WO2012175332A1 - Dispositif de commande de la charge des phases d'un réseau triphasé - Google Patents

Dispositif de commande de la charge des phases d'un réseau triphasé Download PDF

Info

Publication number
WO2012175332A1
WO2012175332A1 PCT/EP2012/060610 EP2012060610W WO2012175332A1 WO 2012175332 A1 WO2012175332 A1 WO 2012175332A1 EP 2012060610 W EP2012060610 W EP 2012060610W WO 2012175332 A1 WO2012175332 A1 WO 2012175332A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
network
component
voltage
energy
Prior art date
Application number
PCT/EP2012/060610
Other languages
German (de)
English (en)
Inventor
Jochen SCHÄFER
Sebastian Nielebock
Wolfgang Weydanz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012175332A1 publication Critical patent/WO2012175332A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the invention relates to a device and a method for controlling the loading of the phases of a three-phase power network, in particular a low-voltage network.
  • the generation of energy in electric power grids today is increasingly based on a plurality of decentralized power generation units in the form of small and medium size generator systems, such.
  • the number of these power generation units increases continuously, with the power generated by the power supply units being fed into the power grid.
  • energy consumers are z.
  • both the power generation units and the energy consumers with outputs of up to 3kW are trained in a single phase.
  • connection of single-phase power generation units and energy consumers to a three-phase power grid can lead to an unbalanced load on the power grid.
  • a power grid with a plurality of energy consumption and / or Energyer Wegungseinhei ⁇ th is known, each associated with at least one agent, the agents are networked with each other so that each agent can communicate with other agents in the power grid , Any change in power output or power consumption requires a commercial act, which avoids large balance errors.
  • Electricity purchase contracts of various kinds are concluded between producers and consumers.
  • the power system is configured such that the distribution of electric energy in the power grid at least partially ba ⁇ sierend on negotiated between the agents monetary transactions takes place. A distribution of energy is ba ⁇ sierend reached on market mechanisms of supply and demand of energy. To the voltage and the frequency in the
  • the inventive device for controlling the loading of the phases of a three phase power network comprising a first terminal for connecting an electrical component, via which the component draw current from the three-phase power network, or can feed into this, and a second terminal to external conductors of the three-phase power network.
  • the device comprises a controllable switching element which selectively connects the first terminal to one of the outer conductors as a function of a respective load of the outer conductors of the three-phase energy network.
  • a three-phase power network in particular a low-voltage network, at least one electrical component is connected via a device according to the invention to the outer conductors of the three-phase power network.
  • controllable switching element selectively connects the first terminal in response to a respective load of the outer conductor of the three-phase power network with an outer conductor.
  • the device according to the invention serves to selectively connect the energy or energy supplied by a component from the three-phase energy network to a specific external conductor of the three-phase energy network, so that an existing phase imbalance can be reduced.
  • the more electrical components are coupled to the three-phase power network with such a device according to the invention, the more phase imbalances can be reduced.
  • the device according to the invention thus allows an equal distribution of energy to the un ⁇ ferent outer conductor of the energy network.
  • the outer conductor of the three-phase power network links that connect to the outer conductor can be produced at a current reference of the component, the has the greatest voltage with respect to a neutral conductor of the power network, or in the case of a current feed of the component, a connection can be established to that outer conductor which has the smallest voltage with respect to the neutral conductor. It can hereby be ensured that by a Energyer Wegungsein- the energy generated by their standardized not being fed in such a Au ⁇ °leiter that already ie the highest voltage relative to the neutral conductor of the power system has the greatest load. Conversely, the apparatus provides for ⁇ since that energy extraction does not take place from the one outer conductor ter having the smallest voltage or load to the neutral conductor.
  • the apparatus comprises a voltage ⁇ measuring device which is designed to determine a respective voltage of the outer conductor with respect to the neutral conductor which can be fed to the control unit for generating the control signal.
  • the inventive device can connect the electrical component to it being ⁇ connected automatically with the SITUATE RECORDER outer conductor of the three-phase power network of any such local stress measuring device.
  • the device also comprises a current measuring device for measuring the current at a terminal (phase or neutral conductor) with which it can be detected whether the component is a power-consuming or an energy-generating unit.
  • the current can optionally be measured at a neutral conductor or a phase, ie an outer conductor.
