WO2012176373A1 - タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造 - Google Patents

タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造 Download PDF

Info

Publication number
WO2012176373A1
WO2012176373A1 PCT/JP2012/003273 JP2012003273W WO2012176373A1 WO 2012176373 A1 WO2012176373 A1 WO 2012176373A1 JP 2012003273 W JP2012003273 W JP 2012003273W WO 2012176373 A1 WO2012176373 A1 WO 2012176373A1
Authority
WO
WIPO (PCT)
Prior art keywords
base superalloy
steel
rotor
rotor disk
joining
Prior art date
Application number
PCT/JP2012/003273
Other languages
English (en)
French (fr)
Inventor
右典 松岡
宏憲 岡内
古賀 信次
猛宏 兵江
佑介 武田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP12802510.3A priority Critical patent/EP2725214A4/en
Priority to US14/128,387 priority patent/US20140133986A1/en
Priority to CA2834753A priority patent/CA2834753C/en
Publication of WO2012176373A1 publication Critical patent/WO2012176373A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/0073Seam welding with interposition of particular material to facilitate connecting the parts, e.g. using a filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/04Electron-beam welding or cutting for welding annular seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making

Definitions

  • the present invention relates to a heat-resistant turbine rotor used in gas turbine engines, steam turbine engines, and the like, and more specifically, a technique for joining a Ni-base superalloy material and a steel material constituting a turbine rotor. About.
  • Such high temperature components include, for example, turbine rotors such as compressor rotors and turbine rotors.
  • the turbine rotor has a region exposed to a high temperature and a region exposed to a lower temperature.
  • a rotor In the manufacture of such a rotor for a turbine, welding is performed to join the Ni-base superalloy material and the steel material, but the Ni-base superalloy is an additional element that causes undesirable mechanical properties in the bond with steel. Contains. Therefore, Patent Documents 1 and 2 propose that the Ni-base superalloy material and the steel material are not welded directly but are welded with an intermediate layer interposed therebetween.
  • IN625 Inconel is a registered trademark, hereinafter omitted
  • IN617 is used as the intermediate layer.
  • the intermediate layer is formed by joining a plurality of individual layers to each other by MAG (Metal Active Gas welding) welding or TIG (Tungsten Inert Gas welding) welding.
  • Patent Document 2 describes that a rotor ring to be welded to both rotor disks is interposed between a first rotor disk made of a Ni-base superalloy and a second rotor disk made of steel.
  • the first rotor disk is made of Waspaloy [Wasparoy is a registered trademark]
  • the rotor ring is formed by welding a first rotor ring made of 10% Cr steel and a second rotor ring made of a solution-treated Ni-base superalloy (IN617).
  • the intermediate layer of Patent Document 1 and the rotor ring of Patent Document 2 are composed of a plurality of members having different compositions, and these members are joined by arc welding such as MAG welding or TIG welding.
  • arc welding a large amount of the base metal melts during the welding process, so the deformation of the work joint is large. For this reason, machining such as cutting becomes necessary after welding, and the amount of machining increases.
  • a steel material in a state of being subjected to quenching and tempering treatment and a Ni-base superalloy material in a state of being subjected to solution treatment are welded. Is done.
  • age hardening in order to ensure the ductility and toughness of the Ni-base superalloy part, it is necessary to perform age hardening at a temperature exceeding 700 ° C.
  • the strength characteristics are significantly deteriorated.
  • age hardening treatment and residual stress relaxation treatment are performed at 700 ° C. or lower in order to suppress deterioration of the strength characteristics of the steel portion, the Ni-base superalloy portion cannot have excellent ductility and toughness.
  • the present invention has been made to solve the above-described problems, and is a turbine rotor having a Ni-base superalloy part and a steel part, and a method for manufacturing the same, comprising a Ni-base superalloy part and a steel part. It is an object of the present invention to provide a coupling portion having sufficient strength characteristics as a turbine rotor, and in addition to this, the deformation of the coupling portion is small enough not to require post-processing by machining. Another object of the present invention is to provide a method and structure for joining a Ni-base superalloy material and a steel material suitable for the turbine rotor.
  • a method for manufacturing a turbine rotor according to the present invention includes: Joining a first rotor disk made of a solution-hardened precipitation hardening Ni-base superalloy and an intermediate material made of a solid solution strengthened Ni-base superalloy by electron beam welding; and A step of subjecting the intermediate material to an age hardening treatment at a first temperature suitable for age hardening of the precipitation hardening Ni-base superalloy, and a second material comprising the intermediate material and a heat-resistant steel. A second temperature suitable for annealing the steel with respect to the joined body of the first rotor disk, the intermediate material, and the second rotor disk. And an annealing process.
  • the turbine rotor according to the present invention is a turbine rotor formed by connecting a plurality of rotor disks in the axial direction, Two rotor disks adjacent to each other, a first rotor disk made of a precipitation-hardened Ni-base superalloy treated with solution and a second rotor disk made of heat-resistant steel;
  • the first rotor disk and an intermediate material made of a solid solution strengthened Ni-base superalloy are joined by electron beam welding, and the second rotor disk and the intermediate material are joined by electron beam welding.
  • the turbine rotor includes a low temperature resistant portion made of steel and a high temperature resistant portion made of a precipitation hardening Ni-base superalloy that can withstand higher temperatures. Can do. Then, the precipitation hardening type Ni-base superalloy material (first rotor disk) and the steel material (second rotor disk) constituting the turbine rotor are joined through an intermediate material made of a solid solution strengthened Ni-base superalloy. By doing so, it becomes possible to perform a heat treatment suitable for each of the steel portion and the precipitation hardening Ni-base superalloy portion.
  • the turbine rotor can be provided with sufficient strength characteristics as a turbine rotor in a joint portion between the high temperature resistant portion and the low temperature resistant portion.
  • the precipitation hardened Ni-base superalloy material (first rotor disk) and the intermediate material, and the intermediate material and the steel material (second rotor disk) are joined by electron beam welding, so that the deformation of the joined portion is mechanical.
  • Post-processing by processing can be suppressed to an extent that is unnecessary, and an increase in processing amount when manufacturing a turbine rotor can be suppressed.
  • the intermediate material and the steel material are joined by electron beam welding, there is little or no intermetallic compound that becomes a fragile phase at the joint interface. A decrease in strength characteristics can be suppressed.
  • a joining method of a Ni-base superalloy material and a steel material according to the present invention is a joining method of a first material made of precipitation hardening Ni-base superalloy and a second material made of heat-resistant steel, In order to age-harden the first material with respect to the step of joining the first material and an intermediate material made of a solid solution strengthened Ni-base superalloy by electron beam welding, and the joined body of the first material and the intermediate material Performing an age-hardening treatment at a first temperature suitable for the step, joining the intermediate material and the second material by electron beam welding, joining the first material, the intermediate material, and the second material Subjecting the body to an annealing treatment at a second temperature suitable for annealing the second material.
  • the joining structure of the Ni-base superalloy material and the steel material according to the present invention is a joining structure of a first material made of a precipitation hardening Ni-base superalloy and a second material made of heat-resistant steel,
  • the first material and an intermediate material made of a solid solution strengthened Ni-base superalloy are joined by electron beam welding, and the second material and the intermediate material are joined by electron beam welding.
  • the first material made of precipitation hardening Ni-base superalloy and the second material made of heat-resistant steel are formed into a solid solution strengthened Ni-base superstructure.
  • an intermediate material made of an alloy it is possible to perform heat treatment suitable for each of the first material and the second material. That is, in the state where the first material and the intermediate material are joined, it becomes possible to perform an age hardening treatment for providing the precipitation hardening type Ni-base superalloy portion with the necessary strength characteristics.
