WO2012176294A1 - 遠隔監視装置、発電システム、及び遠隔監視装置の制御方法 - Google Patents

遠隔監視装置、発電システム、及び遠隔監視装置の制御方法 Download PDF

Info

Publication number
WO2012176294A1
WO2012176294A1 PCT/JP2011/064295 JP2011064295W WO2012176294A1 WO 2012176294 A1 WO2012176294 A1 WO 2012176294A1 JP 2011064295 W JP2011064295 W JP 2011064295W WO 2012176294 A1 WO2012176294 A1 WO 2012176294A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching hub
switching
information processing
remote
wind power
Prior art date
Application number
PCT/JP2011/064295
Other languages
English (en)
French (fr)
Inventor
秀和 一瀬
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11817499.4A priority Critical patent/EP2725745B1/en
Priority to AU2011313837A priority patent/AU2011313837A1/en
Priority to CN201180004360.3A priority patent/CN102959900B/zh
Priority to KR1020127010620A priority patent/KR20130031815A/ko
Priority to US13/232,307 priority patent/US8977403B2/en
Publication of WO2012176294A1 publication Critical patent/WO2012176294A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • H04L41/344Out-of-band transfers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Definitions

  • the present invention relates to a remote monitoring device, a power generation system, and a method for controlling the remote monitoring device.
  • SCADA Supervisory Control And Data Acquisition
  • SCADA and the wind power generator are connected by a communication line (for example, a communication network based on Ethernet (registered trademark)).
  • a SCADA master server is provided in a wind farm
  • a SCADA remote client provided in a remote control center is connected via a communication network
  • the SCADA remote client is connected to the Internet line.
  • a system is described which is connected to a workstation via
  • Patent Document 2 discloses that a POS terminal and a host system are connected by two different types of communication lines, a closed IP network and an ISDN exchange network, and the closed IP A communication system is described that switches to an ISDN switch network when a failure occurs in the network.
  • a switching hub for connecting to a communication network is installed in the wind turbine generator, and a ring topology may be configured in the wind farm for redundancy.
  • the switching hub on the wind power generator side that realizes the ring topology malfunctions or fails, the malfunction or the like may be resolved by resetting the power of the switching hub.
  • a terminal (information processing device) in the central control room which is a remote location is connected to the switching hub on the target wind turbine generator side via the network. There is a method of transmitting a reset command.
  • a second method there is a method in which maintenance personnel are sent to the wind turbine generator and the switching hub is turned on and off.
  • the switching hub on the wind turbine generator side cannot receive the command via the communication network, that is, in a state where the communication network is not established (a state where there is no response to the ping command)
  • the second method when a plurality of wind turbine generator-side switching hubs are malfunctioning, there is a possibility that the ring connection does not function, and the wind turbine is composed of several tens to 100 wind turbine generators.
  • the farm it takes time to move from the office where maintenance personnel are stationed to the wind turbine generator, and the loss of time for restoration becomes great.
  • wind farms installed offshore require the movement of maintenance personnel by helicopter or ship.
  • the present invention has been made in view of such circumstances, and a remote monitoring device, a power generation system, and a data transmission system that can solve a problem of data transmission due to a malfunction of the switching hub on the wind power generator side from a remote location, and It is an object to provide a control method for a remote monitoring device.
  • the remote monitoring device, the power generation system, and the control method of the remote monitoring device of the present invention employ the following means.
  • a remote monitoring device is a remote monitoring device that transmits and receives data between a wind power generator and an information processing device, and transmits data between the wind power generation device and the information processing device.
  • a primary switching hub that performs relay
  • a standby switching hub that relays data transmission between the wind turbine generator and the information processing device, and a relay of data transmission between the wind turbine generator and the information processing device, Switching means for switching to the main switching hub or the spare switching hub, and the switching means connected to the spare switching hub and based on a switching signal from the information processing device input via the spare switching hub
  • a first control means for executing switching according to.
  • the remote monitoring device transmits and receives data between the wind turbine generator and the information processing device.
  • the wind power generator connected to the remote monitoring device may be one or plural, and the information processing device connected to the remote monitoring device is provided in a remote place with respect to the wind power generating device.
  • the remote monitoring device relays data transmission between the wind power generation device and the information processing device, as well as a main switching hub and a standby switching hub that relay data transmission between the wind power generation device and the information processing device. And a switching means for switching to the main switching hub or the standby switching hub.
  • the switching by the switching means is executed by the first control means connected to the spare switching hub based on the switching signal from the information processing device input via the spare switching hub.
  • the above configuration can solve the problem of data transmission due to the malfunction of the switching hub on the wind power generator side from a remote location.
  • the first control unit executes power on / off for the main switching hub based on a reset signal from the information processing apparatus input via the spare switching hub. It is preferable.
  • the main switching hub can be reset from a remote location.
  • the first control means turns on the power to the windmill control device that controls the wind turbine generator based on a reset signal from the information processing device input via the backup switching hub. And off.
  • the first control means since the first control means turns on and off the power supply to the windmill control device based on the reset signal from the information processing device input via the standby switching hub, the power supply of the windmill control device The reset is preferably performed from a remote location.
  • the reset signal from the information processing apparatus input via the permanent switching hub is connected to the permanent switching hub and the power on / off of the spare switching hub is input to the permanent switching hub. It is preferable to provide the 2nd control means to perform based on.
  • the second control unit connected to the main switching hub turns on and off the power to the spare switching hub based on the reset signal from the information processing device input via the spare switching hub.
  • the standby switching hub can be reset from a remote location.
  • the malfunction can be resolved by resetting the power supply, and the standby switching hub can be maintained normally. Can do.
  • running state of the said wind power generator received from the windmill control apparatus which controls a wind power generator are transmitted to the information processing apparatus installed in the remote place via a communication line. It is preferable.
  • the maintenance staff collects the wind turbine generator operation data at the remote location without going to the wind turbine generator.
  • the operating state can be confirmed in real time.
  • the permanent switching hub and the standby switching hub transmit a control signal transmitted from a portable information processing terminal for operating the wind power generator to the wind power generator. It is preferable that a port is provided.
  • the portable information processing terminal since the control signal of the wind turbine generator from the portable information processing terminal is transmitted to the wind turbine generator via the main switching hub or the standby switching hub, the portable information processing terminal is used. Thus, it is possible to perform various maintenance on the wind turbine generator from a remote location.
  • the wind power generation device and the remote monitoring device described above are installed on the ocean, and the first control means receives a switching signal from an information processing device installed on land. Based on this, switching by the switching means is executed.
  • a remote monitoring device control method for transmitting and receiving data between a wind power generator and an information processing device.
  • the primary switching hub that performs relay
  • the standby switching hub that relays data transmission between the wind turbine generator and the information processing device
  • the relay of data transmission between the wind turbine generator and the information processing device A control method for a remote monitoring device comprising a switching means for switching to a main switching hub or the spare switching hub, wherein the remote monitoring device is connected to the spare switching hub and is input from the information processing device input via the spare switching hub. Based on the switching signal, switching by the switching means is executed.
  • FIG. 1 It is a block diagram which shows the communication structure of the wind power generation system which concerns on embodiment of this invention. It is a block diagram which shows the relationship of the apparatus connected to the switching hub for main installations concerning the embodiment of this invention, and a backup switching hub. It is the flowchart which showed the flow of the process of a power supply reset performed when the driving data which concern on embodiment of this invention are not displayed on a SCADA terminal. It is a figure which shows the screen displayed on a SCADA terminal when performing the power supply reset by remote control which concerns on embodiment of this invention.
  • FIG. 6 is a flowchart showing a flow of a power reset process for the permanent remote I / O performed when an abnormality is found in the permanent system by the self-diagnosis function of the permanent remote I / O according to the embodiment of the present invention. is there. It is the flowchart which showed the flow of the process of the power supply reset with respect to a backup switching hub performed when abnormality is discovered in a backup system by the self-diagnosis function of the permanent remote I / O which concerns on embodiment of this invention. It is the flowchart which showed the flow of the process of the power supply reset with respect to backup remote I / O performed when abnormality is discovered in the main system by the self-diagnosis function of the main remote I / O which concerns on embodiment of this invention. .
  • FIG. 1 is a block diagram showing a communication configuration of the wind power generation system 10 according to the present embodiment.
  • a wind power generation system 10 that is a wind farm includes a wind power generation device 12, a SCADA (machine side device) 14, and a SCADA (central operation room) 16.
  • the wind power generation device 12 and the SCADA 14 are installed on the ocean.
  • the SCADA 16 is installed at a land substation where power is transmitted from the wind power generator 12.
  • the SCADA 14 and the SCADA 16 include optical termination boxes 20A and 20B, respectively, and communication (communication by Ethernet (registered trademark)) is possible by the optical cable 22.
  • maintenance personnel who maintain the wind power generation system 10 are resident in the SCADA 16 as an example, but may be resident in other places different from the SCADA 16.
  • the wind power generator 12 transmits / receives various data to / from the information processing apparatus (maintenance terminal 36C and maintenance terminal 36D) provided in the SCADA 16 and the client terminal 66 via the SCADA 14.
  • Various controls can be performed by the maintenance terminal and the client terminal 66 provided in the SCADA 16.
  • the various data refers to operation data (including trip data) transmitted from the wind power generator 12, control for controlling the wind power generator 12 transmitted from the maintenance terminal provided in the SCADA 16 and the client terminal 66. Signal etc.
  • the maintenance terminal 36D sets the trip data signal of the wind turbine generator 12, changes the control software, collects and changes control parameters, sets the date and time of the wind turbine controller 30 to be described later, NVRAM (Non Volatile in the wind turbine controller). It is possible to collect and change data stored in RAM (nonvolatile RAM), obtain operation data that can be sampled at a higher speed than SCADA 14, and the like.
  • the wind power generator 12 includes a windmill control device 30 that controls the entire wind power generator 12 in its nacelle.
  • the windmill control device 30 receives data output from various devices constituting the wind turbine generator 12 and generates operation data indicating the operation state of the wind turbine generator 12.
