 31.
  • the ammonia concentration, pH, and temperature of the plating solution 35 are measured by the monitor means 57 installed in the supply tank 31.
  • a signal from the monitoring means 57 is sent to the control mechanism 160, and when the ammonia component is insufficient, the control mechanism 160 replenishes the supply tank 31 with ammonia water from the ammonia water supply unit 174A, and also adds pure water. Is insufficient, pure water is replenished to the supply tank 31 from the pure water supply unit 174B.
  • the unused plating solution 35 is replenished from the replenishment tank 172 to the supply tank 31. Furthermore, since the ammonia gas storage unit 170 is connected to the supply tank 31, the space in the supply tank 31 is filled with ammonia gas supplied from the ammonia gas storage unit 170. In this way, by constantly exposing the plating solution 35 in the supply tank 31 to ammonia gas, the ammonia component is prevented from volatilizing from the plating solution 35, and further, the ammonia component is dissolved in the plating solution 35.
  • the ammonia component and pH of the plating solution 35 after a process can be adjusted appropriately, the density
  • the ammonia gas reservoir 170 is connected to the supply tank 31, exposed to constantly ammonia gas the plating solution 35 that is stored in the supply tank 31, the plating It is possible to suppress volatilization of the ammonia component from the liquid, and to dissolve the ammonia component. Thereby, the density
  • the unused plating solution 35 is replenished from the replenishment tank 172 to the supply tank 31.
  • the ammonia gas storage unit 170 is also connected to the replenishing tank 172, the concentration of the ammonia component in the unused plating solution 35 stored in the replenishing tank 172 is maintained at a predetermined target concentration. can do.
  • the ammonia concentration, pH and temperature of the plating solution 35 are measured by the monitor means 57 installed in the supply tank 31.
  • a signal from the monitoring means 57 is sent to the control mechanism 160, and ammonia water or pure water is replenished to the supply tank 31 by the control mechanism 160. In this way, the ammonia component and pH in the plating solution 35 stored in the supply tank 31 can be adjusted.
  • the first heating mechanism 50 that heats the plating solution 35 to the first temperature and the second heating mechanism 60 that heats the plating solution 35 to the second temperature are provided. ing. That is, the plating solution 35 is heated to the second temperature in two stages. Thereby, the time for which the plating solution 35 is held at the second temperature can be shortened, and the life of the plating solution 35 can be lengthened. Moreover, generation
  • the plating apparatus 20 can apply various plating solutions to the surface of the substrate 2 by chemical reduction plating.
  • a plating solution containing Co plating solution such as CoWB, CoWP, CoB, CoP
  • two-stage heating of the plating solution 35 by the first heating mechanism 50 and the second heating mechanism 60 may be performed.
  • specific values of the first temperature and the second temperature are appropriately set according to the plating temperature of the plating solution.
  • the plating temperature is 50 to 70 degrees
  • the first temperature is set within the range of 40 degrees to the above plating temperature
  • the second temperature is The plating temperature is set within a range of 90 degrees.
  • the plating solution supply mechanism 30A is also provided with the first heating mechanism 50 and the second heating mechanism 60 as in the case of the plating solution supply mechanism 30, and also for the plating solution 35A containing Pd.
  • two-stage heating by the first heating mechanism 50 and the second heating mechanism 60 may be performed.
  • a replenishment tank 172 that stores unused plating solution is connected to the supply tank 31 of the plating solution supply mechanism 30A, and ammonia gas is stored in the supply tank 31 and the replenishment tank 172.
  • the unit 170 may be connected.
  • ammonia water supply unit 174A and the pure water supply unit 174B are connected to the supply tank 31A, and the ammonia water is supplied from the ammonia water supply unit 174A to the supply tank 31 based on a signal from the monitoring means 57 installed in the supply tank 31A. And pure water may be supplied from the pure water supply unit 174B.
  • the present invention as an example of the plating process in one plating apparatus 20, an example is shown in which Pd plating is performed on the substrate 2 by displacement plating, and then Ni plating is performed by chemical reduction plating (FIG. 9). (See S302 to S309).
  • the present invention is not limited to this, and only chemical reduction plating may be performed as the plating process in the one plating apparatus 20. In this case, among the steps shown in FIG. 9, steps other than S303 and S304 are performed.
  • the plating solution for chemical reduction plating is not particularly limited, and various plating solutions for chemical reduction plating such as CoWB, CoWP, CoB, CoP, and NiP can be used.
  • the plating solution supply mechanism adjusts the components of the plating solution discharged from the plating solution discharge mechanism, and supplies the adjusted plating solution to the supply tank.
  • the plating solution supply mechanism further includes a plating solution recovery mechanism, and other configurations are substantially the same as those of the first embodiment shown in FIGS.
  • the same parts as those in the first embodiment shown in FIG. 1 to FIG.
  • the treated plating solution containing Ni recovered by the recovery flow path 122 of the plating solution discharge mechanism 120 is reused.
  • a plating solution recovery mechanism 80 for reusing the treated plating solution will be described with reference to FIG.
  • the plating solution recovery mechanism 80 has a recovery tank 88 that stores the processed plating solution 85 discharged from the plating solution discharge mechanism 120.
  • the recovery tank 88 is a sealed type like the supply tank 31, and an ammonia gas storage unit 170 is connected to the supply tank 31 and the recovery tank 88 by a connecting pipe 176.
  • the ammonia gas storage unit 170 supplies ammonia gas to the space above the surface of the plating solution 35 in the recovery tank 88.
  • the plating solution recovery mechanism 80 includes a replenishing unit 88 a for adding a component that is insufficient in the processed plating solution 85 stored in the recovery tank 88, and a stirring unit for stirring the plating solution 85 stored in the recovery tank 88.
  • the replenishing means 88a replenishes the plating solution 85 in the recovery tank 88 with a liquid such as NiP metal salt containing Ni ions, a reducing agent, an additive, ammonia water and pure water, so that the components of the plating solution 85 are appropriately used. It is for adjusting to.
  • the recovery tank 88 is connected to an ammonia water supply unit 174A that replenishes the recovery tank 88 with ammonia water and a pure water supply unit 174B that replenishes the recovery tank 88 with pure water.
  • the recovery tank 88 may be provided with monitoring means 87 for monitoring the characteristics of the plating solution 85, as indicated by the one-dot chain line in FIG. .
  • the monitor means 87 has a function as an ammonia concentration meter, a pH meter, and a thermometer with respect to the plating solution 85.
  • the flow rate of various liquids to be replenished by the replenishing unit 88a is adjusted by the control mechanism 160.
  • the control mechanism 160 replenishes the recovery tank 88 with ammonia water from the ammonia water supply unit 174A or replenishes the recovery tank 88 with pure water from the pure water supply unit 174B based on the signal from the monitor unit 87.
  • the ammonia component and pH of the plating solution 85 stored in the collection tank 88 are appropriately adjusted.
  • the agitating means 81 agitates the plating solution 85 by circulating the plating solution 85 in the vicinity of the recovery tank 88, for example, as shown in FIG.
  • the stirring means 81 has a recovery tank circulation pipe 82 having one end 82a and the other end 82b connected to the recovery tank 88, and a pump inserted in the recovery tank circulation pipe 82. 86 and a filter 89.
  • various impurities contained in the plating solution can be removed while stirring the plating solution 85. For example, impurities (particles) that can become nuclei when metal ions are precipitated from the plating solution can be removed.
  • a connecting pipe 83 for supplying the plating solution 85 to the supply tank 31 is attached to the stirring means 81.
  • the plating solution 35 stored in the supply tank 31 and the recovery tank 88 can always be exposed to the ammonia gas.
  • the concentration of the ammonia component in the liquid 35 can be maintained at a predetermined target concentration, and deterioration of the plating solution can be prevented.
  • the plating solution 35 returned from the substrate container 110 to the recovery tank 88 via the liquid discharge mechanism 120 is supplied again from the supply tank 31 to the substrate 2 via the discharge nozzle 32, and is supplied over a plurality of times.
  • the plating solution 35 can be reused.
  • the supply tank 31 is connected to a replenishment tank 172 that stores the unused plating solution 35 and replenishes the unused plating solution 35 in the supply tank 31.
  • the ammonia gas storage unit 170 is also connected to the replenishing tank 172, and maintains the concentration of the ammonia component in the plating solution 35 stored in the replenishing tank 172 at a predetermined target concentration.
  • the plating solution 85 after the processing used for performing the Ni plating processing on the substrate 2 flows from the substrate 2 to the discharge port 124.
  • the treated plating solution 85 that has flowed to the discharge port 124 is sent to the recovery tank 88 via the recovery flow path 122 of the liquid discharge mechanism 120 (S321).
  • the lacking component is added to the plating solution 85 after processing using the above-described replenishing means (S322). At this time, the plating solution 85 is stirred using the stirring means 81 so that the added component and the treated plating solution 85 are sufficiently mixed.
  • the Ni plating method that is performed using the plating solution that contains the recovered and regenerated plating solution is substantially the same as the Ni plating method in the first embodiment, and thus detailed description thereof is omitted.
  • the plating solution 85 after processing is recovered and regenerated by the plating solution recovery mechanism 80. For this reason, a plating solution can be utilized more effectively, As a result, the cost which a plating solution requires can be reduced.
  • the supply solution can store the plating solution after the components are appropriately adjusted, and the plating solution is more stable. Can be supplied.
  • the effect of extending the life of the plating solution 35 can be further promoted by heating the plating solution 35 in two stages using the first heating mechanism 50 and the second heating mechanism 60. (See FIG. 10).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)