  • the current measuring device can be th of the first or the second terminal may be provided.
  • the control unit is designed to compare the measured current with a threshold value, wherein the control signal for switching the phase is generated when the measured current is below the threshold value. In this way, in particular ⁇ sondere a loading arm or load-free switching of the phase made possible by the device. How high the threshold value depends essentially on the electrical component connected to the device.
  • a hysteresis curve for the voltage for the switching of a phase is stored in the control unit.
  • the hysteresis curve ensures that not every drop below the threshold value in the case of a detected phase imbalance leads to a switching of the phase, ie the outer conductor. This allows the switching operations are order ⁇ reduces the number, whereby the operation of the closed at ⁇ electrical component is less adversely affected. In particular, this is the time duration ver ⁇ extended, in the can feed one as a power generation unit having formed ⁇ te electrical component current in the three-phase power ⁇ network. As a result, corresponding yields for a power feed can be optimized.
  • the device has a communication unit for data exchange with a communication unit of the electrical component.
  • a communication unit of the electrical component This allows for so-called line-commutated components where the frequencies of the component and of the power network must be made equal to each other ⁇ , the time of the mains isolation for a switching of the phase or of the outer conductor are taken into account as a result of communication.
  • the control unit is designed to generate the control signal as a function of information of a higher-level control, which has knowledge about power flows in the power grid.
  • control system can, for example, on a Agen ⁇ tenbas striving trade mechanism, like this in the WO
  • the component can be coupled to the three-phase power network converter via two inverters of the device coupled to their DC voltage circuits.
  • the advantage is achieved that not only single-phase electrical components can be connected to the three-phase power grid as compo ⁇ nents, but also three-phase electrical components.
  • Um ⁇ judge can be controlled, which loads the outer conductor during operation of the power grid or relieved who ⁇ .
  • the two inverters coupled together enable a variable phase-specific power supply or -dnähme.
  • a Ab ⁇ circuit of a single-phase electrical component during a phase or outer conductor switching is not required.
  • Such a converter arrangement also makes it possible to specify a coscp of the converter connected to the mains via a corresponding regulation.
  • a variation of the coscp determines the ratio between active and reactive power.
  • a further advantage is the possibility of varying the voltage at the feed-in point, ie if a power generation unit (eg a photovoltaic system) is connected to the energy grid, which feeds energy into the energy grid accordingly, the voltage at the feed-in point increases. By simultaneously removing reactive power from the power grid, the voltage can be reduced again.
  • a power generation unit eg a photovoltaic system
  • control unit is configured to generate the control signal in dependence on information of an agent assigned to the device, wherein the agent can communicate with other agents in the energy network, and wherein the energy network is configured such that the distribution the energy in the energy network phase-specific, at least in part based is at Zvi ⁇ rule the agent negotiated monetary transactions.
  • the choice in which the outer conductor energy is fed or from which the outer conductor energy is related, takes place in this embodiment variant is not arbitrary, but via a phase-specific trade.
  • This agent-based trade collects and considers information about the specific phase load across the energy grid. The information can either be provided by appropriate units of the respective components or a higher-level measuring sensors.
  • Figure 1 shows a first embodiment of a erfindungsge ⁇ MAESSEN device, and.
  • Fig. 2 shows a second embodiment of a erfindungsge ⁇ MAESSEN device.
  • the device 10 (hereinafter also referred to as control device) is connected on the one hand to a three-phase power network 1 and on the other hand to a einphasi ⁇ ge electrical component 20.
  • the three-phase power network 1 comprises three outer conductors LI, L2, L3 and a neutral conductor N and a protective conductor PE.
  • the power grid 1 is preferably a low-voltage grid, ie a power grid in which the voltage between one of the outer conductors LI, L2, L3 and the neutral conductor is for example 400V.
  • the electrical component 20 is connected to a first terminal 11 with the control device 10.
  • the electrical component 20 is coupled to the protective conductor PE, the neutral conductor N and a phase of the three-phase power network.
  • the control device 10 is coupled to the three-phase power network 1.
  • the control device 10 connected via this with the three outer conductors LI, L2, L3, the neutral conductor N and the protective conductor PE.
  • the electrical component 20 is a single-phase energy consumption or power generation unit, which is connected via the STEU ⁇ ervorraum 10 to the three-phase power grid 1.