  • the windmill control device 30 is connected to a switching hub (SW-HUB) 32A.
  • the switching hub 32A is connected to a remote I / O 34A and a maintenance terminal 36A, and a switching hub 32B provided under the tower of the wind turbine generator 12. Has been.
  • each switching hub used in the present embodiment also has a function of a media converter (M / C) for connecting different transmission media and mutually converting signals.
  • M / C media converter
  • any conventionally known communication standard may be used as a communication standard (protocol or the like) between devices unless otherwise specified.
  • the windmill control device 30 can communicate with the SCADA 14 by serial communication (for example, RS-232C) via the media converter 38A.
  • a converter control device 40 is connected to the windmill control device 30.
  • the converter control device 40 is a control device for a power conversion device provided in the wind turbine generator 12, and operation data is also generated in the converter control device 40.
  • the converter control device 40 can also communicate with the SCADA 14 by serial communication (for example, RS-232C) via the media converter 38B.
  • the SCADA 14 relays data transmission between the wind power generator 12 and the terminal provided in the SCADA 16, and the main switching hub 42 and the standby switching hub 44, and the data transmission between the wind power generator 12 and the terminal provided in the SCADA 16
  • a network switch 46 for switching the relay to the main switching hub 42 or the standby switching hub 44 is provided. Normally, data transmission between the wind power generator 12 and the terminal included in the SCADA 16 is performed via the permanent switching hub 42. Even in a normal case, the power of the standby switching hub 44 is turned on.
  • a spare remote I / O 48 is connected to the spare switching hub 44, and based on a switching command from the maintenance terminal and the client terminal 66 input by the spare remote I / O 48 via the spare switching hub 44. Switching by the network switch 46 is executed.
  • the spare remote I / O 48 also turns on / off the power to the main switching hub 42 or the windmill control device 30 based on a maintenance command input via the spare switching hub 44 and a reset command from the client terminal 66. It can be executed.
  • the permanent switching I / O 50 is connected to the permanent switching hub 42, and the permanent remote I / O 50 turns the power supply to the standby switching hub 44 on and off via the permanent switching hub 42. It can be executed based on the input maintenance terminal and a reset command from the client terminal 66.
  • the main remote I / O 50 includes a main system (a transmission system including the main switching hub 42 and the main remote I / O 50) and a backup system (the backup switching hub 44 and the backup remote I / O 48).
  • a self-diagnosis function is provided for monitoring the normality of the network status with the transmission system. For example, the self-diagnosis function transmits a predetermined signal at predetermined intervals to devices constituting the main system or the standby system, and monitors the normality of the network state depending on whether a signal corresponding to the predetermined signal is returned.
  • FIG. 2 is a block diagram showing the relationship between the devices connected to the ports provided in the main switching hub 42 and the standby switching hub 44.
  • the main switching hub 42 is supplied with power from the power source 52 via the power switch 50A
  • the standby switching hub 44 is supplied with power from the power source 52 via the power switch 50B.
  • the power switch 50 ⁇ / b> A turns on and off the power to the main switching hub 42 in response to a reset command from the spare remote I / O 48 connected to the spare switching hub 44.
  • the power switch 50B turns on / off the power to the standby switching hub 44 in response to a reset command from the permanent remote I / O 50 connected to the permanent switching hub 42.
  • the wind turbine control device 30, the switching hub 32A, the switching hub 32B, and the remote I / O 34B are supplied with electric power through the power switch 50C, and the power switch 50C is a spare connected to the spare switching hub 44.
  • the power to the wind turbine control device 30, the switching hub 32A, the switching hub 32B, and the remote I / O 34B is turned on and off.
  • the standby remote I / O 48 can reset the power of the primary remote I / O 50, and the primary remote I / O 50 can reset the power of the standby remote I / O 48. Yes.
  • the main switching hub 42 and the standby switching hub 44 are connected to various devices via a network switch 46.
  • the network switch 46 includes a plurality of Ethernet switches 46A (Ethernet switch 46A-1 to Ethernet switch 46A-5).
  • the main switching hub 42 and the standby switching hub 44 are connected to the converter 54A via the Ethernet switch 46A-1, and connected to the switching hub 32B via the Ethernet switch 46A-2.
  • the main remote I / O 50 is connected via the switch 46A-3
  • the RTU (Remote Terminal Unit) 56 is connected via the Ethernet switch 46A-4
  • the converter 54B is connected via the Ethernet switch 46A-5. It is connected.
  • the converter 54A converts serial communication (RS-232C) and Ethernet communication, and is connected to the windmill control device 30 via the media converter 38A.
  • the RTU 56 sequentially stores operation data transmitted from the wind turbine generator 12.
  • the converter 54B is connected to the converter control device 40 via the media converter 38B.
  • the main switching hub 42 and the standby switching hub 44 are connected to the optical termination box 20A, and are connected to the switching hub 32C installed in the SCADA 16 through the optical cable 22 and the optical termination box 20B.
  • one set of the optical cable 22 is provided for each of the main system and the standby system.
  • the present invention is not limited thereto, and two or more sets may be provided for each of the main system and the standby system. It is not necessary to divide it with.
  • Each port of the switching hub 32C includes a converter 54C installed in the SCADA 16, a network monitoring terminal 60, a WEB server 62, a DB server 64, a maintenance terminal 36C, a maintenance terminal 36D, a converter 54D, and an Internet line 65.
  • a client terminal 66 is connected through the network.
  • the converter 54C and the converter 54D convert Ethernet communication and serial communication, and the converter 54C transmits a control signal for operating the wind turbine generator 12 to the wind turbine generator 12 by serial communication.
  • a portable information processing terminal HOT (Handy Operation Terminal) 68 is connectable.
  • the network monitoring terminal 60 monitors the normality of the communication network composed of the SCADAs 14 and 16 and the wind power generator 12 using a conventionally known network monitoring protocol (software) or the like.
  • the DB server 64 sequentially stores the operation data of the wind turbine generator 12 transmitted via the SCADA 14.
  • the maintenance terminal 36 ⁇ / b> C and the client terminal 66 are terminals (hereinafter referred to as “SCADA terminals”) that display the operation data transmitted via the SCADA 14 on the screen via the WEB server 62 and transmit commands to the SCADA 14. is there.
  • SCADA terminals terminals
  • the maintenance terminal 36D is a SCADA terminal, similar to the maintenance terminal 36C, but is capable of operating the wind power generator 12 by transmitting a control signal to the wind power generator 12. That is, it has the same function as the HOT 68 described above.
  • the operation data transmitted from the converter control device 40 can be sequentially stored.
  • the switching hub provided in the SCADA or the switching hub provided in the wind power generator 12 is used. If a malfunction is discovered, maintenance personnel up to the wind power generator 12 go from the stationed location (central operation room) to the remote wind power generator 12 and reset the power of each switching hub as a means of recovery. There was a need. Then, if the problem is not resolved by resetting the power, the failed network device is replaced or repaired.
  • the maintenance staff operates the maintenance terminal 36C or the maintenance terminal 36D, which is the SCADA terminal, so that the switching command is transferred from the SCADA terminal to the spare switching hub 44.
  • the spare switching hub 44 outputs a switching command to the spare remote I / O 48.
  • the spare remote I / O 48 executes transmission path switching by the network switch 46 based on a switching command input via the spare switching hub 44.
  • the switching command includes a standby switching command for switching the data transmission path from the primary switching hub 42 to the standby switching hub 44, and a permanent switching command for switching the data transmission path from the standby switching hub 44 to the primary switching hub 42.
  • a backup switching command is input from the SCADA terminal to the backup remote I / O 48 via the backup switching hub 44. Therefore, the data transmission path is switched from the main switching hub 42 to the standby switching hub 44, and even if the main switching hub 42 malfunctions, the problem of data transmission is solved.
  • the wind power generation system 10 can solve the problem of data transmission due to the malfunction of the main switching hub 42 from a remote place without the maintenance personnel going to the wind power generation device 12.
  • FIG. 3 shows a flow of power reset processing that is performed when there is an abnormality in the main system, that is, when operation data is not displayed on the SCADA terminal, or when it is assumed that the processing of the wind turbine control device 30 is stopped.
  • the data transmission path is switched from the main switching hub 42 to the standby switching hub 44 between step 104 and step 106 described later as part of the failure search operation.
  • step 100 the mains switching hub 42 is reset. This power reset is performed by transmitting a reset command to the main switching hub 42 by a remote command from the SCADA terminal.
  • step 102 the maintenance staff or the network monitoring terminal 60 determines whether or not the operation data transmitted from the wind power generator 12 via the SCADA 14 is displayed on the SCADA terminal. If it is displayed, the process ends because the data transfer problem has been resolved. If not, the process proceeds to step 104.
  • step 104 whether or not there is any abnormality in the communication path, the cable, the power source, the switching hub, etc. between the wind power generator 12 and the SCADA terminal via the SCADA 14 using the network monitoring terminal 60 or the like. Judgment. If there is no abnormality, the present process is terminated, and other causes (such as a failure of the SCADA terminal) are resolved to solve the problem of data transfer. On the other hand, if there is an abnormality, the process proceeds to step 106.
  • step 106 the main switching hub 42 is reset by remote control. That is, a reset command for resetting the power of the main switching hub 42 is transmitted from the SCADA terminal to the spare remote I / O 48 via the spare switching hub 44.
  • the spare remote I / O 48 transmits the reset command to the power switch 50A, and causes the power switch 50A to reset the power of the main switching hub 42.
  • FIG. 4 shows a remote maintenance screen 69 displayed on the SCADA terminal when the power reset is performed by this remote operation.
  • the remote maintenance screen 69 shown in FIG. 4 displays a list of network devices that can perform power reset by remote operation.
  • the maintenance staff selects a network device to be reset (“Reset”). Click to reset the power supply by remote control.
  • RTU indicates that the power of the RTU 56 is reset
  • SW-HUB-3 indicates that the main switching hub 42 is reset
  • SW-HUB- "4" indicates a power reset of the standby switching hub 44
  • CNV-1 indicates a power reset of the converter 54A
  • CNV-2 indicates a power reset of the converter 54B
  • RI / O- "3” indicates power reset of the main remote I / O 50
  • RI / O-4" indicates power reset of the spare remote I / O 48
  • hard SS indicates power reset of the safety system by hardware
  • Windmill control device power supply is a power reset of the windmill control device 30, the switching hub 32A, the switching hub 32B, and the remote I / O 34B. Show.
  • remote switching screen 69 enables switching between the main switching hub 42 and the standby switching hub 44.
  • step 108 the maintenance staff or the network monitoring terminal 60 determines whether or not the operation data transmitted from the wind power generator 12 via the SCADA 14 is displayed on the SCADA terminal. If it is displayed, the process ends because the data transfer problem has been resolved. If not, the process proceeds to step 110.
  • step 110 the wind turbine controller 30 is reset by remote control. That is, the maintenance staff selects “wind turbine control device power” on the remote maintenance screen 69 shown in FIG. 4 to reset the power of the wind turbine control device 30, the switching hub 32A, and the switching hub 32B.
  • a reset command for resetting the power supply of the wind turbine controller 30, the switching hub 32 ⁇ / b> A, and the switching hub 32 ⁇ / b> B is transmitted from the SCADA terminal to the spare remote I / O 48 via the spare switching hub 44.
  • the spare remote I / O 48 transmits the reset command to the power switch 50C, and causes the power switch 50C to reset the power of the windmill control device 30, the switching hub 32A, and the switching hub 32B.