Abstract

[課題]めっき液中のアンモニア成分の濃度を一定に維持してめっき液を循環して使用することができるめっき処理装置を提供する。 [解決手段]めっき処理装置20は、基板2を回転保持する基板回転保持機構110と、基板2にめっき液35を供給するめっき液供給機構30と、を備えている。このうちめっき液供給機構30は、基板2に供給されるめっき液35を貯留する供給タンク31と、めっき液35を基板2に吐出する吐出ノズル32と、供給タンク31のめっき液35を吐出ノズル32へ供給するめっき液供給管33と、を有している。また供給タンク31には、アンモニアガス貯留部170が接続され、供給タンク31に貯留されためっき液35中のアンモニア成分の濃度を目的の濃度範囲に保つ。

Description

めっき処理装置、めっき処理方法および記憶媒体
 本発明は、基板の表面にめっき液を供給してめっき処理を行うためのめっき処理装置、めっき処理方法および記憶媒体に関する。
 近年、半導体ウエハや液晶基板などの基板には、表面に回路を形成するために配線が施されている。この配線は、アルミニウム素材に替わって電気抵抗が低く信頼性の高い銅素材によるものが利用されるようになっている。しかし、銅はアルミニウムと比較して酸化されやすいので、銅配線表面の酸化を防止するために、高いエレクトロマイグレーション耐性を有する金属によってめっき処理することが望まれる。
 ところで、銅配線表面にめっきされる金属の金属イオンを含むめっき液は、一般にめっきされる金属の金属イオン、および金属イオンを錯体化させるアンモニア成分を含んでいる。まためっき液はコスト低減のため、ある程度回収して再利用される。
 しかしながら、めっき液の性質は非常に不安定であり、回収し再利用するために装置内を循環するだけでも性質が変化し、劣化してしまう。特許文献1では、めっき液貯槽内に不活性ガスを導入して槽内を置換することで、大気中の二酸化炭素がめっき液に溶け込むことによるめっき液の劣化を防止している。
特開2007-51346号公報
 本発明は、このような点を考慮してなされたものであり、めっき液中のアンモニア成分の濃度を維持することにより、めっき液を再利用することができるめっき処理装置、めっき処理方法および記憶媒体を提供することを目的とする。
 本発明は、基板に少なくともアンモニア成分を含むめっき液を供給してめっき処理を行うめっき処理装置において、前記基板を収容する基板収容部と、前記基板収容部に収容された前記基板にめっき液を供給するめっき液供給機構であって、前記基板に供給されるめっき液を貯留する供給タンクと、めっき液を前記基板に対して吐出する吐出ノズルと、前記供給タンクのめっき液を前記吐出ノズルへ供給するめっき液供給管とを有するめっき液供給機構と、前記基板に供給した後のめっき液を前記基板収容部から排出して前記めっき液供給機構の前記供給タンクへ送るめっき液排出機構と、アンモニアガスが充填されるとともに密閉されたアンモニアガス貯留部と、前記アンモニアガス貯留部からアンモニアガスを前記供給タンクへ供給するアンモニアガス管とを備えたことを特徴とするめっき処理装置である。
 本発明は、基板に少なくともアンモニア成分を含むめっき液を供給してめっき処理を行うめっき処理方法において、前記基板を基板収容部に配置する基板載置工程と、前記基板に吐出ノズルを介して供給タンク内のめっき液を供給する供給工程と、前記基板に供給した後のめっき液を前記基板収容部からめっき液排出機構を介して回収する回収工程と、回収されためっき液をアンモニアガスに曝して、めっき液の成分を調整する成分調整工程と、めっき液の成分が調整されためっき液を、前記吐出ノズルに供給する再利用工程とを含むことを特徴とするめっき処理方法である。
 本発明は、めっき処理装置にめっき処理方法を実行させるためのコンピュータプログラムを格納した記憶媒体において、前記めっき処理方法は、基板に少なくともアンモニア成分を含むめっき液を供給してめっき処理を行うめっき処理方法であって、前記基板を基板収容部に配置する基板載置工程と、前記基板に吐出ノズルを介して供給タンク内のめっき液を供給する供給工程と、前記基板に供給した後のめっき液を前記基板収容部からめっき液排出機構を介して回収する回収工程と、回収されためっき液をアンモニアガスに曝して、めっき液の成分を調整する成分調整工程と、めっき液の成分が調整されためっき液を、前記吐出ノズルに供給する再利用工程とを含むことを特徴とする記憶媒体である。
 本発明によれば、供給タンクにアンモニアガス貯留部が接続されているので、供給タンクに貯留されためっき液中のアンモニア成分が外方に揮発することを抑制できる。さらに、アンモニア成分を溶け込ませることができる。このため、めっき液中のアンモニア成分の濃度を予め定められた目的の濃度範囲に維持することができ、めっき液の劣化を防止することができる。
図1は、本発明の第1の実施の形態におけるめっき処理システムの概略構成を示す平面図。 図2は、本発明の第1の実施の形態におけるめっき処理装置を示す側面図。 図3は、図2に示すめっき処理装置の平面図。 図4は、本発明の第1の実施の形態における液供給機構を示す図。 図5は、本発明の第1の実施の形態におけるめっき処理装置を示す概略図。 図6は、本発明の第1の実施の形態における液供給機構を示す図。 図7は、本発明の第1の実施の形態における第1加熱機構を示す図。 図8は、本発明の第1の実施の形態における第2加熱機構を示す図。 図9は、めっき処理方法を示すフローチャート。 図10は、本発明の第2の実施の形態におけるめっき液回収機構を示す図。 図11は、本発明の第2の実施の形態における工程を詳細に示すフローチャート。
 第1の実施の形態
 以下、図1乃至図8を参照して、本発明の第1の実施の形態について説明する。まず図1により、本実施の形態におけるめっき処理システム1全体について説明する。
 めっき処理システム
 図1に示すように、めっき処理システム1は、基板2(ここでは、半導体ウエハ)を複数枚(たとえば、25枚)収容するキャリア3を載置し、基板2を所定枚数ずつ搬入及び搬出するための基板搬入出室5と、基板2のめっき処理や洗浄処理などの各種の処理を行うための基板処理室6と、を含んでいる。基板搬入出室5と基板処理室6とは、隣接して設けられている。
 (基板搬入出室)
 基板搬入出室5は、キャリア載置部4、搬送装置8を収容した搬送室9、基板受渡台10を収容した基板受渡室11を有している。基板搬入出室5においては、搬送室9と基板受渡室11とが受渡口12を介して連通連結されている。キャリア載置部4は、複数の基板2を水平状態で収容するキャリア3を複数個載置する。搬送室9では、基板2の搬送が行われ、基板受渡室11では、基板処理室6との間で基板2の受け渡しが行われる。
 このような基板搬入出室5においては、キャリア載置部4に載置されたいずれか1個のキャリア3と基板受渡台10との間で、搬送装置8により基板2が所定枚数ずつ搬送される。
 (基板処理室)
 また基板処理室6は、中央部において前後に伸延する基板搬送ユニット13と、基板搬送ユニット13の一方側および他方側において前後に並べて配置され、基板2にめっき液を供給してめっき処理を行う複数のめっき処理装置20と、を有している。
 このうち基板搬送ユニット13は、前後方向に移動可能に構成した基板搬送装置14を含んでいる。また基板搬送ユニット13は、基板受渡室11の基板受渡台10に基板搬入出口15を介して連通している。
 このような基板処理室6においては、各めっき処理装置20に対して、基板搬送ユニット13の基板搬送装置14により、基板2が、1枚ずつ水平に保持した状態で搬送される。そして、各めっき処理装置20において、基板2が、1枚ずつ洗浄処理及びめっき処理される。
 各めっき処理装置20は、用いられるめっき液などが異なるのみであり、その他の点は略同一の構成からなっている。そのため、以下の説明では、複数のめっき処理装置20のうち一のめっき処理装置20の構成について説明する。
 めっき処理装置
 以下、図2および図3を参照して、めっき処理装置20について説明する。図2は、めっき処理装置20を示す側面図であり、図3は、めっき処理装置20を示す平面図である。
 めっき処理装置20は、図2および図3に示すように、ケーシング101の内部で基板2を回転保持するための基板回転保持機構(基板収容部)110と、基板2の表面にめっき液や洗浄液などを供給する液供給機構30,30A,90,90Aと、基板2から飛散しためっき液や洗浄液などを受けるカップ105と、カップ105で受けためっき液や洗浄液を排出する排出口124,129,134と、排出口に集められた液を排出する液排出機構120,125,130と、基板回転保持機構110、液供給機構30,30A,90,90A、カップ105、および液排出機構120,125,130を制御する制御機構160と、を備えている。
 (基板回転保持機構)
 このうち基板回転保持機構110は、図2および図3に示すように、ケーシング101内で上下に伸延する中空円筒状の回転軸111と、回転軸111の上端部に取り付けられたターンテーブル112と、ターンテーブル112の上面外周部に設けられ、基板2を支持するウエハチャック113と、回転軸111を回転駆動する回転機構162と、を有している。このうち回転機構162は、制御機構160により制御され、回転機構162によって回転軸111が回転駆動され、これによって、ウエハチャック113により支持されている基板2が回転される。
 (液供給機構)
 次に、基板2の表面にめっき液や洗浄液などを供給する液供給機構30,30A,90,90Aについて、図2乃至図6を参照して説明する。液供給機構30,30A,90,90Aは、基板2の表面に対してめっき処理を施すめっき液を供給するめっき液供給機構30と、基板2の表面に後洗浄用の洗浄処理液を供給する洗浄処理液供給機構90と、基板2の表面に対して前処理めっきを施すめっき液を供給する前処理めっき液供給機構30Aと、基板2の表面に前洗浄用の洗浄処理液を供給する洗浄処理液供給機構90Aと、を含んでいる。