  • the joining structure of the Ni-base superalloy material and the steel material can have sufficient strength characteristics at the joining portion of the first material and the second material.
  • the first material and the intermediate material, and the intermediate material and the second material are joined by electron beam welding, the deformation of the joint portion can be suppressed to a level that does not require post-processing by machining, and the amount of processing is reduced. Can be suppressed.
  • the intermediate material and the second material are joined by electron beam welding, there is little or no intermetallic compound that becomes a fragile phase at the joining interface. It is possible to suppress a decrease in strength characteristics of the joint portion.
  • the solid solution strengthened Ni-base superalloy is preferably Inconel 625 (IN625).
  • the precipitation hardening Ni-base superalloy is preferably Inconel 718 (IN718).
  • the first temperature is preferably in the range of 710 to 726 ° C.
  • the steel is preferably 12% Cr steel.
  • the second temperature is preferably in the range of 570 to 590 ° C.
  • the heat treatment suitable for each of the precipitation hardening Ni-base superalloy material (first rotor disk) and the steel material (second rotor disk) bonded through the intermediate material can be performed. It becomes possible. Therefore, it becomes possible to provide sufficient strength characteristics at the joint between the precipitation hardening Ni-base superalloy material and the steel material.
  • precipitation hardening type Ni-base superalloy material and intermediate material, and intermediate material and steel material are joined by electron beam welding, the deformation of the joining portion is so small that post-processing by machining is unnecessary, and the amount of processing Can be suppressed.
  • FIG. 1 is a partially broken side view of a gas turbine engine including a compressor rotor according to the present embodiment.
  • the gas turbine 1 includes a cylindrical housing 15 extending in the direction of the axis C, a centrifugal or axial flow type rotary compressor 3 built in the housing 15, a combustor 5, and a centrifugal And an axial flow type turbine 7.
  • the gas turbine 1 according to the present embodiment includes a plurality of combustors 5, and these combustors 5 are arranged at equal intervals along the circumferential direction of the gas turbine 1.
  • the compressor 3, the combustor 5, and the turbine 7 are arranged in order on the same axis around the axis C of the gas turbine 1.
  • axial direction the direction in which the axis C of the gas turbine 1 extends
  • front side L F the side where the compressor 3 is located in the axial direction
  • rear side L B the side where the turbine 7 is present
  • the compressor 3 is of an axial flow type.
  • the compressor 3, the compressor rotor 11 which constitute the front of the rotating body of the gas turbine 1 includes the front L F in the housing 15. Connecting portion 12 on the side L B after the compressor rotor 11 is non-rotatably connected.
  • the outer peripheral surface of the compressor rotor 11 has a number of rotor blades 13 are provided a number of vanes 17 on the inner periphery of the front L F of the housing 15 is provided.
  • the intake tube 19 on the outer peripheral side of the front L F end of the housing 15 is provided.
  • the turbine 7 is an axial flow type.
  • the turbine 7 includes a turbine rotor 33 that constitutes a subsequent stage of the rotating body of the gas turbine 1 and a turbine casing 35 that covers the turbine rotor 33.
  • a plurality of stages of turbine stationary blades 37 are provided in the axial direction on the inner periphery of the turbine casing 35.
  • the turbine rotor 33 is provided with a plurality of stages of turbine rotor blades 39 in the axial direction so as to be alternately arranged in the axial direction with the turbine stationary blades 37 of each stage.
  • the compressor rotor 11 of the compressor 3 and the turbine rotor 33 of the turbine 7 are connected in the axial direction via the connecting portion 12. And the rotating body of the gas turbine 1 integrated in this way is rotatably supported by the housing 15 via the bearings 43 and 47.
  • the compressor 3 compresses the combustion air 99 introduced from the outside and sends it to the combustor 5, and blows fuel 98 into the combustor 5 for combustion.
  • the compressor rotor 11 of the compressor 3 rotates, the rotor blades 13 and the stationary blades 17 act to pass through the space between the inner peripheral surface of the housing 15 and the outer peripheral surface of the cowl 20 from the intake cylinder 19.
  • the combustion air 99 is sucked in, and the sucked combustion air 99 is compressed.
  • the compressed combustion air 99 is sent to the combustor 5 through the diffuser 21 provided between the compressor 3 and the combustor 5.
  • the compressed combustion air 99 and the fuel 98 injected into the combustor 5 are mixed and burned to generate high-temperature and high-pressure combustion gas.
  • This combustion gas flows into the turbine 7 from the turbine nozzle and rotates the turbine rotor 33 of the turbine 7. Since the shaft of the turbine 7 is directly connected to the compressor 3, when the compression power is transmitted from the turbine 7 to the compressor 3, the gas turbine 1 continues to operate.
  • the compressor rotor 11 provided in the gas turbine 1 configured as described above will be described in detail.
  • FIG. 1 of the rear L B of the compressor rotor 11, for contact with the combustion air 99 that is close and compressor to the combustor 5, the area exposed to high temperatures.
  • Front L F of the compressor rotor 11 is an area to be exposed to lower temperatures than the side L B after the compressor rotor 11.
  • a region exposed to a high temperature is also referred to as a “high temperature region”
  • a region exposed to a lower temperature is also referred to as a “low temperature region”.
  • the high temperature region is a portion of the compressor rotor 11 that has a high temperature exceeding 300 ° C.
  • the low temperature region is a portion of the compressor rotor 11 that is 300 ° C. or less.
  • FIG. 2 is a cross-sectional view showing the components of the compressor rotor 11.
  • the compressor rotor 11 is composed of a plurality of rotor disks 25, and these rotor disks 25 are connected in the axial direction.
  • Each rotor disk 25 has a hollow disk shape, and a recess 23 in which the rotor blade 13 is implanted is formed on the outer periphery thereof.
  • the rotor disk in the high temperature region hereinafter referred to as "high temperature resistant rotor disk 25H" is a precipitation hardening Ni-base superalloy that is a material having high temperature strength. It is configured.
  • Inconel 718 (IN718) is adopted as a precipitation hardening type Ni-base superalloy.
  • the rotor disk in the low temperature region (hereinafter referred to as “low temperature resistant side rotor disk 25L”) is made of a relatively inexpensive steel material.
  • stainless steel is used as the steel material, and among them, 12% Cr steel (for example, FV535), which is martensitic stainless steel excellent in high temperature strength, is employed.
  • the high temperature resistant rotor disks 25H that is, the Ni-base superalloy materials are joined to each other by electron beam welding (EBW) or arc welding.
  • the low temperature side rotor disks 25L that is, the steel materials are joined to each other by electron beam welding or arc welding.
  • the adjacent high temperature resistant side rotor disk 25H and low temperature resistant side rotor disk 25L that is, the Ni-base superalloy material and the steel material are joined via an intermediate material 26 (see FIG. 3). .
  • FIG. 3 is a cross-sectional view for explaining the high temperature resistant side rotor disk 25H and the low temperature resistant side rotor disk 25L joined together through the intermediate member 26.
  • the high temperature resistant side rotor disk 25H (Ni-base superalloy material) and the intermediate material 26 are joined by electron beam welding, and the intermediate material 26 and the low temperature resistant side rotor disk 25L (steel material) are electron beam welded.
  • the intermediate material 26 is a solid solution strengthened Ni-base superalloy material.
  • Inconel 625 (IN625) is employed as a solid solution strengthened Ni-base superalloy.
  • Table 1 shows the material (precipitation hardening type Ni-base superalloy, steel) of the rotor disk 25 (high temperature resistant rotor disk 25H, low temperature resistant rotor disk 25L) and the material of the intermediate material 26 according to the present embodiment.
  • the chemical composition of (solid solution strengthened Ni-base superalloy) is shown.
  • FIG. 4 is a flowchart showing a flow of processing for joining the high temperature resistant side rotor disk 25H and the low temperature resistant side rotor disk 25L
  • FIG. 5 is an upper half cross section showing a state in which the high temperature resistant side rotor disk 25H and the intermediate member 26 are joined.
  • FIG. 6 is an upper half sectional view showing a state in which the intermediate member 26 and the low-temperature side rotor disk 25L are joined.
  • FIG. 7 shows the high-temperature side rotor disk 25H and the low-temperature side rotor disk 25L. It is upper half sectional drawing which shows a mode that it couple
  • the manufacturing process of the compressor rotor 11 is demonstrated in detail about the process which couple
  • This description includes a method for joining a precipitation hardening Ni-base superalloy material and a steel material.
  • the high temperature resistant rotor disk 25H and the intermediate material 26, ie, the precipitation hardened Ni-base superalloy material and the intermediate material 26 are brought into contact with each other by electron beam welding without using a filler material.
  • Joining directly step S1.
  • the joined body formed by joining the high temperature resistant rotor disk 25H and the intermediate member 26 in this manner is referred to as “primary work W 1 ”.
  • the high temperature resistant rotor disk 25H is subjected to a solution treatment at a temperature equal to or higher than a solid solution temperature at which the precipitation hardening phase is dissolved before being joined to the intermediate member 26.
  • Electron beam welding is capable of processing with a smaller amount of melting of the base material and less distortion at the joint compared to arc welding.
  • electron beam welding is performed in a vacuum, stable welding quality can be maintained. Therefore, it is not necessary to the primary in the work W 1 deformation and distortion of the bonding interface of the high temperature-side rotor disk 25H and the intermediate member 26 is small, the post-processing such as cutting after bonding process.
  • the age-hardening treatment to the primary workpiece W 1 (step S2).
  • the primary work W 1 that has been age-hardened in this way is referred to as “secondary work W 2 ”.
  • a first temperature suitable for increasing the hardness and strength (ductility and toughness) of the solution-resistant high-temperature-side rotor disk 25H, that is, the precipitation hardening Ni-base superalloy material is kept soaked.
  • the “first temperature” is an appropriate temperature for age hardening the precipitation hardening Ni-base superalloy constituting the high temperature resistant rotor disk 25H.
  • the first temperature is a temperature in the range of 710 to 726 ° C, and most desirably 718. ° C.
  • a fine precipitation phase that becomes a strengthening phase in the base material of the precipitation hardening Ni-base superalloy (IN718) constituting the high temperature resistant rotor disk 25H. Ni 3 Nb- ⁇ "phase; gamma-to-prime phase) precipitates and the strength of the precipitation hardening Ni-base superalloy increases.
  • the precipitation phase When the ⁇ ′′ phase) is present, cracks occur and the weldability is remarkably impaired. Therefore, an age hardening treatment must be performed after welding of the high temperature side rotor disk 25H and the intermediate material 26.
  • step S3 a joined body formed by joining the secondary work W 2 and the low temperature side rotor disk 25L is referred to as “tertiary work W 3 ”.
  • the low temperature side rotor disk 25L is subjected to a quenching process before being joined to the intermediate material 26.
  • the annealed tertiary workpiece W 3 is referred to as “rotor disk combination 27”.
  • the tertiary workpiece W 3 is heated and soaked to an appropriate second temperature, and then cooled under conditions such that when the temperature returns to room temperature, a near-equilibrium texture state is obtained.
  • the “second temperature” is an appropriate annealing temperature of the steel material constituting the low temperature resistant rotor disk 25L. Since the steel material constituting the low temperature resistant rotor disk 25L according to the present embodiment is FV535, the second temperature is a temperature in the range of 570 to 590 ° C, and most desirably 580 ° C.
  • the annealing treatment By performing the annealing treatment on the tertiary workpiece W 3 , residuals at the time of electron beam welding at each joint portion between the high temperature resistant side rotor disk 25H and the intermediate material 26 and between the intermediate material 26 and the low temperature resistant side rotor disk 25L. Stress is reduced. Therefore, the residual stress relaxation treatment (SR treatment: Stress Relief heat treatment) is performed on the tertiary workpiece W 3 by the annealing treatment.
  • SR treatment Stress Relief heat treatment
  • a part affected by welding in the steel material of the tertiary workpiece W 3 that is, a part melted during welding is reheated and tempered to a hardened structure. Therefore, the annealing process can improve the strength characteristics of the steel material of the tertiary workpiece W 3 , particularly the part affected by the welding of the steel material.
  • the rotor disk combined body 27 in which the high temperature resistant side rotor disk 25H and the low temperature resistant side rotor disk 25L are bonded via the intermediate member 26 can be obtained by the processing of the above steps S1 to S4.
  • the end surface on the high temperature resistant side rotor disk 25H side of the rotor disk combined body 27 is joined to the other high temperature resistant side rotor disk 25H by electron beam welding or arc welding before or after step S1.
  • the end surface of the rotor disk combined body 27 on the low temperature side rotor disk 25L side is joined to the other low temperature side rotor disk 25L by electron beam welding or arc welding at a stage before or after step S3.
  • the compressor rotor 11 is manufactured by sequentially joining the plurality of rotor disks 25.
  • FIG. 8 is a cross-sectional photograph of the IN718 material (precipitation-hardening Ni-base superalloy material) and the FV535 material (steel material) bonded via the IN625 material (intermediate material) by the same processing as in steps 1 to 4 above. From this figure, it can be seen that the IN718 material and the IN625 material are joined by the material of both joint interfaces being directly melted by electron beam welding without using a filler material. Further, it can be seen that the IN625 material and the FV535 material are joined by the material of both joint interfaces being directly melted by electron beam welding without using a filler material. Then, it can be seen that distortion and deformation after the joining process are small in both the joint portion between the IN718 material and the IN625 material and the joint portion between the IN625 material and the FV535 material.
  • the FV535 material and the IN625 material are joined by electron beam welding, the amount of material that melts at the joining interface during joining processing is remarkably reduced as compared with the case of joining by arc welding.
  • the generation of the compound can be suppressed, and the distortion and deformation of the bonding interface can be suppressed.
  • the compressor rotor 11 includes the low temperature resistant portion to which the low temperature side rotor disk 25L made of steel is joined, and the precipitation hardening Ni that can withstand higher temperatures. And a high temperature resistant portion joined to a high temperature resistant rotor disk 25H made of a base superalloy.
  • the high-temperature side rotor disk 25H and the low-temperature side rotor disk 25L are joined together via an intermediate material 26 made of a solid solution strengthened Ni-base superalloy, so that the steel portion and the precipitation hardened Ni-base Heat treatment suitable for each of the alloy portions can be performed.
  • the precipitation hardening Ni-base superalloy portion can be subjected to age hardening treatment to provide necessary strength characteristics. Furthermore, the residual stress relaxation treatment and the steel portion annealing treatment can be performed in a state where the high temperature resistant rotor disk 25H, the intermediate member 26, and the low temperature resistant rotor disk 25L are joined. Therefore, the compressor rotor 11 can be provided with sufficient strength characteristics as a high-temperature component included in the gas turbine 1 in a joint portion between the high temperature resistant portion and the low temperature resistant portion.
  • the high temperature resistant side rotor disk 25H and the intermediate material 26, and the intermediate material 26 and the low temperature resistant side rotor disk 25L are joined by electron beam welding.
  • the deformation of the part can be suppressed to such an extent that post-processing by machining is unnecessary. Therefore, the increase in the processing amount at the time of manufacturing the compressor rotor 11 can be suppressed.
  • the intermediate material 26 and the low temperature side rotor disk 25L are joined by electron beam welding, there is little or no intermetallic compound that becomes a brittle phase at the joining interface. And the lowering of the strength characteristics of the joint portion between the low temperature side rotor disk 25L can be suppressed.
  • IN718 is used as the precipitation hardening Ni-base superalloy, but the present invention is not limited to this, and other precipitation hardening Ni-base superalloys may be used.
  • 12Cr steel is used as the steel, but the present invention is not limited to this, and other heat resistant steel suitable for the operating temperature range of the turbine rotor may be used.
  • it may be a low alloy steel such as 2.5Cr steel or 9Cr steel, or stainless steel having a Cr content of more than 12%.
  • the present invention is applied to the compressor rotor included in the gas turbine engine, but the scope of the present invention is not limited to this.
  • the present invention can be widely applied to a turbine rotor included in the turbine engine.
  • the present invention is useful for manufacturing a rotor having excellent heat resistance, which is included in a turbine engine used as an engine for aircraft, marine use, land vehicle use, and land-mounted power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

 タービン用ロータの製造方法が、析出硬化型Ni基超合金より成る第1のロータディスク(25H)と固溶強化型Ni基超合金より成る中間材(26)とを電子ビーム溶接により接合するステップと、この接合体について前記析出硬化型Ni基超合金を時効硬化させるために適した第1の温度で時効硬化処理を行うステップと、中間材(26)と鋼より成る第2のロータディスク(25L)とを電子ビーム溶接により接合するステップと、この接合体について鋼を焼なますために適した第2の温度で焼なまし処理を行うステップとを含む。

Description

タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造
 本発明は、ガスタービンエンジンや蒸気タービンエンジン等に用いられる耐熱性を有するタービン用ロータに関し、詳細には、タービン用ロータを構成しているNi基超合金材と鋼材とを接合するための技術に関する。
 ガスタービンエンジンや蒸気タービンエンジンにおいて、燃焼温度或いは主蒸気温度をより高温化することがタービンエンジンの効率を向上させるために有効である。燃焼温度或いは主蒸気温度をより高温化すればタービンの高温部品の温度もより高くなるため、これらの高温部品により高い耐熱性が要求される。このような高温部品には、例えば、圧縮機ロータやタービンロータ等のタービン用ロータがある。タービン用ロータには高温に曝される領域とこれより低い温度に曝される領域とが存在する。そこで、製造コストを抑えるために、所定温度を超えて高温となる部位がNi(=ニッケル)基超合金で構成され、それよりも低い温度となる部位が比較的安価な鋼で構成されたタービン用ロータがある。このようなタービン用ロータの製造において、Ni基超合金材と鋼材を結合するために溶接が行われるが、Ni基超合金は鋼との結合で好ましくない機械的特性を生じさせる付加的な元素を含有している。そこで、特許文献1,2では、Ni基超合金材と鋼材を直接的に溶接せずにこれらの間に中間層を介在させて溶接することが提案されている。
 特許文献1では、低合金鋼から成る第1の部分と、Ni基超合金から成る第2の部分とを接合するために、第2の部分の接合面に付加的な元素(例えば、Nb(=ニオブ))の割合が内部から外部に向かって漸次減少する中間層を披着させたうえで、第1の部分を溶接する手法が記載されている。ここで、第2の部分を構成するNi基超合金としてIN625〔IN=インコネルは登録商標、以下では省略〕が用いられ、中間層としてIN617が用いられている。中間層は、複数の個別層がMAG(Metal Active Gas welding)溶接またはTIG(Tungsten Inert Gas welding)溶接により互いに結合されたものである。
 また、特許文献2では、Ni基超合金から成る第1のロータディスクと、鋼から成る第2のロータディスクの間に、両ロータディスクと溶接されるロータリングを介挿することが記載されている。ここで、第1のロータディスクはワスパロイ〔ワスパロイは登録商標〕から成り、第2のロータディスクは10%Cr(=クロム)鋼から成る。また、ロータリングは、10%Cr鋼から成る第1のロータリングと、溶体化処理されたNi基超合金(IN617)から成る第2のロータリングとが溶接されたものである。
特開2002-307169号公報 特開2005-121023号公報
 上記特許文献1の中間層および特許文献2のロータリングは、異なる組成の複数の部材から成り、これらの部材がMAG溶接またはTIG溶接等のアーク溶接により接合されている。アーク溶接では溶接の過程で母材が多く溶解することからワークの接合部分の変形が大きい。このため、溶接後に切削等の機械加工が必要となってしまい、加工量が増加する。
 また、Ni基超合金材と鋼材(例えば、フェライト鋼)を溶接する場合、一般に、焼入れおよび焼戻し処理を行った状態の鋼材と、溶体化処理を行った状態のNi基超合金材とが溶接される。溶接後に、Ni基超合金部分の延性と靭性を確保するために700℃を越える温度で時効硬化処理を行う必要があるが、鋼部分がこの温度まで上昇すると強度特性が著しく劣化してしまう。一方で、鋼部分の強度特性の劣化を抑制するために、700℃以下で時効硬化処理と残留応力緩和処理とを行うと、Ni基超合金部分は優れた延性と靭性を備えることができない。
 本発明は上記のような課題を解決するためになされたものであって、Ni基超合金部分と鋼部分とを有するタービン用ロータおよびその製造方法であって、Ni基超合金部分と鋼部分との結合部分がタービン用ロータとして十分な強度特性を備え、これに加えて結合部分の変形が機械加工による後処理が不要な程度に小さいものを提供することを目的とする。また、本発明は、上記タービン用ロータのために好適な、Ni基超合金材と鋼材の接合方法および構造を提供することを目的とする。
 本発明に係るタービン用ロータの製造方法は、
溶体化処理された析出硬化型Ni基超合金より成る第1のロータディスクと固溶強化型Ni基超合金より成る中間材とを電子ビーム溶接により接合するステップと、前記第1のロータディスクと前記中間材の接合体について、前記析出硬化型Ni基超合金を時効硬化させるために適した第1の温度で時効硬化処理を行うステップと、前記中間材と耐熱性を有する鋼より成る第2のロータディスクとを電子ビーム溶接により接合するステップと、前記第1のロータディスクと前記中間材と前記第2のロータディスクの接合体について、前記鋼を焼なますために適した第2の温度で焼なまし処理を行うステップとを含むものである。
 また、本発明に係るタービン用ロータは、複数のロータディスクが軸方向に結合されて成るタービン用ロータであって、
溶体化処理された析出硬化型Ni基超合金より成る第1のロータディスクと耐熱性を有する鋼より成る第2のロータディスクとの隣接する2枚のロータディスクを含み、
前記第1のロータディスクと固溶強化型Ni基超合金より成る中間材とが電子ビーム溶接により接合されており、且つ、前記第2のロータディスクと前記中間材とが電子ビーム溶接により接合されているものである。
 上記タービン用ロータの製造方法又はタービン用ロータによれば、タービン用ロータは鋼材から成る耐低温部分と、それよりも高温に耐えうる析出硬化型Ni基超合金から成る耐高温部分とを備えることができる。そして、タービン用ロータを構成する析出硬化型Ni基超合金材(第1のロータディスク)と鋼材(第2のロータディスク)とが固溶強化型Ni基超合金から成る中間材を介して結合されることにより、鋼部分と析出硬化型Ni基超合金部分に対し各々に適した熱処理を行うことが可能となる。つまり、析出硬化型Ni基超合金材と中間材が接合された状態で、その析出硬化型Ni基超合金部分に必要な強度特性を備えるための時効硬化処理を施すことが可能となる。さらに、析出硬化型Ni基超合金材と中間材と鋼材が接合された状態で、その鋼部分の焼なまし処理と残留応力緩和処理を施すことが可能となる。よって、タービン用ロータは、耐高温部分と耐低温部分との結合部分においてタービン用ロータとして十分な強度特性を備えることが可能となる。また、析出硬化型Ni基超合金材(第1のロータディスク)と中間材、中間材と鋼材(第2のロータディスク)のそれぞれは電子ビーム溶接で接合されるので、接合部分の変形を機械加工による後処理が不要な程度に小さく抑えることができ、タービン用ロータ製造時の加工量の増加を抑制することができる。特に、中間材と鋼材とが電子ビーム溶接で接合されることによって、これらの接合界面に脆弱相となる金属間化合物が生じないか生じても僅かであり、中間材と鋼材との接合部分の強度特性の低下を抑えることができる。
 本発明に係るNi基超合金材と鋼材の接合方法は、析出硬化型Ni基超合金から成る第1材と耐熱性を有する鋼から成る第2材の接合方法であって、
前記第1材と固溶強化型Ni基超合金から成る中間材とを電子ビーム溶接により接合するステップと、前記第1材と前記中間材の接合体について、前記第1材を時効硬化させるために適した第1の温度で時効硬化処理を行うステップと、前記中間材と前記第2材とを電子ビーム溶接により接合するステップと、前記第1材と前記中間材と前記第2材の接合体について、前記第2材を焼なますために適した第2の温度で焼なまし処理を行うステップとを含むものである。
 また、本発明に係るNi基超合金材と鋼材の接合構造は、析出硬化型Ni基超合金から成る第1材と耐熱性を有する鋼から成る第2材の接合構造であって、
前記第1材と固溶強化型Ni基超合金から成る中間材が電子ビーム溶接により接合されており、且つ、前記第2材と前記中間材が電子ビーム溶接により接合されているものである。
 上記Ni基超合金材と鋼材の接合方法又は構造によれば、析出硬化型Ni基超合金から成る第1材と耐熱性を有する鋼から成る第2材とが、固溶強化型Ni基超合金から成る中間材を介して結合されることにより、第1材と第2材に対し各々に適した熱処理を行うことが可能となる。つまり、第1材と中間材が接合された状態で、その析出硬化型Ni基超合金部分に必要な強度特性を備えるための時効硬化処理を施すことが可能となる。さらに、第1材と中間材と第2材が接合された状態で、残留応力緩和処理と鋼部分の焼なまし処理とを施すことが可能となる。よって、Ni基超合金材と鋼材の接合構造は、第1材と第2材の接合部分において十分な強度特性を備えることが可能となる。また、第1材と中間材、中間材と第2材のそれぞれは電子ビーム溶接で接合されるので、接合部分の変形を機械加工による後処理が不要な程度に小さく抑えることができ、加工量の増加を抑制することができる。特に、中間材と第2材とが電子ビーム溶接で接合されることによって、これらの接合界面に脆弱相となる金属間化合物が生じないか生じても僅かであり、中間材と第2材との接合部分の強度特性の低下を抑えることができる。
 上記において、前記固溶強化型Ni基超合金がインコネル625(IN625)であることがよい。
 上記において、前記析出硬化型Ni基超合金がインコネル718(IN718)であることがよい。この場合、上記第1の温度が710~726℃の範囲の温度であることがよい。
 上記において、前記鋼が12%Cr鋼であることがよい。この場合、上記第2の温度が570~590℃の範囲の温度であることがよい。
 本発明によれば、中間材を介して結合された析出硬化型Ni基超合金材(第1のロータディスク)と鋼材(第2のロータディスク)に対し、それぞれに適した熱処理を行うことが可能となる。よって、析出硬化型Ni基超合金材と鋼材との接合部分に十分な強度特性を備えることが可能となる。また、析出硬化型Ni基超合金材と中間材、中間材と鋼材がそれぞれ電子ビーム溶接により接合されるため、接合部分の変形が機械加工による後処理が不要な程度に小さいものとなり、加工量の増加を抑制することができる。
本実施形態に係る圧縮機ロータを備えたガスタービンエンジンの部分破断側面図である。 圧縮機ロータの構成要素を示す断面図である。 中間材を介して結合される耐高温側ロータディスクと耐低温側ロータディスクを説明する断面図である。 耐高温側ロータディスクと耐低温側ロータディスクを結合する処理の流れを示すフローチャートである。 耐高温側ロータディスクと中間材を接合する様子を示す上半分断面図である。 中間材と耐低温側ロータディスクを接合する様子を示す上半分断面図である。 耐高温側ロータディスクと耐低温側ロータディスクが中間材を介して結合された様子を示す上半分断面図である。 IN625材を介して結合されたIN718材とFV535材の断面写真である。
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。ここでは、本発明に係るNi基超合金材と鋼材の接合方法および接合構造を、ガスタービンエンジン(以下、単に「ガスタービン」という)に備えられた圧縮機ロータ11に適用させた実施の形態を説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 まず、本実施形態に係る圧縮機ロータを備えたガスタービン1の概略構成について説明する。図1は、本実施形態に係る圧縮機ロータを備えたガスタービンエンジンの部分破断側面図である。同図に示すように、ガスタービン1は軸心C方向に延びる筒状のハウジング15と、ハウジング15に内装された遠心型又は軸流型の回転式圧縮機3、燃焼器5、および、遠心型又は軸流型のタービン7とを備えている。本実施形態に係るガスタービン1は複数の燃焼器5を備えており、これらの燃焼器5はガスタービン1の周方向に沿って等間隔に配置されている。圧縮機3、燃焼器5およびタービン7は、ガスタービン1の軸心Cを中心として同軸上に順に並んでいる。以下では、ガスタービン1の軸心Cが延びる方向を「軸方向」と呼び、軸方向において圧縮機3がある側を「前側L」と呼び、タービン7がある側を「後側L」と呼ぶことがある。
 本実施形態に係る圧縮機3は軸流型のものである。この圧縮機3は、ガスタービン1の回転体の前段を構成する圧縮機ロータ11を、ハウジング15内の前側Lに備えている。圧縮機ロータ11の後側Lには連設部12が相対回転不能に連結されている。圧縮機ロータ11の外周面には多数の動翼13が設けられており、ハウジング15の前側Lの内周には多数の静翼17が設けられている。また、ハウジング15の前側L端の内周側には筒状のカウル20が設けられており、ハウジング15の前側L端の外周側には吸気筒19が設けられている。
 本実施形態に係るタービン7は軸流型のものである。このタービン7は、ガスタービン1の回転体の後段を構成するタービンロータ33と、タービンロータ33を覆うタービンケーシング35とを備えている。タービンケーシング35の内周には軸方向へ複数段のタービン静翼37が設けられている。タービンロータ33には、各段のタービン静翼37と軸方向に交互に並ぶように、軸方向へ複数段のタービン動翼39が設けられている。
 圧縮機3の圧縮機ロータ11と、タービン7のタービンロータ33は、連設部12を介して軸方向に連結されている。そして、このように一体化されたガスタービン1の回転体は、軸受43,47を介してハウジング15に回転自在に支持されている。
 上記構成のガスタービン1において、圧縮機3は外部から導入した燃焼用空気99を圧縮して燃焼器5に送り込み、燃料98を燃焼器5に吹き込んで燃焼させる。詳細には、圧縮機3の圧縮機ロータ11が回転すると、動翼13と静翼17の作用により、吸気筒19からハウジング15内周面とカウル20外周面との間を通ってハウジング15内に燃焼用空気99が吸入され、吸入された燃焼用空気99が圧縮される。圧縮された燃焼用空気99は、圧縮機3と燃焼器5の間に設けられたディフューザ21を介して燃焼器5へ送られる。燃焼器5では、圧縮された燃焼用空気99と燃焼器5内に噴射された燃料98とが混合されて燃焼し、高温高圧の燃焼ガスを発生させる。この燃焼ガスは、タービンノズルからタービン7内に流入し、タービン7のタービンロータ33を回転させる。タービン7の軸は圧縮機3と直結しているので、タービン7から圧縮機3へ圧縮動力が伝わることにより、ガスタービン1は運転を持続する。
 ここで、上記構成のガスタービン1が備える圧縮機ロータ11について詳細に説明する。図1に示すように、圧縮機ロータ11のうち後側Lは、燃焼器5に近く且つ圧縮された燃焼用空気99と接触するため、高温に曝される領域となる。圧縮機ロータ11の前側Lは、圧縮機ロータ11の後側Lよりも低い温度に曝される領域である。以下では、圧縮機ロータ11のうち、高温に曝される領域を「高温領域」ともいい、それよりも低い温度に曝される領域を「低温領域」ともいう。なお、高温領域は圧縮機ロータ11のうち300℃を越える高温となる部位とし、低温領域は圧縮機ロータ11のうち300℃以下となる部位とする。
 図2は圧縮機ロータ11の構成要素を示す断面図である。図2に示すように、圧縮機ロータ11は複数のロータディスク25で構成されており、これらのロータディスク25が軸方向に結合されて成る。各ロータディスク25は中空の円盤状を有し、その外周には動翼13が植設される凹部23が形成されている。圧縮機ロータ11を構成する複数のロータディスク25のうち、高温領域のロータディスク(以下、「耐高温側ロータディスク25H」という)は高温強度を有する材料である析出硬化型のNi基超合金で構成されている。ここでは、析出硬化型のNi基超合金としてインコネル718(IN718)を採用している。一方、圧縮機ロータ11を構成する複数のロータディスク25のうち、低温領域のロータディスク(以下、「耐低温側ロータディスク25L」という)は比較的安価な鋼材で構成されている。ここでは、鋼材としてステンレス鋼を用いており、その中でも高温強度に優れたマルテンサイト系ステンレス鋼である12%Cr鋼(例えば、FV535)を採用している。
 圧縮機ロータ11において、耐高温側ロータディスク25H同士、すなわち、Ni基超合金材同士は、電子ビーム溶接(EBW:Electronic Beam Welding)又はアーク溶接に
より相互に接合されている。また、圧縮機ロータ11において、耐低温側ロータディスク25L同士、すなわち、鋼材同士は、電子ビーム溶接又はアーク溶接により相互に接合されている。そして、圧縮機ロータ11において、隣接する耐高温側ロータディスク25Hと耐低温側ロータディスク25L、すなわち、Ni基超合金材と鋼材は中間材26(図3、参照)を介して結合されている。
 図3は中間材26を介して結合される耐高温側ロータディスク25Hと耐低温側ロータディスク25Lを説明する断面図である。同図に示すように、耐高温側ロータディスク25H(Ni基超合金材)と中間材26とが電子ビーム溶接で接合され、中間材26と耐低温側ロータディスク25L(鋼材)が電子ビーム溶接で接合される。中間材26は、固溶
強化型のNi基超合金材である。ここでは、固溶強化型のNi基超合金としてインコネル625(IN625)を採用している。IN625は、Ni-Cr地にMo(=モリブデン)とNbが固溶することにより強化されており、高温強度に優れている。
 次の表1に、本実施の形態に係るロータディスク25(耐高温側ロータディスク25H,耐低温側ロータディスク25L)の材料(析出硬化型Ni基超合金,鋼)と、中間材26の材料(固溶強化型Ni基超合金)の化学組成を示す。
Figure JPOXMLDOC01-appb-T000001
 
 続いて、図4~7を参照しつつ、圧縮機ロータ11の製造方法について説明する。図4は耐高温側ロータディスク25Hと耐低温側ロータディスク25Lを結合する処理の流れを示すフローチャートであり、図5は耐高温側ロータディスク25Hと中間材26を接合する様子を示す上半分断面図であり、図6は中間材26と耐低温側ロータディスク25Lを接合する様子を示す上半分断面図であり、図7は耐高温側ロータディスク25Hと耐低温側ロータディスク25Lが中間材26を介して結合された様子を示す上半分断面図である。以下では、圧縮機ロータ11の製造工程のうち、耐高温側ロータディスク25Hと耐低温側ロータディスク25Lを結合してロータディスク結合体27を製造する工程について詳細に説明する。この説明には、析出硬化型Ni基超合金材と鋼材の接合方法が含まれる。
 まず、図5に示すように、耐高温側ロータディスク25Hと中間材26、すなわち、析出硬化型Ni基超合金材と中間材26とを突き合わせて、溶加材を用いずに電子ビーム溶接により直接的に接合する(ステップS1)。このように耐高温側ロータディスク25Hと中間材26が接合されて成る接合体を「一次ワークW1」と呼ぶこととする。なお、耐高温側ロータディスク25Hは、中間材26と接合される前に、析出硬化相が固溶する固溶温度以上で溶体化処理が施されている。電子ビーム溶接は、アーク溶接と比較して、母材の溶解量が少なく且つ接合部分の歪みが少ない加工が可能である。また、電子ビーム溶接は真空中で加工が行われるため、安定した溶接品質を保つことができる。したがって、一次ワークW1において耐高温側ロータディスク25Hと中間材26の接合界面の変形や歪みは小さく、接合加工後に切削加工等の後処理をする必要がない。
 次に、一次ワークW1に対し時効硬化処理を行う(ステップS2)。このように、時効硬化処理された一次ワークW1を「二次ワークW2」と呼ぶこととする。この時効硬化処理では、溶体化処理された耐高温側ロータディスク25H、すなわち、析出硬化型Ni基超合金材の硬さおよび強さ(延性および靭性)を増進させるために適切な第1の温度で、一次ワークW1を均熱保持する。ここで、「第1の温度」とは、耐高温側ロータディスク25Hを構成している析出硬化型Ni基超合金を時効硬化させるために適切な温度である。本実施の形態に係る耐高温側ロータディスク25Hを構成している析出硬化型Ni基超合金はIN718であるので、第1の温度は710~726℃の範囲の温度であり、最も望ましくは718℃である。
 一次ワークW1に対し上記時効硬化処理を行うことにより、耐高温側ロータディスク25Hを構成している析出硬化型Ni基超合金(IN718)の母材中に、強化相となる微細な析出相(NiNb-γ”相;ガンマツープライム相)が析出し、析出硬化型Ni基超合金の強度が上昇する。なお、析出硬化型Ni基超合金材と中間材の溶接時に析出相(γ”相)が存在すると割れが発生し溶接性を著しく損ねてしまうことから、耐高温側ロータディスク25Hと中間材26の溶接後に時効硬化処理を行わねばならない。
 続いて、図6に示すように、二次ワークW2の中間材26と耐低温側ロータディスク25L、すなわち、中間材26と鋼材とを突き合わせて、溶加材を用いずに電子ビーム溶接により直接的に接合する(ステップS3)。図7に示すように、二次ワークW2と耐低温側ロータディスク25Lが接合されて成る接合体を「三次ワークW3」と呼ぶこととする。なお、耐低温側ロータディスク25Lは、中間材26と接合される前に焼入れ処理が施されている。中間材26と耐低温側ロータディスク25Lの接合が電子ビーム溶接により行われるため、三次ワークW3において耐低温側ロータディスク25Lと中間材26の接合界面の変形が小さく、接合加工後に切削加工等の後処理をする必要がない。
 最後に、三次ワークW3に対し焼なまし処理を行う(ステップS4)。このように、焼なまし処理された三次ワークW3を「ロータディスク結合体27」と呼ぶこととする。この焼なまし処理では、三次ワークW3を適切な第2の温度に加熱及び均熱した後、室温に戻ったときに、平衡に近い組織状態になるような条件で冷却する。ここで、「第2の温度」とは、耐低温側ロータディスク25Lを構成している鋼材の適切な焼なまし温度である。本実施の形態に係る耐低温側ロータディスク25Lを構成している鋼材はFV535であるので、第2の温度は570~590℃の範囲の温度であり、最も望ましくは580℃である。
 三次ワークW3に対し上記焼なまし処理を行うことにより、耐高温側ロータディスク25Hと中間材26、および、中間材26と耐低温側ロータディスク25Lの各接合部において電子ビーム溶接時の残留応力が低減する。したがって、上記焼なまし処理により、三次ワークW3に対し残留応力緩和処理(SR処理;Stress Relief heat treatment)が施されることとなる。これに加えて、上記焼なまし処理により、三次ワークW3の鋼材において溶接により影響を受けた部位、すなわち、溶接時に溶けた部位が再加熱されて、硬化組織に焼戻しされる。よって、上記焼なまし処理により、三次ワークW3の鋼材、特に、鋼材の溶接により影響を受けた部位の強度特性の改善が図られる。
 上記ステップS1~4の処理により、耐高温側ロータディスク25Hと耐低温側ロータディスク25Lとが中間材26を介して結合されたロータディスク結合体27を得ることができる。このロータディスク結合体27の耐高温側ロータディスク25H側の端面は、他の耐高温側ロータディスク25HとステップS1の前又は後の段階で電子ビーム溶接又はアーク溶接により接合される。一方、ロータディスク結合体27の耐低温側ロータディスク25L側の端面は、他の耐低温側ロータディスク25LとステップS3の前又は後の段階で電子ビーム溶接又はアーク溶接により接合される。このようにして、複数のロータディスク25が順次接合されることにより圧縮機ロータ11が製造される。
 図8は、上記ステップ1~4と同様の処理によりIN625材(中間材)を介して結合されたIN718材(析出硬化型Ni基超合金材)とFV535材(鋼材)の断面写真である。同図から、IN718材とIN625材とが、溶加材を用いない電子ビーム溶接によって、双方の接合界面の材料が直接的に溶け合って接合されていることがわかる。また、IN625材とFV535材とが、溶加材を用いない電子ビーム溶接によって、双方の接合界面の材料が直接的に溶け合って接合されていることがわかる。そして、IN718材とIN625材との接合部、IN625材とFV535材との接合部の双方において、接合加工後の歪みや変形が小さいことがわかる。
 なお、IN625材とFV535材をアーク溶接で接合すると、これらの接合界面に脆弱相となる金属間化合物が生じることが一般に知られている。これに対し、上記ステップ1~4と同様の処理によりIN625材(中間材)を介してIN718材(析出硬化型Ni基超合金材)とFV535材(鋼材)とを結合すれば、FV535材とIN625材との接合界面に脆弱相となる金属間化合物が生じないか生じても接合強度に影響を与えない程度に僅かであることが、顕微鏡観察により確認された。このように、FV535材とIN625材を電子ビーム溶接で接合すると、アーク溶接で接合する場合と比較して接合加工時に接合界面で溶解する材料の量が著しく少なくなるため、脆弱相となる金属間化合物が生じることを抑制できるとともに、接合界面の歪みや変形を抑制することができる。
 以上の通り、上記圧縮機ロータ11の製造方法によれば、圧縮機ロータ11は鋼から成る耐低温側ロータディスク25Lが接合された耐低温部分と、それよりも高温に耐えうる析出硬化型Ni基超合金から成る耐高温側ロータディスク25Hが接合された耐高温部分とを備えている。そして、耐高温側ロータディスク25Hと耐低温側ロータディスク25Lとが固溶強化型Ni基超合金から成る中間材26を介して結合されることにより、その鋼部分とその析出硬化型Ni基超合金部分に対し各々に適した熱処理を行うことが可能となっている。つまり、耐高温側ロータディスク25Hと中間材26が接合された状態で、その析出硬化型Ni基超合金部分に必要な強度特性を備えるための時効硬化処理を施すことができる。さらに、耐高温側ロータディスク25Hと中間材26と耐低温側ロータディスク25Lが接合された状態で、残留応力緩和処理と鋼部分の焼なまし処理とを施すことができる。よって、圧縮機ロータ11は、耐高温部分と耐低温部分との結合部分において、ガスタービン1が備える高温部品として十分な強度特性を備えることができる。
 さらに、上記圧縮機ロータ11の製造方法によれば、耐高温側ロータディスク25Hと中間材26、中間材26と耐低温側ロータディスク25Lのそれぞれは電子ビーム溶接で接合されるので、これらの接合部分の変形を機械加工による後処理が不要な程度に小さく抑えることができる。よって、圧縮機ロータ11製造時の加工量の増加を抑制することができる。特に、中間材26と耐低温側ロータディスク25Lとが電子ビーム溶接で接合されることによって、これらの接合界面に脆弱相となる金属間化合物が生じないか生じても僅かであり、中間材26と耐低温側ロータディスク25Lとの接合部分の強度特性の低下を抑えることができる。
 以上、本発明の好適な一実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々な設計変更を行うことが可能である。
 例えば、上記実施の形態では、析出硬化型Ni基超合金としてIN718を用いているが、これに限定されず他の析出硬化型Ni基超合金であってもよい。
 また、例えば、上記実施の形態では、鋼として12Cr鋼を用いているが、これに限定されず、タービン用ロータの使用温度範囲に適した他の耐熱鋼であってもよい。例えば、2.5Cr鋼や9Cr鋼等の低合金鋼や、Crの含有量が12%より多いステンレス鋼であってもよい。
 なお、上記実施の形態では、本発明をガスタービンエンジンが具備する圧縮機ロータに適用させて説明したが、本発明の適用範囲はこれに限定されない。例えば、航空機用、船舶用、陸上車両用、陸上設置型の発電用のそれぞれでエンジンとして使用されるタービンエンジンにおいて、当該タービンエンジンが具備するタービン用ロータに広く適用することができる。
 本発明は、航空機用、船舶用、陸上車両用、陸上設置型の発電用のそれぞれでエンジンとして使用されるタービンエンジンが具備する、優れた耐熱性を有するロータを製造するために有用である。
 1 ガスタービンエンジン
 3 圧縮機
 5 燃焼器
 7 タービン
 11 圧縮機ロータ
 25 ロータディスク
 25H 耐高温側ロータディスク
 25L 耐低温側ロータディスク
 26 中間材
 27 ロータディスク結合体
 33 タービンロータ

Claims (16)

  1.  溶体化処理された析出硬化型Ni基超合金より成る第1のロータディスクと固溶強化型Ni基超合金より成る中間材とを電子ビーム溶接により接合するステップと、
     前記第1のロータディスクと前記中間材の接合体について、前記析出硬化型Ni基超合金を時効硬化させるために適した第1の温度で時効硬化処理を行うステップと、
     前記中間材と耐熱性を有する鋼より成る第2のロータディスクとを電子ビーム溶接により接合するステップと、
     前記第1のロータディスクと前記中間材と前記第2のロータディスクの接合体について、前記鋼を焼なますために適した第2の温度で焼なまし処理を行うステップとを含む、
     タービン用ロータの製造方法。
  2.  前記固溶強化型Ni基超合金がインコネル625(IN625)である、請求項1に記載のタービン用ロータの製造方法〔インコネル=INは登録商標、以下では省略〕。
  3.  前記析出硬化型Ni基超合金がインコネル718(IN718)であり、前記第1の温度が710~726℃の範囲の温度である、請求項1または2に記載のタービン用ロータの製造方法。
  4.  前記鋼が12%Cr鋼であり、前記第2の温度が570~590℃の範囲の温度である、請求項1から3のいずれか一項に記載のタービン用ロータの製造方法。
  5.  複数のロータディスクが軸方向に結合されて成るタービン用ロータであって、
     析出硬化型Ni基超合金より成る第1のロータディスクと耐熱性を有する鋼より成る第2のロータディスクとの隣接する2枚のロータディスクを含み、
     前記第1のロータディスクと固溶強化型Ni基超合金より成る中間材とが電子ビーム溶接により接合されており、且つ、前記第2のロータディスクと前記中間材とが電子ビーム溶接により接合されている、タービン用ロータ。
  6.  前記固溶強化型Ni基超合金がインコネル625(IN625)である、請求項5に記載のタービン用ロータ。
  7.  前記析出硬化型Ni基超合金がインコネル718(IN718)である、請求項5又は6に記載のタービン用ロータ。
  8.  前記鋼が12%Cr鋼である、請求項5から7のいずれか一項に記載のタービン用ロータ。
  9.  溶体化処理された析出硬化型Ni基超合金から成る第1材と耐熱性を有する鋼から成る第2材の接合方法であって、
     前記第1材と固溶強化型Ni基超合金から成る中間材とを電子ビーム溶接により接合するステップと、
     前記第1材と前記中間材の接合体について、前記第1材を時効硬化させるために適した第1の温度で時効硬化処理を行うステップと、
     前記中間材と前記第2材とを電子ビーム溶接により接合するステップと、
     前記第1材と前記中間材と前記第2材の接合体について、前記第2材を焼なますために適した第2の温度で焼なまし処理を行うステップとを含む、
     Ni基超合金材と鋼材の接合方法。
  10.  前記固溶強化型Ni基超合金がインコネル625(IN625)である、請求項9に記
    載のNi基超合金材と鋼材の接合方法。
  11.  前記析出硬化型Ni基超合金がインコネル718(IN718)であり、前記第1の温度が710~726℃の範囲の温度である、請求項9または10に記載のNi基超合金材と鋼材の接合方法。
  12.  前記鋼が12%Cr鋼であり、前記第2の温度が570~590℃の範囲の温度である、請求項9から11のいずれか一項に記載のNi基超合金材と鋼材の接合方法。
  13.  析出硬化型Ni基超合金から成る第1材と耐熱性を有する鋼から成る第2材の接合構造であって、
     前記第1材と固溶強化型Ni基超合金から成る中間材が電子ビーム溶接により接合されており、且つ、前記第2材と前記中間材が電子ビーム溶接により接合されている、Ni基超合金材と鋼材の接合構造。
  14.  前記固溶強化型Ni基超合金がインコネル625(IN625)である、請求項13に記載のNi基超合金材と鋼材の接合構造。
  15.  前記析出硬化型Ni基超合金がインコネル718(IN718)である、請求項13又は14に記載のNi基超合金材と鋼材の接合構造。
  16.  前記鋼が12%Cr鋼である、請求項13から15のいずれか一項に記載のNi基超合金材と鋼材の接合構造。
     
PCT/JP2012/003273 2011-06-22 2012-05-18 タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造 WO2012176373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12802510.3A EP2725214A4 (en) 2011-06-22 2012-05-18 ROTOR FOR A TURBINE, METHOD FOR THE PRODUCTION THEREOF, METHOD FOR BINDING A NICKEL BASE SUPER ALLOY TO A STEEL MATERIAL AND A STRUCTURE THEREFOR
US14/128,387 US20140133986A1 (en) 2011-06-22 2012-05-18 Turbine engine rotor, method of producing the same, method of joining ni-based superalloy member and steel member, and junction structure of ni-based superalloy member and steel member
CA2834753A CA2834753C (en) 2011-06-22 2012-05-18 Turbine engine rotor, method of producing the same, method of joining ni-based superalloy member and steel member, and junction structure of ni-based superalloy member and steel member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011138745A JP5731915B2 (ja) 2011-06-22 2011-06-22 タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造
JP2011-138745 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176373A1 true WO2012176373A1 (ja) 2012-12-27

Family

ID=47422239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003273 WO2012176373A1 (ja) 2011-06-22 2012-05-18 タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造

Country Status (5)

Country Link
US (1) US20140133986A1 (ja)
EP (1) EP2725214A4 (ja)
JP (1) JP5731915B2 (ja)
CA (1) CA2834753C (ja)
WO (1) WO2012176373A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789445B1 (ko) * 2013-08-08 2017-10-23 미츠비시 히타치 파워 시스템즈 가부시키가이샤 증기 터빈 로터

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066777B2 (ja) * 2013-03-06 2017-01-25 三菱重工業株式会社 蒸気タービン用ロータの製造方法
JP6181962B2 (ja) * 2013-04-16 2017-08-16 日本特殊陶業株式会社 燃焼圧センサ付きグロープラグの製造方法
RU2571673C1 (ru) * 2014-07-31 2015-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ изготовления ротора турбины из никелевого жаропрочного сплава
JP6625427B2 (ja) * 2015-12-25 2019-12-25 川崎重工業株式会社 ガスタービンエンジン
RU2682064C1 (ru) * 2017-11-10 2019-03-14 Акционерное общество "Объединенная двигателестроительная корпорация"(АО "ОДК") Способ изготовления ротора турбомашины
RU2682065C1 (ru) * 2018-05-11 2019-03-14 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Способ изготовления секций ротора газотурбинного двигателя
GB2574592A (en) * 2018-06-07 2019-12-18 Rolls Royce Plc Gimbals and methods of manufacturing gimbals
CN109880991B (zh) * 2019-03-14 2020-12-08 武汉西北风机发展有限公司 一种高防腐耐磨转炉一次除尘风机叶轮的热处理生产工艺
RU2706925C1 (ru) * 2019-04-11 2019-11-21 Федеральное государственное бюджетное учреждение науки Институт проблем сверхпластичности металлов Российской академии наук (ИПСМ РАН) Способ изготовления составной заготовки типа "диск-вал" из жаропрочных сплавов
CN110883416B (zh) * 2019-12-18 2021-09-28 西安西工大超晶科技发展有限责任公司 一种铸造高温合金与马氏体不锈钢电子束焊接方法
CN113584294B (zh) * 2021-06-25 2023-03-14 西安热工研究院有限公司 一种沉淀强化高温合金焊后去应力处理方法
CN114737081B (zh) * 2022-04-06 2023-03-24 暨南大学 一种具有分层微观结构的Ni-Al-Ti基高温合金及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121023A (ja) * 2003-10-14 2005-05-12 Alstom Technology Ltd 熱的な機械に用いられる溶接されたロータならびにこのようなロータを製作するための方法
JP2010065547A (ja) * 2008-09-09 2010-03-25 Hitachi Ltd タービン用の溶接型ロータおよびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10112062A1 (de) * 2001-03-14 2002-09-19 Alstom Switzerland Ltd Verfahren zum Zusammenschweißen zweier thermisch unterschiedlich belasteter Teile sowie nach einem solchen Verfahren hergestellte Turbomaschine
US7156932B2 (en) * 2003-10-06 2007-01-02 Ati Properties, Inc. Nickel-base alloys and methods of heat treating nickel-base alloys
DE10348422B4 (de) * 2003-10-14 2015-04-23 Alstom Technology Ltd. Thermisch belastetes Bauteil, sowie Verfahren zur Herstellung eines solchen Bauteils
KR101207147B1 (ko) * 2008-06-18 2012-11-30 미츠비시 쥬고교 가부시키가이샤 Ni기 합금-고크롬강 구조물 및 그 제조 방법
EP2172299B1 (en) * 2008-09-09 2013-10-16 Hitachi, Ltd. Welded rotor for turbine and method for manufacturing the same
US8373089B2 (en) * 2009-08-31 2013-02-12 General Electric Company Combustion cap effusion plate laser weld repair

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121023A (ja) * 2003-10-14 2005-05-12 Alstom Technology Ltd 熱的な機械に用いられる溶接されたロータならびにこのようなロータを製作するための方法
JP2010065547A (ja) * 2008-09-09 2010-03-25 Hitachi Ltd タービン用の溶接型ロータおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725214A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789445B1 (ko) * 2013-08-08 2017-10-23 미츠비시 히타치 파워 시스템즈 가부시키가이샤 증기 터빈 로터

Also Published As

Publication number Publication date
US20140133986A1 (en) 2014-05-15
JP5731915B2 (ja) 2015-06-10
CA2834753C (en) 2016-06-14
EP2725214A1 (en) 2014-04-30
JP2013007282A (ja) 2013-01-10
CA2834753A1 (en) 2012-12-27
EP2725214A4 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5731915B2 (ja) タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造
JP4908137B2 (ja) タービンロータおよび蒸気タービン
EP1067206B1 (en) Steam turbine blade, and steam turbine and steam turbine power plant using the same
US6123504A (en) Steam-turbine power plant and steam turbine
JP5236263B2 (ja) 回転アセンブリ部品及び部品の製造方法
JP4542490B2 (ja) 高強度マルテンサイト耐熱鋼とその製造方法及びその用途
US8911880B2 (en) Rotor of rotating machine and method of manufacturing the rotor
JP4719780B2 (ja) タービン用の溶接型ロータおよびその製造方法
JP2007092123A (ja) 高強度耐熱鋳鋼とその製造方法及びそれを用いた用途
EP0980961A1 (en) Steam turbine blade, method of manufacturing the same, steam turbine power generating plant and low pressure steam turbine
JPH0658168A (ja) ガスタービン用圧縮機及びガスタービン
US7331757B2 (en) Turbine shaft and production of a turbine shaft
US7108483B2 (en) Composite gas turbine discs for increased performance and reduced cost
GB2561147A (en) A method for heat treatment of a nickel base alloy such as alloy 282, said alloy and components thereof
EP2584149A2 (en) Turbine blade with erosion shield plate
JP5389763B2 (ja) 蒸気タービン用ロータシャフトとそれを用いた蒸気タービン及び蒸気タービン発電プラント
EP0759499B1 (en) Steam-turbine power plant and steam turbine
JP2000161006A (ja) 蒸気タービン翼とそれを用いた蒸気タービン及び蒸気タービン発電プラント並びに高強度マルテンサイト鋼
JPH10317105A (ja) 高強度鋼,蒸気タービン長翼及び蒸気タービン
CN117377551A (zh) 镍基高温合金焊接填料
JPH1193603A (ja) 蒸気タービン発電プラント及び蒸気タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2834753

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14128387

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012802510

Country of ref document: EP