  • step 112 the maintenance staff or the network monitoring terminal 60 determines whether or not the operation data transmitted from the wind power generator 12 via the SCADA 14 is displayed on the SCADA terminal. If it is displayed, the process ends because the data transfer problem has been resolved. If not, the process proceeds to step 114.
  • step 114 the power transmission reset does not solve the problem of data transmission. Therefore, the maintenance staff goes to the wind power generator 12 and the SCADA 14, repairs the malfunction of the network equipment, and ends this process. In addition, it may be at the time of the next maintenance that it goes to the wind power generator 12 and SCADA14.
  • FIG. 5 shows a flow of a power reset process for the main remote I / O 50 that is performed when an abnormality is detected in the main remote I / O 50 by the self-diagnosis function of the main remote I / O 50.
  • the data transmission path is switched from the main switching hub 42 to the standby switching hub 44 by the maintenance staff together with the discovery of the abnormality.
  • step 200 the power is reset for the main remote I / O 50.
  • This power reset is performed by transmitting a reset command to the permanent remote I / O 50 via the permanent switching hub 42 by a remote command from the SCADA terminal.
  • next step 202 it is determined whether or not the abnormality of the main system has been resolved by the self-diagnosis function of the main remote I / O 50. If the problem has been resolved, the present process is terminated. Migrate to
  • step 204 maintenance personnel are inspected using the network monitoring terminal 60 or the like to determine whether or not there is any abnormality in the communication path, cable, power supply, switching hub, etc. between the wind turbine generator 12 and the SCADA terminal via the SCADA 14. Judgment. If there is no abnormality, the present process is terminated, and other causes (such as a failure of the SCADA terminal) are resolved, so that the abnormality of the main system is resolved.
  • step 206 the power of the main remote I / O 50 is reset by remote control. That is, the maintenance staff selects “RI / O-3” on the remote maintenance screen 69 shown in FIG. 4 to reset the power supply of the main remote I / O 50.
  • a reset command for resetting the power of the main remote I / O 50 is transmitted from the SCADA terminal to the spare remote I / O 48 via the spare switching hub 44.
  • the spare remote I / O 48 transmits the reset command to the power switch 50A corresponding to the permanent remote I / O 50, and causes the power switch to reset the power of the permanent remote I / O 50.
  • the power to the main remote I / O 50 is supplied in the order of the power source 52 from the power switch 50A and the power switch 50A to the main remote I / O 50.
  • next step 208 it is determined whether or not the abnormality of the main system has been resolved by the self-diagnosis function of the main remote I / O 50. If the problem has been resolved, the process is terminated. Migrate to
  • Step 210 since the abnormality of the main system is not solved by the power reset, the maintenance staff goes to the wind power generator 12 and the SCADA 14, repairs the failure of the network equipment, and ends this processing. In addition, it may be at the time of the next maintenance that it goes to the wind power generator 12 and SCADA14.
  • FIG. 6 shows a flow of power reset processing for the standby switching hub 44 that is performed when an abnormality is detected in the standby system by the diagnostic function of the network monitoring terminal 60.
  • the data transmission path remains the main switching hub 42.
  • step 300 the power is reset for the standby switching hub 44.
  • This power reset is performed by transmitting a reset command to the standby switching hub 44 by a remote command from the SCADA terminal.
  • step 302 it is determined whether or not the abnormality of the standby system has been eliminated by the diagnostic function of the network monitoring terminal 60. If the abnormality is eliminated, the present process is terminated, and if not eliminated, the process proceeds to step 304. .
  • step 304 whether or not there are any abnormalities in the communication path, cable, power supply, switching hub, etc. between the wind turbine generator 12 and the SCADA terminal via the SCADA 14 using the network monitoring terminal 60, etc. Judgment. If there is no abnormality, the present process is terminated, and other causes (such as a failure of the SCADA terminal) are eliminated to eliminate the abnormality of the standby system. On the other hand, if there is an abnormality, the process proceeds to step 306.
  • step 306 the standby switching hub 44 is reset by remote control. That is, the maintenance staff selects “SW-HUB-4” on the remote maintenance screen 69 shown in FIG. As a result, a reset command for resetting the power of the standby switching hub 44 is transmitted from the SCADA terminal to the permanent remote I / O 50 via the permanent switching hub 42.
  • the main remote I / O 50 transmits the reset command to the power switch 50B corresponding to the spare switching hub 44, and causes the power switch 50B to reset the power of the spare switching hub 44.
  • step 308 it is determined whether or not the abnormality in the standby system has been eliminated by the diagnostic function of the network monitoring terminal 60. If the abnormality has been eliminated, the process is terminated. If not, the process proceeds to step 310. .
  • step 310 since the abnormality of the standby system is not eliminated by the power reset, the maintenance staff goes to the wind power generator 12 and the SCADA 14, repairs the network device, and finishes this process. In addition, it may be at the time of the next maintenance that it goes to the wind power generator 12 and SCADA14.
  • FIG. 7 shows the flow of power reset processing for the backup remote I / O 48 that is performed when an abnormality is detected in the backup remote I / O 48 by the diagnostic function of the network monitoring terminal 60.
  • the data transmission path remains the main switching hub 42.
  • step 400 power is reset for the spare remote I / O 48.
  • This power reset is performed by transmitting a reset command to the spare remote I / O 48 via the spare switching hub 44 by a remote command from the SCADA terminal.
  • next step 402 it is determined whether or not the abnormality of the backup remote I / O 48 has been solved by the diagnostic function of the network monitoring terminal 60. If it has been solved, the process is terminated.
  • step 404 maintenance personnel are checked using the network monitoring terminal 60 or the like to determine whether or not there is any abnormality in the communication path, cable, power supply, switching hub, etc. between the wind power generator 12 and the SCADA terminal via the SCADA 14. Judgment. If there is no abnormality, the present process is terminated, and other causes (failure of the SCADA terminal, etc.) are resolved to eliminate the abnormality of the standby system.
  • step 406 the power of the backup remote I / O 48 is reset by remote control. That is, the maintenance staff selects “RI / O-4” on the remote maintenance screen 69 shown in FIG. 4 to reset the power supply of the spare remote I / O 48.
  • a reset command for resetting the power of the standby remote I / O 48 is transmitted from the SCADA terminal to the permanent remote I / O 50 via the permanent switching hub 42.
  • the main remote I / O 50 transmits the reset command to the power switch 50B corresponding to the backup remote I / O 48, and causes the power switch to reset the power of the backup remote I / O 48.
  • next step 408 it is determined whether or not the abnormality of the spare remote I / O 48 has been solved by the diagnostic function of the network monitoring terminal 60. If the abnormality is eliminated, the process is terminated. Migrate to
  • Step 410 since the abnormality of the standby system is not resolved by the power reset, the maintenance staff goes to the wind power generator 12 and the SCADA 14, repairs the network device, and ends this processing. In addition, it may be at the time of the next maintenance that it goes to the wind power generator 12 and SCADA14.
  • the converters 54A and 54B that convert Ethernet communication and RS-232C and are connected to the windmill control device 30 or the converter control device 40 are provided as a permanent switching hub of the SCADA 14. 42 and a port of the spare switching hub 44.
  • Converters 54C and 54D for converting Ethernet communication and RS-232C are connected to a port of the switching hub 32C of the SCADA 16. Therefore, in the wind power generation system 10 according to the present embodiment, the maintenance operation of the wind power generator 12 can be performed from the SCADA 16 by maintenance personnel by connecting the HOT 68 to the converter 54C of the SCADA 16.
  • FIG. 9 shows the flow of processing when a reason for performing a maintenance operation occurs.
  • a reason for performing a maintenance operation for example, when performing a remote reset when the safety system is activated, the yaw limit switch is activated due to the occurrence of a cable twist.
  • the yaw limit switch is activated due to the occurrence of a cable twist.
  • step 500 the HOT 68 is connected to the converter 54C.
  • FIG. 10 shows an example of the menu screen 72 displayed on the HOT 68.
  • the HOT 68 displays data indicating the operating state of the wind turbine generator 12 such as the wind speed, the wind direction, and the nacelle direction.
  • start”, stop”, “manual”, “maintenance”, etc. are displayed on the HOT 68, and the button 74 labeled “maintenance” is pressed, whereby the wind turbine generator 12 enters the maintenance mode. To be migrated.
  • the maintenance operation for the equipment included in the wind turbine generator 12 is performed using the HOT 68.
  • FIG. 11 shows an example of a menu screen 74A displayed on the HOT 68 when a maintenance operation is performed.
  • the menu screen 74A displays a list of systems and devices that are subject to maintenance operations, and when the page switching button 76 is pressed, another menu screen as shown in FIG.
  • the screen of the HOT 68 is switched to 74B.
  • the maintenance staff selects a system or device to be maintained by pressing a button displayed on the menu screens 74A and 74B, and switches the screen of the HOT 68 to the maintenance operation screen.
  • Various operation buttons and the like for performing maintenance are displayed on the maintenance operation screen, and a control signal is transmitted to the wind turbine generator 12 by clicking the operation button.
  • FIG. 13 shows a maintenance operation screen 78A displayed on the HOT 68 when the “control oil system” shown in FIG. 11 is pressed, and various pumps, valves, etc. can be turned on / off.
  • FIG. 14 is a maintenance operation screen 78B displayed on the HOT 68 by pressing the “yaw system” shown in FIG. 11, and the turning on and off of the yaw limit bypass and the turning direction of the nacelle can be operated.
  • FIG. 15 shows a maintenance operation screen 78C displayed on the HOT 68 when the “cooling system” shown in FIG. 11 is pressed, and it is possible to select on / off of a pump, a fan, and the like.
  • the “other settings” on the menu screen shown in FIG. 12 includes trip data signal setting, control software change, control parameter collection and change, date and time setting of the windmill control device 30, and NVRAM in the windmill control device. This includes collecting and changing data stored in (Non Volatile RAM).
  • step 506 when the predetermined maintenance operation is completed, the maintenance staff determines whether or not to continue the maintenance operation. If it is determined that the maintenance operation is to be continued, the process returns to step 504. 508.
  • the SCADA 14 is provided with the ports for transmitting the control signal transmitted from the HOT 68 to the wind power generator 12 in the main switching hub 42 and the standby switching hub 44. Can be used to perform various maintenance on the wind turbine generator 12 from a remote location.
  • the maintenance terminal 36D also has the same function as the HOT 68. Since the converter 54D is connected to the maintenance terminal 36D, the maintenance operation of the converter control device 40 using the maintenance terminal 36D can be performed from the SCADA 16.
  • a remote maintenance operation can be performed without using the converters 54A to 54D.
  • the maintenance operation may be performed from the client terminal 66 connected to the Internet line 65 using a wired, wireless, or mobile phone.
  • the wind power generator 12 and the SCADA 14 are installed on the ocean.
  • the present invention is not limited to this, and the wind power generator 12 and the SCADA 14 are installed on the land. It is good also as a form.
  • switching between the main switching hub 42 and the standby switching hub 44 by the network switching unit 46 is performed when a switching command is automatically switched from the SCADA terminal when the network monitoring terminal 60 detects an abnormality in the main system. This may be done by inputting to the spare remote I / O 48 via the hub 44.
  • Wind Power Generation System 12 Wind Power Generation Equipment 14 SCADA 16 Central operation room 36D Maintenance terminal 42 Main switching hub 44 Backup switching hub 46 Network switch 48 Backup remote I / O 50 Remote I / O 68 HOT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Wind Motors (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