  • CHP plants can use energy, eg. B. based on the combustion of diesel or based on the combustion of hydrogen or hydrocarbons in fuel cells generate. Units of energy consumption in particular households, ge ⁇ advertising consumers (such as office buildings, public baths and the like) and industrial consumers.
  • the electrical component may also be a combined Ener ⁇ gienovs- and power generation unit, which consumes so ⁇ well energy and (excess) is generated energy ready in the power network.
  • Storage in networks can store or buffer energy. Batteries or generally electrical energy storage can serve both as a consumer and as an energy producer. They assume both roles depending on the application scenario or network status.
  • the control device 10 comprises a controllable switching element 13. Furthermore, the control device 10 comprises a control unit 14, a voltage measuring device 15, a current measuring device 16 and an optional communication device 17. By means of the voltage measuring device 15, a voltage measurement of a respective outer conductor LI, L2, L3 with respect to the neutral conductor N is carried out to determine the respective phase voltages.
  • the voltage measurement is carried out DEM according to the second terminal 12 side facing the switching element 13.
  • the current measurement device 13 and the electrical component 20 vorgese ⁇ hen and detects the generated from the electrical component and fed into the power grid 1 or from between the switching element the power grid 1 related electricity.
  • the current measuring device can also be provided in the neutral conductor. Based on the variables determined by the voltage and / or current measuring devices 15, 16, the switching position of the switching element 13 is controlled.
  • the measurement of the phase voltages ie the voltage of a respective outer conductor LI, L2, L3 with respect to the neutral conductor N and / or a detection of the respective phase currents, ie the currents flowing in a respective outer conductor LI
  • the measured values of the control device can be provided by the external measuring devices.
  • a (local) load of the respective outer conductors LI, L2, L3 of the energy network can be determined.
  • L2, L3 is a control signal for the switching element 13th generated by the control unit 14, which connects the electrical component 20 selectively with one of the outer conductor LI, L2, L3.
  • the electrical component is a power generation unit, the connection is made to that outer conductor LI, L2, L3, which has the smallest voltage with respect to the neutral conductor N. If the electrical component 20 draws power from the three-phase power network 1, the electrical component 20 is connected to the outer conductor LI, L2, L3, which has the greatest voltage with respect to the neutral conductor N of the power grid. Whether the electrical component 20 must be connected to the outer conductor with the highest voltage or the outer conductor with the lowest voltage can be determined based on the detection of the current direction.
  • phase asymmetries can be avoided. If phase asymmetries already exist in the three-phase energy network, then they can be reduced by means of the control device according to the invention. In this case, the effect is all the greater, the greater the number of devices connected via a respective invention Steuervorrich ⁇ processing components 20th.
  • a change of phase during operation of the electrical component 20 is possible. It is expedient to carry out the phase change as a function of a current detected by the current measuring device 16. In particular, a switching of the phase should be only when the current fed into the power grid 1 or drawn from the power grid 1 current is below a pre give ⁇ NEN threshold.
  • ⁇ SSIG when in the control unit 14 is a hysteresis curve for. the voltage is deposited.
  • the hysteresis is selected for the To ⁇ switching criterion on the mains voltage, if necessary, set a blocking of the phase change for a defined period after the order switch ⁇ . Otherwise the situation could come to an end. th that a power generating component, for. B. a PV system, after switching on the voltage so far raises that immediately the phase would be changed again. Thereby Kings ⁇ nen - excessively frequent phase change can be avoided - if the phase asymmetry oscillates about the switchover around.
  • the current measurement serves primarily to detect whether the component is an energy producer or an energy consumer. This information is for choosing the "right" phase used, as the following example illustrates. In a house ⁇ hold socket different loads can be ⁇ infected, the current measurement to release the Pha ⁇ sencics used.
  • the serving as a switch controller 10 switches to the phase with the lowest voltage.
  • the component 20 is recognized as an energy consumer. 4. A new phase change takes place to the phase with the highest voltage.
  • the changeover switch switches z. B. on the phase with the highest voltage currently and waits for a current flow.
  • the information of the last company ⁇ nen components for current switch position is used.
  • it is advantageous when the exchange of an outer conductor ⁇ is performed in response to a current efficiency of the electrical component 20th If the elekt ⁇ generic component 20, for example with a high grade of efficacy operated, so a phase change may not be appropriate. At times when the electrical compo ⁇ nent 20 but is operated with low efficiency, a phase change can be carried out easily.