 このうち、めっき液供給機構30からはNiの金属イオンおよび金属イオンを錯体化させるアンモニア成分を含むめっき液、あるいはCoの金属イオンおよび金属イオンを錯体化させるアンモニア成分を含むめっき液が供給される。また前処理めっき液供給機構30Aからは、Pdの金属イオンを含むめっき液が供給される。
 〔めっき液供給機構30〕
 次に図4および図5により、めっき液供給機構30について説明する。ここで図5は、めっき液供給機構30のみを抽出して示す概略図であり、図5において前処理めっき液供給機構30A、洗浄処理液供給機構90,90Aは便宜上除かれている。
 図4および図5に示すように、めっき液供給機構30は、所定温度で基板2に供給されるめっき液35を貯留する密閉された供給タンク31と、めっき液35を基板2に対して吐出する吐出ノズル32と、供給タンク31のめっき液35を吐出ノズル32へ供給するめっき液供給管33とを有している。また図4に示すように、めっき液供給管33には、開閉自在なバルブ37bが介挿されている。
 なお本実施の形態において、基板2に供給されるめっき液35の「所定温度」は、めっき液35内での自己反応が進行するめっき温度に等しい温度、または前記めっき温度よりも高温の温度となっている。めっき温度については後述する。
 供給タンク31には、Niなどのめっき液35の各種の成分が貯蔵されている複数の供給源から補充手段31aを介して各種液体が供給されている。例えば、Niイオンを含むNiP金属塩、還元剤、添加剤、アンモニア水および純水などの液体が供給されている。
 図4および図5では、アンモニア水を供給タンク31に補充するアンモニア水供給部174Aと、純水を供給タンク31に補充する純水供給部174Bのみを図示している。
 また、供給タンク31にはめっき液35の特性をモニタするモニタ手段57が設けられている。このモニタ手段57は、めっき液35のアンモニア濃度を計測するアンモニア濃度計、pH計、および温度計の機能を有する。この際、供給タンク31内に貯留されためっき液35の成分が適切に調整されるよう、モニタ手段57からの信号に基づいて制御機構160により、供給タンク31に供給される各種液体の流量が調整されている。例えば、モニタ手段57からの信号に基づいて制御機構160により、アンモニア水供給部174Aからアンモニア水が供給タンク31に補充され、あるいは純水供給部174Bから純水が供給タンク31に補充されて、供給タンク31内に貯留されためっき液35中のアンモニア成分およびpHを調整している。
 図4および図5に示すように、めっき液供給機構30の供給タンク31は密閉タイプとなっており、この供給タンク31には連結配管176によってアンモニアガス貯留部170が接続されている。アンモニアガス貯留部170は、アンモニア水が貯留されるとともに密閉されて体積を変化させることが可能な構造となっており、アンモニアガスが充填されている。アンモニアガス貯留部170は、供給タンク31内におけるめっき液35の液面上の空間にアンモニアガスを供給している。アンモニアガス貯留部170は、体積を変化させることが可能な構造となっているので、めっき液35の液面上の空間の圧力と平衡な状態を維持することができる。供給タンク31内のめっき液の貯留量が変化して、めっき液35の液面上の空間の体積が変化しても、その変化に追従して適量のアンモニアガスを供給することができる。
 これにより、供給タンク31に貯留されためっき液35を常にアンモニアガスに曝すことができ、めっき液におけるアンモニア成分の濃度を予め定められた目的の濃度範囲に維持することができ、めっき液の劣化を防止することができる。このため、基板収容部110から後述する液排出機構120を介してめっき液供給機構30の供給タンク31へ回収されためっき液35を、再び吐出ノズル32から基板2に対して供給し、このようにして複数回に渡ってめっき液35を再利用することができる。
 吐出ノズル32は、ノズルヘッド104に取り付けられている。またノズルヘッド104は、アーム103の先端部に取り付けられており、このアーム103は、上下方向に延伸可能となっており、かつ、回転機構165により回転駆動される支持軸102に固定されている。めっき液供給機構30のめっき液供給管33はアーム103の内側に配置されている。このような構成により、めっき液を、吐出ノズル32を介して基板2の表面の任意の箇所に所望の高さから吐出することが可能となっている。
 さらに図4に示すように、めっき液供給機構30の供給タンク31またはめっき液供給管33の少なくともいずれか一方に、めっき液35を第1温度に加熱する第1加熱機構50が取り付けられている。また第1加熱機構50よりも吐出ノズル32側において、めっき液供給管33に、めっき液35を第1温度よりも高温の第2温度に加熱する第2加熱機構60が取り付けられている。第1加熱機構50および第2加熱機構60については、後に詳細に説明する。
 さらにまた、供給タンク31には、補充タンク172が接続されている。この補充タンク172には、未使用のめっき液35が貯留されており、供給タンク31内にこの未使用のめっき液35を供給して、めっき処理により消費されためっき液を補充する。アンモニアガス貯留部170は、この補充タンク172にも接続され、補充タンク172内に貯留されためっき液35も常にアンモニアガスに曝されている。これにより、補充タンク172内に貯留されためっき液35中のアンモニア成分の濃度を目的の濃度範囲に保っている。
 〔前処理めっき液供給機構30A〕
 図6に示すように、前処理めっき液供給機構30Aは基板2に対して前処理めっきを施すめっき液を供給するものである。このような前処理めっき液供給機構30Aにおいて、吐出ノズル32にめっき液を供給するための構成要素は、用いられるめっき液35Aが異なるのみであり、他の構成要素はめっき液供給機構30における各構成要素と略同一になっている。図2に示すように、Pdを含むめっき液を基板2の表面に吐出する吐出ノズル32は、ノズルヘッド109に取り付けられている。またノズルヘッド109は、アーム108の先端部に取り付けられており、このアーム108は、上下方向に延伸可能であり、かつ回転機構163により回転駆動される支持軸107に固定されている。このような構成により、めっき液を、吐出ノズル32を介して基板2の表面の任意の箇所に所望の高さから吐出することが可能となっている。
 図6に示す前処理めっき液供給機構30Aにおいて、めっき液供給機構30と同一部分には同一符号を付して詳細な説明は省略する。
 〔洗浄処理液供給機構90〕
 洗浄処理液供給機構90は、後述するように基板2の後洗浄工程において用いられるものであり、図2に示すように、ノズルヘッド104に取り付けられたノズル92を含んでいる。また図4に示すように、洗浄処理液供給機構90は、基板2に供給される洗浄処理液93を貯留するタンク91と、タンク91の洗浄処理液93をノズル92へ供給する供給管94と、供給管94に介挿されたポンプ96およびバルブ97aと、をさらに有している。なお図4に示すように、洗浄処理液供給機構90において、基板2の表面に純水などのリンス処理液を供給するリンス処理液供給機構95との間で、供給管94およびノズル92が共用されていてもよい。この場合、バルブ97a,97bの開閉を適切に制御することにより、ノズル92から、洗浄処理液93またはリンス処理液のいずれかが選択的に基板2の表面に吐出される。
 〔洗浄処理液供給機構90A〕
 洗浄処理液供給機構90Aは、後述するように基板2の前洗浄工程において用いられるものであり、図2に示すように、ノズルヘッド109に取り付けられたノズル92を含んでいる。洗浄処理液供給機構90Aの構成要素は、図6に示すように、用いられる洗浄処理液93Aが異なるのみであり、他の構成要素は洗浄処理液供給機構90における各構成要素と略同一になっている。図6に示す洗浄処理液供給機構90Aにおいて、洗浄処理液供給機構90と同一部分には同一符号を付して詳細な説明は省略する。
 (液排出機構)
 次に、基板2から飛散しためっき液や洗浄液などを排出する液排出機構120,125,130について、図2を参照して説明する。図2に示すように、ケーシング101内には、昇降機構164により上下方向に駆動され、排出口124,129,134を有するカップ105が配置されている。液排出機構120,125,130は、それぞれ排出口124,129,134に集められる液を排出するものとなっている。
 基板2に供給した処理液は、種類ごとに排出口124,129,134を介して液排出機構120,125,130により排出することが可能となっている。例えば、液排出機構120は、めっき液35を排出するめっき液排出機構120となっており、液排出機構125は、めっき液35Aを排出するめっき液排出機構125となっており、液排出機構130は、洗浄処理液93,93Aおよびリンス処理液を排出する処理液排出機構130となっている。
 図2に示すように、めっき液排出機構120,125は、流路切換器121,126により切り替えられる回収流路122,127および廃棄流路123,128をそれぞれ有している。このうち回収流路122,127は、めっき液を回収して再利用するための流路であり、一方、廃棄流路123,128は、めっき液を廃棄するための流路である。なお図2に示すように、処理液排出機構130には廃棄流路133のみが設けられている。