SCADA(14)は、風力発電装置(12)とSCADA(16)に備えられた端末並びにクライアント端末(66)との間におけるデータ伝送の中継を行う本設スイッチングハブ(42)及び予備スイッチングハブ(44)、並びに風力発電装置(12)と上記端末との間におけるデータ伝送の中継を本設スイッチングハブ(42)又は予備スイッチングハブ(44)に切り替えるネットワーク切替器(46)を備える。そして、予備スイッチングハブ(44)に接続されている予備リモートI/O(48)によって、予備スイッチングハブ(44)を介して入力されるSCADA端末からの切替コマンドに基づいて、ネットワーク切替器(46)による切り替えが実行される。これにより、風力発電装置側のスイッチングハブの不調によるデータ伝送の不具合を、遠隔地から解消することを目的とする。

Description

遠隔監視装置、発電システム、及び遠隔監視装置の制御方法
 本発明は、遠隔監視装置、発電システム、及び遠隔監視装置の制御方法に関するものである。
 複数の風力発電装置から構成されているウインドファームでは、風力発電装置の運転状態の監視を行う遠隔監視装置として、SCADA(Supervisory Control And Data Acquisition)が用いられている。
 このようなウインドファームにおいて、SCADAと風力発電装置とは、通信回線(例えばEthernet(登録商標)をベースとした通信ネットワーク)によって接続されている。
 このような構成の一例として、特許文献1には、ウインドファームにSCADAマスターサーバが設けられ、通信ネットワークを介してリモートコントロールセンターに設けられたSCADAリモートクライアントが接続され、SCADAリモートクライアントがインターネット回線を介してワークステーションに接続されるシステムが記載されている。
 また、通信ネットワークに障害が生じると、データ伝送が困難となる場合がある。
 通信回線に障害が発生した場合の対処方法として、特許文献2には、閉域IP網及びISDN交換機網という2系統の異なる種類の通信回線でPOS端末とホストシステムとの間を接続し、閉域IP網に障害が生じた場合にISDN交換機網に切り替える通信システムが記載されている。
 さらに、通信回線の障害に対応するために、風力発電装置内には通信ネットワークに接続するためのスイッチングハブが設置され、冗長化のために、ウインドファーム内でリングトポロジーを構成する場合がある。
 そして、リングトポロジーを実現する風力発電装置側のスイッチングハブが不調、あるいは故障した場合、スイッチングハブの電源リセットを実施することによって、不調等を解消する場合がある。電源リセットによって、スイッチングハブを再起動するためには、第1の方法として、遠隔地である中央制御室の端末(情報処理装置)から対象の風力発電装置側のスイッチングハブに対し、ネットワーク経由でリセットコマンドを送信する方法があり、第2の方法として、風力発電装置にメンテナンス要員が出向き、スイッチングハブの電源を切入操作する方法がある。
米国特許出願公開第2010/0135788号明細書 特開2009-164758号公報
 しかしながら、第1の方法では、風力発電装置側のスイッチングハブが通信ネットワーク経由でコマンドを受信できない状態、つまり、通信ネットワークが確立していない状態(pingコマンドに対する応答がない状態)では、遠隔地からのコマンド送信による不調の解消はできない。一方、第2の方法では、複数の風力発電装置側のスイッチングハブが不調である場合、リング接続が機能しない状態も考えられ、数十台~100台を越える風力発電装置から構成されているウインドファームでは、メンテナンス要員が駐在する事務所から当該風力発電装置までの移動に時間がかかり、復旧のための時間のロスが多大となる。特に、洋上に設置されたウインドファームでは、ヘリコプターや船によるメンテナンス要員の移動が必要となる。
 本発明は、このような事情に鑑みてなされたものであって、風力発電装置側のスイッチングハブの不調によるデータ伝送の不具合を、遠隔地から解消することができる遠隔監視装置、発電システム、及び遠隔監視装置の制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の遠隔監視装置、発電システム、及び遠隔監視装置の制御方法は以下の手段を採用する。
 本発明の第一態様に係る遠隔監視装置は、風力発電装置と情報処理装置との間でデータを送受信する遠隔監視装置であって、前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う本設スイッチングハブと、前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う予備スイッチングハブと、前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を、前記本設スイッチングハブ又は前記予備スイッチングハブに切り替える切替手段と、前記予備スイッチングハブに接続されると共に、前記予備スイッチングハブを介して入力される情報処理装置からの切替信号に基づいて、前記切替手段による切り替えを実行する第1制御手段と、を備える。
 上記構成によれば、遠隔監視装置は、風力発電装置と情報処理装置との間でデータを送受信する。なお、遠隔監視装置に接続される風力発電装置は、一つであっても複数であってもよく、遠隔監視装置に接続される情報処理装置は、風力発電装置に対して遠隔地に設けられている。さらに、遠隔監視装置は、風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う本設スイッチングハブ及び予備スイッチングハブ、並びに風力発電装置と情報処理装置との間におけるデータ伝送の中継を、本設スイッチングハブ又は予備スイッチングハブに切り替える切替手段を備える。
 そして、予備スイッチングハブに接続されている第1制御手段によって、予備スイッチングハブを介して入力される情報処理装置からの切替信号に基づいて、切替手段による切り替えが実行される。
 通常、風力発電装置と情報処理装置との間におけるデータ伝送は、本設スイッチングハブを介して行われる。なお、通常の場合でも、予備スイッチングハブの電源はオンとされている。
 ここで、本設スイッチングハブが不調となり、本設スイッチングハブを介した風力発電装置と情報処理装置との間におけるデータ伝送に不具合が生じた場合、遠隔地に設けられている情報処理装置が、本設スイッチングハブから予備スイッチングハブに切り替える切替信号を予備スイッチングハブへ送信する。予備スイッチングハブは、切替信号を第1制御手段に入力し、第1制御手段は、風力発電装置と情報処理装置との間におけるデータ伝送の中継を本設スイッチングハブから予備スイッチングハブに切り替えるように、切替手段を制御する。
 従って、上記構成は、風力発電装置側のスイッチングハブの不調によるデータ伝送の不具合を、遠隔地から解消することができる。
 また、上記第一態様では、前記第1制御手段が、前記予備スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて、前記本設スイッチングハブに対する電源のオン及びオフを実行することが好ましい。
 上記構成によれば、予備スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて、第1制御手段が本設スイッチングハブに対する電源のオン及びオフを実行するので、本設スイッチングハブの電源リセットを遠隔地から行うことができる。
 また、上記第一態様では、前記第1制御手段が、前記予備スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて、前記風力発電装置を制御する風車制御装置に対する電源のオン及びオフを実行することが好ましい。
 上記構成によれば、予備スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて、第1制御手段が風車制御装置に対する電源のオン及びオフを実行するので、風車制御装置の電源リセットを遠隔地から行うことが好ましい。
 また、上記第一態様では、前記本設スイッチングハブに接続されると共に、前記予備スイッチングハブに対する電源のオン及びオフを、前記本設スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて実行する第2制御手段を備えることが好ましい。
 上記構成によれば、本設スイッチングハブに接続される第2制御手段によって、予備スイッチングハブに対する電源のオン及びオフを、予備スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて実行するので、予備スイッチングハブの電源リセットを遠隔地から行うことができる。
 これにより、本設スイッチングハブが正常に機能している状態において、予備スイッチングハブに不調が発見された場合に、電源リセットによる不調の解消を実行することができ、予備スイッチングハブを正常に保つことができる。
 また、上記第一態様では、風力発電装置を制御する風車制御装置から受信した前記風力発電装置の運転状態を示す運転データを、通信回線を介して遠隔地に設置された情報処理装置へ送信することが好ましい。
 上記構成によれば、風力発電装置の運転データを遠隔地に設置された情報処理装置へ送信するので、メンテナンス要員は、風力発電装置へ出向くことなく、遠隔地において風力発電装置の運転データを収集すると共に、運転状態をリアルタイムで確認することができる。
 また、上記第一態様では、前記本設スイッチングハブ及び前記予備スイッチングハブが、前記風力発電装置を操作するための可搬型の情報処理端末から送信された制御信号を前記風力発電装置へ送信するためのポートを設けられることが好ましい。
 上記構成によれば、可搬型の情報処理端末からの風力発電装置の制御信号が、本設スイッチングハブ又は予備スイッチングハブを介して風力発電装置へ送信されるので、可搬型の情報処理端末を用いて遠隔地から、風力発電装置に対する各種メンテナンス等を行うことができる。
 本発明の第二態様に係る風力発電システムは、風力発電装置、及び上記記載の遠隔監視装置が洋上に設置され、前記第1制御手段は、陸上に設置された情報処理装置からの切替信号に基づいて、前記切替手段による切り替えを実行する。
 本発明の第三態様に係る遠隔監視装置の制御方法は、風風力発電装置と情報処理装置との間でデータを送受信するために、前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う本設スイッチングハブ、前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う予備スイッチングハブ、及び前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を、前記本設スイッチングハブ又は前記予備スイッチングハブに切り替える切替手段を備える遠隔監視装置の制御方法であって、前記予備スイッチングハブに接続されると共に、前記予備スイッチングハブを介して入力される情報処理装置からの切替信号に基づいて、前記切替手段による切り替えを実行する。
 本発明によれば、風力発電装置側のスイッチングハブの不調によるデータ伝送の不具合を、遠隔地から解消することができる、という優れた効果を有する。