  • a threshold for the efficiency is stored in the control device.
  • the control device 14 has corresponding means which either determine the efficiency of the electrical component or the control device receives appropriate information.
  • the information can be transmitted via a communication link KV of a communication device from the electrical component 20 to the communication unit 17 of the Steuervorrich ⁇ device 14.
  • the efficiency information can be provided by a higher-level instance of the control unit 14.
  • phase changeover during stand-by operation of the electrical component. It is true that a phase switching during a stand-by operation of the electrical component kei ⁇ ne direct impact on a possible Phasenunsym ⁇ geometry in the three-phase power grid. This makes it possible, however, already for a later switching on the electrical component see they are connected to the appropriate phase or the ge ⁇ suitable outer conductor preventively.
  • Blockrobkraftwerken or photovoltaic systems trained electrical components 20 may be provided. If a line commutated electrical component 20 are connected to the power network 1 without network synchronization, equalization currents will flow, which could worsen the ver ⁇ phase imbalance further.
  • the presence of the communication connection KV shown in FIG. 1 with corresponding communication devices makes it possible to inform a network synchronization device in the electrical component 20 also about an imminent changeover of the phase. This makes it possible to perform a short-term phase change, because the elec- generic component 20 can be quickly attached to the power grid 1 ⁇ closed.
  • control unit 14 higher-level control to achieve the highest possible number of operating hours without phase change.
  • a higher-level controller can advantageously use the knowledge about power flows in the entire energy network for a selective phase connection. This is particularly advantageous, since each synchronization process can take several seconds, which would shorten the times of energy supply, for example, in the case of a power generation unit.
  • Such a higher-level control can phase-specific fish by means of the agent-based trading mechanism described in WO 2009/040140 AI. The disclosure content of this specification is included in the ahead ⁇ herein by reference.
  • a plurality of individual agents are provided, which are each assigned to a power generation and / or energy consumption unit or egg ⁇ ner control device in the network.
  • the energy grid distributes the generated or consumed energy evenly within the energy grid.
  • the boundary conditions of this self-organizing energy distribution consist in the fact that on the one hand the voltage and the frequency of the provided energy should be kept constant and on the other hand, an operation of the network should be autonomously possible.
  • the agents are networked with each other so that each agent can communicate with another agent, ie exchange appropriate information.
  • a central local power exchange unit may be provided, which each of the agents can access.
  • the distribution of the energy in the energy network is essentially market-based according to the fact that the individual agents provide each other or with the interposition of the local energy exchange unit their required or surplus energy as merchandise and carry out monetary transactions based thereon.
  • the local energy exchange unit is so ⁇ with essentially a switching unit of supply and demand of each agent is, buy or sell that power for money. According to the trade, this is done phase-specific.
  • the control device comprises two inverters 18, 19 in addition to the components already described.
  • the inverters are coupled to one another via their DC voltage circuit.
  • the converter 19 is connected via the first terminal 11 to the electrical coupled component 20.
  • the electrical component 20 can be not only, as in the previous,sbei ⁇ game, a single-phase power generation and / or energy ⁇ consumption unit, but also a three-phase component.
  • the inverter 18 is connected via the second terminal 12 to the three outer conductors or phases LI, L2, L3 and the neutral conductor N.
  • the voltage measuring device 15 and the current measuring device 16 are provided between the inverter 18 and the second terminal 12. In contrast to the exemplary embodiment in FIG. 1, the current, as arranged on the side of the second terminal, is determined in each phase.
  • a variable, phase-specific power supply or removal can take place.
  • a possible incompatibility in terms of frequency and voltage can be compensated by the two inverters 18 and 19th This makes it possible to connect electrical components with other network connection parameters than the energy network to this.
  • Another advantage is that a phase change is possible without shutting off the electrical component 20.
  • the coscp of the network-side converter 18 can be preset via a corresponding regulation. Thus, a reactive power compensation is possible.
  • the control device according to the invention can be used in a variety of different scenarios.
  • Example 1 In a residential area, a large number of small photovoltaic systems are connected in a single phase to the outer conductor LI of the three-phase power grid. At lunchtime on sunny days a simultaneous strong performance Supply to the outer conductor LI. As a result, an unbalanced load of a distribution network transformer of the energy ⁇ network, which leads to shutdown of individual photovoltaic inverters by the voltage overshoot on the réellelei- ter LI arises.