 また図2および図5に示すように、基板収容部110の出口側には、めっき液35を排出するめっき液排出機構120の回収流路122が接続され、この回収流路122のうち基板収容部110の出口側近傍に、めっき液35を冷却する冷却バッファ120Aが設けられている。そして冷却バッファ120Aにより冷却されためっき液35は、回収流路122を通って供給タンク31へ戻される。
 次に、めっき液供給機構30および前処理めっき液供給機構30Aに設けられている第1加熱機構50および第2加熱機構60について説明する。
 (第1加熱機構)
 次に第1加熱機構50について説明する。図7において、めっき液35を第1温度に加熱する供給タンク用循環加熱手段51を有する第1加熱機構50が示されている。なお第1温度は、めっき液35内での自己反応による金属イオンの析出が進行する温度(めっき温度)よりも低く、かつ常温よりも高い所定の温度となっている。例えば、Niを含むめっき液35において、そのめっき温度は約60度となっており、この場合、第1温度が40~60度の範囲内に設定される。
 供給タンク用循環加熱手段51は、図7に示すように、供給タンク31の近傍でめっき液35を循環させる供給タンク用循環管52と、供給タンク用循環管52に取り付けられ、めっき液35を第1温度に加熱する供給タンク用ヒータ53と、を有している。また図7に示すように、供給タンク用循環管52には、めっき液35を循環させるためのポンプ56と、フィルター55とが介挿されている。このような供給タンク用循環加熱手段51を設けることにより、供給タンク31内のめっき液35を供給タンク31近傍で循環させながら第1温度まで加熱することができる。また図7に示すように、供給タンク用循環管52にはめっき液供給管33が接続されている。この場合、図7に示すバルブ37aが開放され、バルブ37bが閉鎖されているときは、供給タンク用ヒータ53を通っためっき液35が供給タンク31に戻される。一方、バルブ37aが閉鎖され、バルブ37bが開放されているときは、供給タンク用ヒータ53を通っためっき液35がめっき液供給管33を通って第2加熱機構60に到達する。
 なお供給タンク31にモニタ手段57を設置する代わりに、図7において一点鎖線で示されているように、供給タンク用循環管52に、めっき液35の特性をモニタするモニタ手段57が設けられていてもよい。
 (第2加熱機構)
 次に、図8を参照して、第2加熱機構60について説明する。第2加熱機構60は、第1加熱機構50によって第1温度まで加熱されためっき液35を、さらに第2温度まで加熱するためのものである。なお第2温度とは、上述のめっき温度に等しいか、若しくはめっき温度よりも高い所定の温度となっている。例えば、Niを含むめっき液35において、そのめっき温度は上述のように約60度となっており、この場合、第2温度が60~90度の範囲内に設定される。
 図8に示すように、第2加熱機構60は、所定の伝熱媒体を第2温度または第2温度よりも高い温度に加熱する第2温度媒体供給手段61と、第1加熱機構50よりも吐出ノズル32側においてめっき液供給管33に取り付けられ、第2温度媒体供給手段61からの伝熱媒体の熱をめっき液供給管33内のめっき液35に伝導させる温度調節器62と、を有している。また図8に示すように、アーム103に設けられ、アーム103内に位置するめっき液供給管33を通るめっき液35を第2温度で保持するための温度保持器65がさらに設けられていてもよい。なお図8において、めっき液供給管33のうち、温度調節器62内に位置するめっき液供給管が符号33aで表され、温度保持器65内(アーム103内)に位置するめっき液供給管が符号33bで表されている。
 〔温度調節器62〕
 温度調節器62は、第2温度媒体供給手段61から供給される温度調節用の伝熱媒体(たとえば温水)を導入する供給口62aと、伝熱媒体を排出する排出口62bと、を有している。供給口62aから供給された伝熱媒体は、温度調節器62の内部の空間62cを流れる間にめっき液供給管33aと接触する。これによって、めっき液供給管33aを流れるめっき液35が第2温度まで加熱される。めっき液35の加熱に用いられた後の伝熱媒体は、排出口62bから排出される。
 〔温度保持器65〕
 温度調節器62と吐出ノズル32との間に配設される温度保持器65は、めっき液35が吐出ノズル32から吐出されるまでの間、温度調節器62により第2温度に加熱されためっき液35の温度を保持するためのものである。この温度保持器65は、図8に示すように、温度保持器65内でめっき液供給管33bに接触するよう延びる保温パイプ65cと、第2温度媒体供給手段61から供給される伝熱媒体を保温パイプ65cに導入する供給口65aと、伝熱媒体を排出する排出口65bと、を有している。保温パイプ65cは、めっき液供給管33bに沿って吐出ノズル32の直近まで延びており、これによって、吐出ノズル32から吐出される直前のめっき液35の温度を第2温度に保持することができる。
 保温パイプ65cは、図8に示すように、吐出ノズル32を収納するノズルヘッド104の内部で開放され、温度保持器65内の空間65dと通じていてもよい。この場合、温度保持器65は、その断面中心に位置するめっき液供給管33b、めっき液供給管33bの外周に熱的に接触させて配設された保温パイプ65c、および、保温パイプ65cの外周に位置する空間65dからなる三重構造(三重配管の構造)を有している。供給口65aから供給された伝熱媒体は、ノズルヘッド104に至るまで保温パイプ65cを通ってめっき液35を保温し、その後、温度保持器65内の空間65dを通って排出口65bから排出される。
 (その他の構成要素)
 図2に示すように、めっき処理装置20は、基板2の裏面に処理液を供給する裏面処理液供給機構145と、基板2の裏面に気体を供給する裏面ガス供給機構150と、をさらに有していてもよい。
 以上のように構成されるめっき処理装置20を複数含むめっき処理システム1は、制御機構160に設けた記憶媒体161に記録された各種のプログラムに従って制御機構160で駆動制御され、これによって基板2に対する様々な処理が行われる。ここで、記憶媒体161は、各種の設定データや後述するめっき処理プログラム等の各種のプログラムを格納している。記憶媒体161としては、コンピューターで読み取り可能なROMやRAMなどのメモリーや、ハードディスク、CD-ROM、DVD-ROMやフレキシブルディスクなどのディスク状記憶媒体などの公知のものが使用され得る。
 本実施の形態において、めっき処理システム1およびめっき処理装置20は、記憶媒体161に記録されためっき処理プログラムに従って、基板2にめっき処理を施すよう駆動制御される。以下の説明では、めっき処理用のめっき液35としてNiイオンを含むめっき液を用い、前処理めっき用のめっき液35AとしてPdイオンを含むめっき液を用いる場合について説明する。
 はじめに、化学還元めっきで使用されるNiめっき液の温調方法について説明する。次に、一のめっき処理装置20で基板2にPdめっきを置換めっきにより施した後にNiめっきを化学還元めっきにより施し、その後、その他のめっき処理装置20で基板2に金めっきを置換めっきにより施す方法について説明する。
 化学還元めっき液の温調方法
 〔第1温度調整工程〕
 基板2の表面に吐出されるめっき液35の温度を調整する工程について説明する。はじめに、図7を参照して、基板2の表面に吐出されるめっき液35の温度を、基板2に供給されてめっき処理が行われる際の所定温度よりも低温の第1温度まで加熱する第1温度調整工程について説明する。まず、第1加熱機構50の供給タンク用ヒータ53の温度を第1温度または第1温度よりも高い温度まで上昇させる。次に、ポンプ56を用いることにより、めっき液35を供給タンク用循環管52内で循環させながら第1温度まで加熱する。この際、バルブ37aは開放され、バルブ37bは閉鎖されている。これによって、供給タンク31内に貯留されているめっき液35の温度が第1温度に制御される。
 〔第2温度調整工程〕
 次に、めっき液35の温度を、基板2に供給されてめっき処理が行われる際の所定温度に等しい、または所定温度よりも高い第2温度まで加熱する第2温度調整工程について、図7および8を参照して説明する。まず、バルブ37aが閉鎖され、バルブ37bが開放される。これによって、第1温度に制御されているめっき液35が、めっき液供給管33を通って第2加熱機構60の温度調節器62に送られる。温度調節器62には、第2温度または第2温度よりも高い温度に加熱された伝熱媒体が第2温度媒体供給手段61から供給されている。このため、めっき液35は、温度調節器62の内部のめっき液供給管33aを通る間に第2温度まで加熱される。
 その後、第2温度に加熱されためっき液35は、図8に示すようにアーム103を介して吐出ノズル32に送られる。このとき、アーム103には温度保持器65が設けられており、この温度保持器65には、第2温度に加熱された伝熱媒体が第2温度媒体供給手段61から供給されている。このため、めっき液35は、温度保持器65の内部のめっき液供給管33bを通って吐出ノズル32に到達するまで第2温度に保持される。
 めっき処理方法
 次に、一のめっき処理装置20で基板2にPdめっきを置換めっきにより施した(前処理めっきを施す)後、上述のようにして準備されたNiめっき液を使用してNiめっきを化学還元めっきにより施す(めっき処理を施す)方法について、図9を参照して説明する。
 (基板搬入工程および基板受取工程)
 はじめに、基板搬入工程および基板受入工程が実行される。まず、基板搬送ユニット13の基板搬送装置14を用いて、1枚の基板2を基板受渡室11から一のめっき処理装置20に搬入する。めっき処理装置20においては、はじめに、カップ105が所定位置まで降下され、次に、搬入された基板2がウエハチャック113により支持され、その後、排出口134と基板2の外周端縁とが対向する位置までカップ105が昇降機構164により上昇させられる。
 (前洗浄工程)