本発明の実施形態に係る風力発電システムの通信構成を示すブロック図である。 本発明の実施形態に係る本設用スイッチングハブ及び予備スイッチングハブに接続されている機器の関係を示すブロック図である。 本発明の実施形態に係る運転データがSCADA端末に表示されない場合に行われる、電源リセットの処理の流れを示したフローチャートである。 本発明の実施形態に係る遠隔操作による電源リセットを行う場合にSCADA端末に表示される画面を示す図である。 本発明の実施形態に係る本設リモートI/Oの自己診断機能によって本設系統に異常が発見された場合に行われる、本設リモートI/Oに対する電源リセットの処理の流れを示したフローチャートである。 本発明の実施形態に係る本設リモートI/Oの自己診断機能によって予備系統に異常が発見された場合に行われる、予備スイッチングハブに対する電源リセットの処理の流れを示したフローチャートである。 本発明の実施形態に係る本設リモートI/Oの自己診断機能によって本設系統に異常が発見された場合に行われる、予備リモートI/Oに対する電源リセットの処理の流れを示したフローチャートである。 従来のHOTと風車制御装置との接続関係を示した図である。 本発明の実施形態に係るメンテナンス操作を行う事由が発生した場合における処理の流れを示したフローチャートである。 本発明の実施形態に係るHOTに表示されるメニュー画面を示す図である。 本発明の実施形態に係るメンテナンス操作を行う場合におけるHOTに表示されるメニュー画面を示す図である。 本発明の実施形態に係るメンテナンス操作を行う場合におけるHOTに表示されるメニュー画面を示す図である。 本発明の実施形態に係るHOTに表示される「制御油システム」を押すことによって、HOTに表示されるメンテナンス操作画面を示す図である。 本発明の実施形態に係るHOTに表示される「ヨーシステム」を押すことによって、HOTに表示されるメンテナンス操作画面を示す図である。 本発明の実施形態に係るHOTに表示される「冷却システム」を押すことによって、HOTに表示されるメンテナンス操作画面を示す図である。
 以下に、本発明に係る遠隔監視装置、発電システム、及び遠隔監視装置の制御方法の一実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る風力発電システム10の通信構成を示すブロック図である。
 図1に示されるようにウインドファームである風力発電システム10は、風力発電装置12、SCADA(機側装置)14、及びSCADA(中央操作室)16を備える。本実施形態に係る風力発電システム10は、一例として、風力発電装置12及びSCADA14が、洋上に設置される。一方、SCADA16が、風力発電装置12から電力が送電される陸上の変電所に設置される。また、SCADA14とSCADA16は、各々光成端箱20A,20Bを備え、光ケーブル22によって通信(一例としてEthernet(登録商標))による通信)が可能とされている。
 なお、風力発電システム10をメンテナンスするメンテナンス要員は、一例として、SCADA16に常駐するが、SCADA16とは異なる他の場所に常駐していてもよい。
 そして、本実施形態に係る風力発電装置12は、SCADA14を介してSCADA16に備えられた情報処理装置(保守端末36C、保守端末36D)、クライアント端末66との間で各種データの送受信が行われ、SCADA16に備えられた保守端末並びにクライアント端末66によって各種制御が可能とされている。なお、各種データとは、風力発電装置12から送信される運転データ(トリップデータも含む)や、SCADA16に備えられた保守端末並びにクライアント端末66から送信される風力発電装置12を制御するための制御信号等である。
 なお、保守端末36Dは、風力発電装置12のトリップデータの信号設定、制御用ソフトウェア変更、制御パラメータの収集や変更、後述する風車制御装置30の日付や時刻設定、風車制御装置内NVRAM(Non Volatile RAM:不揮発性RAM)が記憶しているデータの収集や変更、SCADA14よりも高速サンプリング可能な運転データの取得等が可能とされている。
 次に、風力発電装置12、SCADA14、及びSCADA16の各電気的構成について説明する。
 風力発電装置12は、風力発電装置12全体の制御を司る風車制御装置30をそのナセル内に備えている。
 風車制御装置30は、風力発電装置12を構成する各種機器から出力されるデータが入力され、風力発電装置12の運転状態を示す運転データを生成する。
 風車制御装置30は、スイッチングハブ(SW-HUB)32Aと接続され、スイッチングハブ32Aには、リモートI/O34A及び保守端末36A、並びに風力発電装置12のタワー下に設けられたスイッチングハブ32Bが接続されている。
 なお、本実施形態で用いられている各スイッチングハブは、異なる伝送媒体を接続し、信号を相互に変換するためのメディアコンバータ(M/C)の機能も有している。また、以下の説明において、各機器間における通信規格(プロトコル等)は、特に言及しない限り、従来既知の何れの通信規格が用いられてもよい。
 スイッチングハブ32Bには、リモートI/O34B及び保守端末36B、並びにSCADA14に備えられるネットワーク切替器46(詳細は後述)が接続されている。
 また、風車制御装置30は、メディアコンバータ38Aを介して、シリアル通信(例えばRS-232C)によってSCADA14と通信可能とされている。
 さらに、風車制御装置30には、コンバータ制御装置40が接続されている。コンバータ制御装置40は、風力発電装置12が備えている電力変換装置用の制御装置であり、コンバータ制御装置40においても運転データが生成される。
 コンバータ制御装置40も、メディアコンバータ38Bを介して、シリアル通信(例えばRS-232C)によってSCADA14と通信可能とされている。
 SCADA14は、風力発電装置12とSCADA16が備える端末との間におけるデータ伝送の中継を行う本設スイッチングハブ42及び予備スイッチングハブ44、並びに風力発電装置12とSCADA16が備える端末との間におけるデータ伝送の中継を、本設スイッチングハブ42又は予備スイッチングハブ44に切り替えるネットワーク切替器46を備える。
 通常、風力発電装置12とSCADA16が備える端末との間におけるデータ伝送は、本設スイッチングハブ42を介して行われる。なお、通常の場合でも、予備スイッチングハブ44の電源はオンとされている。
 そして、予備スイッチングハブ44には、予備リモートI/O48が接続されており、予備リモートI/O48によって、予備スイッチングハブ44を介して入力される保守端末並びにクライアント端末66からの切替コマンドに基づいて、ネットワーク切替器46による切り替えが実行される。なお、予備リモートI/O48は、予備スイッチングハブ44を介して入力される保守端末並びにクライアント端末66からのリセットコマンドに基づいて、本設スイッチングハブ42又は風車制御装置30に対する電源のオン及びオフも実行可能とされている。
 また、本設スイッチングハブ42には、本設リモートI/O50が接続されており、本設リモートI/O50は、予備スイッチングハブ44に対する電源のオン及びオフを、本設スイッチングハブ42を介して入力される保守端末並びにクライアント端末66からのリセットコマンドに基づいて実行可能とされている。
 さらに、本設リモートI/O50には、本設系統(本設スイッチングハブ42と本設リモートI/O50とを含む伝送系統)と予備系統(予備スイッチングハブ44と予備リモートI/O48とを含む伝送系統)とのネットワーク状態の正常性を監視する自己診断機能が備えられている。自己診断機能は、例えば、本設系統又は予備系統を構成する機器に対して所定間隔で、所定信号を送信し、所定信号に対応した信号の返信の有無によってネットワーク状態の正常性を監視する。
 図2は、本設スイッチングハブ42と予備スイッチングハブ44が備える各ポートに接続されている機器の関係を示したブロック図である。
 図2に示されるように、本設スイッチングハブ42は、電源スイッチ50Aを介して、予備スイッチングハブ44は、電源スイッチ50Bを介して、電源52から電力の供給を受ける。
 そして、電源スイッチ50Aは、予備スイッチングハブ44に接続されている予備リモートI/O48からのリセットコマンドに応じて、本設スイッチングハブ42への電力のオン及びオフを行う。一方、電源スイッチ50Bは、本設スイッチングハブ42に接続されている本設リモートI/O50からのリセットコマンドに応じて、予備スイッチングハブ44への電力のオン及びオフを行う。
 さらに、風車制御装置30、スイッチングハブ32A、スイッチングハブ32B、及びリモートI/O34Bは、電源スイッチ50Cを介して電力の供給を受けるが、電源スイッチ50Cは、予備スイッチングハブ44に接続されている予備リモートI/O48からのリセットコマンドに応じて、風車制御装置30、スイッチングハブ32A、スイッチングハブ32B、及びリモートI/O34Bへの電力のオン及びオフを行う。
 また、図示は省略するが、予備リモートI/O48は、本設リモートI/O50の電源リセットが可能とされ、本設リモートI/O50は、予備リモートI/O48の電源リセットが可能とされている。
 そして、本設スイッチングハブ42及び予備スイッチングハブ44は、ネットワーク切替器46を介して各種機器が接続されている。
 ネットワーク切替器46は、複数のEthernet切替器46A(Ethernet切替器46A-1~Ethernet切替器46A-5)で構成されている。
 具体的には、本設スイッチングハブ42及び予備スイッチングハブ44は、Ethernet切替器46A-1を介し変換器54Aが接続され、Ethernet切替器46A-2を介してスイッチングハブ32Bが接続され、Ethernet切替器46A-3を介して本設リモートI/O50が接続され、Ethernet切替器46A-4を介してRTU(Remote Terminal Unit)56が接続され、Ethernet切替器46A-5を介して変換器54Bが接続されている。
 なお、変換器54Aは、シリアル通信(RS-232C)とEthernet通信とを変換し、メディアコンバータ38Aを介して風車制御装置30と接続される。
 RTU56は、風力発電装置12から送信されてくる運転データを逐次記憶する。
 変換器54Bは、メディアコンバータ38Bを介してコンバータ制御装置40と接続される。
 また、本設スイッチングハブ42及び予備スイッチングハブ44は、各々光成端箱20Aが接続され、光ケーブル22及び光成端箱20Bを介して、SCADA16に設置されたスイッチングハブ32Cと接続される。光ケーブル22は、一例として、本設系統及び予備系統毎に1組ずつ設けられているが、これに限らず、本設系統及び予備系統毎に2組以上でもよいし、本設系統及び予備系統とで分けなくてもよい。
 スイッチングハブ32Cの各ポートには、SCADA16に設置されている変換器54C、ネットワーク監視用端末60、WEBサーバー62、DBサーバー64、保守端末36C、保守端末36D、変換器54D、及びインターネット回線65を介してクライアント端末66が接続されている。
 変換器54C及び変換器54Dは、Ethernet通信とシリアル通信とを変換し、変換器54Cには、風力発電装置12を操作するための制御信号を、シリアル通信で風力発電装置12へ送信するための可搬型の情報処理端末であるHOT(Handy Operation Terminal)68が接続可能とされている。
 ネットワーク監視用端末60は、従来既知のネットワーク監視用のプロトコル(ソフトウェア)等を用いて、SCADA14,16、風力発電装置12で構成される通信ネットワークの正常性を監視する。
 DBサーバー64は、SCADA14を介して送信されてくる風力発電装置12の運転データを逐次記憶する。
 保守端末36C及びクライアント端末66は、SCADA14を介して送信されてくる運転データをWEBサーバー62経由でその画面に表示したり、SCADA14へコマンドを送信する端末(以下、「SCADA端末」という。)である。