  • the described control device it is possible to apply the feeding of the photovoltaic systems, depending on the load of the phases of the power grid, on different outer conductors LI, L2, L3. Likewise, several consumers can be connected to those outer conductor, which has the highest voltage.
  • a control device is electrically connected in series with a RCCB.
  • a change of phase of a complete single phase connected to an outdoor ⁇ .leiter of the energy network area of a house is possible.
  • communication takes place between the control device and the "intelligent" component (s) connected to this area, which inhibits a phase change when the "intelligent” component (s) are connected to the energy grid.
  • This is beispielswei ⁇ se with PCs, TVs, etc. sense whose function could be interrupted by a phase change.
  • the phase change is in passive components, such. B. Wasserko ⁇ chern, coffee machines, washing machines without complex control, etc., allowed at any time, even if they are operated during the Phasenwechesels.
  • Power generation units that are capable of phase-specific power consumption can independently reduce the problems in the power grid caused by phase asymmetries.
  • coordination takes place through agent-based and phase-specific trading.
  • the trade mechanism can ensure problem solving via market prices.
  • problem solving takes place economically optimized costs, since technical measures are taken where they make economic sense. This will be illustrated by the following examples.
  • Example 4 In a residential area, a large number of small photovoltaic systems are connected in a single phase to the outer conductor LI. In hours of strong sunlight, there is a strong power feed into this phase. Heat pumps in the residential buildings of the residential area are connected in a single phase to the energy network and have a control device according to the invention which makes it possible to select the phase. In an agent-based energy-based trading network, the price of the LI phase power decreases during periods of high solar radiation. The agents of the heat pumps register this and adjust their buying behavior accordingly.
  • Example 5 Example 5
  • a large photovoltaic system is connected to the outer conductor LI single phase for unknown reasons.
  • Conventional equipped with monitoring relay motors for example are
  • a commercial enterprise is also to be located in the subnetwork with machines whose electric motors are capable of phase-specific power consumption by means of a control device according to the invention.
  • the price for the power from the phase LI drops in the hours of strong sunlight.
  • the agents assigned to the electric motors of the business register this and adjust their purchasing behavior accordingly.
  • Example 7 power generation units such. As combined heat and power plants, usually feed three-phase in the power grid. When phase asymmetries occur, the variable phase-specific feed contributes to network symmetry achieved when on the one hand the cogeneration plant is connected via a control device according to the invention to the power grid and on the other hand, the glassesmechanis ⁇ described mechanism is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

L'invention concerne un dispositif (10) de commande de la charge des phases d'un réseau triphasé (1), notamment d'un réseau basse tension. Le dispositif comprend une première borne (11) destinée au raccordement d'un composant électrique (20) et permettant au composant (20) de prélever du courant dans le réseau triphasé ou bien d'introduire du courant dans ce réseau triphasé. Le dispositif comprend également une deuxième borne (12) destinée au raccordement aux conducteurs externes (L1, L2, L3) du réseau triphasé. Un élément de commutation (13) apte à être commandé permet de raccorder la première borne (11) de manière sélective à un des conducteurs externes (L1, L2, L3) du réseau triphasé (1) en fonction d'une charge respective des conducteurs externes (L1, L2, L3).