 次に、リンス処理、前洗浄処理およびその後のリンス処理からなる前洗浄工程が実行される(S302)。はじめに、リンス処理液供給機構95Aのバルブ97bが開かれ、これによって、リンス処理液が基板2の表面にノズル92を介して供給される。次に、前洗浄処理が実行される。リンス処理液供給機構95Aのバルブ97bが閉じられるとともに、洗浄処理液供給機構90Aのバルブ97aが開かれ、これによって、洗浄処理液93Aが基板2の表面にノズル92を介して供給される。その後、上述の場合と同様にしてリンス処理液が基板2の表面にノズル92を介して供給され、リンス処理が行われる。処理後のリンス処理液や洗浄処理液93Aは、カップ105の排出口134および処理液排出機構130の廃棄流路133を介して廃棄される。基板2の表面の前洗浄工程が終了すると、バルブ97bが閉じられる。
 (Pdめっき工程)
 次に、Pdめっき工程が実行される(前処理めっき工程の実行)(S303)。このPdめっき工程は、前洗浄工程後の基板2が乾燥されていない状態の間に、置換めっき処理工程として実行される。
 Pdめっき工程においては、はじめに、排出口129と基板2の外周端縁とが対向する位置までカップ105を昇降機構164により下降させる。次に、めっき液供給機構30Aのバルブ37bが開かれ、これによって、供給タンク31に貯留されているPdを含むめっき液35Aが、基板2の表面に吐出ノズル32を介して所望の流量で吐出される。このことにより、基板2の表面に、置換めっきによってPdめっきが施される。処理後のめっき液35Aは、カップ105の排出口129から排出される。その後、処理後のめっき液35Aは、回収流路127を介して供給タンク31に回収されるか、若しくは廃棄流路128を介して廃棄される。基板2の表面のPdめっき処理が終了すると、バルブ37bが閉じられる。
 (リンス処理工程)
 次に、リンス処理工程が実行される(S304)。このリンス処理工程(S304)は、上述の前洗浄工程(S302)におけるリンス処理と略同一であるので、詳細な説明は省略する。
 (Niめっき工程)
 その後、上述の工程S302~304が実行されたのと同一のめっき処理装置20において、Niめっき工程が実行される(めっき処理工程の実行)(S305)。このNiめっき工程は、化学還元めっき処理工程として実行される。
 Niめっき工程(S305)においては、はじめに、排出口124と基板2の外周端縁とが対向する位置までカップ105を昇降機構164により下降させる。次に、第1加熱機構50によって第1温度に加熱され、かつ第2加熱機構60によって第2温度に加熱されためっき液35が吐出ノズル32から所望の流量で吐出される。このことにより、基板2の表面に、化学還元めっきによってNiめっきが施される。処理後のめっき液35は、カップ105の排出口124から排出される。排出された処理後のめっき液35は、回収流路122を介して供給タンク31に回収されるか、若しくは廃棄流路123を介して廃棄される。
 Niめっき工程を行うことにより、排出口124から排出される処理後のめっき液35は、吐出される流量よりも減少している。また、第2温度に加熱されたことにより、めっき液35からアンモニア成分が揮発しやすくなっており、めっき処理装置20内で多くのアンモニア成分がめっき液35から失われる。
 (後洗浄工程)
 次に、リンス処理、後洗浄処理およびその後のリンス処理からなる後洗浄工程が実行される(S306)。
 まず、排出口134と基板2の外周端縁とが対向する位置までカップ105が昇降機構164により上昇させられる。そして、Niめっき処理が施された基板2の表面に対してリンス処理が実行される。この場合、リンス処理液供給機構95のバルブ97bが開かれ、これによって、リンス処理液が基板2の表面にノズル92を介して供給される。
 次に、後洗浄処理が実行される。リンス処理液供給機構95のバルブ97bが閉じられるとともに、洗浄処理液供給機構90のバルブ97aが開かれ、これによって、洗浄処理液93が基板2の表面にノズル92を介して供給される。その後、上述の場合と同様にしてリンス処理液が基板2の表面にノズル92を介して供給され、リンス処理が行われる。処理後のリンス処理液や洗浄処理液93は、カップ105の排出口134および処理液排出機構130の廃棄流路133を介して廃棄される。基板2の表面の後洗浄工程が終了すると、バルブ97bが閉じられる。
 (乾燥工程)
 その後、基板2を乾燥させる乾燥工程が実行される(S307)。例えば、ターンテーブル112を回転させることにより、基板2に付着している液体が遠心力により外方へ飛ばされ、これによって基板2が乾燥される。すなわち、ターンテーブル112が、基板2の表面を乾燥させる乾燥機構としての機能を備えていてもよい。
 このようにして、一のめっき処理装置20において、基板2の表面に対して、はじめにPdめっきが置換めっきにより施され、次にNiめっきが化学還元めっきにより施される。
 その後、Auめっき処理用の他のめっき処理装置20に搬送される。そして、他のめっき処理装置20において、置換めっきにより基板2の表面にAuめっき処理が施される。Auめっき処理の方法は、めっき液および洗浄液が異なる点以外は、Pdめっき処理のための上述の方法と略同一であるので、詳細な説明は省略する。
 めっき液回収・再生方法
 次に、前述のNiめっき工程で使用されためっき液を回収して再利用する方法を説明する。
 (冷却工程)
 まず、カップ105の排出口124から排出された処理後のめっき液が、回収流路122に流れるように、流路切換器121が切り換えられる。回収流路122に流れためっき液は、めっき処理が行われる際の第2温度に近い比較的高い温度を維持した状態で、冷却バッファ120Aに流入する。ここで、冷却バッファ120Aに設けられた冷却機構により、めっき液はめっき温度よりも低い温度に冷却される。これにより、めっき液内での自己反応による金属イオンの析出が抑制され、めっき液の劣化を防止することができる。また、アンモニア成分の揮発を抑制することができるので、冷却バッファ120Aより下流においてアンモニア成分がめっき液35から失われるのを防止することができる。
 (成分調整工程)
 次に、冷却バッファ120Aで冷却されためっき液は、供給タンク31に戻される。供給タンク31では、供給タンク31に設置されたモニタ手段57により、めっき液35のアンモニア濃度、pH、温度が計測される。そして、モニタ手段57からの信号が制御機構160へ送られ、アンモニア成分が不足している場合には、制御機構160によってアンモニア水供給部174Aからアンモニア水が供給タンク31に補充され、また純水が不足している場合には、純水供給部174Bから純水が供給タンク31に補充される。また、めっき処理により減少した分を補充する場合や供給タンク31内のめっき液35が不足した場合には、補充タンク172から未使用のめっき液35が供給タンク31へ補充される。さらに、供給タンク31にはアンモニアガス貯留部170が接続されているため、供給タンク31内の空間には、アンモニアガス貯留部170から供給されたアンモニアガスが充填されている。このようにして、供給タンク31内のめっき液35を常にアンモニアガスに曝すことにより、めっき液35からアンモニア成分が揮発することを抑制し、さらに、めっき液35にアンモニア成分を溶けこませる。
 これにより、処理後のめっき液35のアンモニア成分およびpHを適切に調整し、めっき液におけるアンモニア成分の濃度を予め定められた目的の濃度範囲に維持することができ、めっき液の劣化を防止することができる。そして、再び吐出ノズル32から基板2に対して供給し、めっき液を複数回にわたり再利用することができる。
 本実施の形態の作用効果
 本実施の形態によれば、供給タンク31にアンモニアガス貯留部170が接続されているため、供給タンク31内に貯留されためっき液35を常にアンモニアガスに曝し、めっき液からアンモニア成分が揮発することを抑制し、さらには、アンモニア成分を溶け込ませることができる。これにより、めっき液中のアンモニア成分の濃度を予め定められた目的の濃度範囲に維持することができ、めっき液の劣化を防止している。このため基板収容部110から供給タンク31へ戻されためっき液を再び吐出ノズル32から基板2に対して供給し、このようにしてめっき液を複数回にわたり再利用することができる。
 また供給タンク31内のめっき液35が不足した場合、補充タンク172から未使用のめっき液35が供給タンク31へ補充される。この場合、アンモニアガス貯留部170が補充タンク172にも接続されているので、補充タンク172内に貯留された未使用のめっき液35についてもアンモニア成分の濃度を予め定められた目的の濃度に維持することができる。
 さらにこの間、供給タンク31に設置されたモニタ手段57によって、めっき液35のアンモニア濃度、pH、温度が計測される。そしてモニタ手段57からの信号が制御機構160へ送られ、制御機構160によってアンモニア水や純水が供給タンク31に補充される。このようにして供給タンク31内に貯留されためっき液35中のアンモニア成分およびpHを調整することができる。
 また本実施の形態によれば、上述のように、めっき液35を第1温度に加熱する第1加熱機構50と、めっき液35を第2温度に加熱する第2加熱機構60とが設けられている。すなわち、めっき液35が二段階で第2温度まで加熱されている。このことにより、めっき液35が第2温度で保持される時間を短くすることができ、めっき液35の寿命を長くすることができる。また、めっき液の自己反応によるパーティクルの発生を抑制することができる。
 (その他の変形例)
 本実施の形態において、めっき処理装置20により、Niを含むめっき液35が化学還元めっきにより基板2の表面に施される例を示した。しかしながら、これに限られることはなく、めっき処理装置20により、様々なめっき液を化学還元めっきにより基板2の表面に施すことができる。例えば、Coを含むめっき液(CoWB、CoWP、CoB、CoPなどのめっき液)が化学還元めっきにより基板2の表面に施され得る。これらのめっき液が用いられる場合においても、第1加熱機構50および第2加熱機構60によるめっき液35の二段階加熱が実施されてもよい。この場合、第1温度および第2温度の具体的な値は、めっき液のめっき温度に応じて適宜設定される。例えばめっき液35としてCoPのめっき液が用いられる場合、そのめっき温度は50~70度となっており、そして、第1温度が40度~上記めっき温度の範囲内に設定され、第2温度が上記めっき温度~90度の範囲内に設定される。
 また本実施の形態において、めっき液供給機構30Aにも、めっき液供給機構30の場合と同様に第1加熱機構50および第2加熱機構60が設けられ、また、Pdを含むめっき液35Aに対しても、第1加熱機構50および第2加熱機構60による二段階加熱が実施されてもよい。さらにまた、めっき液35Aがアンモニア成分を含む場合、めっき液供給機構30Aの供給タンク31に未使用のめっき液を貯留する補充タンク172を接続するとともに、供給タンク31および補充タンク172にアンモニアガス貯留部170を接続してもよい。さらにまた、供給タンク31Aにアンモニア水供給部174Aと純水供給部174Bを接続し、供給タンク31Aに設置したモニタ手段57からの信号に基づいて、供給タンク31にアンモニア水供給部174Aからアンモニア水を供給するとともに純水供給部174Bから純水を供給してもよい。
 また本実施の形態において、一のめっき処理装置20におけるめっき処理として、基板2にPdめっきが置換めっきにより施され、次にNiめっきが化学還元めっきにより施される例を示した(図9のS302~S309参照)。しかしながら、これに限られることはなく、一のめっき処理装置20におけるめっき処理として、化学還元めっきのみが実施されてもよい。この場合、図9に示す各工程のうち、S303およびS304を除く工程が実施されることになる。この際、化学還元めっきのためのめっき液が特に限られることはなく、CoWB、CoWP、CoB、CoPおよびNiPなど、化学還元めっきのための様々なめっき液が用いられ得る。
 第2の実施の形態
 次に図10および図11を参照して、本発明の第2の実施の形態について説明する。図10および図11に示す第2の実施の形態は、めっき液供給機構が、めっき液排出機構から排出されためっき液の成分を調整し、成分が調整されためっき液を供給タンクに供給するめっき液回収機構をさらに有している点が異なるのみであり、他の構成は、図1乃至図5に示す第1の実施の形態と略同一である。図10および図11に示す第2の実施の形態において、図1乃至図5に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、めっき液排出機構120の回収流路122により回収されたNiを含む処理後のめっき液が再利用される。以下、図10を参照して、処理後のめっき液を再利用するためのめっき液回収機構80について説明する。
 めっき液回収機構
 図10に示すように、めっき液回収機構80は、めっき液排出機構120から排出された処理後のめっき液85を貯留する回収タンク88を有している。この回収タンク88は、供給タンク31同様に密閉タイプとなっており、この供給タンク31および回収タンク88には連結配管176によってアンモニアガス貯留部170が接続されている。アンモニアガス貯留部170は、回収タンク88内におけるめっき液35の液面上の空間にアンモニアガスを供給している。
 まためっき液回収機構80は、回収タンク88に貯留された処理後のめっき液85に不足している成分を追加する補充手段88aと、回収タンク88に貯留されためっき液85を撹拌する撹拌手段81と、をさらに有していてもよい。このうち補充手段88aは、Niイオンを含むNiP金属塩、還元剤、添加剤、アンモニア水および純水などの液体を回収タンク88内のめっき液85に補充して、めっき液85の成分を適切に調整するためのものである。例えば、回収タンク88には、アンモニア水を回収タンク88に補充するアンモニア水供給部174Aと、純水を回収タンク88に補充する純水供給部174Bとが接続されている。
 なお、このような成分調整をより正確に行うため、図10において一点鎖線で示されているように、回収タンク88に、めっき液85の特性をモニタするモニタ手段87が設けられていてもよい。モニタ手段87は、めっき液85に関し、アンモニア濃度計,pH計および温度計としての機能を有する。そしてモニタ手段87からの信号に基づいて制御機構160により補充手段88aにより補充される各種の液体の流量が調整される。例えば、モニタ手段87からの信号に基づいて制御機構160により、アンモニア水供給部174Aからアンモニア水が回収タンク88に補充され、あるいは純水供給部174Bから純水が回収タンク88に補充されて、回収タンク88内に貯留されためっき液85のアンモニア成分およびpHを適切に調整する。
 撹拌手段81は、例えば図10に示すように、回収タンク88近傍でめっき液85を循環させることによりめっき液85を撹拌するものとなっている。このような撹拌手段81は、図10に示すように、その一端82aおよび他端82bが回収タンク88に接続された回収タンク用循環管82と、回収タンク用循環管82に介挿されたポンプ86およびフィルター89と、を有している。このような撹拌手段81を設けることにより、めっき液85を撹拌しながら、めっき液内に含まれる様々な不純物を除去することができる。例えば、めっき液から金属イオンが析出する際の核となり得る不純物(パーティクル)を除去することができる。なお撹拌手段81には、めっき液85を供給タンク31に供給するための接続管83が取り付けられている。
 本発明によれば、供給タンク31および回収タンク88にアンモニアガス貯留部170を接続することにより、供給タンク31および回収タンク88に貯留されためっき液35を常にアンモニアガスに曝すことができ、めっき液35中のアンモニア成分の濃度を予め定められた目的の濃度に維持することができ、めっき液の劣化を防止することができる。
このため、基板収容部110から液排出機構120を介して回収タンク88へ戻されためっき液35を、再び供給タンク31から吐出ノズル32を介して基板2に対して供給し、複数回に渡ってめっき液35を再利用することができる。
 さらにまた、供給タンク31には、未使用のめっき液35を貯留して供給タンク31内にこの未使用のめっき液35を補充する補充タンク172が接続されている。アンモニアガス貯留部170は、この補充タンク172にも接続され、補充タンク172内に貯留されためっき液35中のアンモニア成分の濃度を予め定められた目的の濃度に保っている。
 次に、このような構成からなる本実施の形態の作用について説明する。ここでは、処理後のNiめっき液を回収し、再生する方法について、図11を参照して説明する。なお図11のフローチャートに示される各工程において、図9に示す第1の実施の形態のフローチャートの各工程と同一工程には同一符号を付して詳細な説明は省略する。
 〔回収工程〕
 基板2に対するNiめっき処理を実施するために用いられた後の処理後のめっき液85が、基板2から排出口124に流れていく。排出口124に流れた処理後のめっき液85は、液排出機構120の回収流路122を介して回収タンク88に送られる(S321)。
 〔成分調整工程〕
 次に、上述の補充手段を用いて、処理後のめっき液85に不足している成分を追加する(S322)。この際、追加された成分と処理後のめっき液85とが十分に混合されるよう、撹拌手段81を用いてめっき液85を撹拌する。
 〔移送工程〕
 次に回収タンク88で成分が適切に調整されためっき液85は、図10に示すように、接続管83を介して供給タンク31に送られる(S323)。
 回収し再生しためっき液を含むめっき液を使用して実施されるNiめっき処理方法は、第1の実施の形態におけるNiめっき処理方法と略同一であるので、詳細な説明は省略する。
 本実施の形態の作用効果
 このように本実施の形態によれば、処理後のめっき液85がめっき液回収機構80により回収され再生される。このため、めっき液をより有効に活用することができ、この結果、めっき液に要するコストを低減することができる。
 また、めっき液回収機構80が供給タンク31とは別個に設けられているので、供給タンクには成分が適切に調整された後のめっき液を貯留することができ、めっき液をより安定して供給することができる。
 また本実施の形態によれば、めっき液35の寿命を長くする効果が、第1加熱機構50および第2加熱機構60を利用してめっき液35を二段階で加熱することによってさらに促進され得る(図10参照)。
 1 めっき処理システム
 2 基板
 20 めっき処理装置
 30 めっき液供給機構
 31 供給タンク
 32 吐出ノズル
 33 めっき液供給管
 35 めっき液
 50 第1加熱機構
 51 供給タンク用循環加熱手段
 52 供給タンク用循環管
 53 供給タンク用ヒータ
 57 モニタ手段
 60 第2加熱機構
 61 第2温度媒体供給手段
 62 温度調節器
 80 めっき液回収機構
 81 撹拌手段
 82 回収タンク用循環管
 85 処理後のめっき液
 87 モニタ手段
 88 回収タンク
 88a 補充手段
 90 洗浄処理液供給機構
 95 リンス処理液供給機構
 110 基板回転保持機構
 120 めっき液排出機構
 120A 冷却バッファ
 122 回収流路
 161 記憶媒体
 170 アンモニアガス貯留部
 172 補充タンク
 174A アンモニア水供給部
 174B 純水供給部

Claims (14)

  1.  基板に少なくともアンモニア成分を含むめっき液を供給してめっき処理を行うめっき処理装置において、
     前記基板を収容する基板収容部と、
     前記基板収容部に収容された前記基板にめっき液を供給するめっき液供給機構であって、前記基板に供給されるめっき液を貯留する供給タンクと、めっき液を前記基板に対して吐出する吐出ノズルと、前記供給タンクのめっき液を前記吐出ノズルへ供給するめっき液供給管とを有するめっき液供給機構と、
     前記基板に供給した後のめっき液を前記基板収容部から排出して前記めっき液供給機構の前記供給タンクへ送るめっき液排出機構と、
     アンモニアガスが充填されるとともに密閉されたアンモニアガス貯留部と、
     前記アンモニアガス貯留部からアンモニアガスを前記供給タンクへ供給するアンモニアガス管とを備えたことを特徴とするめっき処理装置。
  2.  前記めっき処理装置は、アンモニア水を供給するアンモニア水供給部と、純水を供給する純水供給部とをさらに有し、
     前記アンモニア水供給部と前記純水供給部は、それぞれ前記供給タンクに接続されていることを特徴とする請求項1に記載のめっき処理装置。
  3.  前記めっき処理装置は、アンモニア濃度計とpH計と、前記アンモニア水供給部および前記純水供給部を制御する制御機構とをさらに有し、
     前記制御機構は、前記アンモニア濃度計とpH計からの信号に基づいて、前記アンモニア水供給部からアンモニア水を前記供給タンクに供給するとともに前記純水供給部から純水を前記供給タンクに供給することを特徴とする請求項2に記載のめっき処理装置。
  4.  前記めっき処理装置は、未使用のめっき液を貯留してこの未使用のめっき液を前記供給タンクに補充する補充タンクをさらに有し、
     前記補充タンクは、前記アンモニアガス貯留部と接続されていることを特徴とする請求項1乃至3のいずれかに記載のめっき液処理装置。
  5.  前記めっき処理装置は、前記めっき液排出機構と前記供給タンクとの間に、めっき液排出機構から送られるめっき液を回収して前記供給タンクに送る回収タンクをさらに有し、 前記アンモニアガス貯留部は前記回収タンクにも接続されていることを特徴とする請求項1乃至4のいずれかに記載のめっき処理装置。
  6.  前記めっき処理装置は、前記基板収容部の出口側に、めっき液を冷却して前記供給タンク側へ送る冷却バッファをさらに有することを特徴とする請求項1乃至5のいずれかに記載のめっき処理装置。
  7.  前記めっき処理装置は、
     前記供給タンクまたは前記めっき液供給管の少なくともいずれか一方に取り付けられた、めっき液を第1温度に加熱する第1加熱機構と、
     前記第1加熱機構よりも前記吐出ノズル側において、前記めっき液供給管に取り付けられた、めっき液を前記第1温度よりも高温の第2温度に加熱する第2加熱機構とを、さらに有することを特徴とする請求項1乃至6のいずれかに記載のめっき処理装置。
  8.  基板に少なくともアンモニア成分を含むめっき液を供給してめっき処理を行うめっき処理方法において、
     前記基板を基板収容部に配置する基板載置工程と、
     前記基板に吐出ノズルを介して供給タンク内のめっき液を供給する供給工程と、
     前記基板に供給した後のめっき液を前記基板収容部からめっき液排出機構を介して回収する回収工程と、
     回収されためっき液をアンモニアガスに曝して、めっき液の成分を調整する成分調整工程と、
     めっき液の成分が調整されためっき液を、前記吐出ノズルに供給する再利用工程とを含むことを特徴とするめっき処理方法。
  9.  前記成分調整工程において、前記回収されためっき液のアンモニア濃度とpH値に基づいて、アンモニア水を供給するとともに純水を供給することを特徴とする請求項8に記載のめっき処理方法。
  10.  前記成分調整工程において、補充タンク内でアンモニアガスに曝された未使用のめっき液を前記回収されためっき液に補充することを特徴とする請求項8または9に記載のめっき処理方法。
  11.  前記回収工程において、めっき液排出機構から排出されためっき液を回収タンクに回収することと、前記成分調整工程において、回収されためっき液の成分を前記回収タンク内で調整した後、成分が調整されためっき液を前記回収タンクから供給タンクに移送することを特徴とする請求項8乃至10のいずれかに記載のめっき処理方法。
  12.  前記回収工程において、前記基板収容部から排出されためっき液を冷却することを特徴とする請求項8乃至11のいずれかに記載のめっき処理方法。
  13.  前記供給工程において、めっき液は、はじめに、第1加熱機構によって前記第1温度に加熱され、次に、前記第1加熱機構よりも前記吐出ノズル側に配置された第2加熱機構によって前記第2温度に加熱され、その後、前記吐出ノズルを介して前記基板に供給されることを特徴とする請求項8乃至12のいずれかに記載のめっき処理方法。
  14.  めっき処理装置にめっき処理方法を実行させるためのコンピュータプログラムを格納した記憶媒体において、
     前記めっき処理方法は、基板に少なくともアンモニア成分を含むめっき液を供給してめっき処理を行うめっき処理方法であって、
     前記基板を基板収容部に配置する基板載置工程と、
     前記基板に吐出ノズルを介して供給タンク内のめっき液を供給する供給工程と、
     前記基板に供給した後のめっき液を前記基板収容部からめっき液排出機構を介して回収する回収工程と、
     回収されためっき液をアンモニアガスに曝して、めっき液の成分を調整する成分調整工程と、
     めっき液の成分が調整されためっき液を、前記吐出ノズルに供給する再利用工程とを含むことを特徴とする記憶媒体。
PCT/JP2012/064706 2011-06-24 2012-06-07 めっき処理装置、めっき処理方法および記憶媒体 WO2012176626A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/128,109 US20140120264A1 (en) 2011-06-24 2012-06-07 Plating apparatus, plating method and storage medium
KR1020137033422A KR101765572B1 (ko) 2011-06-24 2012-06-07 도금 처리 장치, 도금 처리 방법 및 기억 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011140678A JP5714428B2 (ja) 2011-06-24 2011-06-24 めっき処理装置、めっき処理方法および記憶媒体
JP2011-140678 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176626A1 true WO2012176626A1 (ja) 2012-12-27