 保守端末36Dは、保守端末36Cと同様にSCADA端末であるが、風力発電装置12へ制御信号を送信することによって、風力発電装置12の操作が可能とされている。すなわち、上述したHOT68と同様の機能を有している。なお、変換器54Dを介してシリアル通信で風力発電装置12に接続されていることから、コンバータ制御装置40から送信される運転データを逐次記憶することができる。
 次に、風力発電装置12とSCADA16が備える端末との間におけるデータ伝送に不具合が生じた場合、すなわちSCADA16に設置されているSCADA端末である保守端末36Cや保守端末36Dに、SCADA14を介して送信される風力発電装置12の運転データが表示されない場合における、本実施形態に係る風力発電システム10の作用について、従来のSCADAと共に説明する。
 従来のSCADA、すなわち、予備スイッチングハブ44を備えていないSCADAでは、データ伝送の不具合が生じた場合であって、SCADAに備えられているスイッチングハブや風力発電装置12に備えられているスイッチングハブに不具合が発見された場合、風力発電装置12までメンテナンス要員が、駐在している場所(中央操作室)から遠隔地である風力発電装置12まで出向き、復旧の手段として、各スイッチングハブを電源リセットする必要があった。そして、電源リセットによっても不具合が解消されない場合に、故障したネットワーク機器の交換や修理を行っていた。
 一方、本実施形態に係る予備スイッチングハブ44を備えたSCADA14では、まず、SCADA端末である保守端末36C又は保守端末36Dをメンテナンス要員が操作することによって、切替コマンドをSCADA端末から予備スイッチングハブ44へ送信する。予備スイッチングハブ44は、切替コマンドを予備リモートI/O48へ出力する。
 予備リモートI/O48は予備スイッチングハブ44を介して入力される切替コマンドに基づいて、ネットワーク切替器46による伝送経路の切り替えを実行する。なお、切替コマンドには、データの伝送経路を本設スイッチングハブ42から予備スイッチングハブ44へ切り替える予備切替コマンドと、データの伝送経路を予備スイッチングハブ44から本設スイッチングハブ42へ切り替える本設切替コマンドとがある。
 すなわち、本設スイッチングハブ44に不調が生じた場合は、予備切替コマンドが、SCADA端末から予備スイッチングハブ44を介して予備リモートI/O48へ入力される。従って、データの伝送経路は、本設スイッチングハブ42から予備スイッチングハブ44へ切り替えられ、本設スイッチングハブ42が不調となっても、データ伝送の不具合は解消される。
 これにより、本実施形態に係る風力発電システム10は、本設スイッチングハブ42の不調によるデータ伝送の不具合を、風力発電装置12までメンテナンス要員が出向くことなく、遠隔地から解消することができる。
 なお、その後、本設スイッチングハブ42の不調が解消された場合は、本設切替コマンドが、SCADA端末から予備スイッチングハブ44を介して予備リモートI/O48へ入力され、データの伝送経路が予備スイッチングハブ44から本設スイッチングハブ42へ戻される。
 次に、本実施形態に係る風力発電システム10において、風力発電装置12やSCADA14に備えられているネットワーク機器の電源リセットを行うことによって、データ伝送の不具合を解消する場合について説明する。
 図3は、本設系統の異常、つまり運転データがSCADA端末に表示されない場合、また、風車制御装置30の処理停止と想定される場合に行われる、電源リセットの処理の流れを示している。この場合におけるデータの伝送経路は、故障探求作業の一環として、後述するステップ104とステップ106の間で本設スイッチングハブ42から予備スイッチングハブ44へ切り替えられている。
 まず、ステップ100では、本設スイッチングハブ42に対して電源リセットを行う。この電源リセットは、SCADA端末からのリモートコマンドにより、本設スイッチングハブ42へリセットコマンドを送信することによって行われる。
 次のステップ102では、SCADA端末に風力発電装置12からSCADA14を介して送信されてくる運転データが表示されるか否かを、メンテナンス要員、又は、ネットワーク監視用端末60が判断する。表示される場合は、データ転送の不具合が解消したため本処理を終了する一方、表示されない場合は、ステップ104へ移行する。
 ステップ104では、SCADA14を介した風力発電装置12とSCADA端末との間の通信経路、ケーブル、電源、スイッチングハブ等に異常がないか否かを、ネットワーク監視用端末60等を用いて、メンテナンス要員が判断する。異常が無い場合は、本処理を終了し、他の原因(SCADA端末の故障等)を解消させることによって、データ転送の不具合を解消させる一方、異常がある場合は、ステップ106へ移行する。
 ステップ106では、本設スイッチングハブ42を遠隔操作によって電源リセットする。すなわち、SCADA端末から、予備スイッチングハブ44を介して予備リモートI/O48へ本設スイッチングハブ42を電源リセットするためのリセットコマンドが送信される。予備リモートI/O48は、該リセットコマンドを電源スイッチ50Aへ送信し、電源スイッチ50Aに本設スイッチングハブ42の電源リセットを行わせる。
 この遠隔操作による電源リセットを行う場合にSCADA端末に表示される遠隔メンテナンス画面69を図4に示す。
 図4に示される遠隔メンテナンス画面69には、遠隔操作による電源リセットを行うことができるネットワーク機器の一覧が表示され、メンテナンス要員は、電源リセットを行う対象となるネットワーク機器を選択(「リセット」のクリック)することによって、遠隔操作による電源リセットを行う。
 なお、一覧として表示されているネットワーク機器のうち、「RTU」はRTU56を電源リセットすることを示し、「SW-HUB-3」は本設スイッチングハブ42の電源リセットを示し、「SW-HUB-4」は予備スイッチングハブ44の電源リセットを示し、「CNV-1」は変換器54Aの電源リセットを示し、「CNV-2」は変換器54Bの電源リセットを示し、「R-I/O-3」は本設リモートI/O50の電源リセットを示し、「R-I/O-4」は予備リモートI/O48の電源リセットを示し、ハードSSはハードウェアによるセーフティシステムの電源リセットを示し、「風車制御装置電源」は風車制御装置30、スイッチングハブ32A、スイッチングハブ32B、及びリモートI/O34Bの電源リセットを示す。
 なお、遠隔メンテナンス画面69によって、本設スイッチングハブ42と予備スイッチングハブ44との切り替えが可能とされている。
 次のステップ108では、SCADA端末に風力発電装置12からSCADA14を介して送信されてくる運転データが表示されるか否かを、メンテナンス要員、又は、ネットワーク監視用端末60が判断する。表示される場合は、データ転送の不具合が解消したため本処理を終了する一方、表示されない場合は、ステップ110へ移行する。
 ステップ110では、風車制御装置30を遠隔操作によって電源リセットする。すなわち、メンテナンス要員が、図4に示される遠隔メンテナンス画面69における「風車制御装置電源」を選択することによって、風車制御装置30、スイッチングハブ32A、及びスイッチングハブ32Bの電源リセットを行う。これにより、SCADA端末から、予備スイッチングハブ44を介して予備リモートI/O48へ風車制御装置30、スイッチングハブ32A、及びスイッチングハブ32Bを電源リセットするためのリセットコマンドが送信される。予備リモートI/O48は、該リセットコマンドを電源スイッチ50Cへ送信し、電源スイッチ50Cに風車制御装置30、スイッチングハブ32A、及びスイッチングハブ32Bの電源リセットを行わせる。
 次のステップ112では、SCADA端末に風力発電装置12からSCADA14を介して送信されてくる運転データが表示されるか否かを、メンテナンス要員、又は、ネットワーク監視用端末60が判断する。表示される場合は、データ転送の不具合が解消したため本処理を終了する一方、表示されない場合は、ステップ114へ移行する。
 ステップ114では、電源リセットによって、データ伝送の不具合が解消されないため、メンテナンス要員が風力発電装置12及びSCADA14まで出向き、ネットワーク機器の故障修理を行い、本処理を終了する。なお、風力発電装置12及びSCADA14へ出向くのは、次のメンテナンス時でもよい。
 以上のように、本実施形態に係る風力発電システム10では、機器の故障でない限り、メンテナンス要員が風力発電装置12及びSCADA14まで出向くことなく、SCADA16からネットワーク機器の電源リセットを行うことができるため、データ伝送の不具合の解消に要する時間を短縮することができる。
 図5は、本設リモートI/O50の自己診断機能によって本設リモートI/O50に異常が発見された場合に行われる、本設リモートI/O50に対する電源リセットの処理の流れを示している。この場合におけるデータの伝送経路は、異常の発見と共にメンテナンス要員によって本設スイッチングハブ42から予備スイッチングハブ44へ切り替えられる。
 まず、ステップ200では、本設リモートI/O50に対して電源リセットを行う。この電源リセットは、SCADA端末からのリモートコマンドにより、本設スイッチングハブ42を介して本設リモートI/O50へリセットコマンドを送信することによって行われる。
 次のステップ202では、本設リモートI/O50の自己診断機能によって本設系統の異常が解消されたか否かを判定し、解消された場合は本処理を終了する一方、解消されない場合はステップ204へ移行する。
 ステップ204では、SCADA14を介した風力発電装置12とSCADA端末との間の通信経路、ケーブル、電源、スイッチングハブ等に異常がないか否かを、ネットワーク監視用端末60等を用いて、メンテナンス要員が判断する。異常が無い場合は、本処理を終了し、他の原因(SCADA端末の故障等)を解消させることによって、本設系統の異常を解消させる一方、異常がある場合は、ステップ206へ移行する。
 ステップ206では、本設リモートI/O50を遠隔操作によって電源リセットする。すなわち、メンテナンス要員が、図4に示される遠隔メンテナンス画面69における「R-I/O-3」を選択することによって、本設リモートI/O50の電源リセットを行う。これにより、SCADA端末から、予備スイッチングハブ44を介して予備リモートI/O48へ本設リモートI/O50を電源リセットするためのリセットコマンドが送信される。予備リモートI/O48は、該リセットコマンドを本設リモートI/O50に対応する電源スイッチ50Aへ送信し、該電源スイッチに本設リモートI/O50の電源リセットを行わせる。なお、本設リモートI/O50への電力は、電源52から電源スイッチ50A、電源スイッチ50Aから本設リモートI/O50の順で供給されている。
 次のステップ208では、本設リモートI/O50の自己診断機能によって本設系統の異常が解消されたか否かを判定し、解消された場合は本処理を終了する一方、解消されない場合はステップ210へ移行する。
 ステップ210では、電源リセットによって、本設系統の異常が解消されないため、メンテナンス要員が風力発電装置12及びSCADA14まで出向き、ネットワーク機器の故障修理を行い、本処理を終了する。なお、風力発電装置12及びSCADA14へ出向くのは、次のメンテナンス時でもよい。
 図6は、ネットワーク監視用端末60の診断機能によって予備系統に異常が発見された場合に行われる、予備スイッチングハブ44に対する電源リセットの処理の流れを示している。この場合におけるデータの伝送経路は、本設スイッチングハブ42のままとされている。