PCT/EP2012/060610 2011-06-24 2012-06-05 Dispositif de commande de la charge des phases d'un réseau triphasé WO2012175332A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078047A DE102011078047A1 (de) 2011-06-24 2011-06-24 Vorrichtung zur Steuerung der Belastung der Phasen eines dreiphasigen Energienetzes
DE102011078047.5 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012175332A1 true WO2012175332A1 (fr) 2012-12-27

Family

ID=46208552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060610 WO2012175332A1 (fr) 2011-06-24 2012-06-05 Dispositif de commande de la charge des phases d'un réseau triphasé

Country Status (2)

Country Link
DE (1) DE102011078047A1 (fr)
WO (1) WO2012175332A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096275A3 (fr) * 2011-12-19 2013-08-15 General Electric Company Système et procédé permettant de réguler l'énergie réactive dans un système de conversion d'énergie
JP2016505237A (ja) * 2013-02-04 2016-02-18 フォータム オーワイジェイ 多相電力ネットワークに単相電力源を結合するためのシステム及び方法
CN106463964A (zh) * 2014-04-17 2017-02-22 Abb瑞士股份有限公司 用于平衡微网中的相的能量存储
CN106849155A (zh) * 2015-12-01 2017-06-13 Det 国际控股有限公司 用于逆变器的控制器
EP3184352A1 (fr) 2015-12-22 2017-06-28 Zaptec IP AS Système et procédé de distribution de charge de phase dynamique lors de la charge de véhicules électriques
EP3675308A1 (fr) 2018-12-27 2020-07-01 Vito NV Système de gestion de réduction de puissance active
EP3920357A1 (fr) 2020-06-05 2021-12-08 Vito NV Système de gestion de flux de puissance ou d'énergie dans un nanoréseau ou un miniréseau

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204256A1 (de) 2013-03-12 2014-09-18 Bayerische Motoren Werke Aktiengesellschaft Ladevorrichtung für ein Elektrofahrzeug
FR3006516A1 (fr) 2013-05-28 2014-12-05 Commissariat Energie Atomique Selection de phase pour installation electrique polyphasee
US9865410B2 (en) 2013-09-25 2018-01-09 Abb Schweiz Ag Methods, systems, and computer readable media for topology control and switching loads or sources between phases of a multi-phase power distribution system
DE102014200238A1 (de) * 2014-01-09 2015-07-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Einspeisen einer elektrischen Leistung und/oder einer elektrischen Energie aus einer Energiequelle in ein elektrisches Netzwerk mit mehreren Phasenleitungen
AT515625B1 (de) * 2014-01-31 2016-07-15 Ait Austrian Inst Technology Verfahren zum Anschluss von zweipoligen Schaltkreiselementen
FR3018006B1 (fr) * 2014-02-27 2018-04-06 Hager-Electro Sas Systeme de commutation controlee pour le raccordement selectif d'un reseau electrique triphase
DE102015000076A1 (de) * 2015-01-12 2016-07-14 Rwe Deutschland Ag Verfahren zum Betreiben eines elektrischen Verbrauchers oder Erzeugers an einem Teilnehmernetz sowie eine Vorrichtung und eine Schaltmatrix
FR3031845B1 (fr) * 2015-01-16 2017-01-20 Inst Polytechnique Grenoble Systeme de raccordement d'un generateur decentralise monophase a un reseau triphase
DE102015105152A1 (de) * 2015-04-02 2016-10-06 P3 energy & storage GmbH Anordnung und Verfahren zum Verringern einer Schieflast in einem dreiphasigen Verteilungsnetz
SK7978Y1 (sk) * 2015-09-21 2018-01-04 Slovenska Polnohospodarska Univerzita V Nitre Spôsob a zariadenie na napájanie jednofázovej elektrickej zásuvky pri výpadku jednej fázy alebo viacerých fáz
DE102015118397A1 (de) 2015-10-28 2017-05-04 Frima International Ag Verfahren zur Steuerung eines Gargeräts, Gargerät und Heizelement
DE102016218439A1 (de) 2016-09-26 2018-03-29 Bayerische Motoren Werke Aktiengesellschaft Aufbau eines lokalen dreiphasigen Stromnetzes
DE102016224295A1 (de) 2016-12-06 2018-06-07 Audi Ag Verfahren zum Betrieb einer Ladeeinrichtung, Ladeeinrichtung und Kraftfahrzeug
DE102017201734B4 (de) 2017-02-03 2018-09-13 Volkswagen Aktiengesellschaft Ladegerät und Verfahren zur Reduzierung der Schieflast eines zweiphasigen Ladegeräts
DE102018104604A1 (de) * 2018-02-28 2019-08-29 Sma Solar Technology Ag Vorrichtung zur Verbindung eines Teilnetzes mit einem Wechselspannungsnetz und Verfahren zur Regelung einer elektrischen Leistung