Family

ID=47422466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064706 WO2012176626A1 (ja) 2011-06-24 2012-06-07 めっき処理装置、めっき処理方法および記憶媒体

Country Status (5)

Country Link
US (1) US20140120264A1 (ja)
JP (1) JP5714428B2 (ja)
KR (1) KR101765572B1 (ja)
TW (1) TW201305394A (ja)
WO (1) WO2012176626A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339032B2 (ja) * 2015-02-19 2018-06-06 東京エレクトロン株式会社 遮光体を含む光学装置の製造方法、および記憶媒体
CN110144616B (zh) * 2019-06-14 2020-11-13 厦门通富微电子有限公司 一种电镀用阳极机构和电镀装置
JP7382164B2 (ja) * 2019-07-02 2023-11-16 東京エレクトロン株式会社 液処理装置および液処理方法
JP7321052B2 (ja) * 2019-10-17 2023-08-04 東京エレクトロン株式会社 基板処理装置および装置洗浄方法
KR102319966B1 (ko) * 2019-12-31 2021-11-02 세메스 주식회사 액 공급 유닛, 기판 처리 장치, 그리고 기판 처리 장치를 이용한 기판 처리 방법
KR102622445B1 (ko) 2020-04-24 2024-01-09 세메스 주식회사 기판 처리 장치 및 액 공급 방법
CN112974163B (zh) * 2021-02-03 2021-11-30 重庆重锐纳米科技股份有限公司 一种晶圆涂膜设备
WO2023235099A1 (en) * 2022-06-02 2023-12-07 Lam Research Corporation Removal of metal salt precipitates in an electroplating tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602386B2 (ja) * 1982-03-16 1985-01-21 石原薬品株式会社 めっき液及び化成液の管理方法
JPH0343346B2 (ja) * 1985-02-28 1991-07-02 Uemura Kogyo Kk
JP3707394B2 (ja) * 2001-04-06 2005-10-19 ソニー株式会社 無電解メッキ方法
JP3824567B2 (ja) * 2002-09-30 2006-09-20 株式会社荏原製作所 基板処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544585B1 (en) * 1997-09-02 2003-04-08 Ebara Corporation Method and apparatus for plating a substrate
JP2001355074A (ja) * 2000-04-10 2001-12-25 Sony Corp 無電解メッキ処理方法およびその装置
US7341634B2 (en) * 2002-08-27 2008-03-11 Ebara Corporation Apparatus for and method of processing substrate
US6870270B2 (en) * 2002-12-28 2005-03-22 Intel Corporation Method and structure for interfacing electronic devices
US7611584B2 (en) * 2005-12-13 2009-11-03 Lg Electronics Inc. Electroless metal film-plating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602386B2 (ja) * 1982-03-16 1985-01-21 石原薬品株式会社 めっき液及び化成液の管理方法
JPH0343346B2 (ja) * 1985-02-28 1991-07-02 Uemura Kogyo Kk
JP3707394B2 (ja) * 2001-04-06 2005-10-19 ソニー株式会社 無電解メッキ方法
JP3824567B2 (ja) * 2002-09-30 2006-09-20 株式会社荏原製作所 基板処理装置

Also Published As

Publication number Publication date
KR20140033135A (ko) 2014-03-17
TW201305394A (zh) 2013-02-01
KR101765572B1 (ko) 2017-08-07
US20140120264A1 (en) 2014-05-01
JP2013007099A (ja) 2013-01-10
JP5714428B2 (ja) 2015-05-07
TWI560324B (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5714428B2 (ja) めっき処理装置、めっき処理方法および記憶媒体
KR101765570B1 (ko) 도금 처리 장치, 도금 처리 방법 및 기억 매체
JP5666419B2 (ja) めっき処理装置、めっき処理方法および記憶媒体
JP5496925B2 (ja) めっき処理装置、めっき処理方法および記憶媒体
WO2012102062A1 (ja) めっき処理装置、めっき処理方法および記録媒体
WO2012102098A1 (ja) めっき処理装置、めっき処理方法および記憶媒体
KR101765560B1 (ko) 도금 처리 방법, 도금 처리 장치 및 기억 매체
TWI535889B (zh) Electroplating treatment device, electroplating treatment method and memory medium
JP5667550B2 (ja) めっき処理装置、めっき処理方法および記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033422

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14128109

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12802774

Country of ref document: EP

Kind code of ref document: A1