 まず、ステップ300では、予備スイッチングハブ44に対して電源リセットを行う。この電源リセットは、SCADA端末からのリモートコマンドにより、予備スイッチングハブ44へリセットコマンドを送信することによって行われる。
 次のステップ302では、ネットワーク監視用端末60の診断機能によって予備系統の異常が解消されたか否かを判定し、解消された場合は本処理を終了する一方、解消されない場合はステップ304へ移行する。
 ステップ304では、SCADA14を介した風力発電装置12とSCADA端末との間の通信経路、ケーブル、電源、スイッチングハブ等に異常がないか否かを、ネットワーク監視用端末60等を用いて、メンテナンス要員が判断する。異常が無い場合は、本処理を終了し、他の原因(SCADA端末の故障等)を解消させることによって、予備系統の異常を解消させる一方、異常がある場合は、ステップ306へ移行する。
 ステップ306では、予備スイッチングハブ44を遠隔操作によって電源リセットする。すなわち、メンテナンス要員が、図4に示される遠隔メンテナンス画面69における「SW-HUB-4」を選択することによって、予備スイッチングハブ44の電源リセットを行う。これにより、SCADA端末から、本設スイッチングハブ42を介して本設リモートI/O50へ予備スイッチングハブ44を電源リセットするためのリセットコマンドが送信される。本設リモートI/O50は、該リセットコマンドを予備スイッチングハブ44に対応する電源スイッチ50Bへ送信し、該電源スイッチ50Bに予備スイッチングハブ44の電源リセットを行わせる。
 次のステップ308では、ネットワーク監視用端末60の診断機能によって予備系統の異常が解消されたか否かを判定し、解消された場合は本処理を終了する一方、解消されない場合はステップ310へ移行する。
 ステップ310では、電源リセットによって、予備系統の異常が解消されないため、メンテナンス要員が風力発電装置12及びSCADA14まで出向き、ネットワーク機器の故障修理を行い、本処理を終了する。なお、風力発電装置12及びSCADA14へ出向くのは、次のメンテナンス時でもよい。
 図7は、ネットワーク監視用端末60の診断機能によって予備リモートI/O48に異常が発見された場合に行われる、予備リモートI/O48に対する電源リセットの処理の流れを示している。この場合におけるデータの伝送経路は、本設スイッチングハブ42のままとされている。
 まず、ステップ400では、予備リモートI/O48に対して電源リセットを行う。この電源リセットは、SCADA端末からのリモートコマンドにより、予備スイッチングハブ44を介して予備リモートI/O48へリセットコマンドを送信することによって行われる。
 次のステップ402では、ネットワーク監視用端末60の診断機能によって予備リモートI/O48の異常が解消されたか否かを判定し、解消された場合は本処理を終了する一方、解消されない場合はステップ404へ移行する。
 ステップ404では、SCADA14を介した風力発電装置12とSCADA端末との間の通信経路、ケーブル、電源、スイッチングハブ等に異常がないか否かを、ネットワーク監視用端末60等を用いて、メンテナンス要員が判断する。異常が無い場合は、本処理を終了し、他の原因(SCADA端末の故障等)を解消させることによって、予備系統の異常を解消させる一方、異常がある場合は、ステップ406へ移行する。
 ステップ406では、予備リモートI/O48を遠隔操作によって電源リセットする。すなわち、メンテナンス要員が、図4に示される遠隔メンテナンス画面69における「R-I/O-4」を選択することによって、予備リモートI/O48の電源リセットを行う。これにより、SCADA端末から、本設スイッチングハブ42を介して本設リモートI/O50へ予備リモートI/O48を電源リセットするためのリセットコマンドが送信される。本設リモートI/O50は、該リセットコマンドを予備リモートI/O48に対応する電源スイッチ50Bへ送信し、該電源スイッチに予備リモートI/O48の電源リセットを行わせる。
 次のステップ408では、ネットワーク監視用端末60の診断機能によって予備リモートI/O48の異常が解消されたか否かを判定し、解消された場合は本処理を終了する一方、解消されない場合はステップ410へ移行する。
 ステップ410では、電源リセットによって、予備系統の異常が解消されないため、メンテナンス要員が風力発電装置12及びSCADA14まで出向き、ネットワーク機器の故障修理を行い、本処理を終了する。なお、風力発電装置12及びSCADA14へ出向くのは、次のメンテナンス時でもよい。
 次に、本実施形態に係る風力発電システム10において、遠隔地であるSCADA16から、風力発電装置12をメンテナンス操作する場合について説明する。
 従来の風力発電システム10では、SCADAを介してSCADA16から風力発電装置12に対して、風力発電装置12の起動及び停止、並びに警報リセットの操作程度しか可能ではなかった。
 そのため、風力発電装置12に対するメンテナンス操作を必要とする場合は、図8に示すように、メンテナンス要員がHOT68を携え、風力発電装置12まで出向き、RS-232Cによって制御盤70を介して風車制御装置30とHOT68とを接続し、HOT68によって制御信号を風車制御装置30へ送信することによって、風力発電装置12のメンテナンス操作を行っていた。
 すなわち、従来の風力発電システム10では、メンテナンス操作の全てを風力発電装置12で行う必要があった。
 一方、本実施形態に係る風力発電システム10では、Ethernet通信とRS-232Cとを変換すると共に風車制御装置30又はコンバータ制御装置40に接続される変換器54A,54Bが、SCADA14の本設スイッチングハブ42及び予備スイッチングハブ44のポートに接続されている。そして、SCADA16のスイッチングハブ32CのポートにEthernet通信とRS-232Cとを変換する変換器54C,54Dが接続されている。従って、本実施形態に係る風力発電システム10では、SCADA16の変換器54CにHOT68を接続することで、メンテナンス要員によるSCADA16から風力発電装置12のメンテナンス操作を可能としている。
 図9は、メンテナンス操作を行う事由が発生した場合における処理の流れを示している。なお、メンテナンス操作を行う事由が発生した場合とは、例えば、セーフティシステム作動時の遠隔リセットを行う場合、ケーブルツイストが発生したことによって、ヨーリミットスイッチが作動したため、ヨーリミットバイパスやヨー巻き戻しを行う場合、警報発生時に各種電磁弁やモーターの単独操作を行う場合、復旧に時間を要するトラブルが発生し、冷却系の補機を操作する場合等である。
 まず、ステップ500では、HOT68を変換器54Cへ接続する。
 次のステップ502では、HOT68を用いて風力発電装置12をメンテナンスモードへ移行させる。
 図10は、HOT68に表示されるメニュー画面72の一例を示す。HOT68には、風速、風向、ナセル方向等の風力発電装置12の運転状態を示すデータが表示される。そして、HOT68には、「起動」、「停止」、「マニュアル」、「メンテナンス」等が表示され、「メンテナンス」と表示されたボタン74が押されることによって、風力発電装置12は、メンテナンスモードへ移行される。
 次のステップ504では、風力発電装置12が備える機器に対するメンテナンス操作を、HOT68を用いて行う。
 図11は、メンテナンス操作を行う場合におけるHOT68に表示されるメニュー画面74Aの一例を示す。図11に示されるように、メニュー画面74Aには、メンテナンス操作の対象となるシステム及び機器の一覧が表示され、ページ切替ボタン76が押されることによって、図12に示されるような他のメニュー画面74BへHOT68の画面が切り替わる。
 そして、メンテナンス要員は、メニュー画面74A,74Bに表示されるボタンを押すことによって、メンテナンス対象となるシステム又は機器を選択し、HOT68の画面をメンテナンス操作画面へ切り替える。
 メンテナンス操作画面には、メンテナンスを行うための各種操作ボタン等が表示され、該操作ボタンをクリック等することによって、風力発電装置12へ制御信号が送信される。
 図13は、図11に示される「制御油システム」を押すことによって、HOT68に表示されるメンテナンス操作画面78Aであり、各種ポンプやバルブ等のオン及びオフ等が選択可能とされている。
 図14は、図11に示される「ヨーシステム」を押すことによって、HOT68に表示されるメンテナンス操作画面78Bであり、ヨーリミットバイパスのオン及びオフ、ナセルの旋回方向が操作可能とされている。
 図15は、図11に示される「冷却システム」を押すことによって、HOT68に表示されるメンテナンス操作画面78Cであり、ポンプやファン等のオン及びオフ等が選択可能とされている。
 なお、図12に示されるメニュー画面の「その他設定」には、トリップデータの信号設定、制御用ソフトウェア変更、制御パラメータの収集や変更、風車制御装置30の日付や時刻設定、風車制御装置内NVRAM(Non Volatile RAM:不揮発性RAM)が記憶しているデータの収集や変更等が含まれる。
 次のステップ506では、所定のメンテナンス操作が終了すると、メンテナンス要員は、メンテナンス操作を継続するか否か判断し、継続すると判断した場合は、ステップ504へ戻る一方、終了すると判断した場合は、ステップ508へ移行する。
 次のステップ508では、HOT68の変換器54Cへの接続を解除し、本処理を終了する。
 このように、本実施形態に係るSCADA14は、本設スイッチングハブ42及び予備スイッチングハブ44に、HOT68から送信された制御信号を風力発電装置12へ送信するためのポートが設けられているため、HOT68を用いて遠隔地から、風力発電装置12に対する各種メンテナンスを行うことができる。
 また、保守端末36DもHOT68と同様の機能を有している。保守端末36Dは、変換器54Dが接続されているので、SCADA16から保守端末36Dを用いたコンバータ制御装置40のメンテナンス操作が可能とされている。
 なお、風車制御装置30及びコンバータ制御装置40の通信規格がシリアル通信でなく、Ethernet通信の場合は、変換器54A~54Dを用いることなく、遠隔によるメンテナンス操作が可能となる。また、メンテナンス操作は、有線、無線、又は携帯電話を用いたインターネット回線65に接続されているクライアント端末66から行われてもよい。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記実施形態では、風力発電装置12及びSCADA14が洋上に設置される形態について説明したが、本発明は、これに限定されるものではなく、風力発電装置12及びSCADA14が陸上に設置される形態としてもよい。
 また、本設スイッチングハブ42と予備スイッチングハブ44とのネットワーク切替器46による切り替えは、ネットワーク監視用端末60が本設系統の異常を発見した場合に、SCADA端末から自動的に切替コマンドが予備スイッチングハブ44を介して予備リモートI/O48へ入力されることによって行われてもよい。
 また、上記実施形態で説明した各種処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
 10  風力発電システム
 12  風力発電装置
 14  SCADA
 16  中央操作室
 36D 保守端末
 42  本設スイッチングハブ
 44  予備スイッチングハブ
 46  ネットワーク切替器
 48  予備リモートI/O
 50  本設リモートI/O
 68  HOT