DE102018205041A1 (de) * 2018-04-04 2019-10-10 Audi Ag Verfahren zur Zuordnung einer Anschlussinformation und Ladeeinrichtung
DE102018206506A1 (de) * 2018-04-26 2019-10-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zum Betreiben eines Ladesystems
DE102018214747A1 (de) 2018-08-30 2020-03-05 Siemens Aktiengesellschaft Einrichtung für einen Niederspannungsstromkreis
DE102019123962A1 (de) * 2019-09-06 2021-03-11 Vaillant Gmbh Verfahren zum Betreiben eines elektrischen Heizgerätes
WO2024068729A1 (fr) * 2022-09-27 2024-04-04 Watts A/S Système de distribution de charges de phase
DE102022134786A1 (de) 2022-12-23 2024-07-04 Mitteldeutsche Netzgesellschaft Strom mbH Anschlussvorrichtung zum Bereitstellen von elektrischer Energie, System, Verfahren sowie Computerprogrammprodukt
DE102022134783A1 (de) 2022-12-23 2024-07-04 Mitteldeutsche Netzgesellschaft Strom mbH Verfahren zum Energiemanagement beim Bereitstellen von elektrischer Energie, Computerprogrammprodukt, System, sowie Fahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD224963A1 (de) * 1984-03-06 1985-07-17 Akad Wissenschaften Ddr Anordnung zum ausgleich unsymmetrischer belastungen in mehrphasen-wechselstrom-, insbesondere drehstrom-netzen
US5281859A (en) * 1991-06-13 1994-01-25 Molex Incorporated Automatically switched power receptacle
US6018203A (en) * 1995-05-22 2000-01-25 Target Hi-Tech Electronics Ltd. Apparatus for and method of evenly distributing an electrical load across an n-phase power distribution network
WO2009040140A1 (fr) 2007-09-21 2009-04-02 Siemens Aktiengesellschaft Réseau décentralisé de distribution d'énergie, et procédé de distribution d'énergie dans un réseau décentralisé
DE102009014295A1 (de) * 2009-03-25 2010-09-30 Stadtwerke Mainz Ag System und Verfahren zum Aufladen von Elektrofahrzeugen
DE102009060364A1 (de) * 2009-12-24 2011-06-30 Volkswagen AG, 38440 Vorrichtung und Verfahren zur Energieeinspeisung und/oder -rückspeisung von elektrischer Energie
WO2011141416A2 (fr) * 2010-05-14 2011-11-17 Siemens Aktiengesellschaft Dispositif de commutation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ594664A (en) * 2009-02-06 2012-12-21 Eandis Meter that selectively connects single-phase outputs to multi-phase inputs in response to a received control signal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD224963A1 (de) * 1984-03-06 1985-07-17 Akad Wissenschaften Ddr Anordnung zum ausgleich unsymmetrischer belastungen in mehrphasen-wechselstrom-, insbesondere drehstrom-netzen
US5281859A (en) * 1991-06-13 1994-01-25 Molex Incorporated Automatically switched power receptacle
US6018203A (en) * 1995-05-22 2000-01-25 Target Hi-Tech Electronics Ltd. Apparatus for and method of evenly distributing an electrical load across an n-phase power distribution network
WO2009040140A1 (fr) 2007-09-21 2009-04-02 Siemens Aktiengesellschaft Réseau décentralisé de distribution d'énergie, et procédé de distribution d'énergie dans un réseau décentralisé
DE102009014295A1 (de) * 2009-03-25 2010-09-30 Stadtwerke Mainz Ag System und Verfahren zum Aufladen von Elektrofahrzeugen
DE102009060364A1 (de) * 2009-12-24 2011-06-30 Volkswagen AG, 38440 Vorrichtung und Verfahren zur Energieeinspeisung und/oder -rückspeisung von elektrischer Energie
WO2011141416A2 (fr) * 2010-05-14 2011-11-17 Siemens Aktiengesellschaft Dispositif de commutation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096275A3 (fr) * 2011-12-19 2013-08-15 General Electric Company Système et procédé permettant de réguler l'énergie réactive dans un système de conversion d'énergie
JP2016505237A (ja) * 2013-02-04 2016-02-18 フォータム オーワイジェイ 多相電力ネットワークに単相電力源を結合するためのシステム及び方法
US10008951B2 (en) 2013-02-04 2018-06-26 Fortum Oyj System and method for coupling a monophase power source to a multiphase power network
CN106463964A (zh) * 2014-04-17 2017-02-22 Abb瑞士股份有限公司 用于平衡微网中的相的能量存储
CN106849155A (zh) * 2015-12-01 2017-06-13 Det 国际控股有限公司 用于逆变器的控制器
CN106849155B (zh) * 2015-12-01 2022-02-11 泰达电子股份有限公司 用于逆变器的控制器
EP3184352A1 (fr) 2015-12-22 2017-06-28 Zaptec IP AS Système et procédé de distribution de charge de phase dynamique lors de la charge de véhicules électriques
EP4112365A1 (fr) 2015-12-22 2023-01-04 Zaptec IP AS Système de distribution de charge de phase dynamique lors de la charge de véhicules électriques
EP3675308A1 (fr) 2018-12-27 2020-07-01 Vito NV Système de gestion de réduction de puissance active
EP3920357A1 (fr) 2020-06-05 2021-12-08 Vito NV Système de gestion de flux de puissance ou d'énergie dans un nanoréseau ou un miniréseau
WO2021245264A1 (fr) 2020-06-05 2021-12-09 Vito Nv Système de gestion de flux de puissance ou d'énergie dans un nano- ou micro-réseau

Also Published As

Publication number Publication date
DE102011078047A1 (de) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2012175332A1 (fr) Dispositif de commande de la charge des phases d'un réseau triphasé
EP2898582B1 (fr) Procédé de démarrage autonome d'une centrale électrique équipée de plusieurs onduleurs connectables à un réseau à courant alternatif
Divan et al. Power electronics at the grid edge: The key to unlocking value from the smart grid
DE102017127311A1 (de) Vorrichtung und Verfahren zur Vormagnetisierung eines Netztransformators in einem Stromrichtersystem
DE102008024222A1 (de) Verfahren und Vorrichtung zur Bereitstellung von Regelleistung im Energieversorgungsbereich zur Frequenzstabilisierung eines elektrischen Netzes
EP1965483A1 (fr) Circuit pour la connexion d'une installation de génération d'énegie au réseau électrique
WO2018172489A1 (fr) Procédé de démarrage d'un réseau de production d'énergie
DE112013000137T5 (de) Ladevorrichtung
EP2919352B1 (fr) Procédé de fonctionnement d'un usager électrique, d'un point de mesure électrique sur un réseau d'usager électrique et usager électrique et point de mesure électrique
EP2924839A1 (fr) Régime de secours monophasé d'un onduleur triphasé et onduleur correspondant
WO2019144166A1 (fr) Système d'alimentation en courant
WO2013064377A2 (fr) Unité d'alimentation et ensemble générateur et consommateur de courant
Enslin Integration of photovoltaic solar power-the quest towards dispatchability
EP3336998A1 (fr) Installation auxiliaire d'alimentation, convertisseur pour une installation auxiliaire d'alimentation ainsi que procédé de fonctionnement d'une installation auxiliaire d'alimentation
WO2018108997A1 (fr) Dispositif de production et de régulation d'énergie réactive coordonnées et centrale d'énergie réactive virtuelle basée sur celui-ci
WO2013045072A2 (fr) Installation photovoltaïque comportant une sécurité contre l'injection dans un réseau électrique public
EP2026440A2 (fr) Procédé et dispositif de préparation d'une puissance de régulation dans le domaine de la distribution d'énergie d'un distributeur d'énergie en vue de la stabilisation de la fréquence d'un réseau électrique
WO2011131655A2 (fr) Système de production de courant et procédé destiné à faire fonctionner un tel système
EP3472913B1 (fr) Unité d'alimentation en énergie électrique et commande afférente
WO2012139657A2 (fr) Réseau de distribution d'énergie et son procédé de fonctionnement
EP3900142A1 (fr) Procédé de commande d'une installation électrique ayant une pluralité d'appareils électriques, unité de commande et installation électrique équipée d'une unité de commande de ce genre
WO2015004034A2 (fr) Ensemble électrique pourvu d'un onduleur et commutateur intermédiaire pour l'ensemble électrique
WO2013152788A1 (fr) Appareil électrique et procédé pour le pilotage d'un générateur d'énergie électrique
EP4360184A1 (fr) Procédé de fonctionnement d'un système d'alimentation en énergie, dispositif d'échange d'énergie électrique dans un système d'alimentation en énergie, et système d'alimentation en énergie
WO2020069782A1 (fr) Commande d'une zone de réseau local pour réaliser une communauté énergétique locale avec programme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12725777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12725777

Country of ref document: EP

Kind code of ref document: A1