Claims (8)

  1.  風力発電装置と情報処理装置との間でデータを送受信する遠隔監視装置であって、
     前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う本設スイッチングハブと、
     前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う予備スイッチングハブと、
     前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を、前記本設スイッチングハブ又は前記予備スイッチングハブに切り替える切替手段と、
     前記予備スイッチングハブに接続されると共に、前記予備スイッチングハブを介して入力される情報処理装置からの切替信号に基づいて、前記切替手段による切り替えを実行する第1制御手段と、
    を備えた遠隔監視装置。
  2.  前記第1制御手段は、前記予備スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて、前記本設スイッチングハブに対する電源のオン及びオフを実行する請求項1記載の遠隔監視装置。
  3.  前記第1制御手段は、前記予備スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて、前記風力発電装置を制御する風車制御装置に対する電源のオン及びオフを実行する請求項1記載の遠隔監視装置。
  4.  前記本設スイッチングハブに接続されると共に、前記予備スイッチングハブに対する電源のオン及びオフを、前記本設スイッチングハブを介して入力される情報処理装置からのリセット信号に基づいて実行する第2制御手段を備えた請求項1記載の遠隔監視装置。
  5.  風力発電装置を制御する風車制御装置から受信した前記風力発電装置の運転状態を示す運転データを、通信回線を介して遠隔地に設置された情報処理装置へ送信する請求項1記載の遠隔監視装置。
  6.  前記本設スイッチングハブ及び前記予備スイッチングハブは、前記風力発電装置を操作するための可搬型の情報処理端末から送信された制御信号を前記風力発電装置へ送信するためのポートが設けられている請求項1記載の遠隔監視装置。
  7.  風力発電装置、及び請求項1記載の遠隔監視装置が洋上に設置され、
     前記第1制御手段は、陸上に設置された情報処理装置からの切替信号に基づいて、前記切替手段による切り替えを実行する風力発電システム。
  8.  風力発電装置と情報処理装置との間でデータを送受信するために、前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う本設スイッチングハブ、前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を行う予備スイッチングハブ、及び前記風力発電装置と情報処理装置との間におけるデータ伝送の中継を、前記本設スイッチングハブ又は前記予備スイッチングハブに切り替える切替手段を備える遠隔監視装置の制御方法であって、
     前記予備スイッチングハブに接続されると共に、前記予備スイッチングハブを介して入力される情報処理装置からの切替信号に基づいて、前記切替手段による切り替えを実行する遠隔監視装置の制御方法。
PCT/JP2011/064295 2011-06-22 2011-06-22 遠隔監視装置、発電システム、及び遠隔監視装置の制御方法 WO2012176294A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11817499.4A EP2725745B1 (en) 2011-06-22 2011-06-22 Remote monitoring device, power generation system, and remote monitoring device control method
AU2011313837A AU2011313837A1 (en) 2011-06-22 2011-06-22 Remote monitoring apparatus, wind turbine generator system, and method of controlling remote monitoring apparatus
CN201180004360.3A CN102959900B (zh) 2011-06-22 2011-06-22 远距离监视装置、发电系统、及远距离监视装置的控制方法
KR1020127010620A KR20130031815A (ko) 2011-06-22 2011-06-22 원격 감시 장치, 발전 시스템, 및 원격 감시 장치의 제어 방법
US13/232,307 US8977403B2 (en) 2011-06-22 2011-09-14 Remote monitoring apparatus, wind turbine generator system, and method of controlling remote monitoring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-138031 2011-06-22
JP2011138031A JP5237416B2 (ja) 2011-06-22 2011-06-22 遠隔監視装置、発電システム、及び遠隔監視装置の制御方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/232,307 Continuation US8977403B2 (en) 2011-06-22 2011-09-14 Remote monitoring apparatus, wind turbine generator system, and method of controlling remote monitoring apparatus
US13/232,307 Division US8977403B2 (en) 2011-06-22 2011-09-14 Remote monitoring apparatus, wind turbine generator system, and method of controlling remote monitoring apparatus

Publications (1)

Publication Number Publication Date
WO2012176294A1 true WO2012176294A1 (ja) 2012-12-27

Family

ID=47422175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064295 WO2012176294A1 (ja) 2011-06-22 2011-06-22 遠隔監視装置、発電システム、及び遠隔監視装置の制御方法

Country Status (6)

Country Link
EP (1) EP2725745B1 (ja)
JP (1) JP5237416B2 (ja)
KR (1) KR20130031815A (ja)
CN (1) CN102959900B (ja)
AU (1) AU2011313837A1 (ja)
WO (1) WO2012176294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787891A (zh) * 2021-01-26 2021-05-11 张俊峰 一种信号灯系统故障监测采集终端以及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280492B2 (ja) * 2014-11-14 2018-02-14 三菱重工業株式会社 風力発電設備
WO2017174084A1 (en) * 2016-04-07 2017-10-12 Vestas Wind Systems A/S Data collection system for wind turbine data
CN107347003B (zh) * 2016-05-05 2020-06-26 中国船舶重工集团海装风电股份有限公司 自动切换通讯线路的方法和装置及风力发电机组
KR101768810B1 (ko) 2016-06-02 2017-08-30 두산중공업 주식회사 풍력단지 통합 제어 모니터링 시스템
RU2629426C1 (ru) * 2016-11-07 2017-08-29 Федеральное государственное бюджетное учреждение "16 Центральный научно-исследовательский испытательный ордена Красной Звезды институт имени маршала войск связи А.И. Белова" Министерства обороны Российской Федерации Комплексная аппаратная связи для транспортной сети полевой системы связи
RU2652437C1 (ru) * 2017-08-04 2018-04-26 Федеральное государственное бюджетное учреждение "16 Центральный научно-исследовательский испытательный ордена Красной Звезды институт имени маршала войск связи А.И. Белова" Министерства обороны Российской Федерации Аппаратная управления связью
US10890164B2 (en) 2017-10-14 2021-01-12 EC&R Services, LLC Systems and methods for remotely managing wind power generation
CN111255630B (zh) * 2020-03-24 2024-01-30 中国华能集团清洁能源技术研究院有限公司 一种应用于风电机组机舱的无线控制系统及运行方法
RU2752870C1 (ru) * 2020-04-20 2021-08-11 Публичное акционерное общество "Информационные телекоммуникационные технологии" (ПАО "Интелтех") Базовый программно-аппаратный комплекс формирования элементов системы связи авиации
CN113437800A (zh) * 2021-06-24 2021-09-24 国网山西省电力公司阳泉供电公司 一种新能源发电监测平台

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168144A (ja) * 2003-12-01 2005-06-23 Tm T & D Kk 分散監視制御装置
JP2005204178A (ja) * 2004-01-16 2005-07-28 Tempearl Ind Co Ltd 制御機能付情報端末

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247017A (ja) * 2001-02-20 2002-08-30 Yamatake Building Systems Co Ltd 通信回線切替装置
US6925385B2 (en) * 2003-05-16 2005-08-02 Seawest Holdings, Inc. Wind power management system and method
CN100388703C (zh) * 2003-11-27 2008-05-14 中兴通讯股份有限公司 一种以太网接口节点备份的方法及系统
CN100369355C (zh) * 2005-09-09 2008-02-13 东南大学 全网络化数字保护装置
JP4569910B2 (ja) * 2007-12-28 2010-10-27 Necインフロンティア株式会社 通信システムとpos端末、及びネットワーク切り替え方法
CN201238335Y (zh) * 2008-07-09 2009-05-13 傲视恒安科技(北京)有限公司 通过通信网络对设备的电源开关进行远程控制的装置
JP5365211B2 (ja) * 2009-01-20 2013-12-11 日本電気株式会社 パケット転送システム、パケット転送装置、代理装置、プログラム、及びパケット転送装置の制御方法
CN101990226A (zh) * 2009-07-31 2011-03-23 大唐移动通信设备有限公司 自动掉电重启的方法、系统及装置
US7908035B2 (en) * 2009-08-31 2011-03-15 General Electric Company System and method for wind formulary
US8277183B2 (en) * 2009-09-30 2012-10-02 General Electric Company Systems and methods for monitoring wind turbine operation
CN102083023B (zh) * 2009-11-30 2015-02-04 中国移动通信集团江苏有限公司 一种远程控制设备重启的方法、系统和设备
EP2372479B1 (en) * 2010-03-31 2012-11-28 General Electric Company Systems and methods for performance monitoring and identifying upgrades for wind turbines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168144A (ja) * 2003-12-01 2005-06-23 Tm T & D Kk 分散監視制御装置
JP2005204178A (ja) * 2004-01-16 2005-07-28 Tempearl Ind Co Ltd 制御機能付情報端末

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MITSUO OGATA ET AL.: "Hendensho Kanshi Seigyo System", TOSHIBA TECHNICAL DISCLOSURE BULLETIN, vol. 20-14, 18 March 2002 (2002-03-18), pages 79 - 82, XP008171778 *
See also references of EP2725745A4 *
SHIGERU TAMURA ET AL.: "Information and Control Management System for Secure Electric Power Supply", HITACHI HYORON 0367-5874=>BRITISH LIBRARY, vol. 81, no. 2, 1 February 1999 (1999-02-01), pages 15 - 20, XP008171521 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787891A (zh) * 2021-01-26 2021-05-11 张俊峰 一种信号灯系统故障监测采集终端以及方法
CN112787891B (zh) * 2021-01-26 2022-10-21 张俊峰 一种信号灯系统故障监测采集终端以及方法

Also Published As

Publication number Publication date
EP2725745A1 (en) 2014-04-30
KR20130031815A (ko) 2013-03-29
JP5237416B2 (ja) 2013-07-17
CN102959900B (zh) 2016-08-03
AU2011313837A1 (en) 2013-01-17
EP2725745A4 (en) 2014-12-24
CN102959900A (zh) 2013-03-06
JP2013005417A (ja) 2013-01-07
EP2725745B1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP5237416B2 (ja) 遠隔監視装置、発電システム、及び遠隔監視装置の制御方法
US8977403B2 (en) Remote monitoring apparatus, wind turbine generator system, and method of controlling remote monitoring apparatus
EP2630771B1 (en) Microgrid control system
EP2607690B1 (en) Control system for a wind park
CN203708286U (zh) 基于厂级dcs网络的火力发电厂主辅控一体化监控系统
US20120070285A1 (en) independent, distributed protection and safety system with fiber optic communication for wind turbines
CN103324133B (zh) 基于plc的钻机集成环形网络通讯控制系统
CN102495608B (zh) 基于dcs的燃煤电厂一体化控制系统
JP2016167969A (ja) 高電圧直流送電システムの二重化制御装置及び方法
US10890164B2 (en) Systems and methods for remotely managing wind power generation
CN105680567A (zh) 变流器系统的故障处理方法、装置及系统
CN201576199U (zh) 一种基于can总线的船舶机舱监测报警系统
CN202616876U (zh) 一种基于操作感知的变电站可视化系统
WO2011160702A1 (en) Wind park network system
CN116582420A (zh) 一种海底数据中心双cpu冗余系统、控制方法及控制器
CN108695855A (zh) 用于配置负载削减控制器的计算机实现的方法
CN102760504A (zh) 核电站全厂机组的数字控制系统及非核级控制系统、方法
KR20130022813A (ko) 계전기 이중화 장치
CN114137890B (zh) 实现海上风电设备远程重启的装置、远程io模块及方法
CN107623330B (zh) 一种阀基控制系统的控制方法
JP2020502968A (ja) ネットワークの復旧を制御する方法
CN202257243U (zh) 小型汽轮分布式集中控制系统
CN108317037A (zh) 一种集成化风力发电机组变桨系统
CN203014480U (zh) 船舶电站管理系统冗余装置
JP2008060808A (ja) 空港設備遠隔監視制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004360.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011817499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011313837

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 965/MUMNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127010620

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE